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We develop a new dimension reduction method for large size systems of ordinary differ-
ential equations (ODEs) obtained from a discretization of partial differential equations of
viscous single and multiphase fluid flow. The method is also applicable to other large-size
classical particle systems with negligibly small variations of particle concentration. We
propose a new computational closure for mesoscale balance equations based on numerical
iterative deconvolution. To illustrate the computational advantages of the proposed reduc-
tion method, we use it to solve a system of smoothed particle hydrodynamic ODEs describ-
ing single-phase and two-phase layered Poiseuille flows driven by uniform and periodic (in
space) body forces. For the single-phase Poiseuille flow driven by the uniform force, the
coarse solution was obtained with the zero-order deconvolution. For the single-phase flow
driven by the periodic body force and for the two-phase flows, the higher-order (the first-
and second-order) deconvolutions were necessary to obtain a sufficiently accurate
solution.

� 2011 Published by Elsevier Inc.
1. Introduction

Many diverse mathematical models of natural and technological systems have a common feature: their discrete approx-
imations are systems of ordinary differential equations (ODEs), which can contain an enormous number of unknowns. Direct
simulation of these models can be extremely expensive. This necessitates development of advanced algorithms for model (or
dimension) reduction.

One classical approach to model reduction is volume averaging. Volume averaging can be applied to systems of ODEs
describing Newtonian particle dynamics (e.g., [1]) and to partial differential equations (PDEs) (e.g., [2]). In the former case,
the volume averaging reduces a system of ODEs to the system of PDEs describing the dynamics of the system averages. In the
latter case, the system of PDEs describing a continuous process on one scale can be replaced by the system of PDEs describing
the process on a larger scale (e.g., averaging of Navier–Stokes equations describing a pore-scale flow in a porous medium to
obtain Darcy equations describing a flow in the porous medium treated as a continuum). The resulting PDEs for averages
usually contain non-local terms in the form of volume integrals of functions of the microscale variables, and the non-local
PDEs do not present any computational advantage since a direct solution of such equations also requires solving the micro-
scale equations. If an efficient and accurate closure could be found, the computational advantages of the volume averaging
methods are achieved due to the fact that the averages vary slower in space and time than the original variables, and PDEs
for averages can be solved on a coarser grid and with a larger time step than the corresponding finer-scale ODEs or PDEs.

Development of the effective (closed) equations is the ultimate goal of any dimension reduction method as those equa-
tions provide the most computationally efficient method for a multiscale problem under consideration. Under certain length
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scale constraints (the constraints relating characteristic length scales of the derivatives of fine-scale variables, the character-
istic length scales associated with averages, and the length scale of the domain), a closure can be obtained analytically [2].
Unfortunately, these constraints are usually satisfied for relatively simple linear problems only. Examples of such problems
include linear deformations of heterogeneous solids or single-phase flow in porous media. For linear problems, the PDE
homogenization theory [3] also can be used to derive closed-form averaged PDEs. For non-linear problems, the application
of homogenization methods becomes more difficult [4,5]. Consequently, there are no homogenization results for many prob-
lems of practical interest, including multiphase flows with moving boundaries, nonlinear elastic wave propagation, and
granular flows. Standard ad hoc closures for the PDEs obtained via volume averaging or homogenization were shown to fail
for a number of nonlinear problems including crack propagation and multicomponent reactive transport in porous media [6–
9].

For the multiscale systems with time-scale separation (e.g., a small number of heavy particles moving in a bath of light
particles), methods based on ODE perturbation theory and time homogenization can be employed. The patched dynamics
and the equation-free method [10–13] could be used to estimate dynamics of averages if the closed-form PDEs for averages
are not available. In the equation-free method, the averages are calculated from short bursts of fine-scale simulations in
small parts of a computational domain. Other mathematical methods for dimension reduction include the optimal prediction
methods [14,15] based on the projection operator formalism [16,17], renormalization group analysis [18], stochastic mode
elimination [19], and cluster expansions [20–23]. Additional references on ODE dimension reduction and time homogeniza-
tion can be found in a recent book [24].

In general, these methods produce reasonable results for ODE systems of the statistical mechanical type, characterized by
fast-mixing, short relaxation times, and approximate ergodicity. A statistical mechanical system quickly ‘‘forgets’’ the initial
conditions and, during the observation time, tends to reach most points on the constant energy surface in phase space. In
contrast, many discrete models of practical interest, such as metastable particle systems, are slowly mixing. There is also
a large class of systems arising as discretizations of PDE models of heterogeneous media. For such models, the smallest rel-
evant scale is still much larger than the average distance between molecules. Thus, relaxation times may be comparable to
observation time, especially if the observation time is chosen arbitrarily (this is often the case for PDE problems, while most
ODE-specific tools are designed for studying long-time behavior).

Despite significant progress in multiscale methods, development of effective closures for non-linear heterogeneous prob-
lems with arbitrary relaxation times remains an open issue. Many current effective models for non-linear phenomena rely
heavily on phenomenological closures. For example, in models of flow and reactive transport in porous media, phenomenol-
ogy is used to describe the dependence of soil and rock permeability and capillary pressure on saturation of fluid phases and
the relationship between effective reaction and dispersion coefficients on flow, diffusion, and reaction rates [25]. Due to hea-
vy reliance on phenomenology, error estimates in these models are difficult to obtain.

This paper develops a dimension reduction method for large-size ODE models that define fluid flow at the microscale. At
the heart of the method is a computational closure based on an iterative deconvolution for estimation of fine-scale variables
from the corresponding averages. The main advantage of the proposed closure is that it is not based on the assumption of fast
mixing, short relaxation times, and approximate ergodicity. As a result, the method can be applied to investigating transient
phenomena, as well as simulating hydrodynamic behavior of non-ergodic systems including flows of multiphase fluids.

The starting point of the proposed dimension reduction method is a set of non-local balance equations obtained by spatial
averaging of a system of ODEs for Newtonian particle dynamics [26,1].

While in many dimension reduction methods only a small subset of (slow varying) unknowns of the original (large) ODE
system is simulated, here we consider an evolution of a suitable set of functionals, i.e. space hydrodynamic averages. This is a
natural choice because these quantities are experimentally measurable and can be related to continuum mechanics.

The proposed dimension reduction method consists of the following basic steps:

(1) Choose a mesoscale by selecting space and time resolution parameters. The spatial resolution parameter generates a
mesoscopic mesh. The number of mesh nodes, though large, is much smaller than the number of particles. This fact
leads to computational savings. The problem geometry and relevant length scales are shown in Fig. 1.

(2) Write down evolution balance equations (these are typically PDEs) for primary variables. In the typical situation of
negligible thermal effects, the primary variables are mesoscale density and mesoscale velocity. Some of the evolution
PDEs contain fluxes. The main example of such flux is a stress tensor in the momentum balance equation. The fluxes
have explicit formulas expressing them as functions of particle positions and velocities. These formulas are exact but
not useful for computation, because using them requires solving the original, large-size ODE system.

(3) Use a numerical closure – numerically estimate the non-local fluxes. This is the key part of the proposed dimension
reduction method. The computational closure is based on a regularized deconvolution. The deconvolution produces
stable approximations of the interpolants of particle positions and velocities from the given values of the correspond-
ing averages. At each time step, particles are uniformly or randomly distributed so that the particle densities corre-
spond to the mesoscale density and the particle velocities are found from the regularized deconvolution of the
mesoscale velocities. Then, the particle positions and velocities are used to calculate the non-local fluxes, and new
mesoscale variables are found from the time integration of the evolution PDEs. The important fact here is that the
operation count is determined by the mesoscale resolution. Thus, it is much smaller that the number of operations
needed to solve the original ODEs.



Fig. 1. Domain X with particles, mesoscopic mesh, and three length scales.
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We use the model reduction method to solve a system of Smoothed Particle Hydrodynamic (SPH) ODEs describing single-
phase and two-phase layered Poiseuille flows driven by uniform and periodic (in space) body forces. We show that for the
single-phase Poiseuille flow driven by the uniform force, the accurate coarse solution can be obtained with the zero-order
deconvolution. For the single-phase flow driven by the periodic body force and for the layered flow driven by the uniform
force, the higher-order (first- and second-order) deconvolutions are necessary to obtain the accurate solution.

This paper is organized as follows. In Section 2, we formulate the microscale model and recall the derivation of mesoscale
balance equations. Section 3 is devoted to integral approximations of discrete sums that appear in the definitions of averages.
In Section 4, we outline the basics of iterative deconvolution method for closure, and discuss the simplest zero-, first- and
second-order approximations of microscale velocities. Section 5 contains an application of the zero-order closure to coarse
graining of SPH discretization of the gravity-driven Poiseuille flow equations. In Section 6, the first-order closure is applied to
coarsening of the Poiseuille flow driven by a spatially periodic body force. In Section 7, the mesoscale balance equations with
the second-order closure are used to coarse-grain SPH multiphase flow equations. Conclusions are given in Section 8.
2. Mesoscale evolution equations

2.1. Microscale problem

To define the averages, we first formulate the microscale ODE problem. The positions qi(t) and velocities vi(t) of particles
Pi satisfy a system of Newton equations:
_qi ¼ v i; ð2:1Þ
mi _v i ¼ f i þ f ðextÞ

i ; ð2:2Þ
with the initial conditions
qið0Þ ¼ q0
i ;v ið0Þ ¼ v0

i : ð2:3Þ
Here, mi is the mass of particle i, and f ðextÞ
i denotes external forces, such as gravity. The interparticle forces f i ¼

P
jf ij, where fij

are pair interaction forces that depend on the relative positions and velocities of the respective particles. The initial positions
of particles are denoted by q0

i and v0
i , respectively.
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2.2. Mesoscale hydrodynamics of space-time averages

Our goal is to approximate dynamics of various mesoscopic space averages (density, velocity, stress, etc.). The averages
are functions of the particle positions qj and velocities vj.

Since averages are scale-dependent, we define three length scales:

- macroscopic length scale L is a typical size (diameter) of the computational domain, X;
- mesoscopic length scale g0 = gL, where g is a parameter characterizing mesoscale spatial resolution;
- microscopic length scale e0 = eL with
e ¼ N�1=d; ð2:4Þ
where N is the number of particles, and d is the dimension of the physical space.
To ensure scale separation, we require:
e� g� 1: ð2:5Þ
To obtain the non-local evolution balance equations for the primary variables, we use a space averaging approach pioneered
by Noll [27], and further developed in [26,1,28]. In this subsection, we briefly recall the basic points of the method and intro-
duce the relevant notation. The averages on the scale gL are generated by a smooth function wg(x) that satisfies the normal-
ization condition:
Z

wgðxÞdx ¼ 1; ð2:6Þ
and decays sufficiently fast as jxj?1, where x is the Euclidean coordinate vector in a bounded domain X. Many choices of w
are possible, but, here, we prefer to work with the Gaussian function:
wgðxÞ ¼
1

ð
ffiffiffiffi
p
p

g0Þd
e
�x�x

g02 : ð2:7Þ
Then, it is possible to define the primary continuum variables on the scale gL [1]. These variables are the mesoscale density:
�qgðt; xÞ ¼
XN

j¼1

mjwgðx� qjðtÞÞ; ð2:8Þ
and the mesoscale velocity:
�qg �vgðt; xÞ ¼
XN

j¼1

mjv jðtÞwgðx� qjðtÞÞ: ð2:9Þ
In this notation, the overbar emphasizes that the mesoscale variables are obtained via space averaging. Differentiating �qg

and �qg �vg in time and using the ODEs (2.1) and (2.2), one can obtain mesoscopic PDEs (MPDEs) describing conservation of
mass [1]:
@t �qg þ divð�qg �vgÞ ¼ 0; ð2:10Þ
and conservation of the linear momentum [1]:
@tð�qg �vgÞ þ divð�qg �vg � �vgÞ ¼ divTg þ FðextÞ: ð2:11Þ
The stress Tg is expressed as [28]:
Tg ¼ Tg
ðcÞ þ Tg

ðintÞ;
where
Tg
ðcÞðt; xÞ ¼ �

XN

j¼1

mjð�vgðxÞ � v jÞ � ð�vgðxÞ � v jÞwgðx� qjÞ ð2:12Þ
and
Tg
ðintÞðt; xÞ ¼

X
ðj;kÞ

f jk � ðqk � qjÞ
Z 1

0
wgðsðx� qkÞ þ ð1� sÞðx� qjÞÞds: ð2:13Þ
Here, Tg
ðcÞ and Tg

ðintÞ are the convectional and interaction components of the stress. The summation in Eq. (2.13) is over all
pairs of particles (j,k) that interact with each other. The external force is given by:
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FðextÞðt; xÞ ¼
XN

i¼1

f ðextÞ
i wgðx� qiÞ: ð2:14Þ
Discretizing MPDEs on the mesoscopic mesh yields a discrete system of equations, called the meso-system, written for mesh
values of �qg

j ; �vg
j , and Tg

j ; j � 1; J. The number of grid points in the mesoscale mesh is J = g0�d. The dimension of the meso-sys-
tem is much smaller than the dimension of the original ODE problem, since J� N. However, at this stage, we still have no
computational savings, since the meso-system is not closed. This means that the stress values Tg

j in MPDEs are functions of
the microscopic positions and velocities. We emphasize that the system of MPDE Eqs. (2.10)–(2.14) is exact (assuming that
the microscale ODE model is exact), but solving it directly is prohibitively expensive because it requires solving the complete
microscale system (2.1), (2.2). To achieve computational savings, one has to approximate mesoscopic fluxes, such as Tg

j ,
using only the values of other mesoscopic quantities, such as the average density and velocity. We refer to the procedure
of generating these approximations as a computational closure method.

3. Integral approximations of averages

The first step toward computational closure is to approximate sums by integrals in the formulas for stress and kinematic
averages. For general particle dynamics ODE, this process is far from straightforward. The sums in Eqs. (2.8), (2.9), (2.12) and
(2.13) do resemble Riemann sums. However, particle positions change in time, and particles are not periodically distributed
in space. Because of this, a generic partition of X generated by positions qj will be non-uniform — cells corresponding to dif-
ferent particles would have different volumes. In fact, existence of a uniform partition for each t seems to be a restriction that
should be imposed on dynamics. Otherwise, the integral approximation should include the Jacobian of the microscopic flow
map associated with the ODE dynamical system. We shall not pursue these interesting questions here, leaving them to future
publications.

Instead, we take advantage of the fact that discretizations of fluid flow PDEs can be generated so that this difficulty is not
present. Fluid problems are typically written in spatial (Eulerian) description, and at each time the choice of discretization is
up to the observer. As such, we can choose discretization nodes on a spatially uniform mesh. Of course, nodes that are uni-
formly spaced at the moment t1, will be advected by the flow and not be (in general) uniformly spaced at t2 > t1. Thus, work-
ing with periodic meshes, at each time we actually change the physical identity of fluid particles, but this is not important as
long as we wish to work only with spatial averages. In this paper we do not work with time averages, so we can make a
standing assumption that the current particle positions are nodes of the periodic mesh, for example, a square mesh in
two spatial dimensions with the mesh size L/e, where e = N�1/2.

Next, we note that mj

qj
¼ jXjj (qj is the microscale density and jXjj is the volume associated with particle j) and interpret the

sums in Eqs. (2.8), (2.9), (2.12) and (2.13) as Riemann sums corresponding to the uniform partition of X with the partition
cell volume jXj/N = jXjj (j = 1, . . . ,N). This yields the integral approximation for mesoscale density:
�qgðxÞ ¼
Z

X
qðx0Þwgðx� x0Þdx0; ð3:1Þ
and mesoscale momentum (dependence on t is suppressed for notational simplicity):
�qgðxÞ�vgðxÞ ¼
Z

X
qðx0ÞV eðx0Þwgðx� x0Þdx0; ð3:2Þ
where Ve is a suitable microscopic velocity interpolant. For fluids with uniform density, we have:
�vgðxÞ ¼
Z

X
V eðx0Þwgðx� x0Þdx0: ð3:3Þ
The convectional component of the stress tensor is then:
Tg
ðcÞðxÞ ¼ �

Z
X
qðx0Þð�vgðxÞ � Veðx0ÞÞ � ð�vgðxÞ � V eðx0ÞÞwgðx� x0Þdx0; ð3:4Þ
and the interaction component of the stress is:
Tg
ðintÞðxÞ ¼

1
2

Z
X

Z
X

�f ðV eðx0Þ;V eðx00Þ; x0; x00Þ � ðx00 � x0Þ
Z 1

0
wgðsðx� x00Þ þ ð1� sÞðx� x0ÞÞdsdx0dx00: ð3:5Þ
In Eq. (3.5),
�f ðVeðx0Þ;V eðx00Þ; x0; x00Þ ¼ nI2f ðVeðx0Þ;V eðx00Þ; x0; x00Þ; ð3:6Þ
where the function f is defined by the equation describing interparticle forces via
f ij ¼ f ðv i;v j;qi;qjÞ;
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and
nI ¼ N
jXj
is the particle concentration (number density).

4. Closure

4.1. Closure via regularized deconvolution. General approach

Our approach to constructing closures is based on a simple idea: the integral approximations of the averages are related
to the corresponding microscopic quantities via convolutions with the Gaussian kernel wg. These convolutions relate the pri-
mary mesoscopic variables, e.g., density and momentum, with microscopic quantities. Therefore, taking the values of pri-
mary variables provided by the mesoscale solver, we can recover the microscopic quantities by numerically inverting
convolution operators. The results are inserted into equations for flux(es), such as stress in the momentum balance. This
yields closed-form equations for primary variables. Simulating these new equations can be done efficiently on coarse grids
in space-time.

Define an operator Rg by:
Rg½f �ðxÞ ¼
Z

wgðx� yÞf ðyÞdy: ð4:1Þ
It is easy to check (using Fourier transform, for example) that Rg with a Gaussian kernel is injective. As such, there exists a sin-
gle-valued inverse operator R�1

g , that we call the deconvolution operator. Unfortunately, Rg is compact in L2(X). Thus, R�1
g is un-

bounded. This is the underlying reason for the popular belief that averaging destroys the high-frequency information
contained in the microscopic quantities. In fact, this information is still there (inverse operator exists), but it is difficult to re-
cover in a stable manner, because of unboundedness. This does not make the situation hopeless. Reconstructing f from the
knowledge of Rg[f]) is a classical example of an unstable ill-posed problem (small perturbations of the right-hand side may
produce large perturbations of the solution). The exact nature of the ill-posedness and methods of regularizing the problem
are well investigated both analytically and numerically [29–33]. Accordingly, we interpret R�1

g as a suitable regularized
approximation of the exact operator. Many regularizing techniques are currently available: Tikhonov regularization, iterative
methods, reproducing kernel methods, maximum entropy method, dynamical system approach, and others. It is fortunate that
this vast array of knowledge can be used for dimension reduction. On the conceptual level, our approach makes it clear that
instability associated with ill-posedness is a fundamental difficulty in the process of closing continuum mechanics equations.

Recently, the classical Landweber iterative deconvolution method [34,35] attracted attention as a means to achieve sub-
scale resolution in large eddy simulation methods [36–38] of turbulence. A related method was proposed in [39]. In the sim-
plest version of the Landweber method, approximations gn to the solution of the operator equation
Rg½g� ¼ �gg ð4:2Þ
are generated by the formula
gðnÞ ¼
Xn

k¼0

ðI � RgÞn�gg; g0 ¼ �gg: ð4:3Þ
The number n of iterations plays the role of regularization parameter. In (4.3), I denotes the identity operator. The first three
low-order approximations are:
f ð0Þ ¼ �gg n ¼ 0; ð4:4Þ
f ð1Þ ¼ �gg þ ðI � RgÞ½�gg� n ¼ 1; ð4:5Þ
f ð2Þ ¼ �gg þ ðI � RgÞ½�gg� þ ðI � RgÞ2½�gg� n ¼ 2: ð4:6Þ
Another classical method is Tikhonov regularization (see e.g., [30]), where the solution of (4.2) is approximated by ga that solves
Rg½ga� þ aC½ga� ¼ �gg: ð4:7Þ
Here a is a regularization parameter, and C is a stabilizing operator. In practice, C can be an identity, or a suitable differential
operator such as Laplacian.

4.2. Computational implementation of deconvolution

The discretized version of the integral Eq. (4.2) is a linear system
Ax ¼ b: ð4:8Þ
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The ill-posedness of the integral Eq. (4.2) is reflected in the spectral (for square A), or singular value (for rectangular A)
decomposition. For instance, for a square A, the spectrum has no gaps, the smallest eigenvalues are close to zero, while
the largest eigenvalue is nearly 1. The condition number of A is typically large, and can be as large as the reciprocal of ma-
chine precision. The actual value of the condition number depends on the choice of w (smoother window functions such as
Gaussian lead to larger condition numbers), and the size of the meshes used for discretization. A good reference for problems
of this type is the book [40]. Many numerical methods are currently available. Besides Tikhonov and Landweber methods,
one can use the conjugate gradient method and truncated singular value decomposition (SVD). The conjugate gradient meth-
od is quite well known. The truncated SVD method consists of first computing the SVD of A, and then computing the regu-
larized approximation of an exact solution by projecting onto the subspace spanned by singular vectors corresponding to the
few largest singular values. Retaining singular vectors corresponding to smaller singular values produces a more accurate,
but less stable, approximation. The choice of truncation is determined by the actual level of noise in the right-hand side.
It is customary to discard singular values of the size comparable to the magnitude of the expected right-hand-side error.

It is important to keep in mind that discretization introduces a minimal length scale for the features that can be recon-
structed. The details of smaller size are lost. Because of ill-posedness, one can rarely achieve this maximal possible resolu-
tion. However, using sufficiently fine meshes in (4.8), one can always achieve the so-called sub-filter scale resolution, that is,
recover the details that are smaller than the mesoscale gL. When the averages are inspected visually, such details would be
partially, or even completely, obscured. Deconvolution restores these details and thus improves the accuracy of a mesoscale
simulation.

In this study we use (4.8) for approximating microscopic velocity. In this case, x is the microsopic velocity interpolant,
rendered on a suitable uniform mesh, and b is the discretized average velocity, rendered on the coarse mesh. For discretizing
microscopic velocity one could either use the same coarse mesh, or choose a finer mesh, even the finest mesh with N nodes.

In this work we use Landweber iteration because it is simple and useful for modeling. The drawback of this method is its
rather slow convergence. Within the Landweber method, the first (zero-order) approximation is always the average itself.
Subsequent iterations enhance higher frequency content. The low-order discrete approximations corresponding to (4.4)–
(4.6) are
x0 ¼ b; ð4:9Þ
x1 ¼ bþ ðI � AÞb;
x2 ¼ bþ ðI � AÞbþ ðI � AÞ2b:
For computational efficiency, the averages should be rendered on the coarse mesh. Then xn in (4.9) are also rendered on the
coarse mesh. To facilitate the computation of the stress, we interpolated these approximations to the fine mesh. Linear inter-
polation was used on b, and the terms containing powers of A were interpolated by replacing A with the coarse–fine quad-
rature of the convolution kernel. To give an example, the interpolated representation of Ab is
ðAbÞj ¼ h
XD

i¼1

wgðyj � xiÞbi; i ¼ 1; . . . ;D; j ¼ 1; . . . ;N;
where h is the fine mesh size, yj are fine mesh points, and xi are coarse mesh points.
Since x is a micro-scale quantity, a natural way to represent it is by using the fine mesh. Discretizing x on the coarse mesh

introduces additional error, but greatly improves efficiency. The operation count of the deconvolution in this case depends
only on the number of coarse mesh points determined by the choice of g. Therefore, for very large N, the operation count will
be independent of N and will remain fixed as long as g is fixed. This ‘‘coarse–coarse’’ discretization can be used for fast pre-
liminary assessment and selective visualization of streaming data generated by a much slower ODE solver. Using a coarse
mesh for the right-hand side and a fine mesh for the solution is typically more accurate and at the same time more expen-
sive. The computational cost scales roughly as O(N). Using the fine mesh for both right hand side and the solution leads to
even higher computational cost of the order O(N2). This high cost does not necessarily correspond to a better reconstruction,
since discretization refinement generally increases the condition number of A.

4.3. Low-order closure equations for velocities

Let us consider the zero (Ve(0)) and first-order (Ve(1)) approximations of the microscopic velocity interpolant Ve. The
microscopic velocity interpolant is related to the average velocity �vg via:
Rg½V e� ¼ �vg: ð4:10Þ
The zero-order approximation corresponding to (4.4) is simply:
Veð0Þ ¼ �vg: ð4:11Þ
This means that the actual microscopic velocities are approximated by the mesoscopic average velocity at the same spatial
points. Since mesoscopic average will be typically calculated on the mesoscale (coarse) grid, interpolation of the mesoscale
velocity is needed for actual numerical implementation.
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The first- and second-order approximations are obtained from (4.5) as:
Veð1Þ ¼ Veð0Þ þ ðI � RgÞ½�vg� ð4:12Þ
and
Veð2Þ ¼ Veð0Þ þ ðI � RgÞ½�vg� þ ðI � RgÞ2½�vg�: ð4:13Þ
The first-order velocity fluctuations Ueð1Þ ¼ Veð1Þ � �vg correspond to
Ueð1Þ ¼ ðI � RgÞ½�vg�: ð4:14Þ
This means that microscopic velocity fluctuations are approximated by the convolution I � Rg applied to the average veloc-
ity. Consider the kernel of this convolution operator. Its Fourier transform,
1� e�g02p2n�n; ð4:15Þ
is nearly zero for frequencies jnj close to zero, and increases to 1 as jnj goes to infinity. Therefore, I � Rg acts as a filter damp-
ing low frequencies, and thus emphasizing higher frequency content of the signal. For larger n, the approximations
UeðnÞ ¼

Pn
k¼1ðI � RgÞk½�vg� will increasingly boost the high-frequency content. This suggests that larger velocity fluctuations

should be handled with higher-order approximations.

5. Coarse-scale solution of smoothed particle hydrodynamics ODEs for single-phase Poiseuille flow

5.1. SPH ODEs

To illustrate the proposed method, we present a coarse-grained solution of a system of SPH ODEs. In SPH, fluids are rep-
resented by material particles whose dynamics are governed by Eqs. (2.1)–(2.3). The interaction force in SPH can be obtained
from a Lagrangian with added symmetric dissipation term [41]:
f ij ¼ �
Pj

n2
j

þ Pi

n2
i

 !
riweðqi � qjÞ þ

1
2
l v i � v j

ninjjqi � qjj
2 ðqi � qjÞ � riweðqi � qjÞ: ð5:1Þ
Here, qi = [qx,i,qy,i]T are particle positions, vi(t) are velocities, l is the fluid viscosity, and ni are the number densities. The fluid
pressure Pi is related to the number density through an equation of state, Pi = P(ni). Further, we is the smoothing function
generating an SPH discretization. The smoothing function should have a compact support on the order of e, satisfy the nor-
malization condition:
Z

weðxÞdx ¼ 1; ð5:2Þ
and approach the Dirac delta function in the limit of jxj? 0. Different forms of we are discussed in [41].
Monaghan [41] showed that if the system of ODEs is obtained in this manner, then the particle system behaves as a New-

tonian fluid. Under certain approximations, a system of ODEs also can be obtained from the Navier–Stokes equations [41–
44].

Here, we consider a system of SPH ODEs that simulates a two-dimensional laminar flow of an incompressible fluid be-
tween two parallel plates located at y = 3g0 and y = Ly � 3g0. The SPH discretization is obtained by placing particles on a
square lattice (with the lattice size equal to e0) in the domain [0,Lx] � [0,Ly]. The flow is driven by an external force f ðextÞ

i act-
ing in the x-direction. To simulate the no-slip boundary conditions at the plates, the velocities of the fluid particles outside
the channel are set to zero [45]:
v iðtÞ ¼ 0; qy;i < 3g0 or qy;i > Ly � 3g0: ð5:3Þ
Initial velocities of all fluid particles are set to zero. A periodic flow (and the periodic pressure field) is assumed in the x-
direction.

5.2. Coarse-scale solution of the SPH ODEs using exact expression for the interaction stress

Under the conditions previously described, the y component of the mesoscale velocity is identically zero, and the meso-
scale solution of the SPH equations is given by the MPDEs:
@�vg
x ðxÞ
@x

¼ 0; �vg
y 	 0; ð5:4Þ

�qg @�vg
x

@t
¼
@ Tg

ðcÞ;xx þ Tg
ðintÞ;xx

� �
@x

þ
@ Tg

ðcÞ;xy þ Tg
ðintÞ;xy

� �
@y

þ �qgg; ð5:5Þ
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subject to the boundary conditions,
�vg
x ðx;3g0; tÞ ¼ 0 and �vg

x ðx; Ly � 3g0; tÞ ¼ 0: ð5:6Þ
The initial zero velocities of the SPH particles and Eq. (2.9) for the mesoscale velocity give rise to the initial condition for Eq.
(5.5):
�vg
yðx; y;0Þ ¼ 0: ð5:7Þ
It can be easily verified that for the considered Poiseuille flow @xTg
ðcÞ;xx 	 0; @yTg

ðcÞ;xy 	 0 and @xTg
ðintÞ;xx 	 0, and Eq. (5.5) can be

further simplified as:
�qg @�vg
x

@t
¼
@Tg
ðintÞ;xy

@y
þ �qgg: ð5:8Þ
Eq. (5.8) is solved with a finite differences method using a uniform mesh with the grid size g0. The number of grid points
in x and y directions is given by Nm

x ¼ Lx
g0 � 1 and Nm

y ¼
Ly

g0 � 1, correspondingly. The coordinates of an ij-node are expressed
by:
xi ¼ ði� 0:5Þ � g0 i ¼ 1; . . . ;Nm
x ð5:9Þ
and
yj ¼ ðj� 0:5Þ � g0; j ¼ 1; . . . ;Nm
y : ð5:10Þ
A finite differences discretization of Eq. (5.8) subject to the boundary conditions (5.6) is:
�vg;tþDt
x;ij ¼ �vg;t

x;ij þ
Dt

Dx�qg Tt
ðiþ1Þj � Tt

ij

h i
þ Dtg; i ¼ 2; j ¼ 1;Nm

y ; ð5:11Þ

�vg;tþDt
x;ij ¼ �vg;t

x;ij þ
Dt

2Dx�qg Tt
ðiþ1Þj � Tt

ði�1Þj

h i
þ Dtg; i ¼ 3; Nm � 2; j ¼ 1;Nm

y ; ð5:12Þ

�vg;tþDt
x;ij ¼ �vg;t

x;ij þ
Dt

Dx�qg Tt
ij � Tt

ði�1Þj

h i
þ Dtg; i ¼ Nm � 1; j ¼ 1;Nm

y ; ð5:13Þ

�vg;t
x;1j ¼ 0 and �vg;t

x;Nmj ¼ 0; j ¼ 1;Nm
y ; ð5:14Þ
where Tt is used for Tg;t
ðintÞ;xy.

To estimate the interaction stress at time t + Dt, the particle velocities and particle positions should be found from the
averages �qg

ijðt þ DtÞ and �vg
ijðt þ DtÞ. In SPH, particle positions are discretization points, and the natural choice is to place

the particles uniformly in each lattice of the mesoscale mesh with the number of particles in the ij-lattice given by
�qg

ijðt þ DtÞg02=m
, where m⁄ is the mass of an SPH particle. In the considered case of the incompressible flow the position
of SPH particles is kept intact. The velocities of the ‘‘fluid’’ SPH particles v iðt þ DtÞ ¼ V eðnÞ

i ðt þ DtÞ are found from the meso-
scale velocities �vgðx; t þ DtÞ using the deconvolution Eq. (4.11) or Eq. (4.12) (or higher-order deconvolutions). The interaction
stress Tg

ðintÞ;xy is then calculated from Eq. (2.13).
For the incompressible flow, the particle density in Eq. (2.13) is constant and, for the considered SPH discretization, is

equal to:
n
 ¼
�qg

ij

m

:

The pressure P⁄ = P(n⁄) is the corresponding (constant) pressure, and the total number of the SPH particles is then equal to
N = LxLyn⁄. The integral in Eq. (2.13) for Tg

ðintÞ;xy is evaluated analytically (see the Appendix A).
Fig. 2 shows the comparison of the mesoscale fully developed (steady-state) velocity profiles with the analytical

solution,
VxðyÞ ¼ �
qg
2l
½y2 � ðl1 þ l2Þyþ l1l2�; ð5:15Þ
for different g0/Ly. Here l1 = 3g0 and l2 = Ly � 3g0. Eq. (5.15) is the solution of the steady-state Navier–Stokes equation:
0 ¼ � @P
@x
þ l @

2Vx

@y2 þ qg; x 2 ð�1;1Þ � ðl1; l2Þ; ð5:16Þ

0 ¼ � @P
@y

; x 2 ð�1;1Þ� ðl1; l2Þ; ð5:17Þ

Vy ¼ 0; x 2 ð�1;1Þ� ðl1; l2Þ; ð5:18Þ
subject to the boundary conditions:
Vx ¼ 0; y ¼ l1; l2; ð5:19Þ
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and
P ¼ P0; x ¼ �1; 1: ð5:20Þ
The figure shows an excellent agreement between the analytical and numerical results for small g0/Ly. The accuracy of
the mesoscale method slightly decreases as g0/Ly increases. In the simulations shown in Fig. 2, the zero-order deconvo-
lution, Eq. (4.11), is used. It turns out to be quite accurate. We also demonstrate that in this example the velocity fluc-
tuations are small (goes to zero as g

02)(see Appendix B). This is done by computing the convective stress, which is
essentially the covariance matrix of velocity fluctuations. The trace of this matrix is (essentially) the kinetic energy of
velocity fluctuations. Smallness of kinetic energy is the underlying reason for a good accuracy obtained from the
zero-order approximation.

5.3. Coarse-scale solution of the SPH ODEs using coarse approximation of the interaction stress

In the previous example, the interaction stress was found from Eq. (2.13). Unfortunately, this equation is expensive to
evaluate, since it involves summing up about N terms for the short-range interactions fij. This is the same number of oper-
ations (per time step) as in the SPH method, and the only (but significant) computational advantage over the direct SPH sim-
ulations in this example is achieved via an increase in the time step. The time steps in SPH and the dimensional reduction
method are controlled by the Courant-Friedrichs-Lewy (CFL) condition and the constraint due to the viscous term:
Dt ¼ j1
D
v
 ð5:21Þ
and
Dt ¼ j2
qD2

l
ð5:22Þ
where v⁄ is the maximum velocity, j1 and j2 are coefficients that are less than 1 (in the simulations these parameters are set
to 0.25), D = e0 in the SPH model, and D = g0 in the dimension reduction model. Since g0 is much larger than e, the time step in
the dimension reduction model can be much larger than the time step in the SPH model. The computational advantage is
more significant for the low Reynolds number flows (flows dominant by the viscous forces) when the time step increases
as D2 (according to the time constraint (5.22)) than for the high Reynolds number flow where the time step increases linearly
with D (the time constraint (5.21)).

To further reduce the computational cost of the dimension reduction method, a coarse approximation of Tg
ðintÞ is intro-

duced. For the SPH interaction forces (5.1), the integral form of the interaction stress is:
Tg
ðintÞðxÞ ¼

1
2

Z
Xs

Z
Xs

�f ðx0; x00;vðx0Þ;vðx00ÞÞ � ðx00 � x0Þ �
Z 1

0
wgðsðx� x00Þ þ ð1� sÞðx� x0ÞÞdsdx0dx00; ð5:23Þ
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where
Fig. 3.
interac
�f ðx0; x00;vðx0Þ;vðx00ÞÞ ¼ �qðx0Þ Pðx00Þ
qðx00Þ þ Pðx0Þ qðx

00Þ
q2ðx0Þ

� �
þ 1

2
lvðx0Þ � vðx00Þ
jx0 � x00j2

ðx0 � x00Þ
" #

� rx0weðx0 � x00Þ: ð5:24Þ
We start by introducing new variables:
R ¼ 1
2
ðx0 þ x00Þ; q ¼ x0 � x00;
and rewriting the integral interaction stress (5.23) as:
Tg
ðintÞðxÞ ¼

1
2

Z
X

Z
De

��f ðR;qÞ � q
Z 1

0
wg s x� Rþ 1

2
q

� �
þ ð1� sÞ x� R� 1

2
q

� �� �
dsdqdR; ð5:25Þ
where
��f ðR;qÞ ¼ �f ðVeðRþ q=2Þ;V eðR� q=2Þ;Rþ q=2;R� q=2Þ: ð5:26Þ
An important observation about (5.25) is that the integration in R is still over the whole computational domain X, but inte-
gration in q is over a much smaller domain De, which is the support of the microscale smoothing function we. In case of non-
compactly supported, but fast decreasing we, such as Gaussian, we can take De to be the ball of radius 3e centered at zero.
Such approximation can be easily justified using standard localization arguments. Another important observation is that the
function wg depending on R is a mesoscale quantity and, thus, varies slowly compared to q-dependent functions. For low-
compressible and incompressible fluids, the pressure and density are also slowly varied functions (or constants) in space. The
velocity interpolant Ve is not slowly varying, but it is approximated by a low-order (zero-, first- or second-order) deconvo-
lution, which does vary slowly. If one uses higher-order deconvolutions, defined in Eq. (4.3), the velocity approximations are
still slowly varying, compared to q-dependent functions.

To make use of this, we suggest using different grids for different integrals: the integral in R is discretized on a coarse
mesh with a grid size on the order of g0, while q-integral is discretized on the fine mesh with a grid size on the order of
e0. Denote the nodes of the mesoscale mesh by qb, b = 1, . . . ,NC, NC� N. The flow domain is subdivided into mesocells of area
Lx Ly/NC. The domain De is subdivided into J cells of area jDej/J, where J is the number of fine-scale mesh points surrounding a
mesoscale mesh node and jDej is the area of De. An efficient way of implementing this partition is to use the original fine-
scale mesh for discretizing the q-integral. In that case:
jDej
J
¼ LxLy

N
:

Since jDej = const � (Le)d = const � (LxLy)/N, J is independent of N. Approximating the integral (5.25) with its Riemann sum
yields:
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Tg
ðintÞðt; xÞ �

1
2

XNC

b¼1

XJ

j¼1

LxLy

NC

LxLy

N
�f ðqb;qjÞ � qj

Z 1

0
wg s x� qb þ

1
2
qj

� �
þ ð1� sÞ x� qb �

1
2
qj

� �� �
ds ð5:27Þ
The operation count of (5.27) depends on NC and f, but not on N. Indeed, instead of summing up about N terms in (2.13), we
now have NCJ summations, and NC� N, while J is independent of N. For fixed NC, the asymptotics of the operation count in
(5.27) is O(1) as N ?1 compared to O(N) in Eq. (2.13). As a consequence of comparative smallness of gradients of R-depen-
dent quantities in (5.27), the accuracy of this approximation is quite good. Fig. 3 shows the comparison of the reduction
method with the full and coarse estimations of the interaction stress and the analytical solution. The comparison shows a
good agreement between the analytical solution and the dimension reduction model with N/NC as large as 369. The results
obtained with N/NC = 16 perfectly agree with the results of the dimension reduction model using the exact evaluation of the
interaction stress (N/NC = 1). In the computational examples presented above, the zero-order deconvolution was used to cal-
culate SPH velocities. In the following section, we show the coarse approximation of the interaction stress is also accurate for
the first-order deconvolution. In Appendix C, we present the analytical error estimates quantifying the accuracy of the coarse
approximation of the interaction stress.
6. First-order deconvolution for Poiseuille flow driven by periodic body force

Here, we consider a flow of incompressible fluid driven by the periodic body force:
ld2VxðyÞ
dy2 þ qg 1þ A sin

y� l1

l2 � l1
np

� �� �
¼ 0; l1 < y < l2 ð6:1Þ
subject to the same initial flow and boundary conditions as the Poiseuille flow with a uniform body force, described in the
previous section. As before, the fluid was discretized with SPH particles, and the SPH ODEs were solved using the dimension
reduction method. To describe oscillatory behavior of solution caused by the periodic body force, here we use the first-order
deconvolution. Fig. 4 shows the comparison of the solutions obtained with the zero- and first-order deconvolutions and the
analytical solution (see Appendix D). The comparison shows that the first-order solution is more accurate than the zero-or-
der solution. These results also show that the coarse approximation of the interaction stress with N/NC = 64 does not intro-
duce a significant error into the first-order solution.
7. Coarse-scale solution of smoothed particle hydrodynamics ODEs for two-phase flow

Finally, we apply the dimension reduction method to multi-scale multi-phase flow. We consider a two-fluid system in a
two-dimensional channel where thin layers of less viscous fluid are randomly distributed in a more viscous fluid. All layers
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are oriented parallel to the walls of the channel of the width L. The meso-scale length in the simulations is set to g0 = L/16, or
g = 1/16. The microscale length is e0 = L/192 (e = 1/192). To make the problem multiscale, we consider three different flows
with the layers with thickness much smaller than the width of the channel. In Cases 1 and 2, the width of the layers is 3g0/4
and in Case 3 the width of the layers is 9g0/4. The distribution of layers in the three cases is shown in Fig. 5.

In Case 1, the distance between some of the layers is on the order of the width of the layers. In Cases 2 and 3, the distance
between all layers is much larger than the width of the layers.

In the SPH multiphase flow model [44], different fluids are modeled by separate sets of particles. The dynamics of each set
of particles is governed by Eqs. (2.1), (2.2), and (5.1) that are closed with the van der Waals equation of state [44]:
Pi ¼
nikBT

1� c1ni
� kijc2n2

i : ð7:1Þ
In the equation of state, kB is the Boltzmann constant, T is the temperature (assumed here to be constant), and c1 and c2 are
the van der Waals constants (assumed here to be the same for all fluids). The parameter kij is set to 1 when interacting par-
ticles i and j are of the same fluid and to k⁄ < 1 for interaction between particles of different fluids. The surface tension be-
tween two fluids increases with decreasing k⁄. We assume that the two fluids have the same density (masses of all particles
are set the same). The viscosity ratio is set to two. The distributions of layers in the three considered cases are shown in Fig. 5
where the viscous fluid has a density of 200 (in the model units), and less viscous fluid has a viscosity of 100 (in the model
units). The initial velocity of the particles is set to zero and flow is initiated by applying a uniform constant body force in the
direction parallel to the walls of the channel. We set the surface tension large enough (k⁄ is small enough) so that, in the
absence of initial perturbations in geometry of the layers, no Kelvin-Helmholtz instability developed and flow remained lam-
inar and stable for the entire time in the SPH simulations. The direct solutions of SPH equations for the three cases are de-
picted in Figs. 6–8.

It should be noted that in all three cases the widths of the layers are smaller than the size (diameter) of the averaging
window that is equal to 6g0, and in the coarse-scale calculations the layers of the less viscous fluid represent a sub-scale fea-
ture, the feature that cannot be explicitly resolved on the coarse scale. Furthermore, the micro-scale flow is a mixture of two
Newtonian fluids. Therefore, the effective rheology on the mesoscale is unknown at present, though it is likely to be non-
Newtonian. Because of this, the closed form of the coarse-scale momentum conservation equations is not available. Conse-
quently, direct coarse-scale simulations are not possible.

In the coarse solution, obtained with the dimension reduction method, the flow is assumed incompressible and the aver-
age velocities are found from Eqs. (5.11)–(5.14). The coarse approximation, Eq. (5.27), of Tint is used in the coarse-scale solu-
tion. The second-order deconvolution is used in the simulations, because the lower-order deconvolutions were found to
produce significantly less accurate results. The coarse solutions of SPH equations, obtained with the dimension reduction
method, are shown with diamond symbols. For times close to the initial moment, the coarse solutions agree with the direct
solutions of the SPH equations for all cases. For later times, at which the solutions have almost reached the steady-state, the
agreement is the best (Fig. 6, the maximum error is within 2%) for Case 3 and the worst (Fig. 8, the maximum error is within
10%) for Case 1. In the second case, the maximum error is within 6%. The error is calculated as a relative difference between
maximum velocities obtained from coarse and direct solutions of SPH equations at the time when the flow is assumed to
reach the steady state (the time after which solution changes by less than 0.001% after 1000 time steps). The dimension
reduction method is the most accurate when the smallest continuum feature, which needs to be resolved, has a character-
istic length greater or equal to g0. In Case 3, the width of the layers is 2.25g0 and the dimension reduction method has the
smallest error of 2%. In Case 2, the layer width is slightly smaller than g0 but the distance between the layers is much larger
than g0, and this results in the error of 6%. In Case 1, when both the width of the layers and the distance between some of the
Fig. 5. Distribution of viscosity in the computational domain for the three test cases.
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layers is smaller than g0, the error is the highest (10%). Our results show that in all considered cases the error decreases with
decreasing g0, but this leads to the increasing computational cost.
8. Conclusions

We developed a dimension reduction method for large-size ODE systems arising as discretization of fluid flow models.
The proposed method is applicable to other Newtonian particle dynamics ODEs, both conservative and dissipative, with
nearly constant particle concentration, such as periodic lattice problems modeling small amplitude vibrations. The method
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relies on a computational closure of evolution balance equations, obtained by space averaging of the ODEs. For isothermal
flows, the balance equations are the continuity equation and the momentum conservation equation. The latter contains a
non-local flux term – a stress tensor that is an explicit function of particle positions and velocities. The closure method is
based on a simple idea: the integral approximations of the averages are related to the corresponding microscopic quantities
via a convolution operator. These convolutions relate the primary mesoscopic variables, e.g., density and momentum, with
microscopic quantities. Therefore, taking the values of primary variables provided by the mesoscale solver, we can approx-
imately recover the microscopic quantities by iteratively inverting the convolution operator. Computational savings are pro-
duced by increasing the time step (the time step for integration of balance equations is much larger than the time step for
integration of the underlying ODEs), and reducing the number of operations at each time step.

To illustrate the computational advantages of the proposed reduction method, we used it to solve a system of smoothed
particle hydrodynamic ODEs describing single- and two-phase layered Poiseuille flows driven by uniform and periodic (in
space) body forces. For the single-phase Poiseuille flow driven by the uniform force, the accurate coarse solution was ob-
tained with the zero-order deconvolution. For the single-phase flow driven by the periodic body force, the first-order decon-
volution was necessary to obtain the accurate solution. In the two-phase flow problem we studied the layered flow of two
fluids with the width of the layers of the less viscous fluid being much smaller than the size of the channel. We found that an
accurate coarse-scale solution was possible to achieve with the mesoscale parameter on the order of the size of the layers
using the second-order deconvolution. It should be emphasized that the coarse-scale solution was obtained without any
assumptions on the effective rheological properties of the two-fluid system at the mesoscale.

The deconvolution-based closure is a general idea that can be used, in principle, for more general Newtonian particle
models exhibiting mixing and strong inhomogeneity of particle distribution. Another promising area of application is devel-
opment of fast numerical simulations of mesoscale behavior of mixtures of several fluids, flows with fluid-solid interactions
and other models of highly heterogeneous continuum systems. Our preliminary results do not allow us to comment on the
possible accuracy of the method for these type of problems, but they do show that the method can be accurate for multiscale
problems with non-uniform distribution of particle properties on the mesoscale.
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Appendix A. Integral in the interaction component of the meso stress

The integral of the weighting function in (3.5) is:
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g2 ¼ jx� x0j2

g2 : ðA:4Þ
Appendix B. Convectional stress

For the Poiseuille flow driven by the uniform body force, the only non-zero component of the convectional stress (3.4) is
the Txx component:
�Tg
ðcÞ;xxðxÞ=q ¼

Z
X

�vg
x ðxÞ � Ve

xðx0Þ
	 
2

wgðx� x0Þdx0 ¼
Z

X
V e

xðx0Þ
2wgðx� x0Þdx0 � �vg

x ðxÞ
2
: ðB:1Þ
The (only non-zero) x component of the steady-state mesoscale velocity can be found by performing analytical integration of
Eq. (3.3) with Ve given by the analytical steady-state solution for the Poiseuille flow. The steady-state mesoscale velocity is
given by:
�vg
x ðyÞ ¼ �

qg
2l

g2

2
þ y2 � ðl1 þ l2Þyþ l1l2

� �
: ðB:2Þ
The last integral in Eq. (B.1) can be evaluated analytically, resulting in the following expression for the steady-state convec-
tional stress:
�Tc
xxðyÞ=q ¼

q2g2

4l2

1
4
g4 þ ðl1 þ l2 � 2yÞ2

2
g2

" #
� qg

2l
vxðyÞg2 þ VxðyÞ2 � vxðyÞ2:
Appendix C. Error estimate of the coarse discretization of zero-order interaction stress

Here, we estimate the error incurred by replacing the fine-scale discretization (2.13) of the interaction stress with a
coarse-scale discretization (5.27). We only deal with a one-dimensional case. Generalizing to higher dimensions is straight-
forward. The inter-particle force formulas are taken from the SPH Eq. (5.1).

First, introduce some notation. Pick a number c 2 (0,1) and let qb be coarse mesh points b = 1,2, . . . ,B. The computational
domain in X = (0,L), and the coarse mesh step size is:
Dc ¼ cgL:
The number of these points is:
B ¼ 1
cg
:

The corresponding coarse-scale cells Cb are intervals of length Dc. Each cell contains several fine-scale cells Cb,i, i 2 Ib, where Ib
denotes the set of indices of the included cells. The number of fine-scale cells within a coarse-scale cell is:
jIbj ¼
cg
e
:

In one-dimension and a uniform pressure field, Eq. (5.1) reduces to:
fij ¼
1
2
l L2

N2

v i � v j

jqi � qjj
2 ðqi � qjÞw0eðqi � qjÞ:
In the zero-order approximation, vi, vj are replaced by �vgðqiÞ; �vgðqjÞ, respectively. The fine-scale discretization of the interac-
tion stress in the zero-order approximation is (compare with (2.13)):
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Tðf Þ ¼
1
2
l L2

N2

XN

i¼1

X
j2J

ð�vgðqiÞ � �vgðqjÞÞw0eðqi � qjÞ
Z 1

0
wgðsðx� qjÞ þ ð1� sÞðx� qiÞÞds: ðC:1Þ
Changing variables from qi, qj to Ri þ 1
2 qj;Ri � 1

2 qj as in Section 5 and writing Ri = qb + DRi, for each i 2 Ib, from (C.1) we obtain:
Tðf Þ ¼
1
2
l

L2

N2

Z 1

0

XB

b¼1

X
j2J

w0eðqjÞ
X
i2Ib

Ai;j;bðx; sÞds; ðC:2Þ
where
Ai;j;bðx; sÞ ¼ �vg qb þ DRi þ
1
2
qj

� �
� �vg qb þ DRi �

1
2
qj

� �� �
wg x� qb � DRi þ

1� 2s
2

qj

� �
:

The coarse discretization of the interaction stress is:
TðcÞ ¼
1
2
l L2

N2 jIbj
Z 1

0

XB

b¼1

X
j2J

w0eðqjÞ �vg qb þ
1
2
qj

� �
� �vg qb �

1
2
qj

� �� �
wg x� qb þ

1� 2s
2

qj

� �
: ðC:3Þ
Next, we write,
Tðf Þ ¼ TðcÞ þ S1 þ S2 þ S3;
where
S1 ¼
1
2
l L

B
L
N

B
N

Z 1

0

XB

b¼1

X
j2J

X
i2Ib

jqjjw0eðqjÞðD�vgðRiÞ � D�vgð0ÞÞwg x� qb þ ð1� 2sÞ
qj

2

� �
ds; ðC:4Þ

S2 ¼
1
2
l L

B
L
N

B
N

Z 1

0

XB

b¼1

X
j2J

X
i2Ib

jqjjw0eðqjÞD�vgð0ÞDwgðDRiÞds; ðC:5Þ

S3 ¼
1
2
l L

B
L
N

B
N

Z 1

0

XB

b¼1

X
j2J

X
i2Ib

jqjjw0eðqjÞðD�vgðDRIÞ � D�vgð0ÞÞDwgðDRiÞds: ðC:6Þ
In Eqs. (C.4)–(C.6),
D�vgðhÞ ¼
�vgðqb þ 1

2 qj þ hÞ � �vgðqb � 1
2 qj þ hÞ

jqjj

DwgðhÞ ¼ wg x� qb � hþ ð1� 2sÞ
qj

2

� �
� wg x� qb þ ð1� 2sÞ

qj

2

� �
:

To estimate the error, we need to estimate Si, i = 1, 2, 3. To do this, we assume two bounds on the average velocity:
jD�vgð0Þj 6 M1; ðC:7Þ
with M1 independent of c, e, g; and
jD�vgðhÞ � D�vgð0Þj 6 xðhÞ ðC:8Þ
where x(h) is a positive, continuous, decreasing function with limh?0x(h) = 0, independent of c, g, e.
Estimating S1. By (C.8):
B
N

X
i2Ib

D�vgðRiÞ � D�vgð0Þ

������
������ 6 B

N
x

1
2

cgL
� �

jIbj ¼ x
1
2

cgL
� �

: ðC:9Þ
Thus,
jS1j 6
1
2
lx

1
2

cgL
� �Z 1

0

XB

b¼1

L
B

X
j2J

L
N
jqjjw0eðqjÞwg x� qb þ

1
2
� s

� �
qj

� �
: ðC:10Þ
Recall that wg is an even, positive, compactly supported function that has maximum at zero and decreases away from this
maximum (a cut-off Gaussian is an example of such function). Using these properties of wg, we deduce:
XB

b¼1

L
B

wg x� qb þ
1
2
� s

� �
qj

� �
6

XB

b¼1

L
B

wg
L
2
� qb

� �
6

Z L

0
wg

L
2
� y

� �
dy 6 1: ðC:11Þ
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Finally, setting qj ¼ eq̂j, we arrive at:
X
j2J

L
N
jqjjjx0eðqjÞj 6 eLee�2

X
j2J

jq̂jjjx0ðq̂jÞj 6 M2; ðC:12Þ
where M2 is independent of c, g, e. Combining (C.10), (C.11), and (C.12) to obtain:
jS1j 6
1
2
lM2x

1
2

cgL
� �

: ðC:13Þ
Estimating S2. First, set DRi ¼ cgDbRi and note that:
L
N

X
i2Ib

DwgðDRiÞ

������
������ 6 eL

1
g
X
i2Ib

w
x� qb þ 1

2� s
	 


qj

g
� cDbRi

 !
� w

x� qb þ 1
2� s
	 


qj

g

 !�����
����� 6 cL

e
g

sup jw0j
X
i2Ib

jDbRij

6
e2

g2 L2 sup jw0jjIbj ¼ c
e
g

L2 sup jw0j: ðC:14Þ
Using this inequality and (C.7), we obtain:
jS2j 6
1
2
lc

e
g

L2 sup jw0jM1

XB

b¼1

X
j2J

L
N
jqjjjw0eðqjÞj
Finally, using (C.12), we find:
jS2j 6
1
2
lL2M1M2 sup jw0jc e

g
B ¼ 1

2
lM1M2L2 sup jw0j e

g2 : ðC:15Þ
where M1, M2 are constants from (C.7) and (C.12), respectively.
Estimating S3. Use of (C.8) yields:
jS3j 6
1
2
lx

1
2

cgL
� �Z 1

0

XB

b¼1

X
j2J

L
N
jqjj x0eðqjÞ
��� ���X

i2Ib

L
N
jDwgðDRiÞjds:
This sum is exactly as the one that appeared in estimating S2. Therefore, we can use (C.14) and (C.12) to find:
jS3j 6
1
2
lx

1
2

cgL
� �

BM2cL2 sup jw0j e
g
¼ 1

2
lL2 sup jw0jM2x

1
2

cgL
� �

e
g2 : ðC:16Þ
Now, combining estimates (C.13), (C.15), and (C.16) yields the overall error bound:
jTðf Þ � TðcÞj 6
1
2
lM2 x

1
2

cgL
� �

þM1L2 sup jw0j ce
g2 þ L2 sup jw0j ce

g2 x
1
2

cgL
� �� �

: ðC:17Þ
This inequality means that the error can be made small by choosing c and e/g sufficiently small. We are interested in the
situation when g 2 (0,1) is fixed and e ? 0. Then, the second and third terms in the right-hand side go to zero, and the first
term can be made arbitrarily small by choosing c small enough, or, equivalently, decreasing the coarse mesh size. This in-
creases computational cost, and our estimate can be used to achieve a desired balance between cost and accuracy.

Appendix D. Poiseuille flow driven by periodic body force

Consider the steady-state flow driven by the periodic body force:
ld2VxðyÞ
dy2 þ qg 1þ A sin

y� l1

l2 � l1
np

� �� �
¼ 0; l1 < y < l2 ðD:1Þ
subject to the boundary conditions:
VxðyÞ ¼ 0; y ¼ l1; and y ¼ l2: ðD:2Þ
Integrating the flow equations twice and applying the boundary conditions yields the analytical expression for the velocity:
VxðyÞ ¼
qg
2l
½ðl1 þ l2Þy� l1l2� �

qg
l

y2

2
� A
ðl2 � l1Þ2

n2p2 sin
y� l1

l2 � l1
np

� �" #
; l1 < y < l2: ðD:3Þ
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