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Highlights

• A fully implicit polymer flooding model has been developed under a parallel framework.
• The numerical modeling of polymer retention, inaccessible pore volumes, a permeability reduction and polymer absorption are consid-

ered.
• Numerical methods, including discretization schemes, linear solver methods, decoupling algorithm and parallel techniques are intro-

duced.
• Accuracy is verified by comparing with a commercial software.
• Excellent scalability is demonstrated with up to 27 million grid blocks by using up to 2048 CPU cores.



Journal of Computational Physics (2019)

Numerical Simulations of Polymer Flooding Process in Porous Media on

Distributed-memory Parallel Computers

He Zhonga,∗, Hui Liua, Tao Cuib, Zhangxin Chena, Lihua Shena, Bo Yanga, Ruijian Hea, Xiaohu Guoc

aChemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary T2N 1N4, Canada
bAcademy of Mathematics and Systems Science, Chinese Academy of Sciences
cScience and Technology Facilities Council, Daresbury Laboratory, Warrington, United Kingdom

A R T I C L E I N F O

Article history:

Received September 30, 2019

A B S T R A C T

Polymer flooding is a mature enhanced oil recovery technique that has been

successfully applied in many field projects. By injecting polymer into a reser-

voir, the viscosity of water is increased, and the efficiency of water flooding is

improved. As a result, more oil can be recovered. This paper presents numeri-

cal simulations of a polymer flooding process using parallel computers, where

the numerical modeling of polymer retention, inaccessible pore volumes, a

permeability reduction and polymer absorption are considered. Darcy’s law

is employed to model the behavoir of a fluid in porous media, and the up-

stream finite difference (volume) method is applied to discretize the mass con-

servation equations. Numerical methods, including discretization schemes,

linear solver methods, nonlinearization methods and parallel techniques are

introduced. Numerical experiments show that, on one hand, computed results

match those from the commercial simulator, Eclipse, Schlumberger, which is

widely applied by the petroleum industry, and, on the other hand, our simula-

tor has excellent speedup, which is demonstrated by large-scale applications

with up to 27 million grid blocks using up to 2048 CPU cores.
c© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The emergence of parallel computers compels parallel computation techniques into an array of application areas,

including groundwater flow, contamination transport modeling, geothermal engineering, multi-phase flow, carbon

dioxide sequestration and nuclear waste storage [1]. Beginning in the mid-1970s, supercomputers were introduced to

accelerate reservoir modeling problems through vectorization, and computations could be completed at an advanced

speed. However, models and programs had to be reorganized and reworked to take advantage of leveraged computa-

tional power through vectorization. Besides, the program performance deteriorated once a CPU number went beyond
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a specific number (usually 4, 8 or 16) [2]. Except on a shared memory system, parallel computations can also be car-

ried out on distributed memory clusters. Over the past few decades, significant progress has been made in developing

high performance modeling tools for distributed memory systems. However, they have not been widely applied in

reservoir simulations.

On the other hand, the demand for modeling capability has increased rapidly in recent years with an increase in

computational efforts. More complex geological, physical and chemical features are modeled through reservoir simu-

lations to assess new exploration and production technologies, such as enhanced recovery processes. In addition, the

traditional serial simulators have reached their simulation capability limits. The high performance simulation tech-

nology has been progressively viewed as an important, alternative modeling approach to solve large-scale simulation

problems with multi-million and even multi-billion block models [3]. The reservoir model is divided into several

smaller domains that are assigned to different computer processors. The actual time required to finish the simulation

is thus reduced because the work load is divided into multiple processors. Furthermore, parallel reservoir simulators

are capable to handle larger models than serial simulators.

Currently most oil production comes from mature fields by water flooding. However, water tends to flow through

the more permeable formation zones that causes low sweep efficiency and premature water breakthrough. By applying

polymer, the viscosity of the water phase is increased, and, as a result, the mobility of the water phase is reduced,

which results in a more favorable fractional flow curve and then leads to a more efficient sweeping pattern and reduced

viscous fingering. The mobility reduction of the injected water is due to two main effects. First, the viscosity of a

polymer solution is higher than that of pure water (the viscosity of a polymer solution increases with raising polymer

concentration). Second, the permeability to water is reduced after the passage of a polymer solution through rock

materials (the permeability to oil is, however, largely unaffected). Both effects reduce the water mobility while the oil

mobility is unaltered.

Polymer flooding holds a bright future because it can improve the area swept efficiency not only in the macro scale

but also in the micro scale. The first polymer flooding application was reported in 1964 [4, 5]. The development of

polymer flooding boomed in the US during the 1970s and 1980s with several polymer flooding projects [6]. However,

it declined in the late 1980s because of low oil prices. During the middle 1990s, polymer flooding was resumed

in China to large extent. Especially, oil production from polymer flooding contributed to 22.3% of the total oil

production in the Daqing oilfield by 2007 [7, 8]. This significance has attracted the petroleum industry’s interest in

using reservoir simulators as tools for reservoir evaluation and management to minimize operation costs and increase

the process efficiency [9, 10]. Reservoir simulators with special features are needed to represent coupled chemical

and physical phenomena present in polymer processes.

Polymer flooding is in reality a miscible process, but it is typically simulated on a field scale using immiscible

flow models which use empirical mixture models to account for unresolved miscibility effects. Bondor [11] presented

the development of a three-phase, four-component, compressible, finite difference polymer simulator. The model rep-

resented a polymer solution as a fourth component that was included in the aqueous phase and was fully miscible with

the water phase. Adsorption of polymer was represented as well as the permeability reduction of the water phase. An

implicit pressure-explicit saturation (IMPES) procedure was used to solve the coupled system. Lutchmansingh [12]

extended this simulator by solving pressure and saturation distributions simultaneously and polymer concentration

explicitly. Based on Lutchmansingh’s work, Abou-Kassem [13] eliminated non-relevant equations and unknowns by

properly ordering the set of all equations and unknowns, thus providing significant savings in CPU time. Chang [14]

implemented a third-order finite difference method to capture a physical dispersion effect which is normally smeared

by artificial numerical dispersion. An IMPEC (implicit pressure-explicit concentration) scheme was adapted to solve

an isothermal, three-dimensional, miscible-flooding compositional model. The simulator is well known as UTCOMP.

Han [15] improved the solution approach by fully implicit scheme to overcome the performance limitation in symbio-

sis with the explicit scheme. A field scale chemical flooding model with one million grid blocks were simulated using

128 processors. Based on Han’s work, Najafabadi [16] enhanced the phase behavior of surfactant/oil/brine to simulate

the realistic salinity gradient effect by assuming no gas phase existing through the formation. Patacchini [17] intro-

duced two-stage flash and two-stage thermodynamics constraints to consider gas/oil/water/microemulsion coexisting

four phase problem. Their approach was dependent on a compositional natural-variable formulation. Behzadinasab

[18] presented the parallel framework of a comprehensive chemical reservoir simulator that can be effective in running

large-scale cases with millions of grid blocks.

To capture fine-scale phenomena and optimize a polymer flooding process, large-scale reservoir simulations with

fine-scale grids are required. In this paper, a fully implicit parallel polymer flooding reservoir simulator has been
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developed to address these issues. The mathematical model of polymer flooding is introduced, including the conser-

vation laws for water, oil and polymer, mechanisms of polymer flooding, and well modelling in the following section

that followed by a section where numerical methods are presented. The upstream finite difference (volume) method

is applied to discretize the model equations. The standard Newton is applied for their highly nonlinear systems. Lin-

ear systems from polymer flooding are ill-conditioned, especially when a reservoir has heterogeneous porosity and

permeability. In this case, the linear systems are difficult to solve. In our simulator, a multi-stage preconditioner is

employed to speed up the system solution. Parallel implementations are also introduced. Different polymer flooding

cases are used to illustrate the accuracy and speedup of our simulator. The results show that this polymer flooding

simulator has good speedup and capacity to simulate large-scale reservoir models.

2. Mathematical Model

The two-phase oil and water model is applied, and a temperature change is not considered here. The oil component

is assumed to stay in the oil phase, the water stays in the water phase, and polymer only distributes in the water phase.

The following sections will present a short summary of all related mathematical models for rock, fluids and well

handling.

2.1. Rock Model
When considering porous media at the macro-scale, the flow is governed by volume averaged equations. Each

computational block contains both solid and pore space which is filled with fluids, such as gas, oil and water. The

percentage of pore space, which is called porosity, is defined as [19]

φ =
Vpore

Vbulk

where Vpore is the volume of the pore space and Vbulk is the volume of a block. Porosity is a function of pressure (and

temperature), and it can be modelled by the following equation [10, 19]:

φ(P) = φr + cr(P − Pr), (1)

where cr is the compressibility factor of the reservoir, P is pressure, and φr is the reference porosity at the reference

pressure Pr.

2.2. Fluid Model
The notion of saturation S α is introduced to define the ratio of the volume of phase α to the pore space in a block

[19]:

S α =
Vα

Vpore
. (2)

The saturations of the oil phase (o) and the water phase (w) satisfy the following relationship:

S w + S o = 1. (3)

Darcy’s law is applied to handle the relationship among flow rates of a phase, reservoir properties, fluid properties

and pressure in a reservoir, which is described as [19]

Q = −κeAΔP
μL

, (4)

where A is a cross-sectional area in a flow direction, ΔP is a pressure difference, μ is the viscosity of a fluid, and L is

the length of a porous medium in the flow direction. κe is the effective permeability for the given phase, which is the

product of absolute permeability κ and relative permeability κr. κ is defined as a tensor with respect to all the x, y and

z directions; mostly, it is a diagonal tensor: κ = (κx, κy, κz). Darcy’s law can also be rewritten, with Darcy’s velocity q,

q =
Q
A
= −κe
μ
∇P. (5)
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With gravity, the mass of each phase satisfies the following conservation law [19]:

∂

∂t
(φS αρα) = ∇ ·

(
κκrαρα
μα

(∇Pα − γα∇Z)

)
+ qα, α = w, o (6)

where ρα is the phase density, qα is the source term that models the mass changes caused by injection or production

wells, γ is the gravity, Z is the depth of a block, and κrα stands for the relative permeability for the α phase. In addition,

when polymer exists in the water phase, the mass conservation law for the water phase becomes [19]

∂

∂t
(φS wρw) = ∇ ·

(
κκrwρw

Rkμw,e
(∇Pw − γw∇Z)

)
+ qw (7)

where Rk is the permeability reduction factor caused by polymer and μw,e is the viscosity of a water-polymer solution.

The definitions of Rk and μw,e will be introduced later.

The water phase pressure, Pw, and the oil phase pressure, Po, are related by [19]

Pc(S w) = Po − Pw. (8)

The pressure difference is called the capillary pressure, which usually depends on the saturations of the phases in

porous media and is measured by lab experiments. If saturation and any phase pressure are known, the other phase

pressure can be calculated by the above formula.

2.3. Polymer Model

The flow of polymer is assumed to act as a component dissolved in the water phase, which is modeled by the

following equation [19, 20]:

∂

∂t

(
φS wρwCp + (1 − φ)Ad

)
= ∇ ·

(
ρwCpκκrw

Rkμp,e
(∇Pw − γw∇Z)

)
+ qwCp (9)

where Cp is the concentration of the polymer in the water phase and Ad is the polymer adsorbed by the reservoir.

When polymer molecules flow through porous media, part of them are restricted in pores, where only water

or brine is allowed to pass by with a reduced mobility. As the polymer solution interacts with the reservoir rock,

polymer is adsorbed or desorbed from the rock surface; this mechanism is known as polymer retention. There are two

mechanisms during the polymer retention process, which are separated as adsorption of the polymer on rock surfaces

and entrapment of polymer molecules in small pore space. Both these mechanisms increase the resistance of flow.

These effects are modeled by reducing the permeability of the rock to water.

The long chains of polymer molecules can flow into a large pore opening and get trapped when the other end has

a smaller opening. Entrapment can also take place when the flow is restricted or stopped. When this happens, the

polymer molecules lose their elongated shape and coil up. Desorption of the polymer from the reservoir rock can also

take place if sufficient polymer has already been adsorbed above a residual sorption level. It is difficult to quantify

what percentage of injected polymer is adsorbed and what percentage is trapped in small pore spaces since only the

produced polymer concentration can be measured. Both these mechanisms result in a loss of polymer to the reservoir.

The adsorption process causes a reduction in the permeability of the rock to the passage of the aqueous phase

and is directly correlated to the adsorbed polymer concentration. The reduction factor, Rk, is a function of polymer

adsorption and the residual resistance factor (RRF), which is expressed as [20]

Rk = 1.0 + (RRF − 1.0)
Ad

Ad,max
(10)

where Ad is the cumulative adsorption of polymer per unit volume of the reservoir rock and Ad,max represents the

maximum value of Ad, which denotes the maximum adsorptive capacity of polymer per unit volume of the reservoir

rock. Both RRF and Ad,max are functions of the reservoir rock permeability.

Assuming equilibrium sorption with the reservoir rock, the sorption phenomenon can be described as a function

of polymer concentration Cp only [21]:

Ad = f (Cp) (11)
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This relationship is specified in the form of a table.

Not only is the rock permeability to water reduced after the passage of a polymer solution through porous media,

but also the viscosity of the polymer solution is higher than that of pure water. Small concentrations of polymer, on the

order of a few hundred to a few thousand ppm (by weight), increase the viscosity of an aqueous solution significantly

[22].

The Todd-Longstaff technique is used to calculate the effective viscosity that incorporates the effect of physical

dispersion at the leading edge of a slug and also the fingering effect at the rear edge of the slug [23]. The viscosity of a

fully mixed polymer solution, denoted by μm(Cp), rises as the polymer concentration (Cp) increases. The viscosity of

the solution at the maximum polymer concentration is also specified that is denoted by μ0
p. Then the effective polymer

viscosity is taken to be [20]

μp,e =
(
μm(Cp)

)ω (
μ0

p

)1−ω
(12)

where ω is the Todd-Longstaff mixing parameter. The mixing parameter is useful in modeling the degree of segrega-

tion between water and the injected polymer solution. If ω = 1, then the polymer solution and water are fully mixied.

If ω = 0, the polymer solution is completely segregated from the water. Effect of shear thinning on polymer viscosity

is not modeled in the current formulation.

A partially mixed water viscosity is calculated in an analogous manner using the fully mixed polymer viscosity

and the pure water viscosity [21, 20]

μw,partial =
(
μm(Cp)

)ω
(μw)1−ω (13)

The effective water viscosity is calculated by the partially mixed water viscosity and the effective polymer viscosity

as a harmonic average [19]:
1

μw,e
=
α

μp,e
+

1 − α
μw,partial

(14)

where α is the effective saturation of the injected polymer solution within the total aqueous phase in a block.

The mixing of polymer and water modifies the solution viscosity as well. Since polymer has higher viscosity

compared to pure water, no matter which mixing rule is selected, the mixture viscosity increases as a function of

polymer concentration in the solution. Two commonly used mixing rules are used, which include a linear mixing rule

[19]:

μ̄w = βμ
0
p + (1 − β)μw (15)

and a nonlinear mixing rule [21]:

μ̄w =
(
μ0

p

)β
(μw)1−β (16)

where β is a parameter dependent on polymer concentration given by [21]

β =
Cp

C0
p

(17)

A higher water viscosity and a reduction in permeability will result in an increase in the resistance to flow, and

divert the polymer solution toward areas unswept by water. This mechanism is well-known as mobility control [22].

Directly, the water-oil mobility ratio is reduced to close to unity or less. Then the volumetric sweep efficiency is

improved and higher oil recovery is achieved compared to conventional water flooding.

As mentioned above, polymer molecules can flow into large pore openings. However, there are also small openings

which are not contacted by polymer molecules. To describe this phenomenon, an inaccessible pore volume (IPV) is

used to measure all the pore space that may not be accessible to polymer molecules [21]. The presence of IPV causes

the polymer solution to travel at a greater velocity than inactive tracers embedded in water. This chromatographic

effect is modeled by assuming that the IPV is constant for each rock type and either does not exceed the corresponding

irreducible water saturation or is independent of the water saturation. The concept of IPV allows a polymer solution

to advance and displace oil at a faster rate than predicted on the basis of total porosity.

2.4. Wellbore Models
A numerical simulation of fluid flows in petroleum reservoirs must account for the presence of wells. They

supply a set of realistic boundary conditions for computations of pressure distributions [24]. The fundamental task in

modeling wells is to model flows into/from a wellbore accurately and to develop accurate well equations that allow
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the computation of the bottom hole pressure with a given production or injection rate, or the computation of a rate

with known pressure [10].

Peaceman [25, 26] associated a steady-state pressure for an actual well with the computed pressure at a grid block

through the concept of an equivalent radius re. If a well was completed in more than one grid block, a well index (WI)

was introduced to account for well pressure losses within the grid blocks due to the radial inflow into the well. The

well index depends on the geometry of a grid block, location and orientation of the well segment in that grid block,

anisotropic reservoir property and a skin factor [21]:

WI =
2π f h fhκa

ln(re/rw) + s
(18)

where f is the well fraction that is evaluated by the angle open to flow and varies due to the well position in a grid

block. It equals 1 for a well going approximately through the center of a grid block. h represents a grid block thickness

along the well direction, and fh is the grid block thickness factor. The current completion length in the current grid

block is the product of h and fh. κa is the geometric average permeability and estimates the formation’s absolute

permeability perpendicular to the well direction. s denotes the skin factor, which may also differ from one perforated

block to another within the wellbore. This is especially true if different perforation densities and intervals exist

within each individual simulation layer. rw is the wellbore radius. The equivalent radius re and formation absolute

permeability κa are computed according to the wellbore direction and the discretization procedures. For instance, if a

well is parallel to the x-direction in a Cartesian grid, then [10, 19]

re =
2g f√
π

(
√
κz/κyh2

y +
√
κy/κzh2

z )1/2

(κz/κy)1/4 + (κy/κz)1/4

κa =
√
κyκz

(19)

Similar to the well fraction f , the factor g f in (19) depends on the geometry of a grid. It equals 0.249 for a well going

approximately through the center of a grid block. Detailed information can be found in [21, 27].

The flow rate, qm,α, for the α-phase in a perforated grid block m is the product of the well index, the fluid mobility

and the drawdown pressure [19, 28]:

qm,α =WImλαρα
(
Pb,m − Pm

)
(20)

The wellbore pressure at each grid completion (Pb,m ) is different from one layer to another, depending on the existing

pressure drop in a wellbore. It is calculated by the hydrostatic pressure difference drawn from the average density of

the fluid mixture in the wellbore [19]:

Pb,m = Pb + γwell(zm − zb) (21)

where γwell is the fluid unit weight which depends on the fluid mixture density in the wellbore and Pb is the reference

bottom hole pressure at reference depth zb [29, 28].

To optimize oil production and to reduce operation costs, various well operations may be employed at any time,

such as fixed bottom hole pressure, a fixed oil production rate, a fixed water production rate, a fixed water injection

rate, or a fixed liquid production rate [10, 19]. When the fixed bottom hole pressure well operation is applied to a

well, the constraint for the well is described as

Pb = c, (22)

where c is a constant. The fixed water rate condition is the following equation:∑
m

qm,w = qc,w, (23)

where qc,w is a constant. For the fixed oil rate production operation, the constraint is∑
m

qm,o = qc,o, (24)

where qc,o is a fixed constant. For the fixed liquid production rate operation, the production of oil and water is fixed,

and its constraint equation is ∑
m

(qm,o + qm,w) = qc,l, (25)

where qc,l is a constant.
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3. Numerical Methods and Parallelization

In scientific computing research, there are two techniques to handle large-scale models by parallel computing. The

first technique is to apply the traditional domain decomposition method, which divides a computational domain to

many subregions (subdomains). Each subregion may have overlaps with others and appropriate boundary conditions

on the internal boundary that are initiated by the partition process. Then a reservoir simulation model is defined on

each subregion. This sub-problem could be much smaller than the original one, but each sub-problem is complete

and solved independently. In this case, no parallel linear solver is required and no communication is required during

the solution process. Then the solution on the original domain is updated by solutions on the subregions, and commu-

nications are required to obtain information from overlapped regions. This method is easy to implement. However,

the computation cost raises since iterations are required between different sub-problems to keep the consistency at

the internal boundary. The second one is to treat the original computational domain as one domain during the en-

tire simulation period. When parallel computing technique is applied, complicated data structures, algorithms and

communications should be designed. Distributed-memory grid, data, matrix, vector, linear solver and preconditioner

should be implemented. Also, the order of linear systems could be billions or more if a grid has billions of blocks.

The second technique is hard to implement, but it usually has better material balance. In our research, the second

approach is employed.

The reservoir model for polymer flooding is highly nonlinear, which is hard to solve analytically. In this paper,

numerical solutions are obtained by the fully implicit method thanks to its unconditional stability. Figure 1 shows the

details of the solution flowchart, which includes the following steps:

1. Loading model. In this step, a model file is loaded, which contains information for reservoirs, such as perme-

ability, porosity and geometry, for oil, water and polymer, such as density, viscosity, and concentration, for well

operations, and for numerical parameters. The model may have hundreds of parameters.

2. Grid generation and distribution. The model file defines a grid, such as dimensions in the x, y, and z directions,

sizes of each grid block, and coordinates. Since the simulation is parallel, the grid must be distributed to each

processor, and a communication structure must be set up. As section 2.4 described, wellbore contributes as a

source term for a grid block when a perforation occurs at the layer. A communication structure is built up based

on perforation settings that is critical to guide the message exchanging between processors.

3. Initialization. This step sets the initial pressure, saturations of oil and water, concentration of polymer, bottom

hole pressure, porosity and permeability of the reservoir, and other properties, such as relative permeability,

density, viscosity, and well index.

4. Time discretization and time step selection. A time step is dynamically selected, which satisfies some condi-

tions:

4..1 If Newton methods fail, the time step will be cut.

4..2 In one time step, well operations keep unchanged.

4..3 The time step has a maximal value, which is set by the model file.

4..4 The algorithm always attempts to increase a time step to reduce simulation time.

5. Newton iteration. In each time step, an nonlinear system is solved by the Newton method, which converts an

nonlinear system to a linear system, Jx = b. Inside this step, the properties for the reservoir and fluids must be

computed, such as porosity, density and viscosity.

6. Linear iteration. This step solves the linear system Jx = b. A proper linear solver, a preconditioner and solution

parameters must be chosen, which can be input by the model file. When building Jacobian linear system, the

matrix related to a wellbore is placed at the last processor. After a solution is obtained, the well unknowns are

broadcast to all other processors, which are essential to calculate drawdown between wellbore and grid blocks,

and also source rates.

The MPI (Message Passing Interface) is applied to handle communication among computation nodes. When

calculating properties, such as transmissibility, neighboring information is always required. To develop a scalable

parallel application, communications should be minimized. In reservoir simulations, the communication pattern is

determined by a grid distribution.

Grid partitioning algorithms aim to minimize the idle time and communication flow between different processors

by dividing the blocks equally among partitions and minimizing the number of partition spanning edges. The quality

of the partitioning plays a crucial role in the performance of applications. Reservoir simulation applies grid-based
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Grid Partition

Model Load

Initialization

Time step ��

Phase behavior and property update

� ����

�	
� �	 �� 


� � ����

END

True

False

� �
True

Compute residual ���� �

Compute �
��
��

��� �

Solve �� ����� �

Update unknowns

True

Fig. 1. Parallelism protocol of general domain decomposition strategy.

numerical methods, such as the finite volume and finite difference methods, to approximate a governing system.

Grid blocks have a higher possibility to communicate with each other when they are closer to each other. Based

on this assumption, a modified Hilbert space-filling curve partitioning method was introduced [30] in our in-house

simulator, which has shown promising loading balance and excellent speedup. Since the reservoir model is normally

upscaled from a geological model, there may exist some grid cells whose porosity and/or permeability are effectively
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zero. These grid cells are defined as inactive blocks who are excluded from flow simulation. A two-stage method is

implemented to handle the work balance problem introduced by inactive blocks. In the first stage, the Hilbert space-

filling curve partitioning method is applied on all active blocks. Then inactive blocks is partitioned in a following

stage. By two stages, all active and inactive blocks are distributed evenly.

After the grid partitioning subroutine occurs, the subregion topology graph and block level connection lists are

set up. The block level connection lists record the geometry information both in the global and local indices. Here,

the global index is normally defined by the natural ordering. It labels the grid blocks in the x, y and z directions,

respectively. Once the subregion configuration is fixed, the dataset is read and distributed into each processor. A

parallel IO algorithm through MPI-IO is implemented to read the data files and to write data files.

A set of data structures have been designed to store distributed data, such as DOF (Degrees of Freedom), VEC,

MAT, SOLVER, and SOLVER PC [31]. A DOF is defined on a grid, which can be defined to store block-based data,

such as porosity, density and viscosity, and on a well, which can be defined for bottom hole pressure, a well rate, and

a well index. The VEC and MAT are distributed vectors and matrices. Vector operations, such as dot product, and

sparse matrix-vector multiplication operations are implemented, which are used to develop parallel linear solvers and

preconditioners. The reader refers to our previous paper [31] for more details of parallelization.

3.1. Numerical Discretization
The backward Euler method is applied to discretize a time derivative numerically. The system is then solved at

each time step implicitly. The oil phase pressure, water saturation, polymer concentration and well bottom hole

pressure are chosen as the primary unknowns, and other unknowns are functions of these primary unknowns.

∇ ·
(
κκrαρα
Rμα

(∇Pα − γα∇Z)

)
= ∇ ·

(
κκrαρα
Rμα

∇Φα
)

(26)

When fluids move in a reservoir, there may be fluid exchange in two neighboring blocks. The term, transmissibil-

ity, is defined to describe the amount of fluid exchange. Here, let d (d = x, y, z) be any space direction and A be the

area of a face in the d direction; then the transmissibility term Tα,d for phase α is defined as

Tα,d =
κκrα
Rμα
ρα

A
Δd
, (27)

where Δd is the grid block length along the d direction, κ is the permeability, κrα is the relative permeability, μα is the

viscosity, and R is 1 for the oil phase and Rk for water and polymer.

The transmissibility is defined on each face of a block. For any two neighboring blocks, since they share a face,

the value of the transmissibility term is the same for these two blocks. Different weighting schemes must be applied

to average different properties at an interface for them to make a physical sense. The equation (27) can be written into

two parts,

Tα,d =
κA
Δd
× κrα

Rμα
ρα, (28)

The left part includes geometric properties, such as a grid block length Δd and a cross area A, and rock permeability

κ. Since it is approximated at an interface, harmonic averaging method is applied. The right part relies on fluid

properties, such as μα and ρα, which is approximated by weighted upstream technique. It means that the value of the

right part is from the block that has a higher flow potential. For example, the relative permeability κrα at the interface

(i − 1/2, j, k) is defined as [19]

(κrα)i− 1
2
, j,k =

⎧⎪⎨⎪⎩(κrα)i, j,k if Φi, j,k ≥ Φi−1, j,k

(κrα)i−1, j,k if Φi, j,k < Φi−1, j,k
. (29)

Other higher-order upstream weighting techniques can also be used for relative permeabilities.

When assembling the Jacobian matrix, the partial derivatives of a function with respect to oil phase pressure, water

saturation, polymer concentration and bottom hole pressure need to be calculated. In Section 2, analytical equations

have been introduced to calculate porosity, viscosity and sink/source term. When calculating the partial derivatives of

these properties, analytical expressions can be applied right away with chain rule. However, relative permeabilities

and capillary pressure are approximated by user-input table, proper interpolation techniques are required, such as

linear interpolation, cubic interpolation or monotone cubic interpolation. In parallel computing environment, com-

munications are required to obtain remote information, and proper index should also be set in the Jacobian matrix.
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3.2. Linear Solver
A Jacobian matrix is nonsymmetric and highly ill-conditioned. The Krylov subspace solvers are applied to solve

the linear system Jx = b. In real application, a preconditioner M is always applied to solve an equivalent linear

system M−1Jx = M−1b. A family of scalable constrained pressure residual (CPR) methods [32] have been developed

to handle linear systems from reservoir simulations.

The system has four unknowns, oil phase pressure (Po), water saturation (S w), polymer concentration (Cp) and

well bottom hole pressure (Pb), which are vectors. There are two common strategies to arrange the unknown x, which

are point-wise and block-wise, respectively. For the point-wise strategy, x is written as

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Po

S w

Cp

Pb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (30)

while, for the block-wise strategy, x is written as

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Po,1

S w,1

Cp,1

· · ·
Po,n

S w,n

Cp,n

Pb,1

· · ·
Pb,n�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where n is the number of grid blocks and n� is the number of wells. In real simulations, the preconditioner using the

block-wise strategy has better convergence than that using the point-wise strategy.

The block-wise strategy for unknown x is adopted in our research. Each grid block has three equations, which

are mass conservation laws for oil, water and polymer, respectively, and each well has one equation, which depends

on the operation conditions. In this paper, the mass conservation equations are numbered grid block by grid block,

which means, in the i-th block, the three equations are numbered as 3 × (i − 1) + 1, 3 × (i − 1) + 2, 3 × (i − 1) + 3. In

this case, the Jacobian matrix has the follow structure,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J11 · · · · · · J1n J1σ

J21 J22 · · · J2n J2σ

· · · · · · · · · · · · · · ·
Jn1 Jn2 · · · Jnn Jnσ

Jσ1 · · · · · · Jσn Jσσ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (32)

where Ji j(1 ≤ i ≤ n, 1 ≤ j ≤ n) is a R3×3 matrix, Jσi(1 ≤ i ≤ n) is a Rn�×3 matrix, Jiσ(1 ≤ i ≤ n) is a R3×n� matrix, and

Jσσ is a Rn�×n� matrix.

3.3. Decoupling Methods
It is well-known that a good decoupling method is critical to the efficient solution of linear systems from reservoir

simulations. In general, the decoupling process can be written as,

(D−1J)x = D−1b, (33)

in which the decoupling method should be effective, easy to obtain and computationally efficient. Many decoupling

methods have been developed, such as Quasi-IMPES, True-IMPES [33], Alternate Block Factorization (ABF) [34],

and full row sum (FRS)[35] methods. The basic idea of ABF method is to partially decouple the system by reducing

the effect of the off-diagonal blocks. It is defined as,

Dab f = diag(J11, J22, · · · , Jnn, Iσσ). (34)
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The block diagonal part of the new Jacobian matrix is identity matrix after applying ABF method.

If the FRS decoupling method is adopted to our model, then it is described,

D−1
f rs = diag(D1,D2, · · · ,Dn, Iσσ), (35)

where,

Di =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (36)

When the FRS method is applied to the Jacobian matrix, it means to add the second and the third rows to the first row.

The Guass-Jordan elimination (Gauss elimination) method is named after Gauss, which has been widely used to

solve linear systems. In this paper, it is adopted as a decoupling method. The idea is to convert [D|J|b] to an equivalent

linear system
[
I|J̃|b̃

]
by Gauss-Jordan elimination method, which is written as following,

[D|J|b] −→
[
I|J̃|b̃

]
=⇒ J̃x = b̃, (37)

where I denotes an identity matrix. From now on, the notation GJE will be used to represent Gauss-Jordan decoupling

method. Here are some notes for GJE decoupling method:

1. The column pivoting technique is applied. During the decoupling process, the rows of the Jacobian matrix are

reordered, which, however, does not change the solution.

2. No communication is required, which is friendly to parallel computing.

3. The Jacobian matrix can be adjusted grid block by grid block independently.

4. The row pivoting is not applied. Since if the columns of the Jacobian matrix are reordered, a global reordering

will be required, which is expensive and requires lots of MPI communications.

5. The Guass-Jordan decoupling method is more efficient than the ABF method, which requires to calculate the

inverse of the diagonal part and the matrix-matrix multiplications.

When the CPR-like preconditioners are applied to reservoir simulations, it is important to keep the pressure matrix

positive definite. FRS method helps to enhance this property, from which the CPR-like preconditioners can benefit.

A two-stage decoupling methods are also introduced. During the first stage, FRS and ABF methods are applied in

sequence, which is noted as FRS-ABF decoupling method. And FRS and GJE methods are used as following stage,

which is noted as FRS-GJE method.

3.4. Preconditioners

For the sake of completeness, the CPR-like preconditioners developed in our previous paper are introduced here.

If the point-wise strategy for x is applied, the Jacobian matrix J has a clear block structure as

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
JPP JPS JPC JP�

JS P JS S JS C JS�

JCP JCS JCC JC�

J�P J�S J�C J��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (38)

where JPP ∈ Rn×n is the matrix corresponding to the oil phase pressure, JS S ∈ Rn×n is the matrix corresponding to the

water saturation, JCC ∈ Rn×n is the matrix corresponding to the polymer concentration, J�� ∈ Rn�×n� is the matrix

corresponding to the well bottom hole pressure, and other matrices are coupled terms.

If a restriction operator from x to Po is defined, its formal formula is written as

Πr x = Po. (39)
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A prolongation operator Πp from Po to x can be defined as

ΠpPo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Po,1

· · ·
Po,n
−→
0

· · ·
−→
0
−→
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

The preconditioning linear system My = f must be solved in each iteration. The CPR-FPF method [32], a three-

stage preconditioner, can be described by Algorithm 1, where the first step is to solve an approximate solution using

restricted additive Schwarz (RAS) method, the third step is to solve the subproblem by algebraic multi-grid method

(AMG), the fifth step is to get an approximate solution again using restricted additive Schwarz method, and the second

step and the forth step are to calculate residual. It is well-known that RAS method and AMG method are scalable

for parallel computing, so the CPR-FPF method is also scalable. Here we should mention that the setup phase of the

AMG method is computationally intense. The sub-problem for each CPU from RAS method is solved by ILUT by

default. CPR-FP and CPR-PF preconditioners were also proposed [32].

Algorithm 1 The CPR-FPF Method

1: y = RAS(J)−1 f
2: r = f − Jy
3: y = y + ΠpAMG(JPP)−1Πrr
4: r = f − Jy
5: y = RAS(J)−1 f

4. Numerical Experiments

4.1. Model Validation

In this section, several examples are presented to validate the application of our simulator (BOS) in different

polymer flooding projects. First, a homogeneous, one-dimensional polymer flooding case with 15 blocks is presented.

The polymer concentration varies in different production stages. Second, a two-dimensional polymer flood with

multiple constraints on the injection wells is considered. Finally, a three-dimensional case with a stratified reservoir

is presented. It has a number of layers with significant or complete lateral continuity. The layer permeabilities vary

greatly and adjacent layers communicate vertically. Simulation results show that water advances rapidly in highly

permeable layers and slowly in tight layers as the driving fluid to displace oil.

Eclipse, Schlumberger, is a fully-implicit, three-phase, three-dimensional, general purpose black oil simulator

that can model different chemical EOR (enhanced oil recovery) processes, including polymer and surfactant flooding.

It can be run in fully implicit and adaptive implicit modes, and is widely considered as a reference and benchmark

standard, which has been successful in reproducing laboratory measurements and large-scale applications. It is widely

used in the oil industry to evaluate different production processes. Our simulator will be compared against it to show

the accuracy.

4.1.1. 1D Polymer Flooding Model
Here a special case of polymer flood in one-dimension geometry is introduced. The reservoir contains 15 grid

blocks along the x-direction where the properties are uniformly distributed at each grid block with porosity φ = 0.5
and intrinsic permeability κ = 100 mD. A polymer adsorption curve and water viscosity multiplier are displayed in

Figure 2, and the fluid properties are summarized in Table 1.

Water is injected with a fixed constant volume rate at 1000 m3/day by the injection well located at the first grid

block. The production well is perforated through the 15th grid block, where a liquid volume well constraint was
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Fig. 2. Polymer adsorption curve and water viscosity multiplier.

Table 1. Simulation input data of 1D case.

Model parameter Value

Spatial grid size (m) 100

Initial resident water saturation 0.4

Initial polymer concentration (kg/m3) 0.1

Water

Mass density (kg/m3) 1025.18

Formation volume factor (sm3/rm3) 1.0

Compressibility (1/Bar) 3.03e-6

Viscosity (cp) 0.5

Oil

Mass density (kg/m3) 832.96

Formation volume factor (sm3/rm3) 1.0

Compressibility (1/Bar) 1.0e-5

Viscosity (cp) 0.5

Rock

IPV 0.15

RRF 2.67

Maximum polymer adsorption (kg/kg) 0.0035

operated at 1000 m3/day. The polymer injection concentration varies along the production process. At the beginning,

only pure water is injected for 300 days, and then polymer is added with concentration at 6000 ppm to improve

the volumetric sweep efficiency. Finally, polymer injection is stopped after 500 days injection, and simulation is

terminated after total 1800 days.

In Figure 3, the oil and water production rates are compared with those from Schulumberger-Eclipse that are



14 He Zhong etal / Journal of Computational Physics (2019)

represented by the green line, while our numerical solutions are plotted in red color and line markers. After about

500 days of water injection, the water front has broken through, and the oil production rate reduces until the whole

reservoir is flooded. A good agreement is found in Figure 3 with some minor difference due to numerical diffusion

and different ways to approximate the water phase viscosity.

Comparison with commerical software
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Fig. 3. Comparison of oil and water production rate between BOS and Eclipse on 1D example.
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The pressure and oil saturation profiles after 1, 300, 400 and 500 days are compared with Eclipse at Figure 4

and Figure 5, respectively. The IBM BladeCenter HS23 server is used to carry out the performance comparison tests

between our simulator and Eclipse. The server is equipped with Intel Xeon processor E5-2680 and 16 DDR3 VLP

memory DIMM slots that support up to 256 GB of DDR memory. The standard Newton iterations converge when

the relative residual of the balance equations is less than 0.01. Biconjugate Gradient Stabilized (BICGSTAB) and

RAS preconditioner are used to solve the linear system. The initial time step is 20 days. The numerical summaries are

shown in Table 2, where the amount of time steps, Newton iterations and linear solver iterations are listed. The number
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of Newton iterations is a measure of how easy it is for the model to converge. As a rough guide to the efficiency of

convergence of a model, which may vary form time step to time step. The average Newton iteration through the

simulation are listed by ’Avg N.’ column in the table. It takes average around 3.5 Newton iterations to converge for

each time step. The other indicator ’Avg L.’ shows the efficiency of the Krylov iteration solver and preconditioner.

Here around 4.5 iterations are required to solve the linear systems. The other columns, ’Steps’, ’# Newton’, ’# Solver’

and ’Time (s)’, respectively denote the total time step, total Newton iterations, total linear iterations and total CPU

time that each case costs. For this one-dimensional case, our simulator takes 0.023 seconds while Eclipse requires

0.51 seconds to finish the simulation if only one processor is used.

Table 2. Numerical summaries for the one dimensional case.

Steps # Newton Avg N. # Solver Avg L. Time (s)

BOS 17 59 3.47 264 4.47 0.023

Eclipse 26 80 3.08 80 1. 0.51

4.1.2. 2D Polymer Flooding Model
Next, a polymer flood case on a 10×10 grid is simulated and the formation is initially fully saturated with oil with

porosity φ = 0.2 and intrinsic permeability κ = 50 mD. The fluid properties are summarized in Table 3.

Table 3. Simulation input data on 10 × 10 grid.

Model parameter Value

Spatial grid size (ft) 75

Initial polymer concentration (lbm/bbl) 0.

Water

Mass density (lbm/cuft) 64

Formation volume factor (STB/bbl) 1.0

Compressibility (1/psia) 3.03e-6

Viscosity (cp) 0.5

Oil

Mass density (lbm/ft3) 52

Formation volume factor (STB/bbl) 1.0

Compressibility (1/psia) 1.0e-5

Viscosity (cp) 2

There is no polymer in the reservoir initially. An injection well locates at the left corner of the grid and a production

well locates at the other end of the diagonal. Water and a polymer solution are injected at a maximum injection rate

of 200 S T B/day with polymer concentration at 50 lbm/S T B. At the same time, the injection well is constrained with

its bottom hole pressure, with no more than 2× 105 psia. There is no constraint on the production rate, but the bottom

hole pressure of the production well is fixed at 3999 psia. After 200 days production, there is no polymer injected

into the formation. The simulation is terminated after total 1700 days.

The same case was carried out by Eclipse, and the oil and water production rates are compared in Figure 6 by the

red and green colors that represent our simulator and Eclipse, respectively. As Figure 6 shown, the same production

curves are found with different simulators.

In order to compare pressure and oil saturation field, three grid blocks are selected as (6, 8, 1), (5, 5, 1) and (8, 3, 1).

The pressure and oil saturation at these grid blocks are compared with Eclipse at different time in Figure 7 and Figure 8

respectively. The performance comparison is carried by IBM BladeCenter HS23 server. Only one processor is applied

to finish the simulation. Same as the previous case, standard Newton iterations convergence tolerance is selected at

1e-2 and the solver tolerance is 1e-3. The initial time step is 50 days. The CPR preconditioner and BICGSTAB

iteration method are combined to solve the linear system. For all these three case, the amount of time steps, Newton
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Fig. 6. Comparison of production rate between BOS and Eclipse on a two-dimensional polymer flood.

iterations, linear solver iterations and running time are listed in Table 4. Our simulator and Eclipse cost 0.1773 and

0.42 seconds, respectively.

Table 4. Numerical summaries for the two dimensional case.

Steps # Newton Avg N. # Solver Avg L. Time (s)

BOS 43 76 1.77 230 3.03 0.1773

Eclipse 26 87 3.35 304 3.49 0.42

4.1.3. 3D Polymer Flooding Model
In this case, the two-dimensional case is extended into a three-dimensional problem. The same as in the two-

dimensional problem, two vertical wells locate at the two ends of the diagonal of a xy plane and act as an injection

well and a production well. Both wells have a multiple layer perforation that is different from the two-dimensional

case. For multiple perforated layer wells, a reference bottom hole pressure Pb is selected at a datum depth. The

fluid density is calculated at that depth and the initial pressure in the reservoir is determined by marching down

the reservoir in small steps by recalculating the density at each step. It is treated explicitly through the Newton

iteration. This algorithm is more complicated when more than one phase is present. Starting at the datum depth,

the hydrostatic pressure for the datum phase can be calculated by marching up and down the reservoir. Pressures in

the other phases can then be determined at the contact depths, and then the hydrostatic pressures can be determined

throughout the reservoir by marching up and down again. Once the phase pressures are known, the phase saturations

can be determined at each depth so that the hydrostatic pressure variation is balanced by the capillary pressure between

the phases.

The agreement of our simulator with commercial software is shown in Figure 9 for the oil and water production

rates. Besides, the pressure and oil saturation profile are also demonstrated respectively in Figure 10 and Figure 11

for the top layer of the formation. The BICGSTAB and CPR preconditioner are applied. The Newton and linear

tolerances are 1e-2 and 1e-3, and the initial time step is 100 days. The numerical summaries are provided in Table 5,

from which we can see Eclipse takes 0.75 seconds while our simulator costs 0.278 seconds.



He Zhong etal / Journal of Computational Physics (2019) 17

 4000

 4050

 4100

 4150

 4200

 4250

 4300

 4350

 4400

 4450

 4500

 0  200  400  600  800  1000  1200  1400  1600  1800

P
re

ss
ur

e 
(p

si
a)

Time (days)

Eclipse-(6,8,1)
BOS-(6,8,1)

Eclipse-(5,5,1)
BOS-(5,5,1)

Eclipse-(8,3,1)
BOS-(8,3,1)

Fig. 7. Pressure profiles at selected positions.

0.0

0.2

0.4

0.6

0.8

1.0

 0  200  400  600  800  1000  1200  1400  1600  1800

O
il 

sa
tu

ra
tio

n

Time (days)

Eclipse-(6,8,1)
BOS-(6,8,1)

Eclipse-(5,5,1)
BOS-(5,5,1)

Eclipse-(8,3,1)
BOS-(8,3,1)

Fig. 8. Oil saturation profiles at selected positions.

Table 5. Numerical summaries for the validation case.

Steps # Newton Avg N. # Solver Avg L. Time (s)

BOS 12 29 2.42 84 2.90 0.278

Eclipse 27 69 2.56 295 4.28 0.75
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Fig. 9. Production profile comparison between BOS and Eclipse with multiple layer wells and capillary gravity equilibrium state.

As the results shown, our simulator matches well with Eclipse both on the well operation curves and pressure/oil

saturation profiles.

4.2. Numerical Performance

In this section, a famous geological model, SPE10 [36], is applied to study the performance of numerical methods

empolyed to the parallel simulator. The SPE10 has highly heterogeneous porosity and permeabilities, which introduce

numerical difficulties to non-linear methods and linear solvers. The model has a grid dimension of 60 × 220 × 85 and

1.1 million gird blocks. Five wells exist in this model, one injection well in the center and four wells in four corners.
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Fig. 10. Pressure profile at the shallowest layer for 3D model after 1800 days operation.

The simulation period is 200 days, and the maximal time step is 15 days. The linear systems have around 3.3 million

unknowns. Different preconditioners and decoupling methods are studied using 16 CPU cores and 16 MPIs.

4.2.1. Newton Method
The model has a grid dimension of 95 × 192 × 5, and five wells. The simulation period is 5480 days and maximal

time step is 100 days. The linear solver is BICGSTAB with a tolerance of 5e-3 and maximal iterations of 40, and the

preconditioner is CPR-FPF. The termination tolerences of Newton method are changed to investigate its sensitivity on

numerical performance. The model is small and up to 8 CPU cores (one computation node) are employed. Numerical

summaries are shown in Table 6, 7, 8 and 9. These tables show that the number of MPI processes (CPU cores) affect

the numerical performance of the polymer flooding simulator. For example, in Table 6, linear iterations have big jump

when more than 1 CPU cores are employed. The tables also show when smaller tolerance is applied, the simulation

takes more Newton iterations, linear solver iterations and computing time to complete. Each time step requires more

Newton iterations on average. From the results we can see the numerical methods effective. When tolerance is large,

each time step requires around 4 Newton iterations, and when tolerance is very small, around 5 Newton iterations

are required. In all cases, we can see that the linear solver and preconditioner are efficient, less than 7 iterations are

required to solve each Jacobian system. Figure 12 presents speedup, which indicates that the simulator has similar

speedup for different Newton termination tolerance.

4.2.2. Preconditioners
Four different preconditioners are studied, in which the standard Newton method is applied for non-linear system,

the maximal Newton iterations are 10, its termination tolerance is 1e-4, and the linear solver is BICGSTAB with a

tolerance of 1e-3 and maximal iterations of 100. GJE decoupling method is applied for linear systems. Numerical

summaries are shown in Table 10. From the table, we can see that the CPR-like preconditioners have better con-

vergence than the RAS preconditioner, which is also the slowest method. In all four preconditioners, the CPR-FPF

preconditioner is the fastest.
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Fig. 11. Oil saturation profile at the shallowest layer for 3D model after 1800 days operation.

Table 6. Numerical summaries for tolerance 1e-2
CPU Cores Steps # Newton Avg N. # Solver Avg L. Time (s)

1 81 202 2.49 756 3.74 938.58

2 81 202 2.49 1124 5.56 596.85

4 81 202 2.49 1165 5.76 292.41

8 81 202 2.49 1246 6.16 180.20

Table 7. Numerical summaries for tolerance 1e-4
CPU Cores Steps # Newton Avg N. # Solver Avg L. Time (s)

1 81 284 3.51 1200 4.23 1393.18

2 81 261 3.22 1518 5.82 819.18

4 81 262 3.23 1563 5.97 392.02

8 81 255 3.15 1596 6.26 223.57

Table 8. Numerical summaries for tolerance 1e-6
CPU Cores Steps # Newton Avg N. # Solver Avg L. Time (s)

1 81 364 4.49 1598 4.39 1821.30

2 81 335 4.13 2009 5.99 1068.81

4 81 340 4.20 2119 6.23 518.87

8 81 337 4.16 2217 6.57 304.89

4.2.3. Decoupling Methods
This section studies the numerical performance of decoupling methods, and five methods are applied to the SPE10

projects. The standard Newton method is applied, whose tolerance and maximal iterations are 1e-4 and 10. The linear



20 He Zhong etal / Journal of Computational Physics (2019)

Table 9. Numerical summaries for tolerance 1e-8
CPU Cores Steps # Newton Avg N. # Solver Avg L. Time (s)

1 81 456 5.63 2051 4.49 2318.13

2 81 395 4.87 2429 6.15 1221.11

4 81 398 4.92 2498 6.28 611.84

8 81 392 4.84 2590 6.61 389.34
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Fig. 12. Speedup using difference tolerance and CPU cores.

Table 10. Numerical summaries of different preconditioners
Method Steps # Newton Avg N. # Solver Avg L. Time (s)

CPR 164 478 2.91 4570 9.56 2893.68

CPR-FP 165 537 3.25 3787 7.05 2809.59

CPR-FPF 162 465 2.87 3599 7.74 2715.52

RAS 160 449 2.81 19641 43.74 3441.90

solver is BICGSTAB, its tolerance is 1e-3, the maximal iterations are 100, and preconditioner is CPR-FPF method.

Numerical results are shown in Table 11. From the table, we can see that the GJE method and the ABF have good

convergence, which are good decoupling method for polymer flooding simulations. The FRS method fails to converge.

However, when the FRS method is applied as the first stage, the convergence of the GJE method and the ABF method

is improved. Since matrix multiplication is involved for the ABF method, its performance is not as good as the GJE

method.

Table 11. Numerical summaries of different decoupling methods
Method Steps # Newton Avg N. # Solver Avg L. Time (s)

GJE 162 465 2.87 3599 7.74 2715.52

ABF 161 446 2.77 3585 8.04 3175.67

FRS NA NA NA NA NA NA

FRS-GJE 161 451 2.80 3485 7.73 2855.46

FRS-ABF 161 442 2.75 3539 8.01 3386.82
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4.3. Scalability
In this section, the performance of our simulator is reported in terms of speedup. The speedup, s, is defined as the

ratio of the elapsed time when executing a simulation by r cores to the execution time when n processors are used:

sn =
Tr

Tn
(41)

In the ideal scenario, the ideal speedup is n/r, and the amount of time reduces linearly with the number of CPUs

rising. From a performance point of view, our simulator is demonstrated to provide significant speedup with respect

to multi-core CPUs through our tests.

4.3.1. Low resolution reservoir model
The first performance test is carried out by IBM BladeCenter HS23 high performance blade server on a polymer

flooding project with 95 × 192 × 5 grid blocks in the x, y and z directions, respectively. The reservoir properties, such

as porosity and permeability, vary along different layers, as Table 12 shows. The initial reservoir pressure is 4000 psi
at a reference depth of 6150 f t. The simulation was based on water flood by a vertical and horizontal well patten for

3980 days, followed by polymer flood for almost 360 days. Four vertical injection wells are distributed at the corners

of the reservoir, while a horizontal producer is drilled at the center of the reservoir.

Table 12. Reservoir description

Layer Porosity Permeability (mD)

X Y Z

1 0.17393 326.4 980.6 163.4

2 0.1694 445.3 1335.8 222.6

3 0.25714 148.9 446.6 74.4

4 0.17344 118.8 356.4 59.4

5 0.1187 71.2 213.6 35.6

Numerical summaries are listed in Table 13 and Table 14, respectively for our simulator and Eclipse. The default

setting in Eclipse is used to solve the linear equations by Orthomin and nested factorization preconditioner [20]. Same

as Eclipse, our simulator uses Newton’s method to solve the non-linear governing system. For this case, BICGSTAB

and CPR-FPF preconditioner are combined to solve the linear system. As the Figure 1 shown, The computation

processes include linearizing the equations, solving the linear equations and checking this linear solution being good

enough for non-linear solution. The number of linear iterations is a measure of how efficiency of the preconditioner

and linear solver work on the solution process.

The results reported in Figure 13 demonstrate the performance of our simulator. Simulations are performed by 4

(the reference) to 128 cores. The speedup profiles on the whole simulation and linear solver are represented by red

and green lines in Figure 13. The blue line shows the speedup of Eclipse that runs up to 32 cores. As Figure 13

shown, our simulator keeps reducing the simulation time even with 128 cores are applied. However, the speedup of

Eclipse deviates from ideal and it is not scalable anymore when the processor number exceeds 8 cores.

Table 13. Numerical summaries of different cores for low resolution reservoir model.

Cores Steps # Newton Avg N. # Solver Avg L. Time(s)

4 43 137 3.19 805 5.88 87.28

8 43 137 3.19 855 6.24 50.43

16 43 137 3.19 895 6.53 27.32

32 43 137 3.19 906 6.61 16.25

64 43 138 3.21 1008 7.30 10.06

128 43 141 3.28 1164 8.25 8.50
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Table 14. Numerical summaries by Eclipse for low resolution reservoir model.

Cores # Newton # Solver Avg L. Time(s)

4 134 2056 15.34 48.06

8 134 2025 15.11 37.35

16 134 2045 15.26 59.07

32 133 2130 16.02 93.2
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Fig. 13. Speedup of simulators and linear solver (reference is 4 cores).

4.3.2. High resolution reservoir model
The second performance test is carried out by Cedar cluster supplied by Compute Canada. The Cedar totally

consists of 58,416 CPU cores and 584 GPU devices, spreaded across 1,542 nodes. Cedar is designed to support

multiple simultaneous parallel jobs of up to 1024 broadwell cores or 1536 skylake cores in a fully non-blocking

manner. For larger jobs the interconnect has a 2:1 blocking factor, i.e., even for jobs running on several thousand

cores, Cdear provides a high-performance interconnect. Theoretical peak double precision performance of Cedar is

936 teraflops for each CPU. The same reservoir description as in the last case is used except with the refined grid size

of 951 × 1920 × 15. Simulations were performed from 128 (the reference) to 2048 cores.

This example tests the speedup of the platform as well as the solution of linear systems (including the BICGSTAB

iteration solver and the CPR preconditioner). As Figure 14 shown, the model is very close to ideal behavior up to

512 cores. When more than 512 processors are used, although total CPU time keeps decreasing with more processors

used, parallel performance of the simulator deviates more from ideal behavior. To better understand this, the time cost

of the simulator is divided into two parts, which are spent to solve and prepare the linear system. It can be observed

that the section that influences most of the total CPU time is the cost to solve the linear system. Table 15 summarizes

the numerical performance from 128 to 2048 cores. This example also shows the capability of the simulator who can

deal with more accurate reservoir models at multi-million and even multi-billion grid blocks under accepted run time

if there are enough computation resources available.
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Fig. 14. Speedup of simulator and linear solver on 27.4 × 106 grid blocks (reference is 128 cores).

Table 15. Numerical summaries of different cores for high resolution reservoir model.

Cores Steps # Newton Avg N. # Solver Avg L. Time(s)

128 175 1401 8.01 4580 3.27 16988.0

256 177 1426 8.06 4681 3.28 9073.6

512 175 1392 7.95 4587 3.30 4597.8

1024 175 1396 7.98 4850 3.47 2640.2

2048 175 1395 7.97 5954 4.27 1631.6

5. Conclusions

The results of this work demonstrate that coupled fluid flow and polymer adsorption phenomena can be effectively

simulated and distributed among multi-core CPUs. High performance computing techniques are applied through our

in-house simulator, which has the capability to build and solve large-scale reservoir systems, especially reservoir

models with high resolutions and complexity. The rapid advancements in parallel computer hardware and software

technologies are adapted to improve the efficiency of polymer flooding processes. A satisfactory parallel efficiency of

our simulator is demonstrated for a complex application with up to 27 million grid blocks by 2048 cores.
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