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The discretization by the method of moments (MoM) of integral equations in the 
electromagnetic scattering analysis most often relies on divergence-conforming basis 
functions, such as the Rao–Wilton–Glisson (RWG) set, which preserve the normal continuity 
of the expanded currents across the edges arising from the discretization of the target 
boundary. Although for such schemes the boundary integrals become free from hyper-
singular kernel-contributions, which is numerically advantageous, their practical imple-
mentation in real-life scenarios becomes particularly cumbersome. Indeed, the application 
of the normal continuity condition on composite objects becomes elaborate and convoluted 
at junction-edges, where several regions intersect. Also, such edge-based schemes cannot 
even be applied to nonconformal meshes, where adjacent facets may not share single 
matching edges. In this paper, we present nonconforming schemes of discretization for the 
scattering analysis of complex objects based on the expansion of the boundary unknowns, 
electric or magnetic currents, with the facet-based monopolar-RWG set. We show with 
examples how these schemes exhibit great flexibility when handling composite piecewise 
homogeneous objects with junctions or targets modeled with nonconformal meshes. 
Furthermore, these schemes offer improved near- and far-field accuracy in the scattering 
analysis of electrically small single sharp-edged dielectric targets with moderate or high 
dielectric contrasts.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The accurate scattering analysis of complex targets, made up of homogeneous components with different electromag-
netic properties, is of great interest nowadays for the engineering community. The surface integral equations, such as 
the electric-field integral equation (EFIE) [1] and the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) [2–4] formu-
lation, arise from setting currents and field boundary conditions over the surface interfaces between different regions. These 
schemes, which satisfy by definition the radiation condition at infinity, are normally preferred in the scattering analysis of 
homogeneous targets, perfectly conducting (PEC) or penetrable, over other numerical schemes, such as the volume inte-
gral equations [5], which require the definition of unknowns inside regions, or the finite-element methods [6,7] which call 
for the explicit insertion of absorbing boundary conditions [8]. In the Galerkin discretization by the method of moments 
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[9] of surface-integral equations, the currents and the tangential traces of the field spaces over the boundary interfaces 
are expanded and tested, respectively, with the same set of basis functions. Typically, these are divergence-conforming 
sets, such as the RWG set, which enforce normal continuity across the edges arising from the discretization and span a 
finite-dimensional subspace inside H−1/2(div∂Ω, ∂Ω) [10], the function space that encompasses the space of currents and 
the dual of the range of the tangential-trace operators [11–13]. Galerkin-discretizations with the RWG basis functions of 
the EFIE and PMCHWT formulations [1,14] excel as conforming schemes, hence with converging solutions in the physical 
space of currents [15,16]. Moreover, these implementations are numerically advantageous because the hypersingular kernel 
contributions cancel out.

The well-established conforming scattering analysis for single homogeneous objects can be extended straightforwardly to 
composite objects without junctions, such as coated metallic objects or multilayered penetrable structures [17,18]. However, 
the development of conforming schemes for composite objects with junctions, viz. boundary lines where more than two re-
gions intersect, becomes somewhat awkward because of the definition of special continuity conditions at junctions [19–23]. 
In any case, these single-surface (or single-trace) approaches have been successful for decades in the analysis of composite 
structures despite the involved search of junctions and the required identification of the number and type (metallic or pen-
etrable) of intersecting regions at each junction. More recently, other so-called two-surface [24] or multi-trace [25] schemes 
circumvent the management of junctions by treating the composite object as a set of disjoint objects immersed in a host 
medium, with the separation distances tending to zero. These schemes provide improved flexibility when managing com-
posite objects but require the definition of additional redundant unknowns at touching surfaces. Clearly, the single-trace 
approaches were developed in earlier times, with restricted computational resources, such that the definition of additional 
unknowns was just too costly. Conversely, over the past years, the double-surface and multi-trace schemes have captured 
the attention of researchers thanks to the dramatic increase of available memory resources.

All these schemes suffer from the mesh restrictions imposed by the adopted divergence-conforming sets, which need 
to be defined over conformal meshes, with all pairs of adjacent facets sharing a single edge. In consequence, the mesh 
generation of composite objects in the single-trace analysis becomes especially constrained, inadequate to combine arbi-
trary meshes arising from the independent tessellation of each of the several subdomains that form the original structure. 
Similarly, although the double-surface and multi-trace techniques allow the juxtaposition of closed meshes linked to each 
subdomain, the meshing schemes adopted must be in any case locally conformal over each subdomain. Hence, the applica-
tion of such schemes to nonconformal meshes, where adjacent facets may not share single edges, appears unworkable. This 
has some impact in the analysis of real-life complex structures, especially when the mesh under analysis arises from the 
interconnection of open arbitrary triangulations.

In this work, we address the robust, accurate and versatile single-surface scattering analysis of dielectric objects with 
arbitrary shape and composite objects with junctions. For this, we employ the EFIE–PMCHWT integral-equation formula-
tion [21], which follows from the application of the EFIE or PMCHWT formulations over boundary surfaces, respectively, 
enclosing PEC regions or separating penetrable regions. The proposed schemes rely on the expansion of the currents with 
the facet-based, discontinuous-across-edges, monopolar-RWG set [26–29]. This choice gives rise to boundary integrals with 
hypersingular kernels, which we handle by testing the equations with well-suited testing functions defined off the boundary 
tessellation, inside the region where, in light of the surface equivalence principle, the fields must be zero. The volumetric
scheme of testing defines the testing functions over small volumetric domains, tetrahedral elements or wedges, attached to 
the boundary surface [27,28]. The tangential-normal scheme deploys RWG testing functions over pairs of adjacent triangles 
such that one triangle matches a boundary triangle and the other one is quasi-normally oriented into the null-field region 
[29]. These implementations are nonconforming since the finite-dimensional spaces spanned by the monopolar-RWG func-
tions belong to the space of square-integrable functions L2(∂Ω) [30]. Interestingly, they exhibit similar or better accuracy 
than the conventional RWG-schemes in the scattering analysis of targets with sharp edges and corners, PEC [27–29,31] or 
2D TE-dielectric [32], especially if moderately small. Note that for a given discretization the monopolar-RWG space includes 
the space spanned by the RWG basis functions [27].

As we show in the paper, our nonconforming PMCHWT implementations exhibit improved accuracy when compared 
with the RWG-schemes in the analysis of single small sharp-edged dielectric objects with moderate or high dielectric con-
trasts. Moreover, our schemes manifest in general great flexibility in the single-surface analysis of composite objects with 
junctions as the special modeling of currents at junctions is not required. Also, the proposed implementations can handle 
nonconformal meshes when applied to piecewise (or fully) homogeneous arbitrarily shaped objects. This represents sig-
nificant progress with respect to previous schemes, mainly addressing nonconformal meshes of homogeneous 3D targets, 
PEC [27–30] or dielectric [33,34], or 2D composite objects [32]. Our schemes become also well suited for the enhance-
ment of integral-equation domain decomposition methods [34–36], since the transmission conditions between contiguous 
subdomains may be satisfied through the off-boundary testing and the discontinuous monopolar-RWG expansion.

In Section 2, details on the monopolar-RWG discretization of the PMCHWT formulation, with off-boundary testing, are 
provided. Special emphasis is given on the wedge volumetric and the tangential-normal schemes of testing, while details on 
the tetrahedral testing are already available in [37]. In Section 3, the analysis of piecewise homogeneous composite objects 
with the monopolar-RWG discretization of the single-surface EFIE–PMCHWT formulation is described. The difficulties in the 
management of junctions with the conventional schemes are described together with the advantages of our nonconform-
ing discretizations. In Section 4, results for the various monopolar-RWG schemes of discretization of the EFIE–PMCHWT 
formulation, with volumetric or tangential-normal testing, are shown and discussed.
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2. Nonconforming PMCHWT for single penetrable targets

The scattering analysis of an arbitrarily shaped penetrable body immersed in a host medium is usually carried out 
through the equivalent definition of the original problem in terms of two homogeneous problems associated with each of 
the two regions, outside (i = 1) or inside (i = 2) the body (see Fig. 1). The scattered fields E s

i and H s
i are generated in the 

homogeneous problem associated with the region i by J i and M i , respectively, the electric and magnetic currents defined at 
the side of the boundary surface ∂Ω inside the region i. In light of the equivalence theorem, the total fields, resulting from 
the summation of the incident and scattered fields, are zero in the equivalent problem out of the corresponding regions 
(see Fig. 1). In this paper, we expand the unknown currents J i and M i with the monopolar-RWG set of basis functions 
{ f p

n } ∈ L2(∂Ω) as follows [26]

J i �
Nt∑

n=1

J p,i
n f p

n (1)

M i �
Nt∑

n=1

M p,i
n f p

n i = 1,2 p = 1,2,3 (2)

where { J p,i
n } and {M p,i

n } represent the sets of unknown coefficients in the expansion of the currents and Nt denotes the 
number of triangles arising from the discretization of the boundary surface.

Fig. 1. Surface equivalence theorem for a penetrable object and plane wave excitation.

The monopolar-RWG and RWG basis functions share the same definition inside each triangle [26–29]. However, whereas 
the RWG set is edge-based, with a normally continuous transition across edges, the monopolar-RWG set is facet-based, with 
no continuity imposition across edges. In consequence, for a given closed triangulation, the RWG discretization handles 
as many unknowns as the number of edges, while the monopolar-RWG set gives rise to twice this amount of unknowns 
or, equivalently, three times the number of triangles. The subsets { f 1

n}, { f 2
n} and { f 3

n} denote the three monopolar-RWG 
contributions sharing the nth triangle Sn so that

f p
n
(
r′) = 1

2An

(
r′ − rp

n
)

r′ ∈ Sn (3)

where r1
n , r2

n , r3
n represent the position vectors of the three vertices of Sn , with area An (see Fig. 2).

The approximated scattered fields generated in the homogeneous problem associated with the region i are defined 
as [37]

Ẽ
s
i �

Nt∑
ηi T p,i

n J p,i
n −

Nt∑
K p,i

n M p,i
n (4)
n=1 n=1
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H̃
s
i �

Nt∑
n=1

K p,i
n J p,i

n +
Nt∑

n=1

1

ηi
T p,i

n M p,i
n (5)

with

K p,i
n (r) = ∇ ×

¨

Sn

Gi
(
r, r′) f p

n
(
r′)dS ′ (6)

T p,i
n (r) = − jki

¨

Sn

Gi
(
r, r′) f p

n
(
r′)dS ′ − j

1

ki
∇Φ

p,i
n (r) (7)

The scalar function Φ p,i
n (r), from which the discretized electric and magnetic scalar potentials are derived, is defined in 

general as [38]

Φ
p,i
n (r) =

¨

Sn

Gi
(
r, r′)∇′ · f p

n
(
r′)dS ′ −

˛

∂ Sn

Gi
(
r, r′) f p

n
(
r′) · n̂n

c dl′ (8)

where ∂ Sn and n̂n
c denote, respectively, the closed contour around the source triangle and the unit vector perpendicular to 

this contour. The function Gi represents the Green’s function of the homogeneous problem associated with the region i; 
that is,

Gi
(
r, r′) = e− jki R

4π R
, R = ∣∣r − r′∣∣ (9)

The constants ki and ηi stand for the wave number and the impedance of the region i, respectively, and are expressed in 
terms of the free-space constants, k0 and η0, as

ki = k0
√

εr,i · μr,i, ηi = η0

√
μr,i

εr,i
(10)

where εr,i and μr,i denote, respectively, the relative permittivity and the relative permeability in the i-th region.
The discretized PMCHWT formulation imposes the electric-field and magnetic-field boundary conditions over the two 

sides (i = 1, 2) of the meshed boundary surface S̃ = ⋃Nt
n=1 Sn so that

(
Ẽ

s
1 − Ẽ

s
2

)
S̃,tan �

Nt∑
n=1

(
η1T p,1

n + η2T p,2
n

)
S̃,tan J p

n −
Nt∑

n=1

(
K p,1

n + K p,2
n

)
S̃,tanM p

n � −E inc
S̃,tan

(11)

(
H̃

s
1 − H̃

s
2

)
S̃,tan �

Nt∑
n=1

(
K p,1

n + K p,2
n

)
S̃,tan J p

n +
Nt∑

n=1

(
1

η1
T p,1

n + 1

η2
T p,2

n

)
S̃,tan

M p
n � −H inc

S̃,tan
(12)

where E inc and H inc stand for the incident electric and magnetic fields, respectively, and K p,1
n , K p,2

n are considered in 
the Cauchy principal value sense. The currents at both sides of the boundary surface are related such that the tangential 
boundary condition is satisfied; i.e. J p

n = J p,1
n = − J p,2

n and M p
n = M p,1

n = −M p,2
n .

Fig. 2. mth triangle arising from the discretization of the boundary surface where the volumetric wedge testing scheme is defined conformal to the surface.
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We cast the equations (11) and (12) into matrix form by testing the tangential field conditions with an appropriate set of 
testing functions. The commonly used Galerkin formulation, which adopts the same set for testing the fields and expanding 
the currents, gives rise to

¨

Sm

(
Ẽ

s
1 − Ẽ

s
2

) · f q
m(r)dS = −

¨

Sm

E inc · f q
m(r)dS

¨

Sm

(
H̃

s
1 − H̃

s
2

) · f q
m(r)dS = −

¨

Sm

H inc · f q
m(r)dS m = 1 . . . Nt q = 1,2,3 (13)

The Galerkin testing of the electric or magnetic field traces in (13) gives rise to hypersingular kernel contributions, 
linked to the double gradient of the Green’s function, that can be directly evaluated through elaborate analytical formulas 
[39]. Alternatively, the integration by parts of these double gradient kernel contributions leads to contour-surface or double-
surface integrals, easy-to-manage through well-known integration routines, and to double-contour integrals, which become 
unbounded for self- or edge-adjacent interactions. Over the last years, several strategies have been proposed to make the 
latter contributions numerically manageable; namely, compensating the double-contour integrals through the introduction 
of the so-called penalty terms [26]; singling out the critical term that makes the near interactions infinitely large [40]; or 
testing the fields over small volumetric or surface domains attached to the boundary surface, inside the region where the 
fields must be zero [27–29]. In this paper, we adopt the latter choice, for which several non-Galerkin testing procedures can 
be defined (volumetric or tangential-normal).

2.1. Volumetric testing

We test the scattered fields through a set of testing functions {wq,i
m } defined over a set of wedge elements, {V i

m}, attached 
to the boundary-surface inside the region i, where the null-field condition must be accomplished according to the equiva-
lence principle (Fig. 2). This scheme is analogous to the volumetric nonconforming EFIE implementation for conductors [28], 
where the volumetric domains are located inside the object. The wedges can be defined either conformal or nonconformal to 
the boundary. In the former, the wedges are bounded by three trapezoids that lie in the planes bisecting the angles formed 
by the corresponding triangle arising in the surface tessellation and the three neighboring triangles (Fig. 2). In the latter, 
the testing elements are defined as right triangular prisms. This choice appears as particularly flexible and versatile because 
no a priori knowledge of the boundary shape is required and because nonconformal meshes can be handled. However, for 
triangles with an edge touching a sharp corner, the testing wedge will break out of the null-field region and some numerical 
error may appear.

We define the volumetric wedge testing functions [28] as:

wq,i
m (r) = 1

2Am Hi
m

[
ρq

m − (
rq

m − r
) · n̂m tanα

q,i
m · ρ̂q

m
]

r ∈ V i
m i = 1,2 q = 1,2,3 m = 1 . . . Nt (14)

where ρq
m represents the projection of the vector (r − rq

m) onto the plane of the triangle Sm and Hi
m denotes the height of 

the wedge associated with the field triangle Sm . This parameter is defined as a fraction of the mesh parameter, which we 
set as the average length of the side segments of Sm and has the same value at both regions (i = 1, 2). The unit vector n̂m

is oriented normally with respect to Sm and points from region 2 to region 1; αq,i
m denotes the angle of the side edge of 

the m-th wedge associated with the q-th vertex with respect to n̂m (see Fig. 2). For testing elements nonconformal to the 
boundary αq,i

m = 0, whereby the second term on the right hand side of (14) disappears.
The volumetrically tested monopolar-RWG discretization of the PMCHWT leads to the following matrix system [32]

˚

V 2
m

Ẽ
s
1 · wq,2

m (r)dV −
˚

V 1
m

Ẽ
s
2 · wq,1

m (r)dV = −
˚

V 2
m

E inc · wq,2
m (r)dV (15)

˚

V 2
m

H̃
s
1 · wq,2

m (r)dV −
˚

V 1
m

H̃
s
2 · wq,1

m (r)dV = −
˚

V 2
m

H inc · wq,2
m (r)dV (16)

Indeed, the double contour integrals in (13) now disappear since the surface testing integrals of the Galerkin testing 
are replaced by volumetric integrals. The accuracy of this implementation can be fine-tuned by adjusting the height of the 
wedge elements. In practice, the recently introduced testing with tetrahedral elements [37], which stands for an alternative 
scheme of volumetric testing, becomes easier to implement than the wedge testing. On the other hand, the tetrahedral 
testing provides improved accuracy in the scattering analysis of single dielectric objects for a smaller range of heights than 
the wedge testing, especially in far-field computation (see Figs. 6 and 7).
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2.2. Tangential-normal testing

The fields are tested over a pair of edge-adjacent triangles such that one triangle matches a facet arising in the surface 
triangulation, and the other one is oriented quasi-normally inside the region where the field becomes zero according to the 
equivalence theorem (see Fig. 3). This scheme is analogous to the nonconforming EFIE implementation introduced in [29]
for conductors and can also be defined conformal or nonconformal to the boundary depending on whether the off-boundary 
triangle lies in the plane bisecting the angle between two edge-adjacent triangles or is oriented normally with respect to 
the matching triangle (see Fig. 3). The testing integrals are now surface integrals, which alleviates the computational effort 
otherwise required for the volumetric integrals in (15) and (16).

We define the tangential-normal testing functions {tq,i
m } as RWG basis functions so that

tq,i
m (r) =

{
f q

m(r) r ∈ Sm

−gq,i
m (r) r ∈ Sq,i

m

i = 1,2 q = 1,2,3 m = 1 . . . Nt (17)

where f q
m(r) and gq,i

m (r) denote the two RWG contributions, respectively, over the surface triangle Sm and over the triangle 
Sq,i

m , oriented quasi-normally inside the region i (see Fig. 3) and defined as

gq,i
m (r) = 1

2Aq,i
m

(
r − rq,i

m
)

(18)

where rq,i
m and Aq,i

m represent, respectively, the position vector of the off-boundary vertex and the area of Sq,i
m (see Fig. 3).

Fig. 3. mth triangle arising from the discretization of the boundary surface where the tangential-normal testing scheme is defined conformal to the surface.

The monopolar-RWG discretization of the PMCHWT formulation with tangential-normal testing gives rise to the following 
matrix system [32]

¨

Sm∪Sq,2
m

Ẽ
s
1 · tq,2

m (r)dS −
¨

Sm∪Sq,1
m

Ẽ
s
2 · tq,1

m (r)dS = −
¨

Sm∪Sq,2
m

E inc · tq,2
m (r)dS (19)

¨

Sm∪Sq,2
m

H̃
s
1 · tq,2

m (r)dS −
¨

Sm∪Sq,1
m

H̃
s
2 · tq,1

m (r)dS = −
¨

Sm∪Sq,2
m

H inc · tq,2
m (r)dS (20)

where the testing of the gradients of the scalar potentials can be simplified through
¨

Sm∪Sq,i
m

tq,i
m · ∇Φ

p,i
n dS = −

¨

Sm∪Sq,i
m

Φ
p,i
n ∇ · tq,i

m dS (21)

because 
˜

Sm∪Sq,i
m

∇ · (tq,i
m Φ

p,i
n )dS = 0 thanks to the normal continuity of tq,i

m across the common edge between the triangles 

Sm and Sq,i
m . The accuracy of this implementation is fine-tuned by adjusting the height Hq,i

m of the testing triangle Sq,i
m , 

which we define with the same value in both regions as a fraction of hq
m , the length of the qth side in Sm , which is shared 

with Sq,i
m (see Fig. 3).
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3. Nonconforming EFIE–PMCHWT for piecewise homogeneous objects with junctions

The single-surface RWG-discretization of the EFIE–PMCHWT formulation for a composite object out of junction-edges, 
as shown in [21], is defined in an analogous manner as the Galerkin RWG-discretization of the EFIE [1] or the PMCHWT 
formulation [14] for a single object. At junction-edges, though, specially tailored schemes need to be defined in order 
to enforce the continuity conditions [19–23]. These techniques have become widespread over the last decades because 
of the observed good accuracy and the restrained number of unknowns. The use of moderate number of unknowns was 
particularly compelling in earlier times, when the computational resources were limited. However, the establishment of the 
continuity conditions at junctions demands some previous insight into the mesh topology in order to identify edges and 
junctions, which may actually be rather time-consuming for intricate or fine meshes, and gives rise in general to additional 
bookkeeping effort in the matrix generation.

In Fig. 4 we show the section of a rather simple composite object with junctions. Whereas in junction [C] all the in-
tersecting regions are penetrable, in junctions [A], [B] and [D] one of the regions is perfectly conducting. Whereas the 
electric-field and electric-current continuity conditions need to be enforced around all these junctions, junction [C] requires 
also the imposition of the normal continuity in the expansion/testing, respectively, of the magnetic current/field. In con-
sequence, unlike the single penetrable objects, where the boundary unknowns are invoked only by the two homogeneous 
problems of the equivalence theorem, the unknowns associated with junction [C] need to be simultaneously invoked by the 
homogeneous problems associated with the regions 1, 2 and 3. Similarly, the unknowns associated with junctions [A], [B] 
and [D], which share a PEC-region, are invoked by the homogeneous problems associated with different pairs of regions, 
respectively, 1–2, 2–3 and 1–3. It is hence clear that the single-surface RWG analysis of a composite object with an arbitrary 
number of junctions and a different number and type of intersecting regions each will require significant effort.

Fig. 4. Surface equivalence theorem applied to a composite object with two penetrable regions and one PEC region. xy-plane cross section of the composite 
object is presented. The dashed lines denote surface interfaces between regions. The nodes denote junctions.

The single-surface RWG-discretization of the EFIE–PMCHWT formulation can handle meshes, such as Fig. 5(a), where the 
intersecting regions at junctions are conformal at the junction as long as the appropriate treatment at junctions is applied 
[19–23]. However, this approach cannot address the analysis of nonconformal meshes meeting at junctions, arising very 
often from the juxtaposition of independently meshed targets, such as for example Fig. 5(c). Alternative conforming imple-
mentations of the EFIE–PMCHWT formulation, double-surface or multi-trace, are obtained by representing the composite 
object as a union of disjoint homogeneous regions immersed in the host medium with separation distances (δ) tending to 
zero (see Fig. 5(b) and Fig. 5(d)). The original interfaces between two regions are now considered as two contact surfaces and 
thus junction-edges, which result from the intersection of more than two regions, do not exist. The programming burden of 
these approaches is alleviated when compared with the single-surface approach because the treatment of junction-edges is 
avoided. However, the number of unknowns rises because of the definition of redundant unknowns over touching interfaces. 
Although nowadays, in a context of sufficient memory resources, this requirement may seem of minor importance, in earlier 
times could become prohibitive. Moreover, the two-surface analysis [24] requires the computation of the residues of the 
integrals in (6), in addition to the Cauchy principal values, so that the tangential field continuity conditions are satisfied 
between touching regions. This becomes especially tricky if the touching meshes are nonmatching, as in Fig. 5(d).
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Fig. 5. Analysis of composite objects. (a) Single-surface interfaces and conformal segmentations. (b) Two-surface interfaces and conformal segmentations 
(δ → 0). (c) Single-surface interfaces and nonconformal segmentations. (d) Two-surface interfaces and nonconformal segmentations (δ → 0).

In this paper, we present a single-surface implementation of the EFIE–PMCHWT formulation that allows the agile scatter-
ing analysis of arbitrary composite objects with junctions. We expand the currents with the monopolar-RWG basis functions 
and we test the field-boundary conditions over off-boundary domains. Importantly, whereas the electric currents (or fields) 
are expanded (or tested) over all sorts of interface surfaces, the analogous magnetic magnitudes need to be defined only at 
interfaces between penetrable regions. Since the monopolar-RWG basis functions and the off-boundary testing schemes are 
facet-based, these approaches by construction ignore junctions. This is very advantageous because, unlike junction-edges, 
which arise from the intersection of several regions, all the facets arising from the discretization of an arbitrary compos-
ite object separate two regions only. Therefore, these schemes invoke the same number of homogeneous problems in the 
analysis of composite objects as in the analysis of single objects. Namely, two if the bordering regions are penetrable and 
one if one region is PEC. In general, our approach exhibits great flexibility when handling composite objects discretized 
with conformal meshes, as in Fig. 5(a), because the special treatment of junctions of the conventional schemes is avoided. 
Moreover, the single-surface nonconforming analysis of the nonconformal mesh in Fig. 5(c), where the single-surface RWG-
implementation fails because the two overlapping meshes do not match, is carried out through the expansion (or testing) 
of the electric or magnetic currents (or fields) over a different overlapping triangulation each.

The generation of the impedance matrix elements in our nonconforming schemes becomes more elaborate than with the 
conventional RWG-schemes because line or volumetric integrals are computed. However, in our experience, this computa-
tional load is counterbalanced with the easier management of facet-to-facet interactions and the one or two invoked homo-
geneous problems for each interaction. Furthermore, it is well understood that these facet-based schemes do not demand 
search for edges or junctions as is required for the edge-based schemes. Note that the edge-search procedures become diffi-
cult and time-consuming for intricate and dense meshes and are bound to be fruitless for nonconformal or defective meshes.

4. Numerical results

In section 4.1, we focus on the scattering analysis with our single-surface monopolar-RWG PMCHWT-implementations 
of several single penetrable objects discretized with conformal meshes. In subsections A and B, we show the observed im-
proved accuracy versus, respectively, the heights of the testing elements (H) and the number of unknowns (N). Several 
schemes of testing are used: wedge volumetric, PMCHWT[vol-wed], tetrahedral volumetric, PMCHWT[vol-tet], or tangential-
normal, PMCHWT[tn]. The accuracies are checked against the conventional RWG discretization of the PMCHWT, PMCHWT[R], 
which can be used because the adopted meshes are conformal. The tested objects have sharp edges and corners and mod-
erate or high dielectric contrasts because it is in these cases where the observed improved accuracy is especially evident. 
In the scattering analysis of dielectric targets with smooth boundaries and/or low relative permittivities, where singular 
field behavior does not occur [41], our schemes offer for a given meshing similar accuracy as the conventional RWG ap-
proaches but doubling the number of unknowns. Analogous observations have been reported in the scattering analysis of 
conductors [27] or 2D dielectrics [32] with the nonconforming discretization of, respectively, the EFIE and the TE-PMCHWT 
formulations.

In section 4.2 we show the suitability of our monopolar-RWG implementations in the analysis of various single or 
composite objects discretized with nonconformal meshes, where the single-surface RWG-discretization cannot be adopted. 
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Practically speaking, this choice makes sense because the modular analysis of composite objects, of great interest nowadays, 
is often tackled through the interconnection of domains that are meshed differently. Whereas for the composite objects the 
computed results are compared with the two-surface RWG-discretization of the EFIE–PMCHWT formulation, the accuracy 
in the monopolar-RWG analysis of the single dielectric objects with nonconformal meshes is checked against the standard 
RWG-implementation and conformal meshing except for the sphere, for which the analytical solution is available (Fig. 14).

We compute the volumetric integrals over wedges in our numerical tests through the decomposition of each wedge 
into three tetrahedral elements and the application of cubature rules of 11 points [42]. The surface and line integrals are 
computed with 9-point quadrature rules. The quasi-singular contributions of the kernel are computed analytically for the 
inner integrals of all the interactions. Whenever possible, for the sake of enhanced accuracy, the volumetric and surface field 
integrals are swapped with the line source integrals so that the well-known singularity subtraction techniques for triangles 
or tetrahedral elements [43] can be applied. In all the examples, the scattered fields are computed under an impinging +z
propagating x-polarized plane wave, and the free space wavelength λ0 is set to 1 m.

4.1. Conformal meshes

We test the accuracy of our monopolar-RWG PMCHWT-implementations on several small sharp-edged targets with mod-
erate or high relative permittivity; namely, a regular tetrahedron and a square pyramid, both with sides 0.1 m long. We 
choose such testing examples because the singular field behavior is observed at sharp edges and corners and, since the 
objects are electrically small, these singularities play an important role in the scattered fields.

We define the root-mean-square near-field relative error enear as [32]

enear = [∑K
j=1 |Ẽ s(r j) − EREF

s (r j)|2 + η2
0

∑K
j=1 |H̃ s(r j) − H REF

s (r j)|2]1/2

[∑K
j=1 |EREF

s (r j)|2 + η2
0

∑K
j=1 |H REF

s (r j)|2]1/2
(22)

where Ẽ s(r j) and H̃ s(r j) denote the approximated scattered electric and magnetic fields computed with our PMCHWT 
implementations on a set of K points {r1, . . . , rK } distributed around the target under analysis at very close distance (one 
tenth of the average mesh parameter adopted in the discretization). Similarly, we compute the root-mean-square relative 
bistatic RCS-error efar over a set of M observation angles {θ1, . . . , θM} in E and H plane

efar = [∑M
j=1 |RCSE(θ j) − RCSREF

E (θ j)|2 + ∑M−1
j=2 |RCSH (θ j) − RCSREF

H (θ j)|2]1/2

[∑M
j=1 |RCSREF

E (θ j)|2 + ∑M−1
j=2 |RCSREF

H (θ j)|2]1/2
(23)

where θ1 = 0 and θM = π − π/M [32]. All the errors are computed with respect to reference results (REF) obtained with 
the conventional RWG-implementation of the PMCHWT formulation and very fine unstructured mesh (around 16300 trian-
gles per target) with h-refinement near sharp edges and corners. The source integrals in the evaluation of near fields are 
computed with singularity subtraction technique and 9-point quadrature rules, while the integrals involved in the far-field 
computations are computed with a three-point rule. In our numerical tests we adopt K = 400 and M = 60 and all the testing 
elements in the monopolar-RWG implementations are defined conformal to the boundary to ensure maximum accuracy.

A) Accuracy versus H

In Figs. 6–9 we show the normalized errors of our monopolar-RWG PMCHWT-implementations, for the square pyramid 
(Figs. 6 and 8) and the regular tetrahedron (Figs. 7 and 9), and two moderately high dielectric contrasts (εr = 40 and 
εr = 80 for the square pyramid; εr = 20 and εr = 50 for the regular tetrahedron). We define the normalized RCS-error in 
Figs. 6 and 7 as [32]

ētn
far = etn

far/eR
far, ēvol

far = evol
far/eR

far (24)

and, analogously, the normalized near-field error in Figs. 8 and 9 as [32]

ētn
near = etn

near/eR
near, ēvol

near = evol
near/eR

near (25)

where the far-field errors etn
far , evol

far and the near-field errors etn
near , evol

near correspond to the definitions in (23) and (22), re-

spectively, for the tangential-normal or volumetric PMCHWT implementations. Analogously, eR
far and eR

near denote the far-field 
and near-field errors computed with the RWG-discretization of the PMCHWT formulation and similar number of unknowns 
as the monopolar-RWG implementations. Hence, our implementations, which double the number of unknowns with respect 
to the conforming implementations, make use of a coarser mesh. Also, note how the normalized errors in Figs. 6–9 are 
plotted with respect to the height of the testing domains H , which in turn is set as a fraction of the mesh parameter h. 
In view of the definition of the normalized errors in (24) and (25), there is improved near- or far-field performance of the 
monopolar-RWG implementations with respect to the RWG-scheme as long as the corresponding normalized error, which 
is defined as the ratio between their respective relative errors, is smaller than one. Indeed, in case of observed improved 
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monopolar-RWG performance the relative error obtained with the monopolar-RWG implementation is smaller than the rel-
ative error computed with the RWG-scheme. Accordingly, the solid uniform line in Figs. 6–9 represents the upper bound of 
improved performance. Note that the results displayed in Figs. 6–9 assume a constant mesh parameter h for each particular 
object and implementation, whereby the only varying parameter along the abscissa axis is H .

In view of Figs. 6 and 7, our monopolar-RWG implementations outperform the conventional RWG implementation in 
the far-field computation over the following H ranges: between H = h/1000 and H = h (tangential-normal), between H =

Fig. 6. Normalized RCS-error of our monopolar-RWG PMCHWT implementations, with respect to PMCHWT[R] and similar number of unknowns (around 
2400) versus the height H of the testing elements for a square pyramid with side 0.1 m (λ0 = 1 m) and two relative permittivites (40 and 80). The reference 
results are obtained with PMCHWT[R] and a very fine mesh (around 16300 triangles).

Fig. 7. Normalized RCS-error of our monopolar-RWG PMCHWT implementations, with respect to PMCHWT[R] and similar number of unknowns (around 
2400) versus the height H of the testing elements for a regular tetrahedron with side 0.1 m (λ0 = 1 m) and two relative permittivites (20 and 50). The 
reference results are obtained with PMCHWT[R] and a very fine mesh (around 16300 triangles).
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h/1e5 and H = h/20 (wedge-volumetric) or between H = h/10 and H = h (tetrahedral-volumetric). Our best performing 
monopolar-RWG implementations (in terms of H) provide far-field normalized errors around 50 times smaller than the 
normalized errors observed for PMCHWT[R] and similar number of unknowns. Similarly, in light of Figs. 8 and 9, improved 
performance in the computation of the near fields is observed for the H ranges between h and h/1e4 in all cases and the 
best normalized errors of our monopolar-RWG implementations, in terms of H , are around eight times smaller than the 
normalized errors obtained with PMCHWT[R] and similar number of unknowns.

Fig. 8. Normalized near-field error of our monopolar-RWG PMCHWT implementations, with respect to PMCHWT[R] and similar number of unknowns 
(around 2400) versus the height H of the testing elements for a square pyramid with side 0.1 m (λ0 = 1 m) and two relative permittivites (40 and 80). The 
reference results are obtained with PMCHWT[R] and a very fine mesh (around 16300 triangles).

Fig. 9. Normalized near-field error of our monopolar-RWG PMCHWT implementations, with respect to PMCHWT[R] and similar number of unknowns 
(around 2400) versus the height H of the testing elements for regular tetrahedron with side 0.1 m (λ0 = 1 m) and two relative permittivites (20 and 50). 
The reference results are obtained with PMCHWT[R] and a very fine mesh (around 16300 triangles).
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B) Accuracy versus N

We show the relative far-field and near-field errors, with respect to the number of unknowns N , for two sharp-edged 
targets with moderate dielectric contrasts and side 0.1λ0; namely, a regular tetrahedron with εr = 50 (Fig. 10) and a square 
pyramid with εr = 40 (Fig. 11). The height of the testing domains H is chosen from the range of best performing heights 
displayed in Figs. 6–9. For all these examples the far-field and near-field errors observed for our monopolar-RWG implemen-
tations are smaller than the errors exhibited by the RWG-implementation. In Fig. 10 we observe a decrease in the RCS-error 
between O(h) and O(h1.5) with the tangential-normal and wedge testings and around O(h0.6) with the tetrahedral testing. 
The RWG-implementation of the PMCHWT formulation exhibits an error reduction around O(h0.6). In light of Fig. 11, all the 
implementations exhibit a reduction in the near-field errors around O(h0.4).

Fig. 10. RCS relative error of several monopolar-RWG PMCHWT implementations versus the number of unknowns for a regular tetrahedron with side 0.1 m 
and square pyramid with side 0.1 m (λ0 = 1 m), and relative permittivities 40 and 50, respectively, for several values of testing heights H . The reference 
results are computed with PMCHWT[R] and very fine meshing (around 16300 triangles).

Fig. 11. Near-field relative error of several monopolar-RWG PMCHWT implementations versus the number of unknowns for a regular tetrahedron with side 
0.1 m and square pyramid with side 0.1 m (λ0 = 1 m), and relative permittivities 40 and 50, respectively, for several values of testing heights H . The 
reference results are computed with PMCHWT[R] and very fine meshing (around 16300 triangles).
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4.2. Nonconformal meshes

We show RCS results of our monopolar-RWG EFIE–PMCHWT implementations for the scattering analysis of several ob-
jects, composite or single, discretized with nonconformal meshes. In Figs. 12 and 13, we show the computed bistatic RCS for 
two composite objects with dielectric or PEC regions. In Figs. 14 and 15, we show the bistatic RCS for two single dielectric 
targets, respectively, a dielectric sphere, with radius of 0.1 m and εr = 15, and a dielectric prism, with a square basis with 
side of 0.1 m, a height of 0.2 m and εr = 3. The nonconformal meshes employed in the composite objects of Figs. 12 and 
13 arise from overlapping two nonmatching triangulations (see Fig. 5(c)). In contrast, the nonconformal meshes adopted 
in Figs. 14 and 15 arise from the interconnection of independently meshed open triangulations. Besides, for the dielectric 
sphere in Fig. 14, the resulting mesh is multi-scale and highly nonconformal, with spurious slits appearing where the coarse 
and fine touching triangulations meet. The testing domains in the monopolar-RWG EFIE–PMCHWT-implementations, for the 
sake of flexibility, are defined nonconformal to the boundary-surface. Indeed, this definition depends only on the corre-
sponding surface triangle, with no insight into the facets around, which is appropriate in general for nonconformal meshes.

The standard single-surface RWG-implementation of the EFIE–PMCHWT formulation cannot handle the nonconformal 
meshes in Figs. 12 and 13 because the two triangulations sharing an interface do not match. Similarly, this conventional 
discretization cannot manipulate the nonconformal meshes in Figs. 14 and 15 because some adjacent triangles do not have 
single matching edges. For these reasons, the RCS results computed with our single-surface monopolar-RWG implementa-
tions in Figs. 12 and 13 are compared with the two-surface RWG-implementation (δ → 0) and similar number of unknowns. 
For the case of the dielectric sphere in Fig. 14, the RCS results computed with our monopolar-RWG schemes are compared 
with the Mie series solution [44] while for the case of dielectric prism, in Fig. 15, we compare our results with the solution 
obtained with the RWG-implementation of the PMCHWT formulation, a conformal mesh and similar number of unknowns. 
Note that in this paper we don’t include the basic test example of a composite object discretized with a conformal mesh 
(see Fig. 5(a)). Indeed, the circumvention of junctions in the nonconforming analysis without sacrificing accuracy is already 
implicit in the observed results for the analysis of composite objects discretized with nonconformal meshes in Figs. 12 and 
13, which are actually more challenging. As for the H-choice in the nonconforming analysis of the nonconformal meshes 
in Figs. 12, 13 and 15, we resort to Figs. 6 and 7, where the monopolar-RWG PMCHWT-implementations with wedge-
volumetric or tangential-normal testing produce very similar accuracy as the RWG-discretization for very small values of H . 
Therefore, in Figs. 12, 13 and 15, we adopt H = h/1e4 for such monopolar-RWG implementations. Additionally, in light of 
Figs. 6 and 7, the tetrahedral scheme of testing deteriorates the accuracy for very small values of H , whereby our H-choice 
in Figs. 12, 13 and 15 lies within the successful range of H-values observed in Figs. 6 and 7. Furthermore, our tests suggest 
that the nonconforming analysis of the nonconformal mesh of the sphere in Fig. 14 represents a more demanding case 
because of the emergence of slits between adjacent nonconformal facets. Our experience for such cases shows that the 
adoption of bigger values of H than the ones adopted for the nonconformal meshes with no slits in Figs. 12, 13 and 15
represents a better suited choice. In view of Figs. 12–15, very good agreement is observed in all the tested cases.

Fig. 12. Bistatic RCS of a composite object comprised of two dielectric cubes (εr = 2 and εr = 7) with sides of 0.2 m under an impinging x-polarized 
+z propagating plane wave and λ0 = 1 m. The number of unknowns is 4026 for our single-surface monopolar-RWG PMCHWT-implementations and 4068 
for the double-surface RWG PMCHWT-implementation (δ → 0), which is adopted as reference. The implementations with tangential-normal and wedge 
volumetric testing use H = h/1e4 while the implementation with tetrahedral testing uses H = h/5.
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Fig. 13. Bistatic RCS of a composite object comprised of a dielectric cube (εr = 3, side = 0.5 m) and a PEC square pyramid (side = 0.5 m) under an 
impinging x-polarized +z propagating plane wave and λ0 = 1 m. The number of unknowns is 2946 for our single-surface monopolar-RWG PMCHWT-
implementations and 2832 for the double-surface RWG PMCHWT-implementation (δ → 0), which is adopted as reference. The PMCHWT-implementations 
with tangential-normal and wedge testing use H = h/1e4 while the PMCHWT implementation with tetrahedral testing uses H = h/5.

Fig. 14. Bistatic RCS of a dielectric sphere (εr = 15, r = 0.1 m) under an impinging x-polarized +z propagating plane wave and λ0 = 1 m. The number of 
unknowns is 4290 for our single-surface monopolar-RWG PMCHWT-implementations. The Mie series solution is adopted as reference. Tangential-normal 
and volumetric-wedge implementations use H = h/10 while volumetric-tetrahedral implementation uses H = h/3.
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Fig. 15. Bistatic RCS of a dielectric prism (εr = 3) under an impinging x-polarized +z propagating plane wave and λ0 = 1 m. The prism basis is square 
with the side equal to 0.1 m. The height of the prism is 0.2 m. The number of unknowns is 2220 for our single-surface monopolar-RWG PMCHWT-
implementations and 2430 for the RWG implementation, which is adopted as reference. The PMCHWT-implementations with tangential-normal and wedge 
testing use H = h/1e4 while the PMCHWT-implementation with tetrahedral testing uses H = h/5.

5. Conclusion

In this paper we introduce a nonconforming discretization of the EFIE–PMCHWT formulation applied to the single-surface 
scattering analysis of composite piecewise homogeneous objects with junctions. Just like the nonconforming discretization 
of the EFIE introduced in [27–29], we expand the electric and magnetic currents over the boundary interfaces of the target 
with the facet-based monopolar-RWG set and test the fields off the boundary, in the null-field region, with several non-
Galerkin approaches; namely, tangential-normal, over pairs of triangles, or volumetric, over wedges or tetrahedral elements. 
Although the computation of the impedance matrix entries becomes somewhat more complicated when compared with the 
conventional conforming implementations, these facet-based schemes ignore by definition edges and junctions, which re-
quire a special treatment in the conventional single-surface RWG-approach [19–23]. Overall, hence, our facet-based schemes 
substantially reduce the programming burden and increase the flexibility of the method. Moreover, improved near-field and 
far-field accuracies are observed for our nonconforming PMCHWT implementations when compared with the conventional 
RWG-schemes for the tested electrically-small targets with sharp edges and corners and moderate or high relative per-
mittivities (above 10). We attribute this improvement to the better singular-field modeling [32,41] in the vicinity of sharp 
edges with the adopted discontinuous basis functions together with the pertinent testing over volumetric or surface do-
mains close to the boundary. The best performing heights of the testing elements off the boundary lie roughly between 
50 and 1000 times smaller than the mesh parameter, for the tangential-normal and the wedge-volumetric testing schemes, 
and around the mesh parameter or down to 10 times smaller for the tetrahedral-volumetric implementation. In these cases, 
similar or better error decrease rates for a growing number of unknowns are observed with respect to the standard RWG-
implementation. Consistently, the application of the proposed nonconforming schemes to the scattering analysis of targets 
with smooth surfaces and/or with low dielectric contrasts, where the singular field behavior does not appear [32,41], offers 
similar or slightly better accuracy than the conventional RWG formulation but doubling the number of unknowns. Finally, 
the analysis with our nonconforming schemes of single or composite penetrable objects meshed with nonconformal meshes 
becomes very satisfactory in terms of accuracy. These meshes, which the conventional edge-based schemes cannot handle, 
are used in the independent modular design of complex objects and arise from the juxtaposition of independently meshed 
domains, very often imported from CAD tools.
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