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Abstract

A spectral element semi-Lagrangian (SESL) method for the shallow water equations on the sphere is presented. The

sphere is discretized using a hexahedral grid although any grid imaginable can be used as long as it is comprised of

quadrilaterals. The equations are written in Cartesian coordinates to eliminate the pole singularity which plagues the

equations in spherical coordinates. In a previous paper [Int. J. Numer. Methods Fluids 35 (2001) 869] we showed how

to construct an explicit Eulerian spectral element (SE) model on the sphere; we now extend this work to a semi-La-

grangian formulation. The novelty of the Lagrangian formulation presented is that the high order SE basis functions

are used as the interpolation functions for evaluating the values at the Lagrangian departure points. This makes the

method not only high order accurate but quite general and thus applicable to unstructured grids and portable to

distributed memory computers. The equations are discretized fully implicitly in time in order to avoid having to in-

terpolate derivatives at departure points. By incorporating the Coriolis terms into the Lagrangian derivative, the block

LU decomposition of the equations results in a symmetric positive-definite pseudo-Helmholtz operator which we solve

using the generalized minimum residual method (GMRES) with a fast projection method [Comput. Methods Appl.

Mech. Eng. 163 (1998) 193]. Results for eight test cases are presented to confirm the accuracy and stability of the

method. These results show that SESL yields the same accuracy as an Eulerian spectral element semi-implicit (SESI)

while allowing for time-steps 10 times as large and being up to 70% more efficient.
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1. Introduction

In [9] a method obtained by fusing the the spectral element method with the semi-Lagrangian method

was introduced and applied to the advection–diffusion equation. A stability analysis revealed that this
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hybrid method yields exponential convergence for increasing basis function order while experiencing nei-

ther dispersion nor dissipation errors; that is, provided that the solution is smooth. In that work, however,

we only showed results for the 1D and 2D advection–diffusion equations. In a more recent paper [11], we

showed how to apply the spectral element method to the shallow water equations on the sphere using

Cartesian rather than spherical coordinates. Although using Cartesian coordinates seems counter-intuitive

this coordinate system avoids the singularities at the poles encountered by spherical coordinates. This

formulation of the equations is not dependent on the grid as is the case with all currently existing models

[15,17,20,32]. In that paper [11] we showed that this approach yields exponential convergence for the
shallow water equations; however, in that work the time integration scheme used was an explicit Eulerian

method (third order Adams–Bashforth).

Although explicit time-integration methods for atmospheric simulations are quite efficient, their main

disadvantage is that small time-steps must be observed in order to maintain stability. The reason for this

prohibitively small time-step is due to the fast moving gravity waves. These waves require a small time-step

while only carrying a very small percent of the total energy in the system. In order to ameliorate this rather

stringent time-step restriction researchers have tried various approaches such as using a larger differencing

stencil for the gravity wave terms thereby effectively reducing the Courant number [24,35], and discretizing
the gravity wave terms implicitly in time [19]. The first strategy, that is using a larger differencing stencil for

the gravity wave terms, is typically done to avoid the inf–sup (Babuska–Brezzi) condition [18] associated

with the Stokes problem. However, discretizing the gravity wave terms implicitly in time is a much more

effective way of increasing the time-step; this is the approach we follow in this paper.

After the gravity wave terms have been successfully discretized the next set of terms responsible for

controlling the maximum time-step are the advection terms. In order to use increasingly larger time-steps

researchers have turned to Lagrangian methods for treating these recalcitrant terms [26,33]. By rewriting

the equations in terms of the Lagrangian derivative the troublesome advection terms are absorbed into the
Lagrangian derivative. Thus the equations in this form are now discretized in time along characteristics

which results in a much more stable numerical method due to the virtual disappearance of the Courant–

Friedrichs–Lewy (CFL) condition. We say virtual because any time-step is possible provided that the

Lipschitz condition is not violated and that the departure points of the semi-Lagrangian method are

computed accurately.

In the current paper we combine a semi-Lagrangian method with high order basis functions and

extend this hybrid method to the solution of the spherical shallow water equations. Thus we are es-

sentially extracting the highlights of our previous papers [9,11] and fusing them into a powerful technique
for solving the shallow water equations on the sphere. The allure of this method is that it achieves the

same order of accuracy obtained with exponentially high order Eulerian methods [11] while using much

larger time-steps. It should be mentioned that this is not the only possible characteristic method. There

are other variants that are certainly worth considering especially the characteristic method of Maday et

al. [22] which we hope to compare with SESL in future work. In this paper we only consider SESL

because it represents the only true characteristic high order method which fuses both space and time into

a single formulation.

The remainder of this paper is organized as follows. Section 2 describes the governing equations of
motion used to test our numerical method. In Section 3 we describe the discretization of the governing

equations. This includes the spatial discretization by the spectral element method, the time discretization by

the semi-Lagrangian method, and the solution of the resulting implicit equations. In Section 4 we describe

the tessellation of the sphere into quadrilateral elements which are used to construct the discrete operators.

Finally, in Section 5 we present convergence rates of the spectral element semi-Lagrangian (SESL) method

and compare it with an Eulerian spectral element semi-implicit (SESI) method. This then leads to some

conclusions about the feasibility of this approach for constructing future atmospheric models and a dis-

cussion on the direction of future work.
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2. Shallow water equations

The shallow water equations are a system of first order nonlinear hyperbolic equations which govern the

motion of an inviscid incompressible fluid in a shallow depth. The predominant feature of this type of fluid

is that the characteristic length of the fluid is far greater than its depth which is analogous to the motion of

air in the atmosphere. For this reason these equations are typically used as a first step toward the con-

struction of either numerical weather prediction (NWP) or climate models; the former type of model is the

final goal of our research.
The spherical shallow water equations in Cartesian advection form are

ou
ot

þ u � $uu ¼ �u$ � u; ð1Þ
ou

ot
þ u � $u ¼ � 2xz

a2
ðx� uÞ � $ðuþ usÞ � lx; ð2Þ

where u is the geopotential height (u ¼ gh, where g is the gravitational constant and h is the vertical height

of the fluid), us is the surface topography (e.g., mountains), u is the Cartesian wind velocity vector ðu; v;wÞ,
and ðx; aÞ represent the rotation of the earth and its radius, respectively.

The term lx, where x ¼ ðx; y; zÞ is the position vector of the grid points, is a fictitious force introduced to

constrain the fluid particles to remain on the surface of the sphere. By switching from spherical (2D) to

Cartesian (3D) coordinates we have allowed the fluid particles an additional degree of freedom which will

manifest itself in the fluid particles flying off the sphere. In order to prevent this from happening we in-
troduce the Lagrange multiplier l (see [4]); we address the calculation of this coefficient in Section 3.4.

The shallow water equations in Cartesian form have received significant attention recently (see

[10–12,16,31]). It should be mentioned that using these equations in Cartesian form on the sphere intro-

duces no approximations whatsoever; the equations are completely equivalent to the equations in spherical

coordinates as shown by Swarztrauber et al. [31]. Although the formulation we use in our paper may

appear slightly different it can be shown to be identical to that of [16,31].
3. Discretization

In this section we describe the discretization of the shallow water equations. In Section 3.1, we describe

the spatial discretization by the spectral element method including: the choice of basis functions and the

mapping from physical 3D Cartesian space to the local 2D computational space. In Section 3.2 we discuss

the implicit time discretization by the semi-Lagrangian method including the discretization of the trajectory

equation. In addition, we describe the interpolation operators required by the semi-Lagrangian method as

well as the construction of monotone interpolation schemes. Finally, in Section 3.4 we discuss the solution
of the coupled implicit equations.

3.1. Spatial discretization by the spectral element method

3.1.1. Basis functions and integration

To define the local operators which shall be used to construct the global approximation of the solution

we begin by decomposing the spherical domain X into Ne non-overlapping quadrilateral elements such that

X ¼
[Ne

e¼1

Xe:
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To perform differentiation and integration operations, we introduce the non-singular mapping x ¼ WðnÞ
which defines a transformation from the physical Cartesian coordinate system x ¼ ðx; y; zÞ defined in Xe to

the reference coordinate system n ¼ ðn; g; fÞ defined in each element such that ðn; gÞ lies on the spherical

surface; where ðn; gÞ 2 ½�1;þ1�2 in each element.

Associated with the local mapping, W, is the transformation Jacobian, J ¼ ox=on, and the determinant

jJ j ¼ ox

of
� G ; G ¼ ox

on
� ox

og
;

where G represents the surface conforming component of the mapping (see [11] for further details).

We can now use this mapping to define the local representation of the solution, q ¼ ðu; uÞ, and the

approximation of operations such as differentiation and integration. For simplicity, we assume f to be unity

in what remains and denote n ¼ ðn; gÞ.
The simple structure of the reference element, I, spanned by n 2 ½�1; 1�2, makes it natural to represent the

local element-wise solution q by an N th order polynomial in n as

qN ðxÞ ¼
XðNþ1Þ2

k¼1

wkðxÞqNðxkÞ;

where xk represents ðN þ 1Þ2 grid points and wkðxÞ reflects the associated multivariate Lagrange polyno-

mial. The logical square structure of I simplifies matters in that we can express the Lagrange polynomial by

a tensor-product as

wkðxÞ ¼ hiðnðxÞÞhjðgðxÞÞ;

where i; j ¼ 0; . . . ;N .

For the grid points ðni; gjÞ we choose the Legendre–Gauss–Lobatto (LGL) points, given as the tensor-

product of the roots of

ð1� n2ÞP 0
N ðnÞ ¼ 0;

where PN ðnÞ is the N th order Legendre polynomial. This choice simplifies the construction of the algorithm

because the LGL points are also used as the sampling points in the Gaussian quadrature rule required by

the numerical integration which we shall describe shortly. The one-dimensional Lagrange polynomials,

hiðnÞ, are

hiðnÞ ¼ � 1

NðN þ 1Þ
ð1� n2ÞP 0

N ðnÞ
ðn� niÞPN ðniÞ

;

and likewise for hjðgÞ.
The choice of the LGL points enables the straightforward approximation of local element integrals, i.e.,Z

Xe

qðxÞ dx ¼
Z
I

qðnÞJðnÞ dn ’
XN
i;j¼0

xðniÞxðgjÞqðni; gjÞJðni; gjÞ;

where J represents the local Jacobian for the transformation between Xe and I, and xðniÞ and xðgjÞ are the
Gaussian quadrature weights,

xðniÞ ¼
2

NðN þ 1Þ
1

PNðniÞ

� �2

;

associated with the one-dimensional LGL quadrature.
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To simplify the description of the numerical algorithm, let us define the following local element oper-

ators: let

Me
ij ¼

Z
Xe

wiðxÞwjðxÞ dx

represent the mass matrix and

De
ij ¼

Z
Xe

wiðxÞ$wjðxÞ dx

the differentiation matrix where i; j ¼ 1; . . . ; ðN þ 1Þ2. Note that D ¼ ðDx;Dy ;DzÞ is a vector of matrices
corresponding to the three spatial directions for D.

3.1.2. Satisfying the equations globally

To satisfy the equations globally requires assembling the global solution by virtue of an element-wise

construction. This element-wise construction is based on the summation of the local element matrices

to form their global representation. This summation procedure is known as the global assembly

or direct stiffness summation. Let us represent this global assembly procedure by the summation

operator

N̂e

e¼1

with the mapping ði; eÞ ! ðIÞ where i ¼ 1; . . . ; ðN þ 1Þ2 are the local element grid points, e ¼ 1; . . . ;Ne are

the spectral elements covering the spherical shell, and I ¼ 1; . . . ;Np are the global grid points. Applying the

global assembly operator to the local element matrices results in the following global matrices:

M ¼
N̂e

e¼1

Me

for the mass matrix and

D ¼
N̂e

e¼1

De

for the differentiation matrix.

With these operators defined and by denoting the global grid vector for the grid points as xG, the

geopotential as uG, and the wind velocity as uG we can now write the semi-discrete approximation to Eqs.

(1) and (2) as follows:

M
ouG

ot
þ uTGDuG ¼ �uGD

TuG; ð3Þ
M
ouG
ot

þ uTGDuG ¼ �M
2xzG
a2

xGð
�

� uGÞ
�
�D uG

�
þ us

G

�
�MðlxGÞ: ð4Þ

It should be noted that the mass matrix, M , is diagonal and thereby trivial to invert. The diagonal property

of this matrix is due to the dual role of the LGL points which are used both as grid points and quadrature

points.
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3.2. Time discretization by the semi-Lagrangian method

The time-step restriction of the shallow water equations is dominated by the advection and gravity wave

terms. In fact, the characteristic wave speed of this system is C ¼ U þ ffiffiffiffi
u

p
. However, the gravity wave term

although traveling at far greater speeds than the wind velocity only carries a fraction of the total energy.

Thus, explicit time integration schemes must use very small time-steps in order to maintain stability while

much larger values could be used without diminishing accuracy. Typically, in order to enlarge the time-step,

semi-implicit schemes [19] have been used whereby the advection and Coriolis terms are discretized ex-

plicitly in time while the remaining terms are discretized implicitly. The generalized leapfrog method

unþ1 � un�1

2Dt
¼ �ðu � $uÞn � U h$ � unþ1

�
þ ð1� hÞ$ � un�1

�
; ð5Þ
unþ1 � un�1

2Dt
¼ �ðu � $uÞn � 2xz

a2
xð � uÞn � h$ uð

�
þ usÞnþ1 þ ð1� hÞ$ uð þ usÞn�1

�
ð6Þ

has been the most popular method for constructing semi-implicit algorithms for the shallow water and

atmospheric equations (see for example the operational models in [14,17,29,30] and the shallow water
model in [34]). Note that u has been linearized about some mean state U in order to avoid having to solve a

nonlinear problem and we have omitted the Lagrange multiplier for the time being. In Eqs. (5) and (6) the

parameter h determines the type of scheme used in conjunction with the leapfrog method for the advection

terms. For example, h ¼ 0; 1
2
; 1 yields the Euler method (explicit), the Crank–Nicholson method (implicit),

and the backward Euler method (implicit), respectively. For h ¼ 1
2
the scheme is second order accurate in

time and for all other values it is only first order accurate.

To further enlarge the time-step we can incorporate the advection terms into the Lagrangian derivative;

this is the semi-Lagrangian method [26]. Integrating Eqs. (5) and (6) along characteristics results in

unþ1 � euun�1

2Dt
¼ �U h$ � unþ1

�
þ ð1� hÞ$ � euun�1

�
;

unþ1 � euun�1

2Dt
¼ � 2xezz

a2
exxð � euuÞn � h$ uð

�
þ usÞnþ1 þ ð1� hÞ$ euuð þ euusÞn�1

�
;

where it should be understood that the values at times n and n� 1 are not the values at the Eulerian grid

points but rather those at the Lagrangian departure points found by integrating the trajectory equation

dx

dt
¼ u; ð7Þ

where the Lagrangian derivative is

d

dt
¼ o

ot
þ u � $:

We have marked the variables that need to be interpolated at the departure points with a tilde (~). The
statement of the semi-Lagrangian method is: find eqqðn;n�1Þ using Eq. (7) such that at time nþ 1 these

characteristics arrive at the Eulerian grid points (arrival points).

Although the Crank–Nicholson method has been the most popular method used with the semi-La-

grangian method it requires the computation of not only the primitive variables at the departure points but
their derivatives as well. This step in the semi-Lagrangian procedure requires a very careful treatment;

solving these terms indiscriminately results in severe loss of conservation. For this reason, many operational



F.X. Giraldo et al. / Journal of Computational Physics 190 (2003) 623–650 629
NWP models use off-centering, h > 1=2, to combat the inaccuracies of computing derivatives at the de-

parture points. The problem with off-centering is that the scheme is only first order accurate. Models which

perform off-centering in either an Eulerian or semi-Lagrangian context include the operational NWP and

climate models in [14,17,29,30].

Galerkin methods pose some difficulties for semi-Lagrangian methods. The problem stems from the C0

basis functions typically used in Galerkin methods which translates into the derivatives being discontinuous

across elements. For this reason many semi-Lagrangian implementations construct the right-hand side (i.e.,

the terms that must be evaluated at the departure points) at the arrival points and then interpolate the entire
right-hand side vector to the departure points. This, however, will conserve neither mass nor energy. This

leads us to the following conjecture.

Conjecture 1. Semi-Lagrangian methods with C0 basis functions should only be used for homogeneous
Lagrangian equations of the type

du
dt

¼ 0:

However, if there are source terms with derivatives on the right-hand side then they should be either

evaluated at arrival points only or Ck basis functions should be used, where k represents the maximum
order of the derivatives in the system (k ¼ 1 for the shallow water equations). We reserve the proof of this

conjecture for a future study.

The problem with using Ck functions is that the number of unknowns increases from 4 to 16 per grid
point due to the first order derivatives that need to be carried. Xiu and Karniadakis [37] also noted some

problems with evaluating derivatives at the departure points and thus decided to use a backward difference

formula (BDF) which gives rise to a fully implicit scheme.

Before discretizing the equations along the characteristics let us write the shallow water equations in the

Lagrangian form which we shall use to solve the equations. Using the idea of Rochas [27] we include the

Coriolis term inside the Lagrangian derivative and write the equations as follows:

du
dt

¼ �U$ � u; ð8Þ
d

dt
ðuþ 2xðk� xÞÞ ¼ �$ðuþ usÞ � lx; ð9Þ
dx

dt
¼ u;

where k ¼ ð0; 0; 1Þ is the unit vector in the z-direction. We can now discretize these equations using a second

order BDF to yield

unþ1 � 4
3
euun þ 1

3
euun�1

Dt
¼ � 2

3
U$ � unþ1; ð10Þ
buunþ1 � 4
3
buun þ 1

3
buun�1

Dt
¼ � 2

3
$ðuþ usÞnþ1

; ð11Þ

wherebuu ¼ uþ 2xðk� xÞ
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represents the absolute velocity in an inertial reference frame. Note that Eqs. (10) and (11) do not require

the interpolation of derivatives at the departure points; for this reason we have elected to use a BDF.

Moving the implicit terms to the left-hand side and the explicit terms to the right-hand side results

in

unþ1 þ 2

3
DtU$ � unþ1 ¼ bu; ð12Þ
unþ1 þ 2

3
Dt$unþ1 ¼ bu; ð13Þ

where the right-hand side vectors are defined as follows:

bu ¼ 4

3
euun � 1

3
euun�1; ð14Þ
bu ¼ 4

3
ðeuu þ 2xðk� exxÞÞn � 1

3
ðeuu þ 2xðk� exxÞÞn�1 � 2

3
Dtð$usÞnþ1 � 2xðk� xÞnþ1

: ð15Þ

We now describe the computation of the departure point values.

3.2.1. Trajectory equation

In order to evaluate the variables eqqðn;n�1Þ require the accurate computation of the departure points which
are found from Eq. (7). The simplest second order scheme for discretizing this equation is the two-step

Runge–Kutta scheme:

exxnþ1=2 ¼ xnþ1 � Dt
2
uðxnþ1; tnþ1Þ;
exxn ¼ xnþ1 � Dtu exxnþ1=2; tnþ1=2
� �

;

exxn�1=2 ¼ xn � Dt
2
uðexxn; tnÞ;
exxn�1 ¼ xn � Dtu exxn�1=2; tn�1=2
� �

;

where the velocity field is extrapolated as follows:

uðx; tnþ1Þ ¼ 2uðx; tnÞ � uðx; tn�1Þ;
u x; tnþ1=2
� �

¼ 3

2
uðx; tnÞ � 1

2
uðx; tn�1Þ;
u x; tn�1=2
� �

¼ 1

2
uðx; tnÞ þ 1

2
uðx; tn�1Þ:

However, we do not have to stop at second order but instead can construct higher order trajectory ap-

proximations. For example we can construct the fourth order Runge–Kutta approximation

exxn ¼ xnþ1 � Dt
6

u exxð1Þ; tnþ1
� ��

þ 2u exxð2Þ; tnþ1=2
� �

þ 2u exxð3Þ; tnþ1=2
� �

þ u exxð4Þ; tn
� �	

; ð16Þ
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where the trial points are

exxð1Þ ¼ xnþ1;
exxð2Þ ¼ xnþ1 � Dt
2
uðxnþ1; tnþ1Þ;
exxð3Þ ¼ xnþ1 � Dt
2
u exxnþ1=2; tnþ1=2
� �

;

exxð4Þ ¼ xnþ1 � Dtu exxnþ1=2; tnþ1=2
� �

and the velocity field needs to be extrapolated to sufficiently high order. We have included a tilde in the trial

points exxðkÞ for k ¼ 1; . . . ; 4 to remind the reader that the value of the velocity field uðexxðkÞÞ must be inter-
polated at these trial points since they will generally not lie on a grid point.

3.2.2. Interpolation and flux-corrected transport

Once we determine the departure point and the element in which it lies we must then construct an in-
terpolation operator using its local information (the departure point search is described in Section 4.2). Let

us assume that the element Xd claims the departure point xd. Then the interpolated value euu is simply given

as

euud ¼
XN
i¼0

XN
j¼0

hiðndÞhjðgdÞuij;

where uij are the grid point values of the element Xd, and the departure point value xd has been

mapped to computational space ðnd; gdÞ. Thus for high order N we cannot expect to have a monotonic

interpolation. Therefore, just as the spectral element method is not naturally monotonic than neither is

the high order semi-Lagrangian method. The lack of monotonicity does not have serious repercussions

except when very large gradients (such as shocks) are encountered. One of the test cases that we use

in this paper contains a shock (Case 1C) and for this case we shall use a monotonic version of

SESL.

The simplest way to make a high order interpolation monotonic is to use a linear interpolation operator.
In other words, instead of using all of the ðN þ 1Þ2 grid points in an element we can just use its vertices.

However, using these values indiscriminately throughout the computation will result in a very diffused

solution. Therefore, we apply the monotonicity constraint based on whether the full polynomial interpo-

lation generates values that are larger or smaller than the values of the element Xd. This FCT-type method

(flux-corrected transport, see [1]) can be written as follows:

euud ¼ min½umax;maxðumin; euuN Þ�;

where euuN is the interpolation using the full polynomial

euuN ¼
XN
i¼0

XN
j¼0

hiðndÞhjðgdÞuij;

and umax and umin are the maximum and minimum values in the element Xd, respectively. In other words,

this method now keeps the interpolated value from exceeding the extrema of the element Xd and thus

resulting in a monotonic interpolation operator.
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3.3. Space–time discretization

In all previous fluid dynamics applications whereby Lagrangian schemes are combined with Galerkin

methods (either spectral or finite elements) the two methods are applied virtually independently. As an

example, when spectral methods are used only ad-hoc cubic Lagrange polynomials are constructed to

perform the interpolation at the departure points [25]. In the finite element method, only low order finite

element methods (linear) are used in conjunction with cubic interpolation [5]. In these approaches, the

interpolation operator is constructed independently of the spatial discretization methods; note that the two

previously mentioned works both use cubic interpolation even though they use different order accuracy

spatial discretization methods. In our approach, we use the high order basis functions of the spectral el-
ement method as the interpolation functions and so the interpolation operators are naturally and inherently

contained within the spectral element method.

Since the appearance of [9] in which we introduced SESL for the advection–diffusion equation, two

papers have appeared which have contributed to the further development of SESL-type methods. In the

paper by Falcone and Ferretti [7], they show a rigorous proof for the approximation error of the advection

equation with Lipschitz continuous solutions. In that paper, the approximation error for Lagrangian

methods using high order interpolation was shown to be

O DtK
�

þ DxNþ1

Dt

�
; ð17Þ

where K is the order of accuracy used to solve the trajectory equation

dx

dt
¼ u

and N is the order of the interpolation functions. Therefore, if either high order K is used with low order N or

vice-versa, then the overall accuracy of the scheme is compromised. In all previous semi-Lagrangian im-
plementations researchers used both low order K and N . They then noticed that when they increased one or

the other they did not obtain increased accuracy. This led to the incorrect conclusion that it is not beneficial

to increase these parameters beyond a certain value; however, no one tried to increase both values.

In the paper by Xiu and Karniadakis [37], they show numerically that the error of the semi-Lagrangian

method combined with the spectral element method is indeed controlled by Eq. (17); they show this for the

2D advection–diffusion equation and argue that the same behavior holds for the Navier–Stokes equations

at high Reynolds number. In this paper we show that the error in SESL is bounded by Eq. (17).

Besides giving a bound on the error for high order Lagrangian methods, the result of Falcone and
Ferretti can also be used to obtain the optimal time-step to use with a given order of accuracy spatial

discretization. The optimal time-step is obtained when the first and second terms in Eq. (17) are balanced

which occurs for the following time-step:

DtK ¼ DxNþ1

Dt
: ð18Þ

Following Malevsky and Thomas [21] we can write the time-step as a function of the grid spacing as
follows:

Dt ¼ Dxa: ð19Þ

Substituting Eq. (19) into Eq. (18) results in the optimal time-step

a ¼ N þ 1

K þ 1
:
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3.4. Implicit formulation of the discrete system

In this section we describe the implicit formulation for the discrete equations. Discretizing Eqs. (12) and

(13) by the spectral element method results in the following discrete system:

Munþ1
G þ kUDTunþ1

G ¼ Bu; ð20Þ
Munþ1
G þ kDunþ1

G ¼ Bu �Mðlxnþ1
G Þ; ð21Þ

where k ¼ ð2=3ÞDt, Bu ¼ MbuG and Bu ¼ MbuG. We next need to compute the Lagrange multiplier which will

constrain the fluid particles to the sphere. Using Eq. (21) we obtain the grid point values of the momentum

equation as follows:

unþ1
G ¼ M�1Bu � kM�1Dunþ1

G � lxnþ1
G : ð22Þ

Since we need to ensure that the velocity field remains tangential to the sphere, we require

xG � uG ¼ 0:

Taking the scalar product of Eq. (22) with xnþ1
G and rearranging yields

l ¼ 1

a2
M�1ðxnþ1

G � BuÞ �
k
a2

M�1ðxnþ1
G �Dunþ1Þ: ð23Þ

Writing

Pq ¼ q� 1

a2
ðxnþ1

G � qÞ; ð24Þ

where the projection matrix P is given by

P ¼ 1

a2

a2 � x2 �xy �xz
�xy a2 � y2 �yz
�xz �yz a2 � z2

0@ 1A ð25Þ

we can now write the constrained equations as

Munþ1
G þ kUDTunþ1

G ¼ Bu; ð26Þ
Munþ1
G þ kPDunþ1

G ¼ PBu: ð27Þ

The projection matrix P constrains any vector quantity q to be tangential to the sphere.

Eqs. (26) and (27) can now be written in the matrix form

M kPD
kUDT M

� �
uG
uG

� �nþ1

¼ PBu

Bu

� �
: ð28Þ

Applying a block LU decomposition yields the following matrix system:

M kPD
0 M � k2UDTM�1PD

� �
uG
uG

� �nþ1

¼ PBu

Bu � kUDTPBu

� �
: ð29Þ

The two-step solution process is: solve the pseudo-Helmholtz equation
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M
�

� k2UDTM�1PD
�
unþ1

G ¼ Bu � kUDTPBu ð30Þ

for unþ1
G and then use this solution to solve

unþ1
G ¼ M�1PBu

G � kM�1PDunþ1
G : ð31Þ

This formulation only requires the solution of an Np � Np matrix system corresponding to Eq. (30). Fur-

thermore, the associated matrix is symmetric positive-definite and thus solvable by conjugate gradient (CG)
methods. We use GMRES with a fast projection method (see [6]) to solve this matrix only because this is

what we happen to have developed at the moment. The solution of Eq. (31) is completely trivial due to the

diagonal nature of M and thus only requires the computation of a 3Np vector.
4. Grid generation on the sphere

The element-based interpolation operator used by SESL permits the use of any type of grid. Defining the
order of the SE basis functions automatically defines the order of the interpolation stencil as well. This

independence from the grid allows for the use of grids other than the typical latitude–longitude grids used

by spectral models. We only use hexahedral grids in this paper but to show the method�s independence on
the grid we refer the reader to the papers [11,12] in which we used icosahedral grids for the explicit Eulerian

method. The choice of using hexahedral grids in this paper is predicated on that fast searching algorithms

can be constructed quite easily on this class of grids; we are currently investigating similarly fast search

algorithms for the icosahedral grids.

4.1. Hexahedral grids

Hexahedral (a.k.a. cubic gnomonic) grids are constructed by mapping the six faces of a hexahedron onto

the surface of a sphere. Each of the six faces of the hexahedron are then subdivided into the desired number
of quadrilateral elements. We begin by constructing a spectral element grid on the gnomonic space G. G is

defined by the square region X ¼ ½�p=4;þp=4�2 in a 2D Cartesian space (see [28]). This region is divided

into the elements and inside each element we construct the LGL grid points. Upon constructing this grid we

then map the gnomonic coordinates X to the corresponding spherical coordinates, kG, via

kG ¼ X ; ð32Þ
uG ¼ arcsin
tan Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 X þ tan2 Y
p

� �
:

It should be noted that kG only gives the spherical coordinates of one of the six faces of the hexahedron.

Therefore, we have to rotate this face to the six faces of the hexahedron by the rotation mapping R

k ¼ kc þ arctan
cosu sin kG

cosuG cos kG cosuc � sinuG sinuc

� �
; ð33Þ
u ¼ arcsinðsinuG cosuc þ cosuG cos kG sinucÞ;

where the centroids ðkc;ucÞ of the six faces are located at ðkc;ucÞ ¼ ð½c� 1�p=2; 0Þ for c ¼ 1; . . . ; 4 and

ðk5;u5Þ ¼ ð0; p=2Þ; ðk6;u6Þ ¼ ð0;�p=2Þ.
This approach results in the construction of the hexahedral grid with the following properties:

Np ¼ 6ðnHNÞ2 þ 2;
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Ne ¼ 6ðnHÞ2;

where Np and Ne are the number of points and elements comprising the grid. The parameter nH refers to the

number of quadrilateral elements in each direction contained in each of the six faces of the hexahedron and

N is the order of the Legendre cardinal functions of each element.

Table 1 gives some grid configurations for the hexahedral grid. Fig. 1 shows sample hexahedral grids for

N ¼ 4; 8, and 16 with nH ¼ 4.

4.2. Search algorithms

The semi-Lagrangian method requires finding the location of the departure points exxðn;n�1Þ. Unfortunately

for quadrilateral elements there is no general way of finding the element which claims a specific departure
point; in triangles this is possible through the use of the natural coordinates such as in Giraldo [8,10], and

Xiu and Karniadakis [37]. Therefore, the searching algorithms for quadrilateral elements must be specifi-

cally tailored to the grid. In the case of hexahedral grids we know that the grid is constructed by mapping

each of the six faces of the hexahedron onto a local 2D planar Cartesian space.

Therefore, the first step in determining the location of a departure point is to determine which of the six

faces of the hexahedron claims the departure point. We determine this face by checking which face centroid

is closest to the departure point. Then we map this face to the rotated-gnomonic space via Eq. (33) and the

inverse of Eq. (32). This gives the departure point and the elements contained in this face in terms of the
local 2D Cartesian coordinates X . Because on this gnomonic projection each face is a perfect square then

the element which claims the departure point can be obtained by using the following integer operations:

id ¼ 1þ int
ðXd þ p

4
Þ

DX
; ð34Þ
Table 1

The number of grid points and elements for the hexahedral grid as a function of nH and N

nH N Np Ne

1 4 98 6

1 8 386 6

1 16 1538 6

1 32 6146 6

4 4 1538 96

4 8 6146 96

4 16 24,578 96

4 32 98,306 96

Fig. 1. A hexahedral grid for nH ¼ 4 and (a) N ¼ 4, (b) N ¼ 8, and (c) N ¼ 16.
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jd ¼ 1þ int
ðYd þ p

4
Þ

DY
;

where ðid; jdÞ are the indices of the quadrilateral element which claims the departure point, ðXd; YdÞ is the
departure point in gnomonic space, and DX ¼ DY ¼ p=2nH. The next step is to compute the departure
point in the local computational space. We require the local computational coordinate nd because the

Legendre cardinal functions are only defined in terms of these coordinates.

Using the indices of the element which claims the departure point given by Eq. (34) we can obtain the

departure points in computational space as follows:

nd ¼
2ðXd � X1Þ

DX
� 1;

gd ¼
2ðYd � Y1Þ

DY
� 1;

ð35Þ

where

X1 ¼ � p
4
þ ðid � 1ÞDX ;

Y1 ¼ � p
4
þ ðjd � 1ÞDY :

ð36Þ

This search algorithm requires a maximum of eight floating point operations and two integer operations

regardless of the number of elements in the grid or the order of the polynomial basis N .
5. Results

For the numerical experiments, we use the normalized L1, L2, and L1 error norms

kukL1 ¼
R
X juexact � uj dXR

X juexactj dX
;

kukL2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Xðuexact � uÞ2 dXR

X u
2
exact dX

s
;

kukL1 ¼ max juexact � uj
max juexactj

to judge the accuracy of the numerical scheme. The following two conservation metrics are also used

M ¼
R
X udXR

X uexact dX
; E ¼

R
X uðu2 þ v2 þ w2Þ þ u2 dXR

X uexactðu2exact þ v2exact þ w2
exactÞ þ u2

exact dX
;

where M measures the conservation property of the mass and E measures the conservation of the total

energy. In addition, we show plots as a function of Courant number for the time-step studies. The Courant

number we use is the maximum Courant number of all the LGL cells. To compute the Courant number the

elements are decomposed into their LGL grid points and these grid points form a fine grid which we refer to

as the LGL cells. The velocities and grid spacings are then defined at the centers of these cells. Using these

definitions the Courant number is then defined as
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Courant number ¼ max
CDt
Ds

� �e

LGL

8e 2 ½1; . . . ;Ne�:

where

C ¼ U for Case 1;
U þ ffiffiffiffi

u
p

for Cases 2; 3; 4; 5; and 6;



where C is the characteristic speed, U ¼

ffiffiffiffiffiffiffiffiffi
u � u

p
, and Ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz2

p
is the grid spacing.

Eight test cases are used to judge the performance of SESL. Cases 1A, 2, 3, 5 and 6 correspond to the

Williamson et al. [36] standard test case suite. Case 4 has been used as a test case for the shallow water
equations in [10–12,23,24]. Cases 1A, 1B, and 1C involve the geopotential equation only whereas the re-

mainder of the test cases concern the full shallow water equations. In addition, Cases 1–3 have analytic

solutions and are used to determine the accuracy of SESL quantitatively. Cases 4–6, on the other hand, do

not have analytic solutions and are thus only used to determine the accuracy of the scheme qualitatively.

For many of the test cases in this section we compare SESL with the spectral element semi-implicit method

defined in Eqs. (5) and (6) which we refer to as SESI; the value h ¼ 1=2 is used unless otherwise specified.

We also use a fully explicit spectral element leapfrog model for comparisons which we refer to as SEM-LF.

5.1. Case 1A: Advection of a cosine wave with steady-state velocity

Case 1A concerns the solid body rotation of a cosine wave. The velocity field remains unchanged

throughout the computation. For this case the velocity field is defined as

u ¼ �us sin k� vs sin h cos k;
v ¼ þus cos k� vs sin h sin k;
w ¼ þvs cos h;

where us and vs are the zonal and meridional velocity components in spherical coordinates given in [36].

Results are obtained after one full revolution which corresponds to an integration of 12 days.

Fig. 2 shows that SESL converges algebraically for this test case. We cannot expect exponential con-

vergence because the derivative at the base of the cosine hill is non-smooth.
Fig. 2. Case 1A. The normalized u error norms for SESL as a function of N after 12 days using nH ¼ 1.
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Recall that Falcone and Ferretti [7] proved that the error of Lagrangian high order methods is governed

by Eq. (17). In this section we show that the error in SESL is governed by Eq. (17); we hope to show this for

the atmospheric equations in future work.

Fig. 3 shows the normalized u L error norm for the K ¼ 2 and K ¼ 4 trajectory approximations using the

nH ¼ 1 and N ¼ 16 grid for time-steps yielding Courant numbers from 0.1 to about 50. The K ¼ 2 scheme is

the second order Runge–Kutta method given by Eq. (15) while the K ¼ 4 scheme is the fourth order

Runge–Kutta method given by Eq. (16). The error of the K ¼ 2 scheme begins to increase at a Courant

number of 2.5. This is due to the error being dominated by DtK . On the other hand, the error for the K ¼ 4
scheme remains level throughout for Courant numbers below 25. Thus by simply increasing the order

of K we have been able to sustain the same level of high accuracy for an order of magnitude greater time-

step.

5.2. Case 1B: Advection of a cosine wave with time-dependent velocity

This case is similar to Case 1A except that the velocity field varies with time in the following manner:

u ¼ ð�us sin k� vs sin h cos kÞ 1

�
þ cos

2pt
12 days

�
;

v ¼ ðþus cos k� vs sin h sin kÞ 1

�
þ cos

2pt
12 days

�
;

w ¼ ðþvs cos hÞ 1

�
þ cos

2pt
12 days

�
:

This case was introduced in [3] and the exact solution can be found in [10]. Fig. 4 shows that SESL con-

verges rapidly even for flow with non-constant velocity.

To show that the Falcone and Ferretti result also holds for flows with time-dependent velocity fields we
plot in Fig. 5 the normalized u L2 error norm as a function of time-step for nH ¼ 1 and N ¼ 16. Once again

by increasing the order of K we are able to maintain the same level of high accuracy for a much larger time-

step; from a Courant number of 4 for K ¼ 2 to a Courant number of 10 for K ¼ 4.
Fig. 3. Case 1A. The normalized u L2 error norm for SESL using RK2 (solid) and RK4 (dashed) for the trajectory computation as a

function of Courant number after 12 days using nH ¼ 1 and N ¼ 16.



Fig. 4. Case 1B. The normalized u error norms for SESL as a function of N after 12 days using nH ¼ 1.

Fig. 5. Case 1B. The normalized u L2 error norm for SESL using RK2 (solid) and RK4 (dashed) for the trajectory computation as a

function of Courant number after 12 days using nH ¼ 1 and N ¼ 16.

F.X. Giraldo et al. / Journal of Computational Physics 190 (2003) 623–650 639
5.3. Case 1C: Advection of a circular column

In this case we use the steady-state velocity field from Case 1A but the geopotential is now a circular

column. Unlike a cosine wave, the circular column represents a discontinuous function and is the 2D analog

of a 1D square wave. For flows containing large gradients and/or discontinuities it is well known that high

order methods produce oscillations near the discontinuities which contaminate the entire flow field (i.e.,
Gibbs phenomena). We illustrate this test case to show the ability of the semi-Lagrangian method to handle

non-smooth flows. In the atmosphere, severe fronts can form and any method that can handle this test

case should be adequate for handling the strongest atmospheric fronts. Fig. 6 shows the algebraic

convergence rate of SESL for flows with sharp discontinuities. In Fig. 7 we plot the normalized u L2 error

norm as a function of time-step for nH ¼ 1 and N ¼ 16. The K ¼ 2 scheme begins to lose accuracy at a

Courant number of 2.5. Meanwhile, the K ¼ 4 scheme retains the same accuracy up to Courant numbers

of 50.

The results for Case 1 confirm that using large K permits increasing the time-step without increasing the
error. However, this comes at a considerable cost especially for the full nonlinear equations. The number of

departure point searches per grid point scales like OðKÞ and the number of iterations required to achieve

convergence in the elliptic solver increases significantly with increasing time-step (due to the growth of the

condition number). We found the most efficient Courant numbers for the shallow water equations to be in



Fig. 6. Case 1C. The normalized u error norms for SESL as a function of N after 12 days using nH ¼ 1.

Fig. 7. Case 1C. The normalized u L2 error norm for SESL using RK2 (solid) and RK4 (dashed) for the trajectory computation as a

function of Courant number after 12 days using nH ¼ 1 and N ¼ 16.
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the range of 10–20 which can be achieved most efficiently and with sufficient accuracy using K ¼ 2. Thus for
the remainder of the paper we use SESL with K ¼ 2.

To see how the spectral element and the spectral element semi-Lagrangian method handle sharp dis-

continuities let us compare u along the Equator for SESI and SESL using the grid nH ¼ 4 and N ¼ 16. Figs.

8 and 9 show these slices after one complete revolution of the circular column. Figs. 8(a) and (b) show the
Fig. 8. Case 1C. The mass u along the Equator after 12 days using nH ¼ 4 and N ¼ 16 for: (a) SESI and (b) SESI with filtering.



Fig. 9. Case 1C. The mass u along the Equator after 12 days using nH ¼ 4 and N ¼ 16 for: (a) SESL and (b) SESL with FCT.
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results for SESI with and without filtering using a Courant number of 0.5. This is the maximum time-step

allowed by SESI for this test case. In Fig. 8(a) it is quite evident that the large gradients at the front and lee

of the discontinuous wave are causing severe oscillations. In fact, the entire domain is contaminated by
Gibbs phenomena. In order to eliminate these aliasing errors high order methods typically employ some

form of filtering. In Fig. 8(b) we plot the result for SESI using the Boyd–Vandeven filter (see [2,12]). The

filter has eliminated a substantial amount of the numerical noise; however, there are still some undershoots

in the front and lee of the wave and some disturbing oscillations at the top of the wave. The most disturbing

aspect of this solution is that the correct extrema (u 2 ½0; 100�) are violated. Thus if this equation repre-

sented moisture in the atmosphere we would overpredict the amount of rain expected in a certain region of

the world and obtain negative rain rates in others.

Figs. 9(a) and (b) show the results for SESL and SESL-FCT using a Courant number of 5 with no
filtering. SESL has eliminated almost all of the oscillations although small undershoots and overshoots still

occur. Fig. 9(b) shows that SESL with the FCT-type monotone interpolation does not introduce any

undershoots or overshoots.

5.4. Case 2: Steady-state nonlinear zonal geostrophic flow

This case is a steady-state solution to the nonlinear shallow water equations. The equations are geo-

strophically balanced and remain so for the duration of the integration. The velocity field thus remains

constant throughout the computation. The geopotential height u undergoes a solid body rotation but since

the initial height field is given as a constant band in the zonal direction and the flow field is purely zonal,

then the solution remains the same throughout the time integration. The velocity field is the same as that

used in Case 1. Williamson et al. [36] recommend that the error be computed after five days of integration.
Fig. 10 illustrates the normalized u error norms as a function of polynomial order N for SESL. The errors

are decreasing quite rapidly.

Fig. 11 compares the normalized u L2 error norm of SESI and SESL as a function of the time-step for

the grid nH ¼ 4 and N ¼ 16. This figure shows that SESL clearly retains its accuracy for significantly large

Courant numbers while the accuracy of SESI diminishes quickly and eventually blows up for Courant

numbers larger than 2.5. Note that SESL can use a Courant number 10 times larger than SESI (Courant

number of 25) and yield the same accuracy as SESI for a Courant number of 2.5.

5.5. Case 3: Steady-state nonlinear zonal geostrophic flow with compact support

This case is another steady-state solution to the nonlinear shallow water equations. The equations remain

geostrophically balanced for the duration of the integration. The initial velocity field is zero everywhere except



Fig. 11. Case 2. The normalized u L2 error norm for SESI (dashed) and SESL (solid) as a function of Courant number after five days

using nH ¼ 4 and N ¼ 16.

Fig. 10. Case 2. The normalized u error norms for SESL as a function of N after five days using nH ¼ 1.
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in a very small isolated region. This isolated region, or jet, encapsulates the flow and limits the geopotential

height field to remain within a very confined circular region. The results are reported for a five day integration

as suggested in [36].
Fig. 12 illustrates the normalized u error norms as a function of polynomial order N for SESL; SESL

converges exponentially for this test case. Fig. 13 compares the normalized u L2 error norm of SESI and
Fig. 12. Case 3. The normalized u error norms for SESL as a function of N after five days using nH ¼ 1.



Fig. 13. Case 3. The normalized u L2 error norm for SESI (dashed) and SESL (solid) as a function of Courant number after five days

using nH ¼ 4 and N ¼ 16.
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SESL as a function of the time-step for the grid nH ¼ 4 and N ¼ 16. This figure shows that SESL clearly

retains its accuracy for significantly large Courant numbers while the accuracy of SESI diminishes quickly

and eventually blows up for Courant numbers larger than 2. SESL can achieve the same order of accuracy

for Courant numbers of about 10.

5.6. Case 4: Dancing high–low waves

This case was introduced in McDonald and Bates [23] and is not an analytic solution to the shallow

water equations. The initial geopotential height is comprised of two large waves with the left wave being the
low wave and the right wave being the high wave, when viewed from the north pole. The waves rotate

clockwise in a swirling dance-like fashion.

Fig. 14 shows the contours of u, and the zonal and meridional velocities ðus; vsÞ for SEM-LF, SESI, and

SESL after 10 days. The Eulerian models (SEM-LF and SESI) are run using their maximum allowable

time-steps. The following Courant numbers are used for the three models:

Courant number ¼
0:5 for SEM-LF;
1:4 for SESI;
14:0 for SESL:

8<:
For SESI, the advection terms which are integrated explicitly limits the time-step to only three times that of
the purely explicit leapfrog scheme (SEM-LF). SESL uses a time-step 10 times larger than SESI and almost

30 times larger than SEM-LF. The results show almost no differences between the three models. In ad-

dition, for 30 day integrations (not shown) : SEM-LF conserves mass exactly, and energy within 0.08%;

SESI conserves mass within 0.005% and energy within 0.10%; and SESL conserves mass within 0.02% and

energy within 0.75%. After 30 days, all three models yield almost identical results with u only varying by

less than 0.85% between the models.

5.7. Case 5: Zonal flow over an isolated mountain

This case uses the same initial conditions as Case 2 with the addition of a conical mountain at

ðk; hÞ ¼ ð180; 30Þ, where k is the zonal direction and h the meridional direction. Due to the zonal flow

impinging on the mountain, various wave structures form and propagate throughout the sphere.
Fig. 15 shows the contours of u, us, and vs for SEM-LF, SESI, and SESL after 15 days which is the

maximum time-length suggested in [36]. The following Courant numbers are used for these results:



Fig. 14. Case 4. Contours of u (left), us (center), and vs (right) for: (a) SEM-LF, (b) SESI, and (c) SESL after 10 days using nH ¼ 4 and

N ¼ 16.
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Courant number ¼
0:5 for SEM-LF;
1:5 for SESI;
12:0 for SESL:

8<:
SESI uses a time-step three times larger than SEM-LF, while SESL uses a time-step eight times larger than

SESI and 24 times larger than SEM-LF. Once again, the results show almost no differences between the
models, especially between the two implicit models (SESI and SESL). SEM-LF shows some differences but

the underlying wave structures of the flow are clearly evident in all three models. For 30 day integrations

the conservation metrics are as follows: SEM-LF conserves mass exactly, and energy within 0.70%; SESI

conserves mass within 0.03% and energy within 0.57%; and SESL conserves mass within 0.03% and energy

within 0.55%. After 30 days, the models appear slightly different although u only varies by less than 0.3%

between the models. SESI and SESL yield virtually identical solutions.

5.8. Case 6: Rossby–Haurwitz wave

Although Rossby–Haurwitz waves are not analytic solutions to the shallow water equations, they have

become a de facto test case. In a non-divergent barotropic model, the initial geopotential height field

undergoes a solid body rotation in a counterclockwise direction when viewed from the north pole.

Although this case does not have an analytic solution, it is well-known that the initial wave structure of
the Rossby–Haurwitz wave should remain intact for the duration of the time-integration. Thus we know

that for at least 30 days the waves should persist without any loss in shape or mass. For this reason this case

represents the best test for judging the performance of the model for long time-integrations.



Fig. 15. Case 5. Contours of u (left), us (center), and vs (right) for: (a) SEM-LF, (b) SESI and (c) SESL after 15 days using nH ¼ 4 and

N ¼ 16.

F.X. Giraldo et al. / Journal of Computational Physics 190 (2003) 623–650 645
Fig. 16 shows the contours of u, us, and vs for SEM-LF, SESI, and SESL after 14 days. The following

Courant numbers are used for these results:

Courant number ¼
0:32 for SEM-LF;
1:03 for SESI;
10:3 for SESL:

8<:
SESI uses a time-step three times larger than SEM-LF, while SESL uses a time-step 10 times larger than

SESI and 30 times larger than SEM-LF. Once again, the results show almost no differences between the

models. For 30 day integrations the conservation metrics are as follows: SEM-LF conserves mass exactly,

and energy within 0.37%; SESI conserves mass within 0.03% and energy within 0.57%; and SESL conserves

mass within 0.03% and energy within 0.40%. After 30 days, the results of the three models are virtually

indistinguishable with no variation in u. However, for SESI to run for 30 days required off-centering to a

value of h ¼ 0:8.
The most important result is that all three models predict the same rate of rotation. This is an

extremely important result because it confirms that the implicit models are not damping the Rossby

waves. Rossby waves are the most important waves for large-scale meteorological processes and are often

referred to as planetary waves; Rossby–Haurwitz waves are the Rossby waves on the sphere. Thus any

numerical method being considered for constructing atmospheric models must handle these waves

properly.



Fig. 16. Case 6. Contours of u (left), us (center), and vs (right) for: (a) SEM-LF, (b) SESI and (c) SESL after 14 days using nH ¼ 4 and

N ¼ 16.
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5.9. Computational cost

In this section we compare the computational costs of the three models: SEM-LF, SESI, and SESL. We
shall use the explicit model, SEM-LF, as the reference with which to compare the Eulerian implicit model,

SESI, and the Lagrangian implicit model, SESL.

Fig. 17 illustrates the ratio of computer time required by SESI relative to SEM-LF (dashed line) and

SESL relative to SEM-LF (solid line) as a function of N for nH ¼ 1. These time ratios are based on a 24 h

integration for Case 5 with the models running the following Courant numbers:

Courant number ¼
0:40 for SEM-LF;
1:50 for SESI;
12:00 for SESL:

8<:
We chose Case 5 because it is the only test case with topography and thereby is the most realistic test case of

the entire suite. SEM-LF is anywhere between 1.25 and 4 times more efficient than SESI. In contrast, SEM-

LF is only more efficient than SESL for N > 8. In addition, SESL is more efficient than SESI for N 6 12.

This study seems to indicate that SESL should be used with N 6 12, which is in agreement with our previous

experience of cost versus accuracy (see [11,12]) where we found the range 86N 6 16 to be optimal for the

construction of atmospheric models (see [13]).

In Fig. 18 we plot the time ratio comparing SESI and SESL to SEM-LF as a function of nH with N ¼ 8

and using the same Courant numbers given above. SESI uses a time-step almost four times larger than
SEM-LF, while SESL uses a time-step eight times larger than SESI and 32 times larger than SEM-LF.



Fig. 17. The ratio of computational cost for SESL/SEM-LF (dashed) and SESL/SESI (solid) for various N for Case 5 using nH ¼ 1.

The ratios reflect the amount of computer time required to complete a 24 h time-integration.

Fig. 18. The ratio of computational cost for SESI/SEM-LF (dashed) and SESL/SEM-LF (solid) for various nH for Case 5 using N ¼ 8.

The ratios reflect the amount of computer time required to complete a 24 h time-integration.
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Fig. 18 shows that SESL is as high as 70% more efficient than SESI (for nH ¼ 16). SESL is 30% less

efficient than SEM-LF for nH 6 4. However, for nH > 4 SESL becomes increasingly more efficient than

SEM-LF with increasing nH. For nH ¼ 16 SESL is 7% more efficient than SEM-LF. This is very good news

because nH is the parameter which controls the grid resolution (for constant N ). Thus based on the results
outlined in Fig. 18 we can expect SESL to continue to increase its performance with increasing grid res-

olution.

We certainly expect to be able to increase the performance of SESL beyond the current level. To further

increase the performance of SESL requires increasing the performance of SESI. Increasing the perfor-

mance of SESI will increase the performance of SESL because both models use the same solver and

preconditioner. While we did not see a performance increase with SESI over SEM-LF, Thomas et al. [34]

have shown that for the shallow water equations Eulerian semi-implicit methods can be constructed to be

more efficient than explicit methods on parallel computers. We hope to learn from their experiences and
use similar techniques in order to achieve the same kind of performance. In this paper, we present the

results for SESL to show proof-of-concept only, and in future work we shall report on developments in the

solvers, preconditioners, and search algorithms in the context of a 3D atmospheric model on parallel

computers.
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6. Conclusions

In this paper we present a high order Lagrangian method for solving advection-dominated fluid flows

which may be well-suited for constructing future atmospheric models. The highlight of this method is that it

uses the high order basis functions of the spectral element method as the interpolation functions required by

the Lagrangian method to interpolate values at the Lagrangian departure points. This element-based

compact interpolation renders the spectral element semi-Lagrangian (SESL) method quite general. In

addition to high order accuracy and generality, locality is another property inherent to SESL. High order
accuracy means that SESL can achieve exponential convergence (for smooth flows). Generality means that

SESL can be used on adaptive unstructured grids. Locality means that SESL can be ported to distributed

memory computers quite easily. In this paper we have shown the high order accuracy property. We have

only shown results on hexahedral grids but it is immediately obvious that any type of quadrilateral grid can

be used (generality property). The parallel implementation (locality property) of SESL is the topic of future

work.

The results obtained for all eight cases show that SESL is not only high order accurate but possibly very

efficient due to the large time-steps that it can use. The results show that SESL yields good convergence for
increasing order of the basis functions. In addition, the results show that SESL with an FCT-type inter-

polation scheme is capable of resolving non-smooth flows such as those encountered in atmospheric fronts.

The results obtained by SESL with FCT were shown to be better than those obtained by the spectral el-

ement method with filtering.

We compare SESL with an Eulerian semi-implicit method and show that these two methods yield

results that are almost identical even when SESL uses time-steps 8–10 times larger. These time-steps are

20–30 times larger than that of the explicit Eulerian model (SEM-LF). The performance comparisons

revealed that SESL is 70% more efficient than an Eulerian semi-implicit model but is only 7% more
efficient than an Eulerian explicit model. We hope to develop faster solvers, preconditioners, and search

algorithms in order to further increase the performance of SESL and we will report our progress in

future work.
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