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Abstract

We consider the 2+1 and 3+1 scalar wave equations reduced via a helical Killing field, respectively referred to as the
2-dimensional and 3-dimensional helically reduced wave equation (HRWE). The HRWE serves as the fundamental model
for the mixed-type PDE arising in the periodic standing wave (PSW) approximation to binary inspiral. We present a
method for solving the equation based on domain decomposition and spectral approximation. Beyond describing such
a numerical method for solving strictly linear HRWE, we also present results for a nonlinear scalar model of binary inspi-
ral. The PSW approximation has already been theoretically and numerically studied in the context of the post-Minkows-
kian gravitational field, with numerical simulations carried out via the ‘‘eigenspectral method.’’ Despite its name, the
eigenspectral technique does feature a finite-difference component, and is lower-order accurate. We intend to apply the
numerical method described here to the theoretically well-developed post-Minkowski PSW formalism with the twin goals
of spectral accuracy and the coordinate flexibility afforded by global spectral interpolation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

1.1. Periodic standing wave (PSW) approximation

The development of gravitational wave detectors has spurred interest in the binary inspiral of compact
astrophysical objects, in particular black holes. The challenge of computationally solving Einstein’s equations
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for such a system has become the focus of many groups throughout the world both for its importance in grav-
itational wave astronomy and for its role in advancing the understanding of highly dynamical strongly curved
spacetimes. Very recently [1–7] a number of techniques have been found to stabilize codes, so that computa-
tional evolution of Einstein’s equations can track the last few orbits of binary inspiral.

There is, of course, more to the problem than the last few orbits. For orbiting objects with mass M and
separation a, the characteristic measure of the nonlinearity of their gravitational interaction is GM/ac2 where
G, c are the gravitational constant and the speed of light. When this measure is small, the dynamics and the
generation of gravitational waves can be found using post-Newtonian methods, an analytic approach in which
Einstein’s theory is, in effect, expanded treating GM/ac2 as a perturbation parameter.

With methods available for the small-GM/ac2 early stage, and the large-GM/ac2 last few orbits, what
remains needed is an effective method for treating the intermediate epoch, the stage of inspiral in which
GM/ac2 is too large for post-Newtonian methods, but in which many orbits remain. When more than a
few orbits still remain, an accurate numerical evolution of Einstein’s equations will be too computationally
expensive, at least in the near future.

The periodic standing wave (PSW) approach is an approximation scheme for dealing effectively with this
intermediate inspiral epoch. The scheme is based on the fact that during this epoch the orbiting inspiral is very
much orbit, and only slightly inspiral. That is, the change in the orbital radius is small for each orbit. (This is,
in fact, a criterion for many orbits to remain, and for accurate computational evolution to be daunting.) In the
PSW approach the motion of the sources and the fields are assumed to be helically symmetric, that is, all quan-
tities are rigidly rotating in the sense that a change in time by Dt is equivalent to a change in azimuthal angle u
according to Du!�XDt, where X is a constant, the angular velocity with which the fields rigidly rotate.

The imposition of this helical symmetry vastly changes the nature of the mathematical and computational
problem. Prior to helical reduction, the problem is that of evolving forward in time a hyperbolic problem
(more precisely, a problem that can be cast in hyperbolic form). The imposition of helical symmetry reduces
by one the number of independent variables and, more important, changes the problem from a hyperbolic
problem to a mixed one, a problem with a region of the manifold (near the rotation axis) in which the equa-
tions are elliptic, and an outer region in which the equations are hyperbolic. The boundary conditions for this
problem are also unusual. One can have the presence of a source represented by inner Dirichlet boundary
conditions on two small topological spheres just outside the location of the sources, the compact astrophysical
objects. Alternatively, one can include the objects as explicit inhomogeneities in the equations. The other
boundary conditions on the problem represent the radiation in the distant wave zone, and require some
discussion.

An important feature of this problem in general relativity is the conservation of the total energy of the
system. If energy is leaving in the form of outgoing gravitational radiation, then the orbital motion cannot
be helically symmetric; the radius must decrease. For fields other than gravity one could invoke a force, some
deux ex machina, to keep the orbits unchanging, and have that force not couple to the field being studied. This
certainly can be, and has been done in model problems [8–12] but, in principle, cannot be done in general
relativity. In Einstein’s gravitation all forces couple to gravity. This is dealt with by computing a standing
wave solution of the helically symmetric problem, that is, by imposing standing wave outer boundary condi-
tions. From the standing wave exact solution, an approximate solution is then extracted to the physical prob-
lem of outgoing waves.

By ‘‘standing waves’’ in a linear theory, we mean here the average of the outgoing wave solution and the
ingoing wave solution. No clear meaning exists for standing waves in a nonlinear theory. To define our stand-
ing waves, we choose an iterative solution technique for the nonlinear problem in which an average of ingoing
and outgoing solutions is taken at each step of iteration.1 We emphasize here that in each iteration of the PSW
problem it is an outgoing (or, trivially different, ingoing) problem that is solved. The present paper will there-
fore focus on the details of the efficient computation of a problem with outgoing radiation boundary
conditions.
1 Another extension of ‘‘standing wave’’ to nonlinear theories has been discussed in the literature [9], using the minimum amplitude of
the multipole in every multipole mode.
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Hyperbolic problems with Dirichlet boundary conditions are known not to be well posed. We take a prag-
matic approach to whether our mixed-type problems with radiative conditions are well posed. For one thing,
the problem arises in what would appear to be a physically well-specified problem; heuristically the problems
of nonuniqueness for the Dirichlet problem are removed by the radiation boundary conditions. For another
thing, no fundamental instability has been encountered in seeking numerical solutions of our problems. Fur-
ther indirect evidence that the problem is well posed can be found in the work of Torre, who has shown that a
closely related mixed-type linear problem is well-posed if the boundary conditions are of an admissible type
that includes Sommerfeld outgoing conditions [13,14].

The strategy of the PSW approach is to solve the helically symmetric binary problem computationally, but
otherwise without approximation. From that ‘‘exact’’ helically symmetric solution, an approximation is
extracted for the physical problem. The extraction of an outgoing approximation is tantamount to treating
the nonlinear standing wave solution as if it were an average of the ingoing and outgoing solutions. (For
details of extraction, see [12].) The reason that this is an excellent approximation (as is confirmed by compu-
tations with model problems) is that the regions of the physical manifold in which nonlinearities are strong are
those near the sources, and in these regions the solution is extremely insensitive to the boundary conditions
(ingoing, outgoing, standing wave) in the distant weak field wave region. Since the ingoing and outgoing solu-
tions are nearly identical in this region they can be averaged (or simply replaced by either the ingoing or the
outgoing solution). Where the ingoing/outgoing solutions are very different, the theory is approximately linear
and hence again the ingoing and outgoing fields can be averaged. This feature, the separation of the region of
nonlinearity and the region of waves, is closely related to the argument, given below, that a multidomain spec-
tral method should have advantages for PSW type problems even beyond the advantages it has demonstrated
for purely elliptic initial-value problems in the work of Pfeiffer et al. [15,16], or its use in evolution codes by the
Caltech–Cornell collaboration [17].

Successful solutions of the PSW approximation will serve a variety of purposes. As discussed above, it will
provide the bridge between the post-Newtonian methods and numerical evolution for binary orbits; it will pro-
vide near optimal starting points for the numerical evolution of the last few orbits; it may give a useful testbed
for studying radiation reaction; solution of the PSW standing wave problem will give a new class of solutions
to Einstein’s theory.

Work on PSW computations has already taken several steps using the ‘‘eigenspectral method,’’ an approx-
imate numerical method based on coordinates well adapted to the geometry both close to the sources and in
the radiation region. This method, in effect, keeps only the features of the solution that are most important to
the structure of the near-source fields and to the radiation, and has been used so far to study nonlinear toy
models [8,9,12], linearized general relativity [18], and the post-Minkowski extension of linearized gravity
[19]. This method is remarkable for its simplicity in giving approximate solutions, but is ill suited to the high
accuracy needed for several purposes. In addition the eigenspectral technique uses a finite-difference compo-
nent, and provides numerical answers on a specific grid of points in the space of the physical problem. Its
results, therefore, require a difficult interpolation from a nonuniform grid if they are to be compared with
other results or used as initial conditions for evolution codes. The multidomain spectral method we will
describe has neither shortcoming.

To minimize the complexity of issues not directly relevant to the multidomain spectral method, we choose
as a specific target problem, more-or-less the problem of Refs. [8,9,12], that of a nonlinear scalar field. The
physical problem, of course, is one with three spatial coordinates, but for simplicity both of exposition and
of computation, we work here with the two-dimensional helically reduced wave equation, hereafter 2d
HRWE. The Cauchy problem for this physical model would involve three independent variables (two
spatial, one time), but the helical reduction means we are solving on a manifold of two dimensions. We will
also, in Section 4, present some preliminary results for the 3d HRWE, and in the concluding section will
discuss application of the method to the 3d HRWE problem. The physical picture is that of two compact
scalar charges moving on circular orbits of radius a, with angular velocity X, and emitting helically symmet-
ric outgoing waves. The wave speed c will be taken to be unity. The scalar field satisfies a 2d HRWE of the
form
Lwþ ghðwÞ ¼ g; ð1Þ
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on the region outside the two sources and inside a large radius circle (spherical surface for 3d HRWE) on
which outgoing conditions are imposed. Here L is a mixed-type linear HRWE operator (the helically reduced
d’Alembertian), h is a nonlinear function of w, and the g parameter controls the strength of the nonlinearity.
The inhomogeneity g can be used to represent explicit sources. In our 2d HRWE development below we will
use inner boundary conditions, not explicit sources, so g will be zero; a nonzero g will be used only in the con-
sideration of the 3d HRWE in the concluding section.

We make one more simplifying choice. We take the solution to have the symmetry w(�x, �y) = �w(x, y), a
choice equivalent to taking the sources to have opposite scalar charge. By setting the total charge equal to
zero, we eliminate the bothersome logarithmic monopole that would diverge at large distances. Of course,
for gravitation theory there is only charge of a single sign and the monopole cannot be set to zero, but the
real physical problem is that for three spatial dimensions, in which the monopole falls off with distance from
the sources, and is an acceptable complication.

1.2. Multidomain spectral method

The ‘‘two center’’ domain of the 2d HRWE problem is illustrated in Fig. 1. This figure shows how two
annular domains, H and A along with eight rectangular domains, fully cover the physical problem. Note that
the symmetry w(�x, �y) = �w(x, y) means that annulus H represents the information around both the source
on the right, and that on the left. Similarly, rectangular domains 1, 2, 3, 7, 8 carry the information about the
solution in symmetry related regions on the left side of the physical problem. Using the aforementioned sym-
metry, we could do away with region 6, which is equivalent to region 4. Nevertheless, we have chosen to keep
region 6 so that our code can be tested on elliptic problems which, when posed on the inner region spanned by
the rectangles, need not be of definite parity. The annular domain A extends between the two solid circles in
Fig. 1. At its outer boundary we impose Sommerfeld-like outgoing radiation boundary conditions to be
described below. For most radiation conditions to be applicable, the outer boundary of A must be at least
several wavelengths away from the sources. For a typical choice of X this means that the radius of the outer
boundary must be 10 times or more larger than the separation between the source regions. The dashed circle in
Fig. 1 is the ‘‘light circle,’’ the boundary between the inner region in which the operator L is elliptic, and the
outer region in which L is hyperbolic. Typically the radius of the the light circle will be at least several times
larger than the separation of the centers of the source domains. For a 3d problem, the analogous two-center
4 3 2

15

76 8 H

A

light circle

Fig. 1. The 2d HRWE problem and its domain decomposition. The circles that are the outer boundaries of the darkened source regions
carry Dirichlet boundary conditions representing the imprint of the sources. Region H, between the two small circles concentric with the
source, is the inner annular domain. Domain A between two large solid circles is the outer annular domain. The dashed circle in domain A

is the light circle.
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domain is actually composed of fewer elements than in the equivalent 2d problem. This is one of the reasons
we believe that a multidomain spectral method is well-suited for the computations needed in PSW approxima-
tion of binary inspiral. In lieu of a detailed description of the domain decomposition we envision for 3d work,
we offer the picture in Fig. 2. Note that cylindrical shell labelled 2, 8, for example, corresponds to both domain
2 and domain 8 in Fig. 1. Indeed, the 2d figure could alternatively be viewed as a cross section of a 3d scenario.

The 10 subdomains H, 1 � 8, A, along with the symmetry w(�x, �y) = �w(x, y), contain the complete
information about w. Below we describe a spectral method in which the solution for w in each region is con-
sidered as an expansion in terms of appropriate basis functions. Moreover, we use the term spectral in the tru-
est sense, since the unknowns we solve for in our numerical approach are in fact the coefficients of the basis
functions. (In a later section, while considering the 3d HRWE we will also describe results based in part on a
pseudospectral method in which the unknowns are point-values on a spectral grid.) A crucial feature of our
numerical method is to separate the physical problem into subdomains so that the type changing nature of the
HRWE is then confined within a single subdomain, the outer annulus A. The inner region is then purely ellip-
tical and, despite its two center topology, this inner part of the manifold is amenable to the standard spectral
techniques associated with elliptic equations [15,16].

1.3. Brief review of mixed-type problems

In order to place our work in context, we offer some remarks on type-changing PDE in general. Perhaps the
most notable examples arise in the mathematical description of transonic flow, and in particular flow over an
air foil, a scenario for which subsonic and supersonic regions are respectively described by elliptic and hyper-
bolic equations. The Frankl–Chaplygin equation [20] K(y)uxx + uyy = 0 (the choice K(y) = y determines the
familiar Tricomi equation [21]) serves as a fundamental model of this behavior, and Morawetz carried out
early and fundamental analytic studies [22] of it and corresponding first order systems (see also [23]). The first
truly successful method for numerically calculating transonic flow was put forth in the seminal paper [24] by
Murman and Cole. They adopted a relaxation-like method along with type-dependent finite difference stencils.
For an account of the impact of the Murman–Cole method in aerodynamics, and a review of more modern
CFD approaches towards transonic flow, see the historical perspective of [25]. While the aerodynamic scenario
is the most widely known, special examples of mixed-type equations arise in fields as diverse as plasma physics
[26] and windshield design [27]. An early work most closely related to our own is Chaohao’s examination [28]
of amplifying spiral wave solutions to the 2+1 wave equation. Numerical methods for mixed-type problems
tend to be equation specific. The Murman–Cole technique, for example, would seem to have no application
for our problem.

Motivated by mixed-type problems, in the late 1950s Friedrichs initiated a program [29] for analyzing a
wide class of boundary value problems based on operators whose symmetric part is positive definite and which
obey certain admissible boundary conditions. Such symmetric positive systems include PDE of hyperbolic,
3,7 2,8

1

4,6

5

Fig. 2. Domain decomposition for the 3d HRWE Problem. Here the inner spherical shell and outer spherical shell, respectively
corresponding to the annuli H and A in Fig. 1, are not shown. The remaining domains (all lying within the elliptic region) are shown in an
exploded format for emphasis.
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elliptic, and mixed type. A lucid history of the Friedrichs program from both theoretical and numerical
perspectives is given by Jensen [30]. Rather early on, Katsanis developed a numerical method for solving
Friedrichs systems [31]. Starting with a Friedrichs system, he applied Green’s theorem in a generic cell, and
approximated the resulting integral equation. At the discrete level the approach faithfully mimicked both both
the symmetric positive aspect of the operators as well as admissibility of boundary conditions, and Katsanis
went on to numerically examine the Tricomi problem [32]. Although geometrically flexible, the Katsanis
method is low-order accurate. A finite-difference method for Friedrichs system was also outlined by Liu
[33]. Recent work towards numerically solving Friedrichs systems has drawn on the powerful framework of
discontinuous Galerkin methods [30,34]. Although Torre has shown that the 2d HRWE on a disk can be cast
into a first-order Friedrichs system (and, indeed, the aforementioned work by Chaohao also made connections
with Friedrichs theory), we have nevertheless chosen a classic multidomain spectral method over a discontin-
uous Galerkin method. This would seem appropriate given the relatively simple geometry of our problem and
the expected smoothness of the solutions we seek.

2. Outer annulus and outer boundary conditions

We begin by discussing the 2d HRWE on the outer annulus, labeled A in Fig. 1; with appropriate changes
this discussion will also apply to the 3d HRWE on an outer spherical shell. As the relevant PDEs are type-
changing on them, these are the most interesting subdomains. In addition, our discussion here will supply
some of the details of the HRWE and will exhibit its mathematical features, including its change of type.

In this section, we will describe the radiative outer boundary conditions on A imposed at a large
r = rmax ” R. We shall also speak of an inner boundary condition for A, although when A is considered as
a subdomain it is not associated with a true inner boundary condition. The philosophy here is that we must
understand the relevant boundary value problem on each subdomain to have all subdomains successfully
‘‘glued’’ together. Inner boundary conditions on A are imposed at a radial value r = rmin ” e. Note that e is
not small. For the decomposition illustrated in Fig. 1, in fact, e must be greater than the orbital radius.

2.1. 2d HRWE

The linear 2d HRWE of Whelan et al. [8] starts with �o2
t wþr2w ¼ g and, in terms of polar coordinates

r, /, the helical reduction requires that w be a function only of r and u = / � Xt. The 2d HRWE then takes
the form
1

r
o

or
r
ow
or

� �
þ 1

r2
fðrÞ o

2w
ou2
¼ gðr;uÞ; ð2Þ
where g(r, u) is a u-periodic source term, f(r) = 1 � r2X2, and the coordinate ranges are
e 6 r 6 R; 0 6 u 6 2p: ð3Þ

Eq. (2) is clearly elliptic for r < |X|�1 and hyperbolic for r > |X|�1. One boundary value problem would be to
seek solutions to this equation which obey the boundary conditions
wje ¼ aðuÞ; ow
or
� X

ow
ou
þ w

2r

� �����
R

¼ bðuÞ; ð4Þ
here with u-periodic functions a(u) and b(u). This boundary value problem for annulus A is equivalent to the
punctured disk examined by Torre [13]. His proof of the well-posedness of this problem assumes that the
radial endpoint e lies in the elliptic region, as do we by requiring � < X�1. Torre’s proof places no restriction
on R. He allows for R to lie in the hyperbolic region, the elliptic region, or even on the light cylinder r = |X|�1.
In practice of course, R is large and lies in the hyperbolic region, as we will assume.

Fourier transformation of (2) yields
1

r
d

dr
r
oŵn

or

 !
� n2

r2
fðrÞŵn ¼ ĝnðrÞ; ð5Þ
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and for the corresponding boundary conditions on the mode ŵnðrÞ we have
ŵnðeÞ ¼ ân;
dŵn

dr
� inXŵn þ

ŵn

2r

 !�����
R

¼ b̂n: ð6Þ
For now we will assume n 6¼ 0, and consider the zero-mode case separately later on. As an alternative we may
also impose exact outgoing-wave boundary conditions, enforced n-by-n via
dŵn

dr
� inXŵn þ

ŵn

2r

 !�����
R

¼ 1

R
nXR

V 0nðnXRÞ
V nðnXRÞ

� �
ŵn; ð7Þ
where
V mðzÞ ¼
ffiffiffiffiffi
pz
2

r
exp �i z� 1

2
pm� 1

4
p

� �� �
H ðþÞm ðzÞ ð8Þ
is set up to satisfy Vm(z) � 1 as z!1. Here H ðþÞm ðzÞ is the first cylindrical Hankel function. The ‘‘frequency-
domain kernel’’
nXR
V 0nðnXRÞ
V nðnXRÞ ð9Þ
can be computed as a continued fraction via Steed’s algorithm [35]. Similar kernels appear in studies of radi-
ation boundary conditions for time-domain wave propagation, for example in Refs. [36–39].

2.2. 3d HRWE

For the 3d case we will mostly use the same symbols as for the 2d case. The 3d HRWE of Andrade et al. [11]
is
1

r2

o

or
r2 ow

or

� �
þ DS2

r2
� X2 o2

ou2

� �
w ¼ gðr; h;uÞ; ð10Þ
where g(r, h, u) is again a u-periodic source term, DS2 is the unit two-sphere Laplacian, and the coordinate
ranges now are
e 6 r 6 R; 0 6 h 6 p; 0 6 u 6 2p: ð11Þ

Eq. (10) is elliptic for r sinh < |X|�1 and hyperbolic for r sinh > |X|�1. We seek solutions to this equation which
obey the boundary conditions
wje ¼ aðh;/Þ ow
or
� X

ow
ou
þ w

r

� �����
R

¼ bðh;/Þ: ð12Þ
We consider the exact outgoing-wave conditions below. As before, we will assume that e < |X|�1, and explain
why in a moment.

Spherical harmonic transformation of (10) yields
1

r2

d

dr
r2 dŵ‘m

dr

 !
� ‘ð‘þ 1Þ

r2
� m2X2

� �
ŵ‘m ¼ ĝ‘mðrÞ; ð13Þ
and we will now take
ŵ‘mðeÞ ¼ â‘m;
dŵ‘m

dr
� imXŵ‘m þ

ŵ‘m

r

 !�����
R

¼ b̂‘m ð14Þ
as the corresponding boundary conditions. We will assume m 6¼ 0, and consider the m = 0 case separately later
on. As an alternative we may also impose exact outgoing-wave boundary conditions. Enforced mode-by-
mode, they have a form similar to Eq. (7),
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dŵ‘m

dr
� imXŵ‘m þ

ŵ‘m

r

 !�����
R

¼ 1

R
mXR

V 0‘þ1=2ðmXRÞ
V ‘þ1=2ðmXRÞ

� �
ŵ‘m: ð15Þ
To cast the radial equation stemming from the 3d HRWE into a form which resembles the radial equation
stemming from the 2d HRWE, we substitute ŵ‘m ¼ n̂‘m=

ffiffi
r
p

in (13), thereby finding
1

r
d

dr
r

dn̂‘m
dr

 !
�
ð‘þ 1

2
Þ2

r2
fðrÞn̂‘m ¼

ffiffi
r
p

ĝ‘mðrÞ; ð16Þ
where
fðrÞ ¼ 1� 4m2X2r2

ð2‘þ 1Þ2
: ð17Þ
In terms of x‘m = 2mX/(2‘ + 1) 6¼ 0, clearly something special occurs for (16) when r = |x‘m|�1, here with
‘,m 6¼ 0. Note that |x‘m| 6 |X|, so that |X|�1

6 |x‘m|�1. For this reason, we have required e < |X|�1 above,
ensuring that r = e lies within each mode’s individual ‘‘elliptic region.’’

2.3. General form for the outer boundary conditions

From Eq. (5) we pass to a trigonometric rather than exponential representation of the transform ŵnðrÞ by
writing
ŵ�nðrÞ expð�inuÞ þ ŵnðrÞ expðinuÞ ¼ ŵnðrÞ þ ŵ�nðrÞ
h i

cosðnuÞ þ i ŵnðrÞ � ŵ�nðrÞ
h i

sinðnuÞ

¼ unðrÞ cosðnuÞ þ wnðrÞ sinðnuÞ; ð18Þ
with a similar splitting possible for ŵ‘mðrÞ, or n̂‘mðrÞ if preferred.
At r = R all boundary conditions, whether exact or some incarnation of Sommerfeld, may be expressed as

follows:
Rw0nðRÞ þ punðRÞ þ qwnðRÞ ¼ 0; Ru0nðRÞ � pwnðRÞ þ qunðRÞ ¼ 0: ð19Þ

We list the possibilities considered so far in Table 1. Other choices of the form (19) are of course possible. For
the exact conditions listed in Table 1, we have made use of the notation
vmðzÞ ¼ z
V 0mðzÞ
V mðzÞ

; ð20Þ
with the obvious notation for real and imaginary parts.
Turning now to the rather more delicate zero-modes (n = 0 for 2d and m = 0 for 3d), we note that for z! 0

the Hankel function H ðþÞm ðzÞ is proportional to z�m for m 6¼ 0 and to log z for m = 0, so that in either case
zH ðþÞ0m ðzÞ=H ðþÞm ðzÞ ! �m; ð21Þ

and hence from the the definition in Eq. (8) we have
vmð0Þ ¼
1

2
� m ð22Þ
1
boundary conditions for the 2d and 3d HRWE

ary condition p q

erfeld on ŵn nXR 1
2

erfeld on ŵ‘m mXR 1
on ŵn nXR + Imvn(nXR) 1

2�RevnðnXRÞ
on ŵ‘m mXR + Imv‘+1/2(mXR) 1 � Rev‘+1/2(mXR)



1134 S.R. Lau, R.H. Price / Journal of Computational Physics 227 (2007) 1126–1161
From this our key result follows. For the n = 0 homogeneous case, Eq. (5) has solutions ŵ0ðrÞ ¼ c or
ŵ0ðrÞ / log r. With v0ð0Þ ¼ 1

2
, we find p = 0 = q for the exact outgoing conditions as stated in (19). So this

boundary condition rules out the log r solution. For the m = 0 homogeneous case, Eq. (13) has solutions
ŵ‘0 / r‘ and ŵ‘0 / r�ð‘þ1Þ. Now v‘+1/2(0) = �‘, and p = 0, q = ‘ + 1 for the exact outgoing boundary condi-
tion. In this case the boundary condition rules out the r‘ solution.

3. Sparse spectral approximation of the 2d HRWE

This section describes how we use spectral methods to numerically solve the 2d HRWE on the two center
domain shown in Fig. 1. Our method will exploit the spectral integration preconditioning (IPC) proposed by
Coutsias et al. [40], a general-purpose spectral method for solving ODEs and PDEs. Developing IPC for gen-
eral orthogonal polynomials, they mostly considered it in the context of ODEs. In this context they presented
a detailed theoretical analysis of both conditioning and convergence (see also [41]). Although they also care-
fully outlined how to apply the method in higher dimensions (with several illuminating two-dimensional exam-
ples), they did not explore conditioning issues for PDEs.

We shall follow the IPC approach for the following reasons. Foremost, it is a direct recipe for applying
spectral methods in a PDE setting, affords a straightforward way of treating both boundary conditions and
the ‘‘gluing’’ of subdomains. Moreover, IPC allows us simultaneously to achieve a sparse banded matrix rep-
resentation of the 2d HRWE on all subdomains. While we question whether a fully 3d multidomain PSW
problem can be treated exclusively with spectral methods based on IPC (further comments to follow), we
believe the method is well suited for handling the 2d HRWE on the outer annulus A (or the 3d HRWE on
an outer spherical shell). The mixed-type boundary value problem on this subdomain introduces several novel
features, and much of our analysis below centers on associated conditioning issues. In short, the IPC approach
offers us a quick and easy way to test the fundamental idea of using a multidomain spectral method to solve
the 2d HRWE, and has promise for at least one key aspect of true 3d PSW problems.

In following the IPC approach we are able to explicitly form the matrix which represents the 2d HRWE on
the two center domain, and we subsequently use Gaussian elimination (as embodied by the netlib routine
dgesv, and sometimes also dgesvx) to invert the resulting system. A discussion of the structure of the matrix
serves to sharpen our analytic understanding of the linear systems we are dealing with. For 3d problems, how-
ever, speed and memory considerations make it impractical to form and solve the full matrix. For the 3d
model we consider in the conclusion and for envisioned future 3d work, we have used, and plan to continue
with the Krylov-based method GMRES, in which only the specification of a matrix–vector multiply need be
implemented. For a Krylov method preconditioning strategies are often necessary to avoid stagnation of the
iterative solver.

Despite the name of the method, and despite its intuitive appeal, it is not guaranteed that IPC, especially for
rectangular domains, actually improves conditioning (with respect to the problem of matrix inversion). If this
is an issue in two dimensions, it is sure to be even more problematic in three dimensions. Since we cannot guar-
antee that our implementation of IPC will actually improve conditioning, it would be more appropriate to call
the method a ‘‘sparse formulation.’’ To refer to the very specific IPC technique it will be convenient, however,
for us to continue to use the term ‘‘preconditioning.’’ For simplicity, and to have a uniform treatment, we will
use the IPC method for all our subdomains in the 2d model. It should be understood that this uniformity is not
necessary. We could treat the elliptic region via a different method (spectral or pseudospectral). In any case, as
we verify with numerical experiments, the method yields impressive global accuracy in solving the 2d HRWE
on our two center domain.

3.1. Basic formulas for Chebyshev polynomials

Although Ref. [40] considered general orthogonal polynomials, we work solely with Chebyshev polynomi-
als, a classical system of orthogonal polynomials with many useful properties and applications [42,43]. Here
we collect only those properties relevant for our discussion, mostly following [40,44,45]. The degree-
n Chebyshev polynomial Tn(n) is defined by Tn(n) = cos(n arccos(n)) for �1 6 n 6 1, showing that we may
consistently set T�n(n) = Tn(n). In our application n depends on one of the coordinates, say



S.R. Lau, R.H. Price / Journal of Computational Physics 227 (2007) 1126–1161 1135
n(r) = (2r � rmax � rmin)/(rmax � rmin) in an outer spherical shell or annulus. The Tn(n) are solutions to a sin-

gular Sturm–Liouville problem, and therefore particularly suited for approximating solutions to differential
equations on [�1, 1] with a wide class of boundary conditions. The Tn(n) are orthogonal on the interval
[�1, 1] with respect to the weight function (1 � n2)�1/2.

We have T0(n) = 1, T1(n) = n, and the following identity:
2 Fo
practic
2nT nðnÞ ¼ T nþ1ðnÞ þ T n�1ðnÞ: ð23Þ

If we denote by T(n) the row vector [T0(n), T1(n), T2(n), . . .], then (23) may be expressed as
nTðnÞ ¼ TðnÞA; ð24Þ

where2
A ¼

0 1
2

0 0 0 0 � � �
1 0 1

2
0 0 0 � � �

0 1
2

0 1
2

0 0 � � �
0 0 1

2
0 1

2
0 � � �

0 0 0 1
2

0 1
2
� � �

0 0 0 0 1
2

0 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

26666666666664

37777777777775
: ð25Þ
Note that our convention here is to label matrix rows and columns starting from 0 rather than 1. Since A is
tridiagonal, the matrix Am, representing left multiplication by nm through the formula nmT(n) = T(n)Am, has
bandwidth 2m + 1. Moreover, banded matrices p(A) similarly correspond to multiplication by any polynomial
p(n). The most important special case, is the matrix AT m � T mðAÞ of bandwidth 2m + 1 corresponding to mul-
tiplication by the Chebyshev polynomial Tm(n). For m = 1, the matrix A ¼ AT 1

is given by Eq. (25). More gen-
erally the entries of AT m may be gathered from the identity [40,42]
2T mðnÞT nðnÞ ¼ T mþnðnÞ þ T jm�njðnÞ: ð26Þ
Next we consider the formal expansion
uðnÞ ¼
X1
n¼0

~unT nðnÞ; ð27Þ
where, owing to the orthogonality of the Chebyshev basis, the expansion coefficients have the analytic values
[42]
~un ¼ jn

Z 1

�1

uðnÞT nðnÞ
dnffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p : ð28Þ
The prefactor jn is 1/p for n = 0 and 2/p for n > 0. We denote by ~u the column vector of expansion coefficients
½~u0; ~u1; ~u2; . . . �t. In the vector space of expansion coefficients multiplication by n is effected through multiplica-
tion by A, that is to say ~un � A~u represents the expansion coefficients ½~un

0; ~u
n
1; ~u

n
2; ~u

n
3; � � � �

t for un(n) ” nu(n). Sim-
ilarly, in the space of expansion coefficients, multiplication by any polynomial p(n) may be represented via left
multiplication by p(A).

Another well-known formula [40,42,44]
T nðnÞ ¼
T 0nþ1ðnÞ
2ðnþ 1Þ �

T 0n�1ðnÞ
2ðn� 1Þ ; ð29Þ
yields another matrix identity
r now we proceed with infinite-size matrices. However, numerical approximation necessarily entails suitable truncations. Our
e will be to use the same symbols for such truncations, and alert the reader whenever the viewpoint shifts.



1136 S.R. Lau, R.H. Price / Journal of Computational Physics 227 (2007) 1126–1161
TðnÞ ¼ T0ðnÞB½1�; ð30Þ
in terms of an integration matrix
B½1� ¼

0 0 0 0 0 0 � � �
1 0 � 1

2
0 0 0 � � �

0 1
4

0 � 1
4

0 0 � � �
0 0 1

6
0 � 1

6
0 � � �

0 0 0 1
8

0 � 1
8
� � �

0 0 0 0 1
10

0 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

26666666666664

37777777777775
: ð31Þ
Here the subscript [1] merely emphasizes that the first row of B[1] consists only of zeros. Adopting a first row of
zeros is a choice, permissible since T 00ðnÞ ¼ 0. Free, or open, rows of zeros within integration matrices is a cen-
tral feature of the spectral method presented in [40], and following that reference we will eventually exploit
such freedom to enforce boundary conditions. In matrix form the formula
T nðnÞ ¼
T 00nþ2ðnÞ

4ðnþ 1Þðnþ 2Þ �
T 00nðnÞ

2ðn2 � 1Þ þ
T 00n�2ðnÞ

4ðn� 1Þðn� 2Þ ð32Þ
reads
TðnÞ ¼ T00ðnÞB2
½2�; ð33Þ
where now
B2
½2� ¼

0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �
1
4

0 � 1
6

0 1
24

0 � � �
0 1

24
0 � 1

16
0 1

48
� � �

0 0 1
48

0 � 1
30

0 � � �
0 0 0 1

80
0 � 1

48
� � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

26666666666664

37777777777775
: ð34Þ
Single and double integration of ~u then correspond to B½1�~u and B2
½2�~u.

Consider the matrices D and D2 corresponding to differentiation in the Chebyshev basis. The entries of
these matrices stem from recursive use of (29) for D and (32) for D2. Although we will not require the precise
forms of these matrices, we nevertheless list them here for completeness:
D ¼

0 1 0 3 0 5 0 7 0 � � �
0 0 4 0 8 0 12 0 16 � � �
0 0 0 6 0 10 0 14 0 � � �
0 0 0 0 8 0 12 0 16 � � �
0 0 0 0 0 10 0 14 0 � � �
0 0 0 0 0 0 12 0 16 � � �
0 0 0 0 0 0 0 14 0 � � �
0 0 0 0 0 0 0 0 16 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

266666666666666664

377777777777777775
; ð35Þ
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D2 ¼

0 0 4 0 32 0 108 0 256 � � �
0 0 0 24 0 120 0 336 0 � � �
0 0 0 0 48 0 192 0 480 � � �
0 0 0 0 0 80 0 280 0 � � �
0 0 0 0 0 0 120 0 384 � � �
0 0 0 0 0 0 0 168 0 � � �
0 0 0 0 0 0 0 0 224 � � �
0 0 0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

26666666666666666666664

37777777777777777777775

: ð36Þ
The matrices D and D2 obey
T0ðnÞ ¼ TðnÞD; T00ðnÞ ¼ TðnÞD2: ð37Þ

Notice that the first column of D and the first two columns of D2 are (necessarily) zero. We might accordingly
represent these matrices as DÆ1æ and DÆ2æ to highlight these facts, but will not employ this notation. Whereas the
matrices B[1] and B2

½1� are banded and sparse, D and D2 are clearly upper triangular and dense. To render the
linear systems we encounter in banded form, we will exploit the identities, [40]
B½1�D ¼ I ½1�; B2
½2�D

2 ¼ I ½2�; B2
½2�D ¼ B½2�: ð38Þ
Here the notation I[1] means the identity matrix with the first row set to zero; I[2] means the first two rows are
zero.
We stress the crucial point that, for the ordering of matrix products in Eq. (38), the identities (38) also hold for
(N + 1)-by-(N + 1) truncations of B[1], B2

½2�, D, and D2.
In order to enforce boundary conditions we introduce both Dirichlet and Neumann vectors (radiation

boundary conditions require a bit more thought and will be put off until later). The Dirichlet vectors are
dþ ¼ ½1; 1; 1; 1; . . .� ¼ ½T 0ð1Þ; T 1ð1Þ; T 2ð1Þ; T 3ð1Þ; . . .�; ð39Þ
d� ¼ ½1;�1; 1;�1; . . .� ¼ ½T 0ð�1Þ; T 1ð�1Þ; T 2ð�1Þ; T 3ð�1Þ; . . .�; ð40Þ
while the Neumann vectors are
mþ ¼ ½0; 1; 4; 9; . . .� ¼ ½T 00ð1Þ; T 01ð1Þ; T 02ð1Þ; T 03ð1Þ; . . .�; ð41Þ
m� ¼ ½1;�1; 4;�9; . . .� ¼ ½T 00ð�1Þ; T 01ð�1Þ; T 02ð�1Þ; T 03ð�1Þ; . . .�: ð42Þ
The boundary conditions we encounter are easily expressed in terms of these vectors. For example, d� � ~u ¼ 0
is a homogeneous Dirichlet boundary condition at the left endpoint, and mþ � ~u ¼ 0 is a homogeneous Neu-
mann boundary condition at the right endpoint.

We conclude this preliminary subsection by addressing a few practical matters. First, our discussion so far
assumes the standard interval [�1, 1]. Modifications, albeit trivial ones, of the matrices A, B[1], B2

½2� and vectors
m± are needed for different intervals. For example, if we use the Tn(n(r)) to approximate functions on
r 2 [rmin, rmax], then to represent double integration that corresponds to the physical interval we must send
B2
½2� ! 0:25ðrmax � rminÞ2B2

½2�. Similar scalings must be made for A, B[1], and m±. However, we shall retain the
same symbols for matrices which are so scaled. Second, although we may theoretically consider an infinite
expansion (27) for a given function u (perhaps a solution to a differential equation), numerical applications
entail a suitable truncation PN uðnÞ ¼

PN
n¼0~unT nðnÞ, where PN represents the truncation operator. Moreover,

most applications do not work directly with the analytic expansion coefficients (28). Rather, one typically
approximates the integral in (28) via the quadrature rule stemming from Chebyshev–Gauss–Lobatto nodes
(see, for example, [44]). This process introduces aliasing errors, and results in discrete expansion coefficients
~udiscrete

n . A more theoretical treatment would, when appropriate, draw a careful distinction between the analytic
and discrete expansion coefficients, but this issue is not of primary importance to us.



1138 S.R. Lau, R.H. Price / Journal of Computational Physics 227 (2007) 1126–1161
3.2. Sparse formulation on rectangular domains

In terms of co-moving Cartesian coordinates,
x ¼ r cos u ¼ r cosð/� XtÞ; y ¼ r sin u ¼ r sinð/� XtÞ; ð43Þ
let the scalar field w(x, y) obey the inhomogeneous 2d HRWE
o
2
x þ o

2
y � X2ðxoy � yoxÞ2

h i
w ¼ g ð44Þ
on a rectangle R = [xmin, xmax] · [ymin, ymax]. We have also worked with the shifted equation resulting from the
mapping x! x � c, y! y � d, where (c, d) is the center of the rectangle. For simplicity, we do not consider a
shift here. Via repeated use of the Leibniz rule, we write (44) as
o2
xð1� X2y2Þ þ o2

yð1� X2x2Þ � X2ðoxxþ oyy � 2oxoyxyÞ
h i

w ¼ g; ð45Þ
in preparation for our sparse-matrix spectral approximation.
At the theoretical level, we may represent our solution in terms of a double Chebyshev expansion,
wðx; yÞ ¼
X1
n¼0

X1
m¼0

~wnmT nðnðxÞÞT mðgðyÞÞ; ð46Þ
where (n(x), g(y)) is a mapping of our rectangle R onto the unit rectangle [�1, 1] · [�1, 1]. To obtain the sys-
tem of equations we solve numerically, we consider the truncated series
PN ;Mwðx; yÞ ¼
XN

n¼0

XM

m¼0

~wnmT nðnðxÞÞT mðgðyÞÞ: ð47Þ
We represent the finite collection of expansion coefficients as a 1-vector
~w ¼ ð~w00; ~w01; . . . ; ~w0M ; ~w10; ~w11; . . . ; ~w1M ; . . . ; ~wN0; ~wN1; . . . ~wNMÞt; ð48Þ
so that the components ~wðkÞ ¼ ð~wÞk are determined by the direct product representation
~wðnðM þ 1Þ þ mÞ ¼ ~wnm: ð49Þ
We then consider the approximation of (45) in terms of ~w and suitable truncations of spectral differentiation
matrices,
½D2
x � ðIy � X2A2

yÞ þ ðIx � X2A2
xÞ � D2

y � X2ðDxAx � Iy þ Ix � DyAy � 2DxAx � DyAyÞ�~w ¼ ~g: ð50Þ
Here Dx represents the (N + 1)-by-(N + 1) differentiation matrix in the Chebyshev basis Tn(n(x)), and Ax

represents the (N + 1)-by-(N + 1) matrix corresponding to multiplication by x, with similar statements for
Dy and Ay which are both (M + 1)-by-(M + 1). As mentioned at the end of the last subsection, to obtain
these matrices appropriate scaling factors must be included with the straightforward truncations of the
infinite-size matrices listed above. By the definition of the Kronecker direct product, we have, for example,
that
ðD2
x � A2

yÞðnðM þ 1Þ þ m; kðM þ 1Þ þ pÞ ¼ ðD2
xÞðn; kÞðA2

yÞðm; pÞ; ð51Þ
in the MATLAB notation C(i, k) for entries of a matrix Cik.
To achieve a sparse and banded representation of the approximation, we multiply (50) by B ¼ B2

x½2� � B2
y½2�

and exploit the identities (38), thereby reaching
½Ix½2� � B2
y½2�ðIy � X2A2

yÞ þ B2
x½2�ðIx � X2A2

xÞ � Iy½2� � X2ðBx½2�Ax � B2
y½2� þ B2

x½2� � By½2�Ay � 2Bx½2�Ax � By½2�AyÞ�~w
¼ B2

x½2� � B2
y½2�~g: ð52Þ
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The coefficient matrix of the system is then
0 0 0 0 0 0 � � � 0

0 0 0 0 0 0 � � � 0
I ½2�
4

0 � I ½2�
6

0
I ½2�
24

0 � � � 0

0
I ½2�
24

0 � I ½2�
16

0
I ½2�
48

� � � 0

0 0
I ½2�
48

0 � I ½2�
30

0 � � � 0

0 0 0
I ½2�
80

0 � I ½2�
48

� � � 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0
I ½2�

4NðN�1Þ 0 � I ½2�
2ðN2�1Þ

266666666666666664

377777777777777775
þ

0 0 0 0 0 0 � � � 0

0 0 0 0 0 0 � � � 0

0 0 B2
½2� 0 0 0 � � � 0

0 0 0 B2
½2� 0 0 � � � 0

0 0 0 0 B2
½2� 0 � � � 0

0 0 0 0 0 B2
½2� � � � 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0 0 � � � B2
½2�

266666666666666664

377777777777777775
�X2½� � ��;
where we have only explicitly displayed the X-independent contribution to the matrix stemming from the pre-
conditioned Laplacian. This Laplacian contribution exhibits the main features of the overall matrix. Namely,
that it is banded, sparse, and contains free rows of zeros. Each entry in either of the matrices above is itself an

(M + 1)-by-(M + 1) matrix. Indeed, the I[2] and B2
½2� matrices are Iy[2] and B2

y½2� in the notation of Eq. (52), and

in the y dimension the truncation is m = 0, . . ., M. Overall, the coefficient matrix has (N + 1)2 such blocks. The
first two block-rows in the matrices displayed above are empty, giving 2(M + 1) free rows of zeros. In each of
the remaining N � 1 block-rows the first two rows are empty, giving us another 2(N � 1) zero rows. Therefore,
we have a total of 2(N + M) such zero rows at our disposal.

In the free zero rows we insert the ‘‘s-conditions’’ [40], that is, the boundary conditions. To illustrate, we
here assume Dirichlet conditions w(xmin, y) = f�(y), w(xmax, y) = f+(y), w(x, ymin) = h�(x), w(x, ymax) = h+(x).
These boundary conditions can be approximated as
XM

m¼0

~wnmd	m ¼ ~h	n ;
XN

n¼0

~wnmd	n ¼ ~f 	m ; ð53Þ
where one-dimensional Chebyshev projections appear on the right hand sides. There are 2(N + 1) + 2(M + 1)
boundary conditions in (53), but we now show that they are not all linearly independent due to double count-
ing of corner conditions. The value of w(xmax, ymax) = h+(xmax) = f+(ymax) can be written as a linear combi-

nation either of the ~hþn or of the ~f þm . This implies a homogeneous linear relationship between the
summations in the first and the second set of equations in (53). There are three other such linear relationships
that follow from the ways in which w(xmax, ymin), w(xmin, ymax), and w(xmin, ymin) can each be expressed either

in terms of sums of ~h	n or of ~f 	m . Therefore, the number of independent equations in (53) is
2(N + 1) + 2(M + 1) � 4 = 2(N + M), precisely equal to the number of zero rows.

All methods for eliminating the four linear dependencies in (53) should yield comparable accuracy for a
numerical solution. However, dropping the four highest-mode equations (n = N for ± in the left equation,
and m = M for ± in the right equation) is inconsistent, as confirmed by numerical experiments. Indeed, by
throwing out the highest mode on all four edges, one loses information about the corner values. We have cho-
sen to reduce (53) in a consistent way which is at the same time convenient for our direct product represen-
tation of the rectangular region. We use all 2N + 2 of the first set of equations in (53), i.e. those equations

involving the ~h	n . The Dirichlet vectors d	m associated with these conditions are placed within the first two rows
of each block in the coefficient matrix (which does not increase the bandwidth of the coefficient matrix beyond
the block-diagonal). We must then dispense with four equations from the second set, two for � (left) and two
for + (right), and so drop those equations for which m = M � 1 and m = M. This corresponds to dropping the
two highest modes for both left and right Dirichlet conditions, although we have experimented with dropping

other modes and, as expected, found little difference. From knowledge of all the ~h	n (information determining

all four physical corner values) and the ~f 	m for m = 0, . . ., M � 2 we may recover the four values for ~f 	M�1 and
~f 	M , using the four equations for the corner values expressed as linear combinations of the ~f 	m . The Dirichlet
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vectors d	n associated with the remaining left/right boundary conditions are then placed in the remaining
2M � 2 rows of the first two blocks (they reach across block columns and so affect the bandwidth of the coef-

ficient matrix quite a bit). Values appearing on the righthand side of the above boundary conditions, all ~h	n and
~f 	m except for ~f 	M�1 and ~f 	M , replace the appropriate zero entries of the source B2

x½2� � B2
y½2�~g.

Although, our preconditioning of the rectangular operator has resulted in a sparse matrix (while the origi-
nal matrix corresponding to the Ds is dense), the issue of condition number is more subtle. Clearly, the Bs and
Ds are in some sense inverses of each other. Notice that as an infinite dimensional matrix B[1] has the action:

QN�1
0 ! QN

1 , with Qp
k denoting the vector subspace of spectral coefficients corresponding to Chebyshev expan-

sion from degree k through degree p polynomials. Suppose we consider the (N + 1)-by-(N + 1) truncation of
B[1], and further that we delete the first row and last column of this square matrix, thereby obtaining an N-by-

N matrix B. Likewise, we take the (N + 1)-by-(N + 1) truncation of D, and delete its first column and last row

to obtain D. Then we may view D : QN
1 ! QN�1

0 . Taken as square matrices with the same domain and range, B
and D are nonsingular and inverses of each other, whence have the same condition number.3 Such an argu-

ment can produce nonsingular matrices B2 and D2, also inverses of each other with the same condition num-
ber. Therefore, although we are ignoring the critical issue of boundary conditions, passing from a coefficient
matrix with symbolic form I � D2 + D2 � I (corresponding to the Laplacian part of the operator) to one with
the form B2 � I + I � B2 is not clearly advantageous insofar as the conditioning of the resulting linear system
is concerned. Nevertheless, one might expect that a better distribution of eigenvalues for the form
B2 � I + I � B2 would lead to faster convergence were we using an iterative solver such as GMRES [46].

3.3. Sparse formulation on annular domains

In our 2d HRWE Lw = g, we now take x = a + q cos h and y = b + q sin h, where the ‘‘hole’’ is located at
(a, b), which is either the center of annulus H or the center of A. In terms of
3 Re
F ðhÞ ¼ a sin h� b cos h; GðhÞ ¼ a cos hþ b sin h; ð54Þ

the HRWE operator is
L ¼ o
2
q þ q�1oq þ q�2o

2
h � X2½F ðhÞoq þ ð1þ q�1GðhÞÞoh�2: ð55Þ
To prepare for the integration preconditioning, we use F 0(h) = G(h) and G 0(h) = �F(h) along with repeated
appeals to the Leibniz rule in order to obtain
q2Lw ¼ q2g ð56Þ

with
q2L ¼ o2
qq

2ð1� X2F 2Þ þ oqq½�3þ X2ð2F 2 þ G2 þ qGÞ� þ o2
h½1� X2ðqþ GÞ2� þ X2ohqF

� 2X2ohoqqF ðqþ GÞ þ 1� X2ðG2 þ qGÞ: ð57Þ
We now represent the solution on the annular subdomain in terms of a truncated Fourier–Chebyshev
expansion,
PM ;Nwðq; hÞ ¼
XN

n¼0

~w0nT nðnðqÞÞ þ
X12M

k¼1

XN

n¼0

½~w2k�1;n cosðkhÞ þ ~w2k;n sinðkhÞ�T nðnðqÞÞ; ð58Þ
where for simplicity we have here chosen M even. For the direct product representation,
~wððN þ 1Þmþ nÞ ¼ ~wmn; ð59Þ

which means each Fourier mode corresponds to its own (N + 1)-by-(N + 1) Chebyshev block. We therefore
have the following matrix representation L of q2L:
call that the condition number of a matrix A is j(A) = iA�1iiAi.
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L ¼ ðIh � X2F2Þ � D2
qA2

q þ �3Ih þ 2X2F2 þ X2G2 � 2X2DhFG
� 	

� DqAq þ X2ðG� 2DhFÞ � DqA2
q

� X2D2
h � A2

q þ X2 DhF� ðIh þ 2D2
hÞG


 �
� Aq þ Ih þ D2

h

� 	
Ih � X2G2
� 	

� Iq; ð60Þ
where san serif F and G denote matrices in the Fourier sin/cos basis corresponding to multiplication by F and
G. The entries of these matrices are determined by standard trigonometric addition-of-angle formulas, such as
2 sin a cos b = sin(a + b) + sin(a � b). For the scenario of the 3d HRWE, such a spectral approximation for a
spherical shell around an inner hole would be rather more problematic (even if the analogous matrix is not
explicitly formed). Indeed, for that scenario we would need to contend with Wigner–Clebsch–Gordon coeffi-
cients arising from products of spherical harmonics Y‘m.

Since the spectral differentiation matrices Dq and D2
q are dense upper triangular, passage to a sparse-matrix

formulation of the problem for an annulus necessarily requires that we apply the integration matrix B2
q½2�. By

contrast, since the matrices Dh and D2
h are already banded or diagonal, we will achieve a sparse formulation

whether or not we precondition with h integration. In fact we have employed h preconditioning, since it might
well yield a better distribution of eigenvalues and better equilibration properties. Nevertheless, for simplicity
will here ignore IPC in h, which, in any case, is logically different from IPC in q in that no boundary condition
is associated with the periodic direction. The preconditioning integration matrix is then B ¼ Ih � B2

q½2�, and its
application onto (60) yields
BL ¼ ðIh � X2F2Þ � Iq½2�A
2
q þ ð�3Ih þ 2X2F2 þ X2G2 � 2X2DhFGÞ � Bq½2�Aq þ X2ðG� 2DhFÞ � Bq½2�A

2
q

� X2D2
h � B2

q½2�A
2
q þ X2½DhF� Ih þ 2D2

h

� 	
G� � B2

q½2�Aq þ ðIh þ D2
hÞ Ih � X2G2
� 	

� B2
q½2�: ð61Þ
The right hand side of q2Lw = q2g is now represented by B � ðIh � A2
qÞ~g ¼ ðIh � B2

q½2�A
2
qÞ~g. For the outer annu-

lus we have (a, b) = (0, 0), and so q = r and h = u. Also for this case F(h) = 0 = G(h), and L in (60) reduces to
L ¼ Iu � D2
r A2

r � 3Iu � DrAr þ D2
u � ðIr � X2A2

r Þ þ Iu � Ir: ð62Þ
We therefore find
BL ¼ Iu � Ir½2�A
2
r � 3Iu � Br½2�Ar þ D2

u � B2
r½2�ðIr � X2A2

r Þ þ Iu � B2
r½2� ð63Þ
as the preconditioned matrix for the outer annulus.
Turning to the issue of boundary conditions, we first note that for BL the first two rows of each block have

all zero entries. Into these rows we therefore place the s-conditions,
XN

n¼0

~wmnd
	
n ¼ ĥ	m ð64Þ
(and similarly for Neumann conditions). Here ĥ	m is the Fourier transform of the boundary conditions
h±(h), for example with h�(h) = w(qmin, h). Notice that the correct number of zero entries in the precondi-
tioned source correspond to the inhomogeneity ĥ	m . For the radiation ‘‘p, q boundary conditions’’ (19) we
are only concerned with the outer annulus and the simpler operator (63). In this case, the overall
(N + 1)(M + 1)-by-(N + 1)(M + 1) matrix BL is block diagonal, with (M + 1) blocks. Each block has the
structure
ð65Þ
for some Fourier wave number k. Here the 0 represents a row of zeros, and BLk is a nonzero (N � 1)-by-
(N + 1) submatrix. As the radiation boundary conditions couple sine and cosine modes of the same wave
number, we must consider the two consecutive blocks (one cosine and the other sine) associated with Fou-
rier wave number k 6¼ 0. As depicted in the last equation, each of the two blocks has all zero entries in its
first two rows. The p, q boundary conditions are enforced by choosing the overall block neighborhood as
follows,
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ð66Þ
where 0 represents either a row or a (N � 1)-by-(N + 1) submatrix of zeros. Boundary conditions for k = 0
(the zero mode) are easier to enforce (only a single block need be considered) and are handled similarly.

3.4. Gluing of subdomains

So far we have described individual rectangular and annular subdomains (and their associated s-condi-
tions) as if these subdomains were decoupled. In fact, we ‘‘glue together’’ all or most of the subdomains shown
in Fig. 1. This gluing takes two forms: (i) imposing matching conditions for adjacent rectangles; and (ii)
imposing matching conditions for the overlap between an annulus and a set of rectangles. Before describing

each case in more detail, we comment on how such gluing is reflected in the overall linear system. Let ~wH and
~wA represent the vectors of Fourier–Chebyshev expansion coefficients associated with the spectral representa-

tion of the solution on the annuli H and A. Similarly, let ~wj represent the vector of double-Chebyshev expan-
sion coefficients associated with the spectral representation of the solution on the jth rectangle (with 1 6 j 6 8).

The overall set of unknowns is then the concatenation eW ¼ ð~wH ; ~w1; ~w2; ~w3; ~w4; ~w5; ~w6; ~w7; ~w8; ~wAÞt, which sat-
isfies (for the linear problem) the spectral matrix form of Eq. (1)
M eW ¼ BeG ; ð67Þ

where eG is a similar concatenation of the sources ~g on the individual subdomains and the B indicates integra-
tion preconditioning on all subdomains. Symbolically, the coefficient matrix M is BL, here with L standing for
the spectral representation of the HRWE operator L on the whole two center domain.

Each of the 10 subdomains (annuli A and H, as well as rectangles 1–8) in Fig. 1 are represented by one of 10
super-blocks (H–H, 1–1, 2–2, . . ., 8–8, A–A) which sit along the diagonal of the overall super matrix M rep-
resenting the PDE on the whole two center domain. We use the term ‘‘super-block’’ here since the matrix cor-
responding to each subdomain arises, as we have seen, from a direct product structure (and so could be viewed
as already in a block form). The supplementary equations needed for gluing are placed within existing zero
rows in the same manner as with the s-conditions. However, the gluing conditions stretch beyond the
super-block diagonal, since they are linear relationships between the spectral expansion coefficients on two
(or more) separate subdomains. For example, the gluing together of subdomains 1 and 2 (which share a com-
mon edge) involves not only filling rows within the 1–1 and 2–2 super-blocks along the diagonal of M, but
also filling rows within the 1–2 and 2–1 off-diagonal super-blocks.

3.4.1. Gluing of rectangles to rectangles

For rectangles which meet at an edge we require both continuity in w and its first derivative ow/om (normal
to the matching edge). We impose these requirements strongly, that is to say at the level of the numerical solu-
tion itself. Consider, for example, rectangles 1 and 2 in Fig. 1, which as indicated share the edge y = qmin,
where qmin is the radius of the inner hole (the depicted excised region). We require that values of w(x, qmin)
and ow/oy(x, qmin) agree at the Chebyshev–Gauss–Lobatto collocation points x(ni) whether these values are
computed using the spectral coefficients of rectangle 1 or those of rectangle 2. For simplicity, we assume that
the number N1 of spectral elements for rectangle 1 is the same as that N2 for rectangle 2, so that the matching
equations are simply
XM1

m¼0

~w1
nmdþm ¼

XM2

m¼0

~w2
nmd�m ;

XM1

m¼0

~w1
nma1m

þ
m ¼ �

XM2

m¼0

~w2
nma2m

�
m ð68Þ
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for each value of n. The a factors here are the scalings of the Neumann vectors that are necessary since the
range of y may not be [�1, 1]. (See the discussion following Eq. (42).) These matching conditions are reflected
in the overall matrix M as follows. As the super-block corresponding to each of the subdomains 1 and 2 has
been preconditioned in the described fashion, each has a collection of zero rows in which we place the match-
ing conditions. In, say, the zero rows belonging to the super-block 1–1, we insert the first set of conditions
given in (68). In the zero rows belonging to the super-block 2–2, we similarly place the Neumann conditions,
the second set of conditions given in (68). We note that this filling of zero rows to achieve the required match-
ing does not affect the inhomogeneity, as these are homogeneous conditions (a linear sum of expansion coef-
ficients for one subdomain plus a linear sum of expansion coefficients for another is set equal to zero).

In practice, the gluing procedure is plagued by the same sort of issues that arose in connection with Eq.
(53). Ultimately due to redundant counting at corners, the full set of matching conditions responsible for
the gluing of all subdomains (including annuli) are not linearly independent. Thus we find that the number
of apparent matching (and boundary) conditions is greater than the number of zero rows available in the super
matrix M to hold the such conditions. As we did for a single rectangle, we have chosen to consistently elim-
inate linear dependencies at left–right edges/interfaces, as illustrated in the next paragraph. The number of
zero rows in M always equal to the number of linearly independent matching (and boundary) conditions,
and in principle any two ways of implementing them should be equivalent. While the choice of implementation
does of course affect the structure of the super matrix M, it should not greatly affect the accuracy of our
numerical solutions.

Let us turn to our illustrative example, the matching, along the vertical edge x = xH + qmin, of rectangles 2
and 3 in Fig. 1. In the matrix for rectangle 2 (super-block 2–2 of the overall super matrix M) we have reserved
2M2 � 2 rows in the first two blocks for enforcing boundary (or matching) conditions at the left and right
edges. We will now have M2 � 1 of these available for matching at the left edge of rectangle 2. Likewise, in
the matrix for rectangle 3 (super-block 3–3 of the overall super matrix M) we will have M3 � 1 available rows
for the matching along the right edge of rectangle 3. We take M1 = M2 = M, so that we have a total of 2M � 2
rows in the overall super matrix M available to explicitly enforce the matching of rectangles 2 and 3. The full
set of equations for gluing along this edge are analogous to (68), but with Ns and Ms interchanged,
XN2

n¼0

~w2
nmd�n ¼

XN3

n¼0

~w3
nmdþn ;

XN2

n¼0

~w2
nma2m

�
n ¼ �

XN3

n¼0

~w3
nma3m

þ
n : ð69Þ
We follow a protocol similar to the convenient one outlined for fixing Dirichlet boundary conditions for a
single isolated rectangle. Whereas we have chosen to devote a zero row in M to each of the 2N + 2 matching
conditions (68) for a top-bottom gluing, for a left-right gluing we devote only M � 1 zero rows for each set in
(69), that is 2M � 2 rows in all. This means dropping the last two (highest mode) equations from each set.
Since we work with the transform of the matching conditions, dropping the highest two modes does not mean
we are not enforcing matching at a particular point along the interface. Moreover, although we have chosen
not to reflect all of the explicit matching conditions (69) in M, extra matching of rectangles 2 and 3 is afforded
by other matching conditions in the overall linear system. For example, along both the top edge of rectangle 2
and top edge of rectangle 3, we enforce a full set of boundary (or matching) conditions with Dirichlet data
coming from annulus A. Since that data will be smooth along the full length of the combined top edge for
both rectangles 2 and 3, these top-edge boundary conditions effectively yield extra matching for the 2–3
vertical gluing, in particular enforcing both continuity and differentiability at the physical corner point com-
mon to each rectangle.

Another complication in gluing is the implementation of symmetry. Notice that the left edge of rectangle 4,
for example, must be flipped and then glued to the left edge of rectangle 7. Similar flipped gluing must also be
considered for subdomains 5 and 6. We enforce such flipped gluing of edges by demanding continuity in w only
(since region 7 is already matched to region 6), and filling the available zeros rows of the 4–4 super-block of M
accordingly (as in this case the 6–6 and 7–7 super-blocks would no longer have appropriate free rows available).

Let us provide a brief sketch of rectangle gluing without the ‘‘conforming assumption.’’ Were we gluing,
say, rectangle 1 to rectangle 2 (a top-bottom glue) with N1 6¼ N2, we would deal with more complicated equa-
tions than (68). The second equation in (68), for example, could be written as
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XM1

m¼0

~w1
nma1m

þ
m ¼ ~hþn ; ð70Þ
where ~hþn is simply the explicit sum on the righthand side when N1 = N2. However, were N1 6¼ N2, it would
then arise as the x-Chebyshev transform of the vector
hþn ¼
XN2;M2

p;q¼0

~w2
pqT pðn2ðxnÞÞ

d

dy
T qðg2ðyÞÞ

� �����
y¼qmin

: ð71Þ
Here the xn are the N1 + 1 (scaled) Chebyshev–Gauss–Lobatto points for rectangle 1, and (n2(x), g2(y)) are the
linear functions mapping rectangle 2 to the square [�1, 1] · [�1, 1]. As there would be N1 + 1 of the equations
(70), they would be placed in zero rows corresponding to the 1–1 super-block of M, and would stretch across
the 1–1 and 1–2 super-blocks. Equations for continuity similar to the first set of equations in (68), but using
the x-Chebyshev transform for rectangle 2, would determine entries in M stretching across the 2–1 and 2–2
super-blocks. The roles of 1 and 2 could be interchanged. The situation is nearly the same for a left-right glu-
ing, modulo the issue of dropping the two highest modes.

The rows in the overall super-matrix M responsible for all of the rectangle-to-rectangle gluing result in M
having a large condition number jðMÞ. Indeed, for the truncations we later consider in our numerical exper-
iments, the matrix for the elliptic region (which includes the H–H super-block as well) has a reciprocal
condition number RCOND (a diagnostic determined by dgesvx) in the 10�6–10�10 range. As we will see
in Section 4.2, such a large condition number leads to an accuracy problem for higher truncations. In an
attempt to mitigate this problem, we have experimented with other strategies for rectangle gluing, for exam-
ple, imposing point-space rather spectral versions of the matching and boundary conditions. Another possi-
bility, suggested by a referee, and for which we had earlier carried out some numerical experiments, is to
allow for overlap between adjacent rectangles. In this case the gluing procedure is similar to the described
rectangle-annulus gluing, with the key advantage that all Neumann vectors can be done away with (this
could lead to improved conditioning). The disadvantage is that significant overlap is typically required for
good conditioning, and, therefore, more of the physical space is doubly covered. Beyond an increase in
resources, such double cover also further complicates the gluing of the overall concatenation of rectangles
to the annuli. Nevertheless, this idea deserves further study. To sum up, we have not exhaustively tried every
approach, and our current one is quite possibly not optimal, although we believe it will be hard to do
significantly better. Nevertheless, by switching from dgesv to dgesvx, we are able to achieve the requisite
accuracy for our experiments. The routine dgesvx includes equilibration (which changes RCOND to the
10�4–10�6 range) and iterative refinement [49]. Moreover, with our approach we have carried out the exper-
iment (‘‘L = 5 with linear mappings’’) documented in Section 4.1 of [16], the Laplace equation for the exact
solution ln(x2 + y2) on a 10 · 10 square with an excised 1 · 1 inner square ‘‘hole.’’ With dgesv we attain a
best error measure which is about three orders of magnitude larger than the corresponding one reported in
Fig. 3 of that reference. However, with dgesvx we find nearly identical results, and even a slightly better
best error measure.
3.4.2. Gluing of annuli to rectangles

The annuli H and A depicted in Fig. 1 overlap multiple rectangles, and for this overlap the issue of gluing is
complicated. Since the issue is essentially the same for the gluing of H to rectangles 1–8 or A to rectangles 1–4
and 6–8, let us here focus on the first case. For example, part of the outer edge of annulus H sits in rectangle 1;
we require that the values of w along this outer edge of H agree whether they are computed with the spectral
representation of w on H or with the spectral representation of w on rectangle 1. Similarly, the values of w at
the left edge of rectangle 1 must be the same whether computed using the rectangle 1 or H spectral represen-
tation. That is to say, along these boundaries we demand agreement in the numerical solution whether deter-
mined by the expansion coefficients ~wH of the annulus or the coefficients ~w1 for rectangle 1. An essential
difference should be noted between this kind of gluing, and the gluing of two rectangles at an edge: Here
we use Dirichlet matching along two curves rather than Dirichlet plus Neumann matching along a single
shared boundary curve.
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For the outer circular boundary q = qmax of the annulus H, we enforce matching at each of a set of Fourier
collocation points {hm : m = 1, 2, . . ., MH} through the following set of equations:
XNH

n¼0

~wH
nmdþn ¼ ĥþm ; ð72Þ
where now the ĥþm are not fixed Dirichlet values. They now arise via Fourier transform of
hþm ¼
XNj;Mj

p;q¼0

~wj
pqT pðnjðxmÞÞT qðgjðymÞÞ: ð73Þ
Here the jth rectangle contains the point (xm, ym) corresponding to the collocation point (qmax, hm). These
equations are placed within the zero rows of the H–H super-block. The explicit matching equations can be
captured by expressing the Fourier transform ĥþm ¼

PMH
k¼1Fmkhþk as a matrix relation in terms of the ~wj

pq.
The matching along one of the inner edges of a rectangle follows a similar pattern. As a concrete example,

take again the inner edge of rectangle 1, and the condition
XN1

n¼0

~w1
nmd�n ¼ ~f m; ð74Þ
where the ~f m are now not fixed Dirichlet values. Rather, they arise as the y-Chebyshev transform of the vector
fm ¼
XNH

p¼0

~wH
0pT pðnðqmÞÞ þ

X12MH

k¼1

XNH

p¼0

~wH
2k�1;p cosðkhmÞ þ ~wH

2k;p sinðkhmÞ
h i

T pðnðqmÞÞ: ð75Þ
Here the point (qm, hm) corresponds to a Chebyshev–Gauss–Lobatto collocation point (xmin, y(gm)) along the
inner edge, and we have chosen MH as an even integer for simplicity. (Note that the values of hm here, with
0 6 m 6M1 have no direct relationship to the Fourier collocation points hm used in Eqs. (72) and (73).) Again,

via a matrix representation ~f m ¼
P

‘Cm‘f‘ of the transform, we may express this matching condition more di-
rectly. In any case, these conditions are placed within the available zero rows of the 1–1 super-block of M.

3.5. Nonlinear model

We turn to the 2d nonlinear HRWE discussed in [8], that is
Lwþ ghðwÞ ¼ g; hðwÞ ¼ w5

w4 þ w4
0

: ð76Þ
Certain aspects of our treatment of the nonlinear term will likely not generalize to 3d. Indeed, we have retained
a pure spectral method (coefficients as unknowns), whereas most modern approaches [46] towards solving
nonlinear equations via Newton–Krylov spectral methods have centered around the construction of precon-
ditioners within the context of pseudospectral methods (point values as unknowns). Nevertheless, as discussed
in the concluding section, we expect that some aspects of our approach will carry over to 3d insofar as an outer
spherical shell is concerned.

Again, we let eW represent the vector of unknowns, that is the overall concatenation of the spectral coeffi-
cients on all subdomains. Using the inverse spectral transformation available on each subdomain, we may pro-
duce from eW a collection of point-space values W ¼ F�1 eW defined on each subdomain’s spectral grid. Here we
are using F�1 to formally denote the process of inverse transformation on all subdomains. Our problem now is
to solve
W ½ eW� ¼M eW þ gBFhðF�1 eWÞ � BeG ¼ 0; ð77Þ
here with B representing the application of integration preconditioning on all subdomains, eG the concatena-
tion of all source coefficients ~g, and M ¼ BL the coefficient matrix for the linear HRWE on the glued-together
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two center domain. The term FhðF�1 eWÞ ¼ FhðWÞ is the spectral representation of the nonlinearity, where
h(W) is constructed pointwise on each subdomain’s spectral grid.

Solving this nonlinear system of equations requires a Newton–Raphson iteration, and we briefly describe
how this has been implemented. First, we note that by using both (26) and addition of angle formulas, such as
2 sin a cos b = sin(a + b) + sin(a � b), we may convert the spectral coefficients ~u representing a function u on a
particular subdomain into a matrix Cu whose action on the subdomain’s vector space of spectral coefficients
corresponds to multiplication by u in physical space. For example, on a rectangular domain, the resulting
matrix would arise as
XN

n¼0

XM

m¼0

~unmT nðnðxÞÞT mðgðyÞÞ ! Cu ¼
XN

n¼0

XM

m¼0

~unmAT n � AT m ; ð78Þ
where AT n ¼ T nðAxÞ is (N + 1)-by-(N + 1), AT m ¼ T mðAyÞ is (M + 1)-by-(M + 1), and each matrix has been
appropriately scaled (as discussed at the end of Section 3.1). For both annuli and rectangles we have written
subroutines for fast computation of such matrices from input coefficients. Then, given a concatenationeU ¼ ð~uH ; ~u1; ~u2; ~u3; ~u4; ~u5; ~u6; ~u7; ~u8; ~uAÞt of the spectral coefficients on all subdomains, we may also form a
(super-block diagonal) matrix Cu whose action on the vector space of spectral coefficients for the entire two
center domain corresponds to multiplication by u in physical space over the entire two center domain.

Let eWold represent the current Newton iterate. Then computing the next iterate eWnew ¼ eWold � d eW requires
that we solve the linear equation
Mþ gBCh0ðWoldÞ

n o
d eW ¼ W ½ eWold�; ð79Þ
where the derivative function is
h0ðwÞ ¼ 5w4w4
0 þ w8

½w4 þ w4
0�

2
: ð80Þ
The matrix Ch0 ðWoldÞ is constructed as follows: (i) obtain the point values Wold ¼ F�1 eWold; (ii) construct the set
of point values h

0
(Wold); (iii) construct the concatenation of spectral coefficients eU ¼ Fh0ðWoldÞ; (iv) using the

coefficients eU, form the matrix Ch0ðWoldÞ as outlined above. We have taken advantage of the sparse nature of the
preconditioner B to achieve fast matrix–matrix and matrix–vector multiplies, with the former required for
quick computation of the matrix–matrix product BCh0 ðWoldÞ that is needed for each Newton iterate. Each such
linear solve has been performed directly with dgesv.

We have found that the described implementation of Newton–Raphson iteration works well for the 2d
model, and for a wide range of parameter choices we have not needed to include line searches. Nevertheless,
we recognize that such an implementation is not likely a viable option for 3d. Indeed, for spherical shells the
scalar spherical harmonics Y‘m are required for the angular basis functions. Beyond the memory burden of
forming matrices for the 3d problem, even representation of multiplication by a nonlinear function in the spec-
tral Y‘m basis is not as practical, because it would require extensive use of Wigner–Clebsch–Gordan coeffi-
cients (the simple multiplicative properties embodied in addition-of-angle formulas are no longer at one’s
disposal). However, in a Krylov approach one might use the spherical harmonic transform and inverse trans-
form to the same effect, carrying out all multiplications in point space.
4. Numerical analysis and results

This section considers the conditioning of our numerical problem on the outer annulus A. It also presents
our results in solving the HRWE on various subdomains as well as on the whole two center domain. In the
first subsection we consider only a single Fourier mode in the outer annulus, and we study the condition
number of the matrix that must be inverted. This analysis also pertains to the analogous outer shell problem
associated with solving the 3d HRWE. Indeed, as we have shown in the second section, the ODE and
boundary conditions governing the 2d and 3d mode equations are essentially the same. The second subsec-
tion describes methodology and collects error tables associated with our numerical experiments in solving
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the linear and nonlinear 2d HRWE. A third subsection presents preliminary results in solving the 3d
HRWE.
4.1. Condition numbers

Consider the radial operator which stems from the linear helical operator via a Fourier-series transform;
consider also the radial operator that arises in this way from the Laplace–Poisson operator. With k taken
as the wave number, these radial operators are respectively (see left hand side of Eq. (5))
Lk ¼ r2 d2

dr2
þ r

d

dr
� k2ð1� X2r2Þ; ðHelical operatorÞ ð81Þ
with Dirichlet boundary conditions at the inner radius and exact outgoing radiation boundary conditions at
the outer radius (D–R conditions), and
P k ¼ r2 d2

dr2
þ r

d

dr
� k2 ðPoisson operator; X ¼ 0Þ: ð82Þ
For the Poisson operator we examine both Dirichlet–Dirichlet (D–D) and Dirichlet–Neumann (D–N) bound-
ary conditions. As the Laplacian is translation invariant, the radial Poisson–Laplace operator Pk can be put
into the same Fourier form wherever the annulus lies. The HRWE mixes Fourier modes if the center of the
angular coordinates is offset from the center of rotation, as in the case of the hole subdomain H.

Here, however, we will work with the outer annulus A for which the HRWE itself does not mix modes,
although, as we have seen, the radiation boundary condition does mix cos and sin modes of the same wave
number. Therefore, we essentially have an ODE setting in which the conditioning properties of IPC are doc-
umented [40]. We point out that Ref. [40] also refers to the conditioning of a ‘‘helical operator.’’ However, the
helical operator of Ref. [40] arises in the context of the Navier–Stokes equations and is of course different from
the one we consider.

Before numerically probing the issue of conditioning for the operators above, let us present a heuristic argu-
ment as to why IPC achieves improved conditioning in certain ODE settings, including as special cases those
of immediate interest to us. Suppose we have the equation
d2

dr2
nþ d

dr
s1ðrÞnþ s0ðrÞn ¼ g; ð83Þ
where the s1(r) and s0(r) are polynomials and the equation must be supplemented with appropriate boundary
conditions. Here, one should think of n(r) as a mode, either ŵkðrÞ or ŵ‘mðrÞ. Performing the IPC technique on
the ODE (83), we pass from a spectral approximation of the equation based on differentiation matrices,
½D2 þ DS1ðAÞ þ S0ðAÞ�n ¼ g; ð84Þ

to the following matrix representation:
½I ½2� þ B½2�S1ðAÞ þ B2
½2�S0ðAÞ�n ¼ B2

½2�g; ð85Þ
with two available rows of zero in which to put s-conditions specifying the boundary conditions to be applied.
In either representation, S1(A) and S0(A) are the matrices which correspond to multiplication by s1(r) and s0(r)
in the Chebyshev basis. In the passage from (84) to (85), the structure of the coefficient matrix is markedly
improved. Indeed, in (84) the coefficient matrix features poorly conditioned dense matrices, save for S0(A)
which is sparse and banded. Moreover, the derivative operators are unbounded as N grows. However, in
(85) the coefficient matrix is a perturbation of the identity featuring banded matrices, and the integration
matrices remain bounded as N grows.

Let Lk represent the matrix – built from Chebyshev differentiation matrices – which represents Lk, BLk the
corresponding preconditioned matrix, and likewise for Pk and BPk. Boundary conditions must be inserted
into these matrices appropriately, and we will return to this point shortly. Our goal is to compute and compare
condition numbers for the various operators and boundary conditions above. Given a matrix A, we shall work
with the standard condition number j(A) = iAi2iA�1i2 belonging to the matrix 2-norm.
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Recall that for the radiation p, q boundary conditions we must consider consecutive blocks, since sin and
cos modes of the same wave number are coupled. Suppose we consider the submatrix associated with the two
consecutive blocks associated with Fourier wave number k. The unpreconditioned matrix for the helical oper-
ator with D–R boundary conditions is then
ð86Þ
with the understanding that the boundary conditions have been written over the last two rows of Lk in each
block. However, as we have seen in (66), the preconditioned operator is
ð87Þ
now with the understanding that the boundary conditions have been written over the first two rows of each
block.

As an example of the various other matrices stemming from the Poisson operator, consider the precondi-
tioned matrix with Dirichlet–Neumann boundary conditions,
ð88Þ
Here we consider this decoupled direct sum of blocks only to make direct comparison with the matrices
above. The condition number of the last matrix is of course the same as the condition number of either of
its blocks.

For our first investigation of condition numbers we take the Poisson operator associated with D–D bound-
ary conditions. We assume k = 3, a domain [1, 3], and consider truncations N = 8, 16, . . ., 256, where each
decoupled block is (N + 1)-by-(N + 1). We have computed the conditions numbers for these truncations in
MATLAB, and recorded our results in Table 2. Owing to the boundary conditions which are inserted into
the zeroed rows of the preconditioned operator, we expect growth in the 2-norm condition number for our
spectral matrix representation of the preconditioned operator as the truncation size N increases. The issue
is significant for boundary conditions involving a Neumann row vector, such as m+, whose entries grow like
j2 with column location j. For k = 2 and X = 0.1, Table 3 lists preconditioned (top) and unpreconditioned
(bottom) condition numbers for the short domain [5,15]. Table 4 lists the same numbers for the larger and
more realistic domain [5, 150]. For the helical operator the short-domain table shows that our preconditioning
is only advantageous initially. As the truncation size N increases, the s-conditions appear to have a dominant
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effect. (Since they mix the two blocks, for the helical operator such conditions would seem especially influen-
tial.) We loosely observe that the IPC technique only directly concerns the conditioning of that part of the
coefficient matrix which stems from the operator itself, and not the boundary conditions per se. Over the whole
range of truncations the large-domain table indicates that the condition number of the coefficient matrix is
chiefly determined by the operator rather than the s-conditions. For this large domain we do discern the
advantage of preconditioning the helical operator, although not as pronounced as for the Poisson operator.
As a way of obtaining a more drastic improvement in conditioning of the helical operator, one might explore
either suitable equilibration tailored to the hr norms discussed in [40] or enforcement of the radiation bound-
ary conditions via a penalty method [44].

In Figs. 3 and 4 we plot the singular values corresponding to the Helical (D–R) columns in Tables 3 and 4,
respectively. In Fig. 4, say, the top plot depicts the singular value distributions corresponding to the precon-
ditioned matrices, for which condition numbers have been listed in the top leftmost column of Table 4. The
bottom plot shows the same data for unpreconditioned matrices, for which condition numbers have been
listed in the bottom leftmost column of Table 4. In either plot, each curve corresponds to one entry of a col-
umn, where one should note that the number of plotted singular values is twice the listed truncation (each
matrix consists of two modes with one block for each). Therefore, the longest curves corresponds to the
512 truncation, and so forth. Notice that the singular value distributions for preconditioned matrices are more
clustered.
4.2. Numerical results for the linear and nonlinear 2d HRWE

Throughout this section we examine the 2d model, and, unless explicitly stated otherwise, all matrix inver-
sions have been carried out with dgesv. Those inversions carried out with dgesvx will be clearly indicated.
Table 2
2-Norm condition numbers

Truncation Preconditioned Unpreconditioned

8 12.5839 (12.6) 3.7740e+03(3.774e+03)
16 20.6559 (20.6) 5.5327e+04(5.533e+04)
32 31.8782 (31.9) 8.4273e+05(8.427e+05)
64 51.1595 (51.2) 1.3140e+07(1.314e+07)
128 86.9027 (90.0) 2.0748e+08(2.075e+08)
256 156.0339 (156.) 3.2976e+09(3.298e+09)

D–D Poisson operator on [1, 3] with k = 3. The numbers in parenthesis are those listed in Tables 1 and 4 of [40] for the same problem.
That reference’s h0 condition number is the 2-norm condition number.

Table 3
2-Norm condition numbers

Truncation Poisson (D–D) Poisson (D–N) Helical (D–R)

32 157.2452 8.0745e+03 9.3845e+04
64 157.9248 2.0750e+05 2.7642e+06
128 159.5918 6.3311e+06 8.4756e+07
256 164.6046 1.9820e+08 2.6537e+09
512 180.0820 6.2727e+09 8.3984e+10

32 8.8450e+05 6.3270e+06 8.6394e+05
64 1.3791e+07 9.8651e+07 1.3471e+07
128 2.1776e+08 1.5577e+09 2.1270e+08
256 3.4610e+09 2.4757e+10 3.3805e+09
512 5.5191e+10 3.9479e+11 5.3907e+10

Preconditioned (top) and unpreconditioned (bottom) operators on [5, 15] for k = 2 and X = 0.1.



Table 4
2-Norm condition numbers

Truncation Poisson (D–D) Poisson (D–N) Helical (D–R)

32 1.4634e+04 1.0922e+06 1.9905e+05
64 1.4640e+04 1.0924e+06 2.0635e+05
128 1.4650e+04 1.0949e+06 3.2270e+05
256 1.4673e+04 1.1884e+06 3.0785e+06
512 1.4731e+04 4.2550e+06 9.0043e+07

32 3.9154e+05 2.9145e+07 3.4677e+05
64 6.1040e+06 4.5437e+08 5.4046e+06
128 9.6378e+07 7.1742e+09 8.5335e+07
256 1.5318e+09 1.1402e+11 1.3562e+09
512 2.4426e+10 1.8182e+12 2.1627e+10

Preconditioned (top) and unpreconditioned (bottom) operators on [5, 150] for k = 2 and X = 0.1.
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Consider the linear equation
Lw ¼ Q
dðr � xH Þ

xH
½dðu� pÞ � dðuÞ�: ð89Þ
where L is the HRWE operator and the inhomogeneity is comprised of two equal but opposite strength d-
functions, one located at (x, y) = (xH, 0) and the other at (x, y) = (�xH, 0). Assuming that exact outgoing
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Fig. 4. Singular values for last columns of Table 4. For operators on [5, 150] with k = 2, X = 0.1.
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Fig. 3. Singular values for last columns of Table 3. For operators on [5, 15] with k = 2, X = 0.1.
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radiation conditions are placed at r = R = rmax, we may express the exact solution to (89) as the following infi-
nite series [8]:
wðr;uÞ ¼ �
X

m

QJ mðmXr<Þ½N mðmXr>Þ cosðmuÞ þ J mðmXr>Þ sinðmuÞ�; ð90Þ
where the sum is over m = 1, 3, 5, . . . and r> is the larger of xH and r and similarly for r<. In what follows we
always take xH = 2, X = 0.1, and Q = 1. Although we shall not carefully study the pointwise convergence of
the series (90), we note that it is poorly convergent whenever r is close to xH. In using (90) to generate approx-
imations to field values w for the experiments below, we have at times used 30 digit precision in MAPLE and
included thousands of terms in order to sum the series with double precision accuracy.

In order to make a direct comparison between the series (90) and numerical solutions, we now consider the
following three linear and homogeneous problems.

(i) Elliptic problem on inner annulus. Let q represent the radial coordinate as measured from the source point
(xH, 0), so that the inner annulus corresponds to qmin 6 q 6 qmax. We consider the homogeneous prob-
lem Lw = 0, using the series (90) to place Dirichlet boundary conditions at q = qmin and q = qmax.

(ii) Mixed problem on outer annulus. We consider Lw = 0 on the outer annulus corresponding to rmin = e 6
r 6 R = rmax, using the series (90) to place a Dirichlet boundary at r = e and adopting exact outgoing
conditions at r = R. In this setting, we assume e > xH (where e need not be small). Again, the light circle
lies between e and R.

(iii) Mixed problem on two center domain. In this setting we consider the linear problem Lw = 0 on the two
center domain depicted in Fig. 1. We use the series (90) to place Dirichlet boundary conditions at
q = qmin (for both inner ‘‘holes’’) and adopt exact outgoing conditions at r = R.

In each case, we will generate a numerical solution, and then compare it with the series via various choices of
error measure. Our numerical experiments for cases (i) and (ii) are meant to facilitate better parameter choices
for scenario (iii) experiments.

4.2.1. Linear elliptic problem on inner annulus

For the numerical experiment in (i) above, we use the series to generate Dirichlet data at qmin = 1 and
qmax = 2. With a double Chebyshev–Fourier expansion and the described integration preconditioning, we
numerically solve Lw = 0 on this inner annulus. From the spectral solution we then generate numerical values
for w(qmid, h), where qmid = 1.5 and h is sampled on a fine grid. This qmid profile is then compared with the
analogous profile given by the exact series (90). All profiles are depicted in Fig. 5, and Table 5 lists the asso-
ciated errors for the qmid profile, where NH denotes the number of radial Chebyshev elements, and MH the
number of angular Fourier elements.

In this table, as in all remaining tables of the paper, the meaning of each of the error measures is as follows.
The absolute sup error is simply the magnitude of the largest error found in the computed solution. For our
spectral solutions this means that the solutions must be computed and compared on an evaluation grid. For
Table 5 the grid was taken to be 1024 evenly spaced points of h, at qmid. The relative sup error is the absolute
sup error divided by the maximum value found on the evaluation grid. The absolute rms error is found by
taking the sum of the squares of all absolute errors on the evaluation grid, then dividing that sum by the num-
ber of terms that have been added, and finally by taking the square root. The relative rms error is the absolute
rms error divided by the rms value of the solution on the evaluation grid. To evaluate the exact series on the
evaluation grid, we have first evaluated it to high accuracy with MAPLE on a (uniformly spaced) Fourier grid of
128 points, subsequently using the corresponding Fourier interpolation onto the finer grid. Direct evaluation
of the series on the 1024 point grid proved impractical.

4.2.2. Linear mixed problem on outer annulus

For this problem, in the region A of Fig. 1, we choose e = 4.5 and either R = 50 or R = 150. Since X = 0.1,
the light circle always lies within the corresponding annulus. Using (90) to generate Dirichlet data on the circle
r = e is not problematic, since 4.5 > 2 and so the series converges reasonably well. We have used the FORTRAN
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Fig. 5. Constant-q sections of w(q, h). The figure depicts the solution (90) expressed in terms of the local polar coordinates (q, h) about the
hole. The top curve corresponds to qmin = 1, the middle to qmid = 1.5, and the bottom to qmax = 2.

Table 5
Errors for the inner annulus problem

NH, MH Absolute sup error Relative sup error Absolute rms error Relative rms error

8, 16 1.091e�05 4.782e�05 5.159e�06 2.964e�05
12, 32 2.551e�09 1.118e�08 1.226e�09 7.040e�09
16, 48 7.646e�13 3.352e�12 3.697e�13 2.124e�12
20, 64 3.192e�16 1.399e�15 1.352e�16 7.766e�16
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routines RJBESL and RYBESL from netlib to build up the series (and also MATLAB’s Bessel routines for
error analysis). In Table 6 we list error measures in the outer annulus for various choices of NA (number
of radial Chebyshev elements) and MA (number of Fourier elements). In each case, for a fixed choice of
MA we have experimented to (roughly) find the smallest value NA which achieves the best possible errors.
Fig. 6 depicts the numerical solution w(r, u) and the error Dw(r, u), the difference between the numerical
and series solutions, corresponding to the bottom table’s second to last line. Notice that most of the error
is concentrated near the inner boundary r = e, and this region determines the supremum errors in the tables.
For a fixed particular number of angular Fourier elements, these values are, save for the last line, the same for
both tables.
Table 6
Errors for the outer annulus problem

NA, MA Absolute sup error Relative sup error Absolute rms error Relative rms error

20, 11 5.433e�04 3.114e�03 3.223e�05 9.171e�01
38, 31 1.045e�07 5.991e�07 3.001e�09 2.142e�04
56, 51 3.028e�11 1.736e�10 6.767e�13 4.831e�08
80, 81 6.661e�16 3.819e�15 8.937e�17 6.380e�12

32, 11 5.433e�04 3.114e�03 3.885e�05 9.979e�01
76, 31 1.045e�07 5.991e�07 5.601e�09 2.223e�03
124, 51 3.028e�11 1.736e�10 8.612e�13 3.419e�07
200, 81 9.853e�16 5.649e�15 2.981e�16 1.183e�10

The top table corresponds to R = 50 and the bottom to R = 150. These numbers have been extracted from a 1024 · 1024 uniform grid.



Fig. 6. Outer annulus problem. The plots depict the numerical solution and error for NA = 124 and MA = 51.
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We remark that owing to the quadratic growth inherent in the our radiation boundary conditions (based on
Neumann vectors m+), 80 or 200 radial elements is likely excessive. We should prefer to further divide A into
sub-annuli all glued together, with fewer Chebyshev elements taken on each sub-annulus. In future 3d work
with numerical shells we plan to explore this possibility.

4.2.3. Linear mixed problem on two center domain: iteration between the elliptic region and outer annulus
This numerical experiment tests the full multidomain spectral code. We use the series (90) summed in

extended precision with MAPLE to place Dirichlet conditions on the inner holes (in practice, owing to the sym-
metry of the problem, on one inner hole H). We place radiation conditions at the outer boundary r = R of the
outer annulus. We take the hole H and all rectangles 1–8 of Fig. 1 as one glued domain, confined within a large
square with side 2L = 10. The outer annulus A is treated as a separate domain, and we iterate between solves
on the hole-plus-rectangles domain and the outer annulus. More precisely, we first solve the hole-plus-rectan-
gles configuration using the series (90) to place Dirichlet conditions on the inner boundary q = qmin of the hole
and adopting Dirichlet zero conditions on the free edges of rectangles which overlap the outer annulus A. This
multidomain numerical solution then provides inner Dirichlet conditions at r = e = 4.5 for the solve on the
outer annulus. The solution for the outer annulus, in turn, provides a numerical solution from which we
obtain corrected Dirichlet conditions for the relevant free edges of rectangles. While this iteration between
solves on the hole-plus-rectangles domain and outer annulus is under way, we monitor the rms error between
the inner profile w(e, u) from the outer annulus at the current and previous iterate. The iteration is stopped
once this inner boundary rms error ceases to decrease, typically after 100 or so iterations. We could of course
glue the outer annulus to the hole-plus-rectangles domain, and indeed we do so later when examining the non-
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linear model problem, but here we use the described iteration, since we wish to demonstrate its stability.
Table 7 lists error measures associated with this experiment with the outer boundary taken as R = 50. In
the table the choices for NH, MH and NA, MA stem from our earlier experiments on annulus domains. For
simplicity, we have chosen the same numbers N, M for the elements associated with the double Chebyshev
expansion on each of the rectangular domains. For the table’s last line, we have used dgesvx in lieu of
dgesv, for the hole-plus-rectangles domain only. Without the extra accuracy afforded by dgesvx for the
elliptic region, the numbers in the last line would be only marginally better than those in the next to last.
See the final paragraph in Section 3.4.1 for further germane comments.
4.2.4. Nonlinear mixed problem on two center domain

For our final experiment in 2d, we examine the homogeneous (g = 0) nonlinear equation (76). For nonlin-
ear solves we have always chosen to work with the fully glued two center domain (H + all rectangles
1 � 8 + A). Our numerical experiment with the nonlinear model is to repeat the mixed boundary value prob-
lem carried out for the linear model on the full two center domain. In particular, we use the same Dirichlet
conditions, from (90), at q = qmin. A major difference is that now we solve simultaneously for the unknowns
in all subdomains rather than by back and forth iteration with the outer annulus as we did for the linear prob-
lem. Since there is no exact solution available for comparison, we simply compare solutions with different
resolutions. As before, the comparison is carried out using output associated with the outer annulus on a
1024 · 1024 uniform grid. We take R = 50, g = �10, and w0 = 0.25. With a numerical solution to the nonlin-
ear problem, we may naively compute its ‘‘dipole strength’’ via Fourier transform of the solution restricted to
the outer boundary r = R. The nonlinear term corresponding to our parameter choices results in a dipole
strength which differs from dipole strength for the linear model (g = 0) by about 18%, and this difference
measures the nonlinear term’s strength. Fig. 7 depicts solutions for both the linear and nonlinear models in
the vicinity of the holes, showing that even to the eye these solutions differ. Error measures are collected in
Table 8.
4.3. Preliminary results for the linear 3d HRWE

We briefly describe two numerical experiments involving the 3d HRWE and meant to suggest that a mul-
tidomain spectral approach is viable for 3d PSW approximations, at least insofar as the post-Minkowski sce-
nario is concerned and possibly beyond. The first experiment involves the 3d mixed-problem on an outer
spherical shell, analogous to the outer annulus problem studied in Section 4.2.2. The second experiment is
a crude two-domain model consisting of an inner cube (lying within the elliptic region and on which we place
explicit sources) and an outer spherical shell (intersecting the type-changing cylinder). This single cube serves
as a crude substitute for all the subdomains depicted in Fig. 2 (as well as the inner spherical shell not depicted).
We would prefer an experiment in which a single cylinder replaced all these subdomains, but as yet have not
developed a library of spectral routines for solid cylinders. Our simple two-domain model indicates that iter-
ation between an inner elliptic region and an outer spherical shell is stable. Such an iteration also appears to be
quite stable in the 2d setting.
Table 7
Errors for the two center domain problem

NH, MH N, M NA, MA Absolute sup error Relative sup error Absolute rms error Relative rms error

8, 16 8,8 20, 11 4.540e�04 2.600e�03 5.362e�05 9.674e�01
12, 32 20, 20 38, 31 9.908e�08 5.680e�07 2.988e�09 2.133e�04
16, 48 30, 30 56, 51 3.023e�11 1.733e�10 7.907e�13 5.645e�08
20, 64 38, 38 80, 81 1.402e�15 8.035e�15 2.291e�16 1.636e�11

These error measures have been extracted from the outer annulus only (again with a 1024 · 1024 uniformly spaced grid), although the
numerical solution is generated on the entire two center domain. The last line of this table has been obtained with dgesvx (see text).
Compare this table with the top table in Table 6.



Fig. 7. Comparison of solutions. The plots depicts numerical solutions for the linear (top) and nonlinear (bottom) models. In each case the
solution is not known in the immediate neighborhood of the holes, whence on these neighborhoods we have set the solution to a constant
value in order to achieve nice plots.

Table 8
Errors for the nonlinear two center domain problem

NH, MH N, M NA, MA Absolute sup error Relative sup error Absolute rms error Relative rms error

8, 16 8, 8 20, 11 1.096e�03 1.211e�02 1.371e�04 9.976e�01
14, 36 20, 20 42, 39 1.152e�07 1.273e�06 1.140e�08 1.209e�03
18, 54 30, 30 64, 65 3.130e�10 3.459e�09 5.991e�12 6.354e�07

As with the linear model experiment, these error measures are extracted from the outer annulus only. Error measures for the first two lines
are taken with respect to the numerical solution corresponding to the next line. Error measures in the last line are taken with respect to the
numerical solution which corresponds to incrementing all parameters by 2.
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4.3.1. Mixed problem on outer shell

For the first experiment we define the outer spherical shell via 4 = e 6 r 6 R = 50, and consider the follow-
ing exact series solution to the homogeneous 3d HRWE:
wðr; h;uÞ ¼
X‘max

‘¼0

c‘0Y ‘0ðh; 0Þ
a‘

r‘þ1
þ
X‘max

‘¼1

X‘
m¼1

c‘mY ‘mðh; 0Þj‘ðmXaÞ½j‘ðmXrÞ sinðmuÞ þ n‘ðmXrÞ cosðmuÞ�;

ð91Þ

here with r > a = 1 and X = 0.2. The c‘m are random expansion coefficients, obeying |c‘m| 6 1 and drawn from
a uniform distribution, Y‘m(h,u) is a scalar spherical harmonic, and j‘(z) and n‘(z) are spherical Bessel func-
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tions. Notice that e < |X|�1, whence the inner surface of the shell lies within the elliptic region, as discussed in
Section 2.2. The form of this series is motivated by the rather more physical series [18]
wðr; h;uÞ ¼ �2K
X1
‘¼0

1

2‘þ 1
Y ‘0ðp=2; 0ÞY ‘0ðh; 0Þ

a‘

r‘þ1
þ 4KX

X1
‘¼2

X
m¼2;4;6;���

mY ‘mðp=2; 0ÞY ‘mðh; 0Þ


 j‘ðmXaÞ½j‘ðmXrÞ sinðmuÞ þ n‘ðmXrÞ cosðmuÞ� ð92Þ
corresponding to two equal point charges, that is
gðr; h;uÞ ¼ K
dðr � aÞ

a2
dðcos hÞ dðuÞ þ dðuþ pÞ½ � ð93Þ
in Eq. (10). The choice here of like signs for the point sources would make the problem similar to the grav-
itational problem, with radiation dominated by the quadrupole mode. (In the 2d case we chose equal and
opposite signs to avoid the bothersome logarithmic 2d monopole.) We could of course base our test on a trun-
cation of (92), but will instead work with (91) in order to test all modes defined for a given choice of ‘max.

We use the series (91) to seed inner boundary conditions at r = e, which would also be possible for (92),
since the locations r = a, h = p/2, u = 0, p do not lie in the shell, and so the series is convergent for r > a. This
requires a spherical-harmonic decomposition, which we perform with the NCAR routines SPHEREPACK by
Adams and Swarztrauber [47]. For this example, we have coded our spectral representation of the 3d HRWE
as a matrix–vector multiply. As we do not explicitly form the matrix, we solve the resulting linear system using
the iterative method GMRES [48]. Our matrix–vector multiply involves integration preconditioning in the
radial variable only. We use the series above with ‘max = 7, which corresponds to 1 + 3 + 5 + 7 + 9 + 11 +
13 + 15 = 64 modes. The capacity to perform spectral analysis and synthesis (transform and inverse trans-
form) then requires that a corresponding physical grid has an angular resolution of at least
Nh · Nu = 8 · 15 = 120 points. In anticipation of using such analysis and synthesis when dealing with nonlin-
earities, we therefore work with a set of unknowns corresponding to Nr · Nh · Nu = 60 · 8 · 15 = 7200,
although 60 · (120 � 64) = 3360 should be zero. Since only the remaining 60 · 64 = 3840 unknowns should
be nonzero, as our linear solver we use GMRES, taking the number of iterations Mitr 6 3840. As an example,
with Mitr = 2000 we produce a numerical solution from which we plot and analyze various cross sections.
Over the equatorial plane the numerical solution has a supremum error of 1.194 · 10�9. For Mitr = 1600
the corresponding supremum error is 1.038 · 10�6.
4.3.2. Mixed problem on two coupled domains

As the second experiment, we consider essentially the same problem described in Ref. [11], that is the linear
inhomogeneous 3d HRWE of (10) with two Gaussian sources,
gðr; h;uÞ ¼ Qe�j½ðx�xH Þ2þðy�yH Þ2þz2� þ lQe�j½ðxþxH Þ2þðyþyH Þ2þz2�: ð94Þ
Our parameter choices are Q = 100, j = 3, with the location of the ‘‘hole’’ (source) at (xH, yH) = (1, 0) in the
z = 0 plane. Furthermore, we choose l = �0.25 in order to ensure that the stability of our scheme is not pred-
icated on symmetry. We determine the HRWE operator by X = 0.2. Our two basic subdomains are an inner
cube and an outer shell, respectively determined by [xmin, xmax] = [ymin, ymax] = [zmin, zmax] = [�3, 3] and
[e,R] = [2.8, 100].

To solve this problem numerically, we work with the two domains as decoupled. On the cube we use a
pseudospectral method (point values as unknowns) based on GMRES, with the derivatives in the HRWE
operator coded as a matrix–vector multiply. We currently employ no preconditioning whatsoever on the cube
in our simple model, and so are limited in what resolutions we can obtain. For the experiment we have taken a
Nx · Ny · Nz = 30 · 30 · 30 truncation. For the outer shell, we again use GMRES but with the purely spectral
method just described in Section 4.3.1. Therefore, we have adopted a hybrid pseudospectral/spectral
approach. Our resolution in the annulus corresponds to a grid size of Nr · Nh · Nu = 62 · 5 · 9. Our
GMRES-based experiment requires less than 5% of the combined storage required to perform an individual
direct solve for each domain, although it does not achieve high accuracy.



Fig. 8. Cross sections of the 3d numerical solution. The top plot depicts the equatorial cross section on the outer shell, with multiplication
by r enhancing 1/r fall off. The bottom plot depicts the equatorial cross section on the inner cube.
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Starting with the cube, we iterate between the solves. That is to say, we first solve the problem on the cube
with Dirichlet-zero boundary conditions. Via the global interpolation then available from the cube solution,
we seed inner Dirichlet data w|e for the shell solve. Since we are solving the 3d HRWE on a closed ball (cube
plus shell) with no inner boundaries, the solution is only determined up to a free constant. We fix this constant
by setting to zero the ‘ = 0 mode of w|e. The solution on the shell then provides corrected Dirichlet data for
another cube solve, and so on. The iteration proceeds until the rms error between successive seed data sets w|e
ceases to decrease (about 60 iterations). Fig. 8 shows the resulting numerical solution. For this low resolution
experiment, the depicted outer shell solution has an absolute supremum error (as measured against a second
numerical solution obtained with slightly more resolution on both the cube and shell, but with the same num-
ber of angular modes) measuring 1.478 · 10�2 over the equatorial plane. Although we have not considered
large values of X, we note that the iteration appears to be completely stable and convergent. An instability
could set in at higher resolutions. Nevertheless, we find the results from this model 3d code as well as similar
iteration in the 2d setting encouraging.

5. Summary, conclusions, and outlook

The motivation for this work arose in problems of gravitational waves and black holes. In a late stage of
inspiral the interaction of the holes can be strongly affected by nonlinearities, while the radiation reaction due
to gravitational wave emission is weak. It is useful to approximate such a system as having helical symmetry,
in which the sources and fields rotate rigidly. Two aspects of this physical problem are then important to the
mathematical methods explored in this paper: (i) ‘‘Helical reduction,’’ that is, imposing helical symmetry, con-
verts the PDEs describing the fields into a system of helically reduced wave equations (HRWEs), a mixed sys-
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tem that is elliptic inside, and hyperbolic outside a type changing surface. (ii) Nonlinearities are significant
only interior to this type changing surface. In this paper we have divided the topologically nontrivial domain
of the problem into basic subdomains. Crucially, only a single subdomain contains the type changing surface
and the hyperbolic region exterior to it, the outer annulus/shell subdomain (annulus for 2d, shell for 3d). The
other subdomain or subdomains span an elliptic problem. We have therefore confined aspect (i) to a topolog-
ically simple outer subdomain, and aspect (ii) to the subdomains spanning an elliptic problem.

Sections 2 and 3 of this paper have focused on the model problem of the 2d HRWE for a linear scalar field,
though some generalization to 3d and to nonlinear problems has been included. Likewise, while the numerical
results in Section 4 have predominately focused on the 2d linear scalar problem, we have also included some
results for a nonlinear 2d scalar model and for a linear 3d scalar model. To obtain our numerical results we
have necessarily made many choices in the details. This was also case in Section 3; clarity of presentation
required some specificity in the adopted methods. It is, however, important to distinguish the full set of choices
made from what we believe are robust conclusions that transcend many of the choices. In the present section,
we therefore remark on what, in our view, are the central lessons of this work.

The choice to use a spectral (or a pseudospectral) method does not need justification for an elliptic problem.
Our mixed problem inherits much of that justification. In particular, we are solving a boundary value problem,
so a large set of equations must be solved simultaneously. For such problems spectral methods, which reduce
the number of unknowns, are particularly valuable and widely used. A less general issue is the nature of the
decomposition of the two center domain of the problem into subdomains. The choice illustrated in Fig. 1 is
very much driven by the convenience of rectangular and annular subdomains, for on such regions spectral
methods are well developed. For analogous reasons, the similar decomposition in Fig. 2 would be used for
the 3d problem.

What we wish to emphasize here is that one should make a distinction between the choices for the outer
annulus/shell and those for the inner region, the subdomain or concatenation of subdomains for the elliptical
region. (One could also divide the outer shell/annulus into further concentric sub-shells/sub-annuli, but this
possibility only adds further technical complexity.) It is quite conceivable that the optimal choice for the outer
region is not the same as that for the inner region. One might, for example, treat the inner elliptic problem by
whatever method most conveniently or efficiently generates a set of equations for the interior, and then use the
spectral method of this paper only for the outer region with its mixed PDEs. Even more freedom is available if
the inner and outer regions are solved separately, with an iteration between them, as was done in the second
numerical experiment of Section 4.3. In this case, one could use separate iterations to solve within each region,
each within the outer loop iteration that feeds values from the inner to the outer region and vice versa. We will
return to this possibility in a moment.

We have made the choice of using integration preconditioning (IPC) in all subdomains. Whether or not this
is an optimal choice remains unresolved. IPC is known to be efficient in reducing the condition number of the
coefficient matrix for certain types of ODE boundary value problems. Our study of a novel boundary value
problem, one heretofore not considered in the context of spectral methods, has to some extent further eluci-
dated the utility of IPC in such ODE settings. The results in Table 4 demonstrate that IPC reduces the con-
dition number of the matrix stemming from a problem not considered in our primary reference [40].
Moreover, our work demonstrates that IPC affords a relatively direct way to handle a multidomain scenario
in two dimensions. (See also [45] for an application of IPC in a 1d multidomain setting.) However, it remains
to be seen if its advantages will carry over to 3d and to PDEs significantly different from those of our test
problems.

Coming to grips with whether or not IPC is an appropriate method for 3d PSW problems, requires that we
ask some broader background questions. In particular, is it important to reduce the condition number of the
coefficient matrix? In Section 4, solutions to 2d problems were found by straightforward Gaussian elimination
for which conditioning issues are not as critical. For 3d problems, however, we almost certainly expect to use
an iterative Krylov method, and GMRES in particular. The efficiency of such iterative solvers is known to
depend sensitively on condition number. But such methods are also sensitive to other aspects of the coefficient
matrix, in particular to the distribution of eigenvalues [46]. In any case, owing to the relevant domain decom-
position (Fig. 2) for a 3d problem, insofar as the elliptic problem is concerned the relevant issue is the effec-
tiveness of IPC for the 3d HRWE on cylindrical and (inner) spherical-shell domains. As noted in [40,50],
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special alternate techniques are often necessary for polar and cylindrical subdomains which contain a center or
central axis.

We turn now from the open question of whether IPC could be effectively applied to all, or almost all, sub-
domains of a 3d PSW problem, to the rather clearer question of IPC for the outer region itself. For a scheme in
which inner and outer regions are separately solved, we have some enthusiasm for the advantages of IPC. Our
enthusiasm stems from the fact that in the outer region the Fourier, or spherical harmonic modes do not mix
for a linear problem. This nonmixing originates in the symmetry of the problem, the fact that the annulus or
shell is concentric with the coordinate surfaces of constant radius. The situation is closely analogous to the
reason that separation of variables applied to this region leads to a set of decoupled radial ODEs. In line with
theoretical and numerical arguments presented in [40], our studies indicate that IPC is a promising way of
solving the system of ODEs arising in the outer region of our problem.

These simple considerations do not apply, of course, if the problem is nonlinear. The nonlinearity will mix
Fourier or spherical harmonic modes. However, the nonlinearities in the underlying physical problem are very
weak in the outer region. (Here we are assuming that the inner surface of the outer region is chosen to be near
the maximum radius that allows it to be inside the type changing surface and to have the needed overlap with
the subdomains of the interior region.) As a result, there would seem to be number of possibilities for handling
the nonlinearity. First, it is quite plausible that it is adequate to treat the problem as linear in the outer region.
If it is not adequate to treat the nonlinearity as null, then one could exploit the fact that it is weak. The weakly
nonlinear problem could be solved by iteration in which each iteration generates a ‘‘known’’ source term, and
that source term is projected onto the angular mode basis before the system is solved. Just as would be the case
with separation of variables, this procedure would not mix modes (after the projection of the known source is
done) so the solution would again be highly efficient. The weakness of the source should guarantee that a few
iterations would be sufficient to get the needed resolution. Finally, a Newton–Krylov method might be based
upon use of the outer domain’s spectral transform and inverse transform (with all nonlinear operations per-
formed in point space). For a weak nonlinearity the associated Jacobian should not significantly perturb the
basic linear operator.

Our next steps with these methods will parallel those of Refs. [8–19]. The method used in those studies is, by
its nature, incapable of high precision, whereas our approach is capable of the precision that is needed for
some purposes (initial data for evolution codes and studies of radiation reaction for instance). In particular,
we will next formulate 3d linear and nonlinear scalar model HRWE problems. We will then use the techniques
of Ref. [18] to do linearized gravity, and those of Ref. [19] to do gravity with a post-Minkowski approxima-
tion. Finally, we will treat the problem in fully nonlinear general relativity.
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