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We put forward the use of total-variation-diminishing (or more generally, strong stability
preserving) implicit–explicit Runge–Kutta methods for the time integration of the equa-
tions of motion associated with the semiconvection problem in the simulation of stellar
convection. The fully compressible Navier–Stokes equation, augmented by continuity
and total energy equations, and an equation of state describing the relation between the
thermodynamic quantities, is semi-discretized in space by essentially non-oscillatory
schemes and dissipative finite difference methods. It is subsequently integrated in time
by Runge–Kutta methods which are constructed such as to preserve the total variation
diminishing (or strong stability) property satisfied by the spatial discretization coupled
with the forward Euler method. We analyse the stability, accuracy and dissipativity of
the time integrators and demonstrate that the most successful methods yield a substantial
gain in computational efficiency as compared to classical explicit Runge–Kutta methods.

� 2012 Elsevier Inc. All rights reserved.
0. Introduction

Numerical hydrodynamical simulations are a common tool in astrophysical research. Just as some of their counterparts in
the atmospheric sciences and in oceanography, astrophysical fluid flows are characterized by a vast range of timescales
which are present in the solutions of the dynamical equations governing the temporal evolution of such flows [23]. Large
relative changes of the solutions typically occur on the hydrodynamical timescale sfluid = Dx/juj. Here, u is the local flow
velocity and Dx is the local spatial resolution of the simulation, which coincides with the grid size obtained from spatial dis-
cretization of the governing partial differential equations. However, some of the physically important processes can also
operate on much shorter timescales than sfluid. Examples include radiative transfer, sound waves, magnetohydrodynamic
processes, and chemical or nuclear reactions (see [23] for example, and references therein).

In stellar astrophysics the two most important among those timescales are that of radiative energy exchange at the scale
of a grid cell, srad, and the time ssound a sound wave needs to cross such a cell.
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As long as sound waves are energetically or dynamically unimportant, a numerical simulation can be advanced with
much larger time steps by using semi-implicit time integration methods, for example, by a fractional step approach (see
[11] for a general introduction).

Similarly, if radiative transfer has the numerical characteristics of a stiff problem, as is the case, for instance, for numerical
simulations of the surface layers of A-type stars [29], implicit time integration appears desirable as well. Another important
example where radiative diffusion can limit the time-step is the numerical simulation of double-diffusive processes in stellar
interiors.

Semiconvection is the most important special case of double-diffusive convection in astrophysics. Models of stellar struc-
ture and evolution predict settings where the heavier product of nuclear fusion provides stability to a zone which otherwise
would be unstable to convective overturning, because temperature sufficiently rapidly decreases against the direction of
gravity. Such a zone would become convective if its composition were mixed. The question whether such a zone should
be treated as if it were mixed or not is referred to as the semiconvection problem (see [26,38], and Chap. 13.3 and 13-A in
[47], for example). A thorough physical analysis of the semiconvection problem based on numerical simulations in two spa-
tial dimensions for a parameter set relevant to stellar astrophysics is given in [49]. Further discussions and reviews on this
topic can be found, for instance, in [4,5,24,43,46]. For this problem, long total integration times are required even when the
microphysics is idealised, whereas the time integration step is governed by srad and ssound.

For reasons outlined above, in this paper we discuss the advantages of implicit–explicit (IMEX) Runge–Kutta methods for
simulations of stellar convection and diffusion in the parameter regime commonly associated with semiconvection as dis-
cussed in [49]. These methods treat only part of the right-hand sides implicitly, where the resulting (generally nonlinear)
equations can be solved by means of a generalized Poisson problem. It turns out that the total-variation-diminishing (TVD)
property is essential for a numerical time integrator to be successful in simulations of the problems in our focus: to suppress
spurious oscillations in the spatial discretization (which in this paper we realize for the hyperbolic terms by essentially non-
oscillatory schemes and by dissipative centered finite difference schemes for the parabolic terms), this property has been
demonstrated to be necessary for a stable integration in [13].

The TVD property is more generally referred to as strong stability preserving (SSP) or monotonicity when norms other than
the total variation norm or even sublinear functionals are considered. When the space discretization has the property that
the functional of the discrete spatial profile is decreased in the course of numerical time propagation by the forward Euler
method for a time-step DtFE, then an SSP method preserves this property under a step-size restriction of the form Dt 6 CDtFE

with C > 0. Since the term total-variation-diminishing is more commonly used in the context of astrophysical simulations,
where the total-variation-seminorm is the functional of interest, we mostly use these terms here synonymously. We expect
the SSP (or TVD) IMEX methods to be useful also for other astrophysical problems where a high radiative (conductive) dif-
fusivity of internal energy (temperature) restricts the time-step of hydrodynamical simulations, such as simulations of stel-
lar surface convection with steep temperature gradients or at high resolution.

The outline of the paper is as follows. First, we introduce SSP IMEX Runge–Kutta schemes and survey the related literature
in Section 1.

Next, in Section 2 we specify the general set of equations to be solved in numerical simulations of semiconvection and
related flows and describe the general solution techniques implemented for this class of problems in the ANTARES code
[35] which we use for the numerical examples discussed further below. Subsequently, we discuss how this framework
has to be modified when solving the dynamical equations with the IMEX approach.

In Section 3 we analyse several SSP IMEX methods from the literature with respect to their radius of absolute monoto-
nicity, stability and dissipativity. We show that the methods yield a significant advantage over classical explicit Runge–Kutta
schemes with respect to both efficiency and accuracy and we also suggest a modification for one of the methods, which turns
out to improve its efficiency.

We then present numerical simulations of semiconvection in Section 4 to demonstrate the efficiency of the SSP IMEX
methods as compared to the classical, explicit SSP Runge–Kutta time integrators and some non-SSP IMEX methods from
the literature by giving numerical examples for a single layer in a physical scenario similar to that one studied in [49].
We conclude this paper by a summary of the main properties of the IMEX methods, suggesting reasons for preferring par-
ticular methods and providing an outlook on interesting applications, which appear especially suited for this numerical
approach.
1. Implicit–explicit Runge–Kutta methods for semiconvection

To introduce our numerical methods in an abstract setting, we consider the ODE initial value problem
_yðtÞ ¼ FðyðtÞÞ þ GðyðtÞÞ; yð0Þ ¼ y0; ð1Þ
where we assume that the vector fields F and G have different stiffness properties. For this type of problems, partitioned
Runge–Kutta schemes [15], also called additive Runge–Kutta schemes, are popular. Methods of this kind use different
Runge–Kutta formulae for the treatment of the two vector fields. We will see that the spatial semi-discretization of (15) be-
low and the associated boundary conditions give rise to this kind of system.
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An s-stage partitioned Runge–Kutta method characterized by coefficient matrices A = (ai,j) and ~A ¼ ð~ai;jÞ defines one step
yold ? ynew by
yi ¼ yold þ Dt
Xs

j¼1

ai;jFðyjÞ þ Dt
Xs

j¼1

~ai;jGðyjÞ; i ¼ 1; . . . ; s; ð2Þ

ynew ¼ yold þ Dt
Xs

j¼1

bjFðyjÞ þ Dt
Xs

j¼1

~bjGðyjÞ: ð3Þ
If ai,j = 0 for j P i, the method is referred to as an implicit–explicit (IMEX) method.
These methods have first been investigated with respect to the SSP or TVD property in the context of hyperbolic systems

with relaxation, where G ¼ 1
e
bG; e� 1; in [36]. There, the common specification for strong stability preserving IMEX methods

is introduced. An IMEX method is referred to as ‘SSPk(s,r,p)’ when it has the following properties: k is the order of the meth-
od in the stiff limit e ? 0, which is characterized by the coefficients for the explicit part. The latter must necessarily be SSP
and is referred to as the asymptotically SSP scheme. s is the number of stages in the implicit scheme and r the number of
stages in the explicit scheme. p is the global order of the resulting combined method. It is essential to observe that if the
implicit scheme characterized by ~A ¼ ð~ai;jÞ is a diagonally implicit Runge–Kutta (DIRK) method, then the explicit part is eval-
uated only once in each stage, providing the desired computational advantage [36].

The analysis in [36] is valid only for e� 1 [21]. However, several useful examples of strong stability preserving IMEX Run-
ge–Kutta methods are given, see Section 3.

Higueras [21] develops a comprehensive theory of strong stability preserving additive Runge–Kutta schemes which ex-
tends the concepts for standard Runge–Kutta methods in a natural way:

Let s; ~s be the step-size restrictions for monotonicity of the explicit Euler method for the vector fields F and G, respec-
tively. We define the region of absolute monotonicity
RðA; ~AÞ ¼ fðr;~rÞ 2 R2 : ðA; ~AÞ is absolutely monotonous on ½�r;0� � ½�~r;0�g; ð4Þ
where the absolute monotonicity at a point ðr0;~r0Þ is characterized by algebraic relations for the matrices A; ~A. The boundary
in the first quadrant, @RðA; ~AÞ \ fðr;~rÞ : r;~r P 0g; is denoted as the curve of absolute monotonicity. The significance of the re-
gion RðA; ~AÞ is expressed in the following theorem [21].

Theorem 1.1. Let ðA; ~AÞ be absolutely monotonous at ð�r;�~rÞ with step-size coefficients s; ~s. Then for h 6 min rs;~r~sf g,
diminishing of the norm holds,
kyik 6 kyoldk; i ¼ 1; . . . ; s; kynewk 6 kyoldk:

Higueras [22] gives order barriers for strong stability preserving additive Runge–Kutta methods similarly to [28]. The or-

der of an additive Runge–Kutta method ðA; ~AÞ is bounded by the orders of A and ~A, respectively. This implies for IMEX meth-
ods the order barrier p 6 4 [28]. Moreover, Higueras [22] gives a simple algebraic criterion for a nontrivial region of absolute
monotonicity in terms of incidence matrices of A; ~A. Some examples of strong stability preserving IMEX Runge–Kutta meth-
ods analysed in Section 3 can be seen in [22,28].

Some other relevant issues can be studied for IMEX methods. In this paper we focus on stability regions, error constants
and dissipativity analysis. We close this section with a brief description of these concepts.

The stability region of IMEX Runge–Kutta methods is defined in [1,2] via the test equation of the form (1), where
FðuÞ ¼ ibu; GðuÞ ¼ au; a 6 0 < b: ð5Þ
For this problem,
ynew ¼ RðzÞyold; z ¼ aDt þ ibDt; ð6Þ
and the stability region is the part of the complex plane where jR(z)j < 1. We will perform the corresponding analysis of the
stability function for the methods considered in Section 3.

To determine error constants of the methods we have computed the empirical convergence orders by solving the non-
linear test problem
y0ðtÞ ¼ ð1þ sinðyðtÞÞÞ þ ðy2ðtÞ � sinðyðtÞÞÞ; yð0Þ ¼ 0; ð7Þ
with the known exact solution y(t) = tan(t). In this paper, the error constants are determined from the errors at t = 1.3. Their
size is vital for the comparison of the accuracy of the methods of the same order and therefore the assessment of the work/
precision relation. Of course, this single example only gives a rough indication of the size of the error constant and no rig-
orous estimate, but it seems sufficient for our purpose of comparing the methods in our focus with respect to accuracy,
which we do in Sections 4 and 5 further below. The example was chosen such as to represent a nonlinear initial value prob-
lem with known solution whose profile is arbitrarily unsmooth as t ! p

2.
Finally, we study the dissipativity of the time integrators in conjunction with suitable space discretizations. Strikwerda

[45] gives a justification for considering only the diffusion term in this context since the advection term becomes negligible
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asymptotically. We will thus investigate the dissipativity of the implicit scheme specified by ~A. To this end, we apply the
spatial discretizations LDx in our focus to the heat equation
ut ¼ buxx;
and associate for the spatial discretization uj±k M e±ihk. Thus, we compute the amplification factor g(h,l) = R((LDxu)j), with
l ¼ b Dt

ðDxÞ2
. This represents the factor by which oscillations of frequency h are amplified in each time step. We pay particular

attention to the case h = p corresponding to the mesh width. If g = 0 or jgj = 1 also for a smaller 0 < jh0j < p, then this value
would represent the limit for a robust integration. However, such a pathological behaviour is only conceivable for methods
of higher order.

The spatial discretizations which were found to show a dissipative behaviour in [27] are the second-order three-point
scheme (the upper index refers to the time step)
uxxðxj; tnÞ �
un

jþ1 � 2un
j þ un

j�1

ðDxÞ2
¼: ðLDxunÞj; ð8Þ
and the fourth-order stencil
ðLDxunÞj :¼
�un

jþ2 þ 16un
jþ1 � 30un

j þ 16un
j�1 � un

j�2

12ðDxÞ2
: ð9Þ
These are the methods actually implemented in ANTARES, where (9) is the default (see also [27]).

2. Solving the hydrodynamical equations with ANTARES

In our model, the fundamental equation of motion is the fully compressible Navier–Stokes equation which describes
momentum conservation:
ðquÞ0 þ r � ðqu� uþ pIÞ ¼ qgþr � r: ð10Þ
The state variables in the model equations generally depend on the spatial variables (x,y,z) and time t. In the simulations
presented in Section 4 we solve problems in two spatial variables, whence the variable z will be dropped in the rest of
the paper. The (explicit) dependencies are stated in Table 1. For simplicity, we omit the dependencies in the problem spec-
ification (10)–(14). The model is completed by the continuity equation
q0 þ r � ðquÞ ¼ 0; ð11Þ
which ensures conservation of mass, and the total energy equation
e0 þ r � ðuðeþ pÞÞ ¼ qðg � uÞ þ r � ðu � rÞ þ Q rad; ð12Þ
which describes conservation of the latter. In the case of a two-component fluid, the system is augmented by the concen-
tration equation of the second species,
ðcqÞ0 þ r � ðcquÞ ¼ r � ðqjcrcÞ: ð13Þ
The variables and parameters which appear in the model formulation are collected in Table 1.
Table 1
Variables and parameters in the Eqs. (10)–(14).

q = q(x,y,z, t) Gas density
c = c(x,y,z, t) Concentration of second species
u = u(x,y,z, t) = (u,v,w)T Flow velocity
qu Momentum density
u � u Kronecker product
p = p(T,q,c) Gas pressure
g = (g,0,0)T Gravitational acceleration
r = r(x,y,z, t) Viscous stress tensor for zero bulk viscosity
g Dynamic viscosity (appears in the definition of r)
e = e(x,y,z, t) = eint + ekin Total energy density
T = T(x,y,z, t) Temperature
Qrad = Qrad(x,y,z, t) Radiative source term
cp = cp(T,q,c) Specific heat at constant pressure
vm = vm(T,q,c) (Specific) opacity at frequency m
K = K(T,q,c) Radiative (or thermal) conductivity
jT = K/(cpq) Radiative (or thermal) diffusivity
jc = jc(T,q,c) Diffusion coefficient for species c
Im = Im(r),r = r(x,y,z) Specific intensity along the ray of direction r
Sm = Sm(x,y,z) Source function
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In general, the radiative source term Qrad is determined as the stationary limit of the radiative transfer equation
r � rIm ¼ qvmðSm � ImÞ; ð14Þ
which is solved for all ray directions r and for all frequencies m, resulting in the specific intensity Im(r), for details see [47]. Sm
here denotes the source function.

The equations of hydrodynamics (10)–(12) are closed by the equation of state which describes the relation between the
thermodynamic quantities. For the particular choice, see [35].

For the initial condition, a slightly perturbed static model stellar atmosphere or stellar envelope is used which is equipped
with a small seed velocity field or density perturbation to start dynamics away from equilibrium.

In the framework discussed below, boundary conditions are based on the assumption that all quantities are periodic in
both horizontal directions. Moreover, for the hydrodynamical equations, ‘‘closed’’ (Dirichlet) boundary conditions at the
upper and lower boundary of the computational domain are used. A recent development is to replace these by ‘‘open’’ (Ro-
bin) boundary conditions. These allow inflow and outflow of fluid along the vertical direction which is defined by the direc-
tion of g. For the radiative transfer Eq. (14), incoming radiation at the boundary of the computational domain must be
specified. Since double-diffusive convection in stars takes place in regions which are optically thick, the quantity Qrad can
accurately be obtained by means of the diffusion approximation for radiative transfer, Qrad =r � Frad =r � (KrT). In this case,
further knowledge about the intensity Im is not necessary.

The ANTARES code [35] solves this system of equations numerically in either one, two, or three spatial dimensions on a
rectangular grid (spherical coordinates with a logarithmically rectangular grid are also possible, i.e. the grid may be locally
rectangular with logarithmic grading in the radial component).

For the spatial discretization, ANTARES allows the definition of several grids which can be nested inside each other to
improve resolution in regions of interest. At the moment, ANTARES provides up to three levels of nested grids. For the hyper-
bolic terms, discretizations of ENO (essentially non-oscillatory [40]) type are implemented. These comprise classical ENO
methods, WENO (weighted essentially non-oscillatory) methods [40] (optionally in conjunction with Marquina flux splitting
[8]) and CNO (convex non-oscillatory) schemes [31]. Each of the methods uses adaptive stencils which are chosen such as to
avoid spurious oscillations in the computed solution. The spatial derivatives are calculated for each direction separately.

The parabolic terms are discretized by dissipative finite difference schemes [27] of fourth order. The radiative heating rate
is determined by the short characteristics method, or by means of the diffusion approximation for radiative transfer, where
appropriate. For the time integration, total variation diminishing Runge–Kutta methods [39,41] are employed.

ANTARES implements two different parallelization concepts. For architectures with distributed memory, domain decom-
position is used and realized by an MPI implementation. In this approach each grid is split along the horizontal direction(s)
and optionally, also along vertical ones, into subdomains. The memory required to store the computational variables for each
subdomain is provided by the resources available to the CPU core performing the computations necessary for that subdo-
main. In this way, each CPU core is mapped to a specific geometrical volume. However, since some supercomputers offer
only a limited amount of memory per CPU core and because the domain decomposition approach is not very efficient on
small grids, ANTARES offers a second type of parallelization which can be used along with or independently of the former.
It is based on a shared memory concept for each subdomain and is implemented through OpenMP directives. Therefore, the
most time consuming operations which can also be performed independently of each other are identified and computed in
parallel. This approach scales only to a moderate number of CPU cores, but allows improvement of the scaling and the com-
putational speed of the domain decomposition based parallelization for a larger number of problems and for a greater variety
of computer architectures.

In the following, the dynamical evolution of the fluid is described by the multispecies Navier–Stokes equations presented
above. Additionally, dimensionless quantities such as the Prandtl number Pr = cpg/K, the Lewis number Le = cpqjc/K, the Ray-
leigh number Ra and the stability parameter Rq are defined to determine the diffusivities jT, jc and the viscosity g. The for-
mer quantities arise in the definition of the starting model but do not appear in the evolution Eq. (15) below. Since we solve
the dynamical equations for a compressible flow, we specify the vertical extent of the simulation domain in multiples of the
pressure scale height Hp = P/(qg). For the simulations presented in Section 4 the domain always covers 1Hp. In the physical
model, intermolecular forces are neglected, so the fluid is assumed to be an ideal gas. The radiative source term Qrad is mod-
elled using the diffusion approximation with a heat conductivity K which is constant in time and otherwise only a function of
the vertical coordinate [33,34]. We use a variant of this setting here, where not only Pr, Le, and cp, but also K, jc, and g/q take
constant values [49]. This setup simplifies studies of the basic physics while it is still useful for extrapolations to astrophys-
ically relevant cases (cf. [49]).

For the model problem, the multispecies Navier–Stokes equations can be recast as
d
dt

q
qc

qu
e

0BBB@
1CCCA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
_yðtÞ

¼ �r �

qu
qcu

qu� uþ P � r
euþ Pu� u � r

0BBB@
1CCCA�

0
0
qg

qgu

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FðyðtÞÞ

þr �

0
qjcrc

0
KrT

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
GðyðtÞÞ

:
ð15Þ
In the context of the problem (15), the ith implicit stage of an IMEX Runge–Kutta method is typically of the form
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yi ¼ y	 þ Dt~ai;iGðyiÞ; ð16Þ
where y⁄ is known from previous stages. This is a consequence of ~ai;j ¼ 0 for j > i.
This translates to
qi ¼ q	; ð17Þ
ðqcÞi ¼ ðqcÞ	 þ Dt~ai;ir � ðqijcrciÞ; ð18Þ
ðquÞi ¼ ðquÞ	; ð19Þ
ei ¼ e	 þ Dt~ai;ir � ðKrTiÞ: ð20Þ
Rearranging (18) leads to
q	

Dt~ai;i
ci �r � ðq	jcrciÞ ¼

q	c	

Dt~ai;i
: ð21Þ
Obviously, this is a general elliptic equation for ci of the form
gðx; yÞuðx; yÞ � r � ðhðx; yÞruðx; yÞÞ ¼ f ðx; yÞ: ð22Þ
Due to model assumptions, (20) can also be transformed to resemble a general elliptic equation. We start by recalling
e ¼ eint þ ekin ð23Þ

¼ eint þ
1
2
qjuj2: ð24Þ
Bearing in mind Eq. (19), Eq. (20) reads
eint i ¼ e	int þ Dt~ai;ir � ðKrTiÞ: ð25Þ
The equation of state for an ideal gas5 relates the temperature T and the internal energy eint via
eint ¼
3
2

TqRgas

m
; ð26Þ
if we assume the ratio of the specific heats at constant pressure and volume to equal 5/3. Here, m denotes the mean molec-
ular weight of the compound.

So we have at stage i
eint i ¼
3
2

Tiq	Rgas

mi
ð27Þ
and therefore, we arrive at
3
2

Rgasq	

miDt~ai;i
Ti �r � ðKrTiÞ ¼

e	int

Dt~ai;i
: ð28Þ
Since mi is evaluated using the mass fraction ci, it is necessary to solve Eq. (21) first.
Thus, the solution of an implicit stage translates to the solution of the generalized Poisson equations for the mass fraction

c and the temperature T. In the ANTARES framework, finite elements are used for the discretization of (22). The resulting
linear system is solved by the conjugate gradient method. For parallel computations, the Schur complement algorithm is ap-
plied. A detailed description is given in [14].

The above procedure applies without modification to the case of the fully compressible Navier–Stokes equation. However,
for low Mach number flows a splitting approach is preferable where the terms containing pressure are treated separately in a
post-processing step, i.e. after evaluation of all other terms for the computation of the velocity fields. The latter are obtained
for the current step from an additional generalized Poisson equation for the pressure. This procedure is described in detail in
[11]. Consequently, the explicit stage is evaluated here using a fractional step method [30] as implemented in [17].
3. Strong stability preserving IMEX schemes from the literature

In this section we study different SSP IMEX methods from the literature focusing on the topics described in Section 1. The
results are summarized in Fig. 16 and Table 10.

All the strong stability preserving IMEX schemes listed in the following subsections have DIRK (diagonally implicit Run-
ge–Kutta) methods as the implicit scheme. This structure ensures that the stages can be solved successively, and the explicit
part only has to be evaluated once in each stage.
e that, as is common in astrophysics, the gas constant Rgas is taken to be relative to the atomic mass unit such that the dimensionless mean molecular
can be used in the equation of state instead of the molar mass.
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3.1. An SSP2(2,2,2) method

Pareschi and Russo [36] give an IMEX SSP2(2,2,2) method with nontrivial region of absolute monotonicity ðc ¼ 1� 1ffiffi
2
p Þ:
ð29Þ
The coefficients imply RðAÞ ¼ 1; Rð~AÞ ¼ 1þ
ffiffiffi
2
p

, and
RðA; ~AÞ ¼ fðr;~rÞ : 0 6 r 6 1;0 6 ~r 6
ffiffiffi
2
p
ð1� rÞg;
see [21].
The stability region is entirely located in the left half plane, tangent to the imaginary axis and unbounded as RðzÞ ! �1.

Hence, the schemes are A(a)-stable with a ¼ p
2, but not A-stable [16]. Moreover, limRðzÞ!�1RðzÞ ¼ 0. A plot of the stability re-

gion is given in Fig. 1(left).
The stability function of the implicit scheme ~A is
R~AðzÞ ¼ 2
ð1þ

ffiffiffi
2
p
Þð1þ zþ

ffiffiffi
2
p
Þ

ð2� zþ
ffiffiffi
2
p
Þ2

: ð30Þ
A plot of the related stability region is shown in Fig. 1(right). The scheme ~A appears to be A-stable and satisfies
limRðzÞ!�1R~AðzÞ ¼ 0, implying L-stability.

The dissipativity analysis for the implicit scheme defined by ~A yields the amplification factors for the standard three-point
space discretization (8) and the fourth order stencil (9), respectively. The amplification factors are evaluated at the points
h 2 0; p4 ;

p
2 ;p

� �
in Tables 2 and 3, respectively.

The first positive zero of g(p,l) is �0.6035 for the three-point scheme (8), where the function changes its sign, and
jg(p,l)j never exceeds 1. The first positive zero of g(p,l) for the fourth order space discretization (9) is �0.4526, where
the function changes its sign. The modulus never exceeds 1.
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Fig. 1. Stability regions of IMEX method (29) (left) and ~A (right).

Table 2
Values of g(h,l) for some h, implicit scheme in (29),
three point space discretization (8).

h g(h,l)

0 1
p
4 2

ð1þ
ffiffi
2
p
Þ 1�2lþl

ffiffi
2
p
þ
ffiffi
2
pð Þ

ð�2�2lþl
ffiffi
2
p
�
ffiffi
2
p
Þ2

p
2 2 ð1þ

ffiffi
2
p
Þð1�2lþ

ffiffi
2
p
Þ

ð2þ2lþ
ffiffi
2
p
Þ2

p 2 ð1þ
ffiffi
2
p
Þð1�4lþ

ffiffi
2
p
Þ

ð2þ4lþ
ffiffi
2
p
Þ2



Table 3
Values of g(h,l) for some h, implicit scheme in (29),
fourth order space discretization (9).

h g(h,l)

0 1
p
4 12 ð1þ

ffiffi
2
p
Þð6�15lþ8

ffiffi
2
p

lþ6
ffiffi
2
p
Þ

ð�12�15lþ8
ffiffi
2
p

l�6
ffiffi
2
p
Þ2

p
2 6 ð1þ

ffiffi
2
p
Þð3�7lþ3

ffiffi
2
p
Þ

ð6þ7lþ3
ffiffi
2
p
Þ2

p 6 ð1þ
ffiffi
2
p
Þð3�16lþ3

ffiffi
2
p
Þ

ð6þ16lþ3
ffiffi
2
p
Þ2
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3.1.1. Modification of c
We may conceive of optimizing the method (29) by adapting the value of the parameter c in the definition of ~A according

to the resulting stability, accuracy, and dissipativity properties. The region of absolute monotonicity depends on c as follows
[19]:
Rð~AÞ ¼

1
1�3c ; 0 6 c 6 1

4 ;

1�2c
2c2�4cþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c�1

ð2c2�4cþ1Þ2

q
; 1=4 < c < 1� 1ffiffi

2
p ;

1þ
ffiffiffi
2
p

; c ¼ 1� 1ffiffi
2
p ;

1�2c
2c2�4cþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c�1

ð2c2�4cþ1Þ2

q
; 1� 1ffiffi

2
p < c 6 1

2 ;

8>>>>>>><>>>>>>>:
ð31Þ
RðA; ~AÞ ¼
ðr;~rÞ : 0 6 r 6 1;0 6 ~r 6 1�r

1�c

n o
; 0 6 c 6 1

3 ;

ðr;~rÞ : 0 6 r 6 1�2c
c ;0 6 ~r 6 1�r

1�c

n o
; 1

3 6 c 6 1
2 :

8><>: ð32Þ
A plot of the function Rð~AÞ in dependence of c is given in Fig. 2.
The regions of absolute monotonicity RðA; ~AÞ for the values c 2 {0.1,0.2,0.3} are plotted in Fig. 3.
The stability regions for the IMEX schemes for the different values of c cover bounded subdomains of the left half plane

for c < 0.25, while for c P 0.25, the stability regions cover unbounded domains in the left half plane. In fact, the left bound-
aries zleft satisfy
zleft ¼
2

4c�1 ; c < 0:25;

�1; c P 0:25:

(

However, even in the cases with unbounded stability regions, in general limRðzÞ!�1RðzÞ – 0. The boundaries of the stability
regions are plotted in Fig. 4(left), where values equal to 0 represent unbounded stability regions. The implicit schemes ~A
show the same stability behaviour concerning both the boundaries of the stability regions and the limits for RðzÞ ! �1.

It was demonstrated with a MATLAB implementation that the convergence order two is retained also for the modified val-
ues of c. The error constant depends on c, however. In Fig. 4(right) we plot the error constant as a function of c, where the
error is determined at t = 1.3 for the test problem (7). We note that for small c, the error constant decreases as c grows, while
for c > 0.1833 the constant grows monotonically. This behaviour does not appear to be related to the results we obtain for the
dissipativity analysis, where for c = 0.25 the behaviour changes.
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Fig. 2. Radius of absolute monotonicity Rð~AÞ as a function of c for (29).
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To assess the dissipativity properties of the modified scheme we vary c and compute the first positive zero of g(p,l) and
the point l where the modulus of this function exceeds 1.

For c P 0.25, the amplification factor for the three-point space discretization (8) has a zero at l ¼ 1�2c�
ffiffiffiffiffiffiffiffi
4c�1
p

8c2�16cþ4 , but there is no
real root for c < 0.25. Also for c < 0.25, jgj exceeds 1 at l ¼ 1

2�8c, and this behaviour does not occur for c P 0.25. For the discret-

ization (9), the behaviour is the same, but the scale with respect to l is multiplied by 0.75 (see also Section 3.2 in [27]).
To illustrate this analysis, in Fig. 5 we vary c and compute for 30 values of c spaced equidistantly in the interval

½0:15;1:1� 1=
ffiffiffi
2
p
� the first positive zero of g(p,l) and the point l where the modulus of this function exceeds 1. This analysis

is given for the three point space discretization (8) in Fig. 5. We conclude that it may be of interest to choose c < 0.25 to en-
sure 0 < g(p,l) < 1. This can be achieved by a value of c just slightly smaller than 0.25.

Taking into account the results displayed in Fig. 4 we suggest to optimize c by taking it as large as necessary to avoid any
linear stability restrictions due to the term G(y(t)) in (1) and as small as possible to minimize the stability constant C. Note
that some special values for c are 0; ð1� 1=

ffiffiffi
3
p
Þ=2 � 0:2113, and 1/4, in addition to the originally proposed value of
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1� 1=
ffiffiffi
2
p
� 0:2929. They are readily identified to yield the classical explicit SSPRK(2,2) method6 of order two by Shu and

Osher [41], the optimal implicit third order SSP method with two stages [10], and the optimal implicit second order SSP method
with two stages [10]. In our numerical tests reported in Section 4 below, we found that the choice c = 0.24 yielded the most
efficient time integrator.

3.2. An SSP2(3,3,2) method

Higueras [21] gives an IMEX SSP2(3,3,2) method with nontrivial region of absolute monotonicity:
6 We
method
ð33Þ
This is a modification of a scheme from [36], where the latter turned out to have a trivial region of absolute monotonicity. It
holds that RðAÞ ¼ 2 and Rð~AÞ ¼ 5

9 ð
ffiffiffiffiffiffi
70
p

� 4Þ, and
RðA; ~AÞ ¼ fðr;~rÞ : 0 6 r 6 1;0 6 ~r 6 /ðrÞg;
where
/ðrÞ ¼ 1
4
ð�28þ 9rÞ þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1264� 984r þ 201r2

p� �
:

We note that the latter is a correction with respect to [21], since we have found r to be necessarily bound by 1 in RðA; ~AÞ. A
plot of RðA; ~AÞ is given in Fig. 6.

A plot of the stability region is given in Fig. 7(left). We observe that the stability region is tangent to the imaginary axis
and appears to be unbounded as RðzÞ ! �1. Moreover, limRðzÞ!�1RðzÞ ¼ 0. The stability function of the implicit scheme is
given by
R~AðzÞ ¼
�150� 40zþ 9z2

2ð�5þ zÞ2ð�3þ zÞ
: ð34Þ
A plot is shown in Fig. 7(right). Note that the stability region is not connected. The method is A-stable, however. Moreover,
the scheme ~A satisfies limRðzÞ!�1R~AðzÞ ¼ 0.

The dissipativity analysis for the implicit scheme defined by ~A yields the amplification factors for the standard three-point
space discretization (8) and the fourth order stencil (9). These amplification factors are evaluated at the points h 2 f0; p4 ; p2 ;pg
in Tables 4 and 5, respectively.

The first positive zero of g(p,l) is �0.6064 for the three-point space discretization (8), where the function changes its
sign, and jg(p,l)j never exceeds 1. The first positive zero of g(p,l) is �0.4551 for the fourth order space discretization
(9), where the function changes its sign, and jg(p,l)j never exceeds 1.

3.3. An SSP3(3,3,3) method

Higueras [22] gives the following SSP3(3,3,3) method with nontrivial region of absolute monotonicity:
will henceforth use the common specification ‘SSPRK (s,p)0 introduced in [28] for an s-stage order p explicit strong stability preserving Runge–Kutta
.



Table 4
Values of g(h,l) for some h, implicit scheme in (33),
three point space discretization (8).

h g(h,l)

0 1
p
4 � 75þ20l

ffiffi
2
p
�40l�27l2þ18l2

ffiffi
2
p

ð�5þl
ffiffi
2
p
�2lÞ2ð�3þl

ffiffi
2
p
�2lÞ

p
2 ��75þ18l2þ40l

ð5þ2lÞ2ð3þ2lÞ

p ��75þ80lþ72l2

ð5þ4lÞ2ð3þ4lÞ

Table 5
Values of g(h,l) for some h, implicit scheme in (33),
fourth order space discretization (9).

h g(h,l)

0 1
p
4 �9 1800�1200lþ640l

ffiffi
2
p
�1059l2þ720l2

ffiffi
2
p

ð�30�15lþ8l
ffiffi
2
p
Þ2ð�18�15lþ8l

ffiffi
2
p
Þ

p
2 �9=2 �450þ280lþ147l2

ð7lþ15Þ2ð7lþ9Þ

p �9 320lþ384l2�225
ð15þ16lÞ2ð9þ16lÞ

-30

-20

-10

0

10

20

30

y

-100 -80 -60 -40 -20 0

x
-10

-5

0

5

10

y~

-10 -5 0 5 10
x~

Fig. 7. Stability region of IMEX method (33) (left) and ~A (right).

F. Kupka et al. / Journal of Computational Physics 231 (2012) 3561–3586 3571
ð35Þ
It holds RðAÞ ¼ 1 and Rð~AÞ ¼ 5
47 ð13� 2

ffiffiffi
7
p
Þ, and
RðA; ~AÞ ¼ fðr;~rÞ : 0 6 r 6 1; 0 6 ~r 6 /ðrÞg;
where
/ðrÞ ¼ 15
302
ð28� 25r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
180� 192r þ 21r2

p
Þ:
A plot of RðA; ~AÞ is given in Fig. 8.
The stability region occupies a bounded domain in the negative half-plane, and slightly overlaps the imaginary axis, see

Fig. 9(left). Note that limRðzÞ!�1jRðzÞj ¼ 1. The stability function of the implicit scheme is given by
R~AðzÞ ¼
450þ 390zþ 167z2 þ 47z3

2ð�15þ zÞ2
: ð36Þ
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A plot is shown in Fig. 9(right). The point where the stability region intersects the negative real half-line is located at
x � �3.248 for the IMEX scheme. The same value is computed for the stability region of the implicit scheme. However,
the stability region of ~A extends further along the imaginary axis. Finally, limRðzÞ!�1jR~AðzÞj ¼ 1.

The dissipativity analysis for the implicit scheme defined by ~A yields the amplification factors for the standard three-point
space discretization (8) and for the fourth order stencil (9). These amplification factors are evaluated at the points
h 2 f0; p4 ; p2 ;pg in Tables 6 and 7, respectively.

For the three-point space discretization (8), the first positive zero of g(p,l) is �0.4650, where the function changes its
sign, and g(p,l) = �1 for l � 0.8122. The first positive zero of g(p,l) is �0.3488 for the fourth-order space discretization
(9), where the function changes its sign, and g(p,l) = �1 at l = 0.6093.
Table 6
Values of g(h,l) for some h, implicit scheme in (35), three
point space discretization.

h g(h,l)

0 1
p
4 225þ195l

ffiffi
2
p
�390lþ501l2�334l2

ffiffi
2
p
þ329l3

ffiffi
2
p
�470l3

ð�15þl
ffiffi
2
p
�2lÞ2

p
2 ��225þ390l�334l2þ188l3

ð15þ2lÞ2

p � 1504l3þ780l�1336l2�225
ð15þ4lÞ2



Table 7
Values of g(h,l) for some h, implicit scheme in (35), fourth order space discretization.

h g(h,l)

0 1
p
4 1=12 97200�210600lþ112320l

ffiffi
2
p
þ353706l2�240480l2

ffiffi
2
p
�429345l3þ301928l3

ffiffi
2
p

ð�90�15lþ8l
ffiffi
2
p
Þ2

p
2 �1=6�12150þ24570l�24549l2þ16121l3

ð45þ7lÞ2

p �1=3�6075þ28080l�64128l2þ96256l3

ð45þ16lÞ2
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4. Numerical experiments

In this section, we present the results of the simulations performed with the time integrators discussed in this paper and
compare their performance to the classical explicit 2-stages second order and 3-stages third order methods of Shu and Osher
[41], and the 3-stages second order method of [28]. They are the optimum SSP RK methods for their given number of stages
and order and we refer to them by their common technical specifications ‘SSPRK(2,2)’ and ‘SSPRK(3,3)’, as well as
‘SSPRK(3,2)’, respectively. The coefficients of the SSPRK(2,2) and SSPRK(3,3) methods were derived for a different purpose
in [18,9], where the third order method was proposed as an embedding formula for the second order method (see also [3]).
Shu and Osher [41] derived a first framework for deducing higher order Runge–Kutta methods with the total variation
diminishing property and first identified the optimal explicit second and third order methods with two and three stages,
respectively. For these SSPRK(2,2) and SSPRK(3,3) schemes an analysis of their stability, dissipativity and accuracy proper-
ties can be found in [27]. For the SSPRK(3,2) method, a similar study is given in the Appendix section further below. Note that
SSPRK(2,2), SSPRK(3,2), and SSPRK(3,3) are the explicit schemes in the IMEX methods (29), (33), and (35), respectively.

Furthermore, we also consider some non-SSP methods from the literature, both explicit and IMEX, for the sake of com-
parison, and also an asymptotically stable SSP IMEX scheme from [36].

4.1. Implementation issues

To define the test problem, according to [33] we specify a hydrostatic configuration which is unstable against convection.
The simulation of a single semiconvective layer requires the mean molecular weight to be linearly (and stably) stratified. As
time evolves, we expect convection to set in and mix the zone completely, although its development is inhibited by the sta-
ble mean molecular weight gradient. A critical quantity in this process is hence the buoyancy timescale and we return to this
topic further below.

The simulations shown here have been performed on the Vienna Scientific Cluster, using 64 CPU cores in parallel. The
spatial resolution is 400 � 400 grid points. Simulation time is measured in units of sound crossing times (scrt). One scrt is de-
fined as the time taking an acoustic wave to propagate from the bottom to the top of the simulated box. In our simulations,
1 scrt = 5215.5 s and the simulation time is 200 scrt.

Restrictions on the time-step Dt are imposed by heat diffusion sT, diffusion of the second species sc, the viscosity svisc and
the velocity of the fluid sfluid,
Dt ¼minfsc; sT ; svisc; sfluidg; ð37Þ
where
sc ¼
Cc

jc
minfðDxÞ2; ðDyÞ2g; sT ¼

CT

jT
minfðDxÞ2; ðDyÞ2g;

svisc ¼
Cviscq

g
minfðDxÞ2; ðDyÞ2g; sfluid ¼

Cfluid

maxðjujÞ minfDx;Dyg;
with (not necessarily equal) Courant numbers (CFL numbers) Cc, CT, Cvisc, Cfluid. This assumes that the time-step limitation
due to sound waves has been removed by a fractional step approach as mentioned at the end of Section 2. Otherwise, sfluid

additionally depends on the sound speed. We note that the source term in F(y(t)) in (15), which represents buoyancy forces
acting on the flow, can be neglected in the limit where max{Dx,Dy} ? 0, since its contributions are of lower order (see [45]
for a discussion of the treatment of lower order terms in stability analyses).

Due to (15), IMEX methods treat the terms r � (qjcrc) and r � (KrT) implicitly, so the restrictions sc and sT do not have
to hold. Since at least the first part of simulations of semiconvection is usually dominated by diffusion processes and the
Prandtl and Lewis numbers satisfy Pr < 1, Le < 1 in a stellar context, the simulations are initially restricted by sT. Hence, IMEX
methods can provide the desired computational advantage.

To enhance the stability and the efficiency of our methods we have implemented a heuristic to adaptively select the time
steps. The most effective criterion for regulating the time steps turned out to be to monitor two-point instabilities appearing
in the conservative variables ðq;qc;q~u; EtÞ. Due to the gravitational force operating vertically, such instabilities are prone to
appear in the horizontal direction.
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To detect the occurrence of such oscillations, for each variable we use the difference between two grid cells to determine
the sign of the corresponding gradient. In case of the density q this reads
Table 8
Compar
text).

Meth

Singl
SSPR
SSPR
IMEX
IMEX
IMEX
IMEX
IMEX
IMEX
IMEX
SSPR
IMEX

Singl
SSPR
SSPR
IMEX
IMEX
IMEX
IMEX
IMEX
IMEX
IMEX
SSPR
IMEX
d1 ¼ qi;j�1 � qi;j�2;

d2 ¼ qi;j � qi;j�1;

d3 ¼ qi;jþ1 � qi;j;

d4 ¼ qi;jþ2 � qi;jþ1;
where 1 < i < nx and 1 < j < ny, assuming the grid consists of nx � ny points. If the sign pattern of (d1,d2,d3,d4) corresponds to
(+,�, +,±), (�, +,�, ±), (±,+,�, +) or (±,�, +,�), we have located a two-point instability. Since the time-step is initially chosen to
be that one required for a fully explicit time integration method as in (37), such patterns are smoothed out rapidly, if present
in the initial condition. Consequently, their later occurrence is a good indicator for an instability developing because of too
large a time-step taken during the time integration.

The time-step control permits the occurrence of ny � 0.1 two-point instabilities for fixed i. If this limit is exceeded, the
time-step is repeated using a step-size decreased by a factor 2

3.
To permit the system to readjust after reducing the time-step no modifications of Dt are made for the next 15 time-steps

regardless of the number of two-point instabilities. If the number of oscillations still exceeds the given limit after those 15
time steps, the time-step is again reduced. If no or very few two-point oscillations are encountered for over 50 successive
time-steps, the time-step is augmented by a factor of 5

4.
Alternatively to this heuristic control, we could also monitor the rate of change in the solution to adjust the time-steps.

However, the proper rate required to prevent the development of two-point instabilities for the present application turned
out to be too pessimistic to achieve CFL numbers as high as discussed below. Furthermore, a simple control of the residual
did not yield a satisfactory behaviour. This leaves the heuristic time-step control as the most effective method for the IMEX
based time integration of our simulations.

4.2. Numerical results with SSP schemes

Tables 8 and 9 sum up the performance achieved with the presented Runge–Kutta schemes. The evolution of the time
steps is illustrated graphically in Figs. 10 and 11 for the two simulation scenarios we have focused on. Since the capability
of the method is best judged in that part of the simulation where the fluid velocity is too small to severely limit the time-step
Dt, the CFL-numbers and time-steps listed in Table 8 have been measured in this regime. For the first test scenario this cor-
responds only to the first 80 scrt (note the slope beginning after about 100 scrt in Fig. 10).

In Table 8 we compare the largest possible time steps Dtmax, the average time steps Dtmean, the maximal and average CFL
numbers resulting from the adaptive step selection, and the initial CFL numbers. The tests were performed for Prandtl num-
isons of time steps and CFL-numbers over the first 80 scrt for the case where Pr = 0.1 and over the entire 200 scrt for the case where Pr = 0.5 (see also

od Dtmax (s) Dtmean (s) CFLmax CFLmean CFLstart

elayer Pr = 0.1, Le = 0.1, Rq = 1.1, Ra⁄ = 160,000
K(2,2) 3.71 3.71 0.2 0.2 0.2
K(3,2) 9.31 9.31 0.5 0.5 0.5

SSP2(2,2,2) 22.21 11.56 1.20 0.62 0.2
SSP2(2,2,2), c = 0.24 36.35 19.44 1.96 1.05 0.2
SSP2(2,2,2), c = 0.24 36.35 19.43 1.96 1.05 0.3
SSP2(2,2,2), c = 0.24 37.02 19.45 2.00 1.05 0.4
SSP2(2,2,2), c = 0.24 35.53 19.47 1.91 1.05 0.5
SSP2(3,3,2) 74.52 57.37 4.02 3.09 0.4
SSP2(3,3,2) 93.15 57.16 5.02 3.08 0.5

K(3,3) 3.71 3.71 0.2 0.2 0.2
SSP3(3,3,3) 15.14 10.14 0.82 0.55 0.2

elayer Pr = 0.5, Le = 0.1, Rq = 1.1, Ra⁄ = 160,000
K(2,2) 3.72 3.72 0.2 0.2 0.2
K(3,2) 9.31 9.31 0.5 0.5 0.5

SSP2(2,2,2) 23.14 13.84 1.24 0.74 0.2
SSP2(2,2,2), c = 0.24 23.13 15.72 1.24 0.85 0.2
SSP2(2,2,2), c = 0.24 22.76 15.79 1.22 0.85 0.3
SSP2(2,2,2), c = 0.24 20.32 15.81 1.09 0.85 0.4
SSP2(2,2,2), c = 0.24 22.81 15.85 1.23 0.84 0.5
SSP2(3,3,2) 40.65 33.54 2.19 1.80 0.4
SSP2(3,3,2) 40.65 33.87 2.19 1.82 0.5

K(3,3) 3.72 3.72 0.2 0.2 0.2
SSP3(3,3,3) 15.05 9.70 0.81 0.52 0.2



Table 9
Comparisons: computation times and overall number of time steps over 200 scrt.

Method CFLstart Computation time Number of time steps

Singlelayer Pr = 0.1, Le = 0.1, Rq = 1.1, Ra⁄ = 160,000
SSPRK(2,2) 0.2 7:17:32 287 788
SSPRK(3,2) 0.5 4:40:24 115 691
IMEX SSP2(2,2,2) 0.2 6:04:54 92 492
IMEX SSP2(2,2,2), c = 0.24 0.2 4:41:15 63 586
IMEX SSP2(2,2,2), c = 0.24 0.3 4:18:59 56 741
IMEX SSP2(2,2,2), c = 0.24 0.4 4:10:26 54 015
IMEX SSP2(2,2,2), c = 0.24 0.5 4:12:38 53 941
IMEX SSP2(3,3,2) 0.4 4:31:12 27 673
IMEX SSP2(3,3,2) 0.5 4:27:46 24 266
SSPRK(3,3) 0.2 10:55:40 288 607
IMEX SSP3(3,3,3) 0.2 8:19:39 104 789

Singlelayer Pr = 0.5, Le = 0.1, Rq = 1.1, Ra⁄ = 160,000
SSPRK(2,2) 0.2 7:01:44 286 011
SSPRK(3,2) 0.5 4:34:35 114 409
IMEX SSP2(2,2,2) 0.2 5:10:01 75 384
IMEX SSP2(2,2,2), c = 0.24 0.2 4:45:36 66 997
IMEX SSP2(2,2,2), c = 0.24 0.3 4:42:00 68 591
IMEX SSP2(2,2,2), c = 0.24 0.4 4:42:24 66 847
IMEX SSP2(2,2,2), c = 0.24 0.5 4:50:52 66 828
IMEX SSP2(3,3,2) 0.4 4:43:27 31 225
IMEX SSP2(3,3,2) 0.5 4:43:26 31 112
SSPRK(3,3) 0.2 10:45:43 286 006
IMEX SSP3(3,3,3) 0.2 7:27:01 108 852
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bers Pr = 0.1 and Pr = 0.5 distinguishing Simulations 1 and 2, respectively, a Lewis number Le = 0.1, Rq = 1.1, and a modified
Rayleigh number Ra⁄ = 160,000 related to the Rayleigh number through Ra⁄ = Ra � Pr.

Comparing the performance of the second order schemes it is obvious that the modification of c in IMEX SSP2(2,2,2) has a
stunning effect on the stability of the scheme. The positive definiteness of dissipation in this method proves most effective in
suppressing oscillations, permitting an average time-step and CFL-number up to two thirds higher than the original IMEX
SSP2(2,2,2) method.

Table 8 shows that IMEX SSP2(3,3,2) permits a time-step and CFL number more than twice as high as IMEX SSP2(2,2,2)
even with modified c. However, a comparison of the computation time given in Table 9 shows that this does not improve by
the same factor as the CFL-number, since as the time-step Dt grows, the iterative solver for the generalized elliptic problems
requires more iterations to converge, resulting in an increase in computation time. A comparison of the computation times
shows that, although IMEX SSP2(3,3,2) permits impressively large time steps, the need to solve three additional generalized
Poisson problems related to the third stage takes its toll, whence the method’s performance is inferior to IMEX SSP2(2,2,2)
with modified c and in case of Simulation 2, is not even competitive to SSPRK(3,2), though it still performs better than the
SSPRK(2,2) scheme. Note that for Pr = 0.1, the IMEX methods outperform even the best explicit method, while for the more
moderate Pr = 0.5, the best explicit integrator SSPRK(3,2) is slightly more efficient whereas the classical methods noticeably
lag behind.

Interestingly, the initial (preset) CFL number has a negligible influence on the actual CFL number reached in the diffusive
part of the simulation. However, as soon as the fluid velocity seriously restricts Dt, a higher initial CFL number leads to a
significantly larger average time-step and reduces the required computation time, since its value is used to define the
time-step restriction for the terms integrated with the explicit part of the IMEX scheme.

Once the time-step is limited by sfluid, the remaining gain in Dt by the IMEX schemes in ANTARES is essentially due to the
optimization of the time-steps by the algorithm explained further above. Since Dt is rather small in that case the conver-
gence of the generalized Poisson solver is fast enough to allow the IMEX schemes to lag only slightly behind their explicit
counterparts.

We point out that optimization of the solver for the generalized Poisson Eq. (21) has the potential for a further significant
decrease of computation time required, both in the diffusive regime, but also if the time-step is limited by sfluid. This is
important since changing the time integration method during a simulation run is not advisable if both the diffusive and
the convective phase should be interpreted in a consistent manner.

A comparison of SSPRK(3,3) and IMEX SSP3(3,3,3) also shows that the larger time-steps of the semi-implicit method lead
to a significant gain in computational efficiency in case of a third order method.

We have investigated the accuracy of the time integration with IMEX schemes by a comparison to a reference solution
obtained with the SSPRK(2,2) method. The reference solution was computed on the same spatial grid but with a time-step
eight times smaller than that one mentioned in Tables 8 and 9 for this method, i.e. for a CFL-number of 0.025. Fig. 12 shows
the root mean square difference of the mass ratio He/(H + He), obtained by summation over all grid points and normalization
relative to their number, between the numerical solutions of the second order SSP IMEX methods and the reference solution



Fig. 10. Time-step evolution over 200 scrt in Simulation 1 (see text for definitions). Pictures (a) and (b) compare the time-step Dt of the second order
schemes whereas (c) shows the evolution of Dt using SSPRK(3,3) and IMEX SSP3(3,3,3).
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for each case. For the IMEX SSP2(2,2,2) method both the results for the standard choice of c ¼ 1� 1=
ffiffiffi
2
p

and the best per-
forming value of 0.24 are displayed. We also show the normalized root mean square differences between the reference solu-
tion and the SSP second order explicit methods computed with their standard CFL number given in Table 8.



Fig. 11. Time-step evolution over 200 scrt in Simulation 2 (see text for definitions). Pictures (a) and (b) compare the time-step Dt of the second order
schemes whereas (c) shows the evolution of Dt using SSPRK(3,3) and IMEX SSP3(3,3,3).

F. Kupka et al. / Journal of Computational Physics 231 (2012) 3561–3586 3577
For both Simulation 1 and 2 one can easily spot the initial increase of the error due to the growing time step for the IMEX
methods induced by the automatic time step control. A plateau is reached once the time-step stabilizes around a typical
mean value (cf. also Figs. 10 and 11). Note that the IMEX SSP2(2,2,2) method with c = 0.24 has a smaller error than the ori-



Fig. 12. Time development of the root mean square difference per grid point of the mass ratio He/(H + He) between a reference solution with the
SSPRK(2,2) method and very small time-step (CFL-number 0.025) and various explicit and IMEX SSP methods of second order. In the top row, picture (a)
displays the first 40 scrt on a linear scale for Simulation 1 and picture (b) shows the results for the entire run on a logarithmic scale. In the bottom row,
pictures (c) and (d) show equivalent results for the case of Simulation 2.
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ginal IMEX SSP2(2,2,2) method, as expected from the error constant shown in Fig. 4. The largest differences occur for the
IMEX SSP2(3,3,2) method which also has the largest mean time-step. The error constants of the different methods (see also
the summarizing Table 10) provide a rough measure for comparing simulation runs with similar time-steps.

However, a comparison for a given point in time has only limited meaning. One of the reasons is that the solution changes
its nature as a function of time. Initial vertical oscillations are damped out (at least first few scrt), then the velocity field
slowly starts building up (visible after 15 scrt), followed by the formation of large scale gravity waves (oscillatory behaviour
of the error in the range between 25 and 100 scrt) until the waves start to break and turbulence sets in. The importance of
the contributions of each of the dynamical equations also changes during this development. The whole process leads to an
increasing error until a statistically stationary, turbulent state is reached. For Simulation 1 this occurs at around 150 scrt. For
Table 10
Summary of the analysis of SSP integrators. The asterisk in the third column indicates a change of sign at l for g4th(±p,l). See also Section 5.

Method zleft g4th = 0 jg4thj = 1 C

IMEX SSP2(2,2,2) �1 0.452⁄ – 5.17
IMEX SSP2(2,2,2), c = 0.24 �50 – 9.375 2.79
IMEX SSP2(3,3,2) �1 0.455⁄ – 8.05
IMEX SSP3(3,3,3) �3.248 0.348⁄ 0.609 11.6
Forward Euler �2 0.187⁄ 0.375 12.6
SSPRK(2,2) �2 – 0.375 16.2
SSPRK(3,2) �4.519 0.672⁄ 0.847 6.40
SSPRK(3,3) �2.512 0.299⁄ 0.471 22.8
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Simulation 2 this is just about to occur shortly after the end of the simulation time of 200 scrt (the delay of the time devel-
opment in this case is caused by the larger viscosity of the fluid which follows from the choice of Pr and Ra⁄). In the turbulent
state of the system spatial correlation is lost on very short timescales (a few scrt). Thus, also the reference solution no longer
has a meaning due to the chaotic behaviour of the solution. The spread of the error and also the saturation value observed
during this phase (picture (b) of Fig. 12) is set by the Dirichlet vertical boundary conditions on the concentration c. The third
order methods IMEX SSP3(3,3,3) and SSPRK(3,3) behave analogously.

To further illustrate that the large time steps of the IMEX methods during the diffusive phase do not degrade the accuracy
of the time development of the solution, we compare the simulation results obtained by the different time integrators in Figs.
13 and 14. The pictures show the mass ratio of He vs. He + H at each spatial point at a given instant in time. Fig. 13 demon-
strates that after the end of the diffusive phase, just at the onset of turbulence, which occurs at 
125 scrt for this problem,
the results are quite comparable. The most visible differences can be found for the case of the simulation with the largest
time-steps (picture (d)). It also shows that the root mean square errors displayed in Fig. 12 are negligible on a qualitative
(and rough quantitative) level as long as they are smaller than about 10�3. As expected, however, some time after the onset
of turbulence the solutions necessarily have drifted apart. This is demonstrated in Fig. 14, where the solutions already look
different from each other.

Recalling Fig. 12 it is not surprising to find the largest differences in Fig. 13 for the schemes having the largest time-steps
during the diffusive phase. Still, the large scale structures of the solution begin to diverge only once the turbulent phase has
been reached which in turn for each of the different time integration methods occurs after about the same integration time t.
Large time-steps during the diffusive phase hence yield acceptable accuracy. Indeed, the spatial resolution is more important
than the temporal one. This can be demonstrated by using a high resolution grid of 800 � 800 points. We have performed
such a reference run for the case of Simulation 1 with the SSPRK(2,2) method for time integration. Note that the doubling
of resolution leads to a four times smaller time-step during the diffusive phase. Looking at the first row (pictures (a) and (b)
Fig. 13. Simulation 1 at t = 125 scrt.



Fig. 14. Simulation results corresponding to those in Fig. 13 at t = 200 scrt.
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of Fig. 15) the differences at 100 scrt, i.e. just after the onset of wave-breaking and the beginning of the turbulent phase, are
still small: in the simulation with higher spatial resolution the breaking tips are somewhat more pronounced and the con-
trasts sharper. This has changed at 125 scrt shown in the second row of Fig. 15. The common initial condition may still be
inferred, but the simulations have notably evolved away from each other. Clearly, the spatial resolution is much more impor-
tant than the influence of the time steps and the time integration method chosen, since picture (c) of Fig. 15 is essentially
indistinguishable from its counterpart with standard time resolution, picture (a) of Fig. 13. Furthermore, at 100 scrt the sim-
ulation using the IMEX2(3,3,2) method for time integration, which has the largest time-step during the diffusive phase, is
nearly indistinguishable from the SSPRK(2,2) run with high time resolution shown in picture (a) of Fig. 15 (the IMEX results
are not shown here for the case of 100 scrt, since the differences to the latter picture are very difficult to spot).

We conclude that the spatial resolution is indeed more important than high temporal resolution and large time steps dur-
ing the diffusive phase are clearly tolerable for simulations of astrophysical convective flows, if they do not affect stability.
Resolutions of 800 grid points per spatial direction in 3D are usually not affordable anyway and sometimes even large para-
metric studies in 2D may still be too expensive (for instance, for the case of semi-convection and purely explicit time inte-
gration methods). We note that the necessity of a resolution of 400 points, which has been used for most of the simulation
runs shown here, was calculated following [48,49] where in turn the physical arguments of [43] had been used to estimate
the thickness of solute and thermal boundary layers in semi-convection and the applicability of this approach to the param-
eter range we are interested in had been confirmed. Thus, for the parameters of the more demanding one of our models, Sim-
ulation 1, we concluded the smallest structures of interest, the solutal boundary layers, to span 6 grid points, if the whole box
is discretized by 400 points in each direction. Examples for them are the top and bottom boundary layers which can easily be
seen in Figs. 14 and 15. Indeed, in the simulation with a high spatial resolution of 800 points in each direction these layers
are hardly any thinner than in the case of 400 points (cf. the bottom row of Fig. 15 which shows the simulations developed
well into their final, turbulent state).



Fig. 15. Simulation 1 with SSPRK(2,2) time integration and high temporal resolution (left column) as well as high spatial (and temporal) resolution (right
column). The three different rows show the results at different time t in units of scrt.
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The duration of the diffusive phase is determined by the stability of the stratification, parametrized through Rq, and re-
lated to the buoyancy term, the second term on the right-hand side of (15) and thus also the second term of F(y(t)) in the
same equation. Timescales related to this term can be computed for a variety of physical problems. They include the reci-
procal of the growth rate of small density perturbations when a fluid of higher density q2 is layered above fluid of lower
density q1 (this situation is denoted as Rayleigh–Taylor instability, see [6]). In this case the growth rate follows the dispersion
relation x2 = gk(q2 � q1)/(q2 + q1) for a local gravitational acceleration g and a perturbation with wave number k. Its mag-
nitude can be bounded by the simple relation x2 = gk. Similar dispersion relations are found for gravity waves and growth
rates of convective instability (see the classical paper [7] and also [26] for a summary). As implied by x2 = gk and the form of
(15), one can estimate a buoyancy time-step restriction by tbuoy = min{(Dx)1/2}/g1/2 (see also [32]). For the present simula-
tions we find tbuoy 
 360 s, i.e. about 0.069 scrt. Note that this is about four times larger than the largest time-step reported
in Table 8. Though irrelevant in the asymptotic limit and not a constraining quantity here, one might still consider this term
to be integrated implicitly in other cases. However, if the excitation and breaking of waves is important to describe the onset
of the turbulent convective flow, as in the present case, damping of such waves by an implicit time integration may be unde-
sired. Hence, explicit time integration of the buoyancy term could be preferred for physical reasons, even if the time-step
were actually constrained by such a splitting for the time integration.
4.3. Numerical results with non-SSP schemes

From Tables 8 and 9 one can readily see that during the diffusion dominated phase the SSP IMEX schemes achieve time-
steps which exceed the region of absolute monotonicity ensured by (32) for IMEX SSP2(2,2,2) and their counterparts given
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after (33) and (35) for IMEX SSP2(3,3,2) and IMEX SSP3(3,3,3), respectively. One might hence question whether the property
of absolute monotonicity is really necessary for the time integration of the numerical simulations we have considered above.
To show that this property is indeed required we have performed several test runs for the case of Simulation 1 with time
integration schemes which do not diminish the total-variation norm.

The first candidate we have investigated is the ARK3(2)4L[2]SA scheme proposed in [25]. This is an L-stable, stiffly accu-
rate third order, additive Runge–Kutta method with four stages. With its choice of coefficients it belongs to the group of
IMEX methods. However, neither its explicit nor its implicit part are strong-stability-preserving (the Butcher arrays feature
negative coefficients, cf. Theorem 4.2 in [28]), hence also the entire method does not fulfill the criteria of Theorem 1.1 on
absolute monotonicity. If the SSP-property were of no importance, this method should be quite robust. However, it turns
out that this is not the case when we use it to integrate Simulation 1 in time. Taking CFLstart to be 0.2 as for the other IMEX
methods presented in Table 9, the time integration with ARK3(2)4L[2]SA crashes after just 78 time-steps. Indeed, CFLstart has
to be lowered to 0.1 to successfully launch the simulation. But over the first 10 scrt CFLmax is found to never exceed 
0.2 and
the average CFLmean is only 
0.15. In conclusion the size of the time-steps achieved with this method have been found to not
exceed those achieved with the explicit, three-stage, third-order SSPRK(3,3) method of [41]. Compared to IMEX SSP2(3,3,2),
the maximum and mean CFL numbers are 25 and 20 times smaller, respectively. We have thus given up this simulation run
after 10 scrt: evidently, the ARK3(2)4L[2]SA method is not efficient for the kind of problems we are interested in. The im-
plicit, L-stable and stiffly accurate nature of this scheme is not sufficient to provide any advantages on its own during the
diffusive phase of the simulation.

To further investigate the importance of the strong-stability-preserving property we selected the classical, explicit, third
order, three-stage Runge–Kutta method first proposed in [18] and known as Heun’s third order method. This is a non-SSP
scheme since not all of its stages are used in the final integration which yields ynew, as pointed out in [28], where it was used
to illustrate the growth of solutions measured in standard norms for both parabolic and hyperbolic problems in situations
where the exact solution is not growing in these norms. By comparison the SSPRK(3,3) scheme was found to not exhibit such
growth. When we apply Heun’s third order scheme to integrate Simulation 1, we achieve a stable simulation over the entire
extent of 200 scrt with the same average time-step and with the same Courant number as for the SSPRK(3,3) scheme. How-
ever, during the diffusive phase in Simulation 1 the solution itself is slowly growing in time while a velocity field is being
built up by the convective instability and at the grid scale the dissipation is provided by the parabolic terms during the entire
simulation.

The semi-convection problem discussed here is a rather benign example for numerical simulations in astrophysical appli-
cations. If we apply the same scheme to a simulation of solar surface convection as in [35], i.e. for a case of 219 � 159 grid
points and a standard, moderately low resolution of 18.57 � 40 km2, and a standard choice for the microphysics with non-
grey radiative transfer for the calculation of Qrad, the differences in stability become apparent. For this physical problem the
term representing viscous dissipation in the momentum equation does not provide sufficient dissipation on the grid-scale at
any resolution achievable in the foreseeable future and the dissipation properties of the temporal and spatial discretization
of the advection operator become important (the term implicit large eddy simulation is used in such cases). While the
SSPRK(3,3) method and also the SSPRK(2,2) method, used together with the spatial discretization of [40], have no problems
in completing a simulation of 20 scrt with a CFL number of 0.25, Heun’s third order method leads to a crash after 9.2 scrt.7

Such failures are usually caused by numerically induced fluctuations in the low density and temperature region of the simula-
tion box which result in negative or at least unphysically small values, whence they fall outside the tabulated region of micro-
physical properties. We consider this finding as sufficient to exclude non-SSP methods from being recommendable for
numerical simulations of stellar convection, since also here we have chosen a rather benign test case within its class. Numerical
simulations of stellar surface convection in white dwarfs, A-type stars, or Cepheids reach far more extreme conditions with up
to three times higher, super-sonic Mach numbers, density contrasts around shock fronts higher by an order of magnitude and
more, and for the case of A-stars and Cepheids, at lower effective resolution because of four to ten times steeper gradients and
limited computational resources.

We finish our study of non-SSP Runge–Kutta schemes with a third case: an IMEX Runge–Kutta method where both the
explicit and the implicit part are strong-stability-preserving, but the combined scheme does not fulfill the criteria for abso-
lute monotonicity in the sense of Theorem 1.1. The scheme was proposed in [36] (Table IV, p. 139) and indeed the IMEX
SSP2(3,3,2) scheme (33) is a modification of that scheme proposed in [21] to obtain a nontrivial region of absolute mono-
tonicity. The original scheme of [36] differs from that one only by having the entries {1/4,0,0} and {0,1/4,0} in the first two
rows of the Butcher array of the implicit scheme instead of {1/5,0,0} and {1/10,1/5,0}, respectively. This scheme performs
quite well. Indeed, during the diffusion dominated phase of Simulation 1 its time-steps are even 6–8% larger than those
achieved with IMEX SSP2(3,3,2), while during the turbulent phase they fall back to at most the size achieved by the scheme
(33). Once more, however, we recall that astrophysical simulations often have to deal with limited resolution at least in part
of the simulation domain. To reproduce such a case we have run Simulation 1 with both (33) and the original scheme of [36]
for the case of only 100 � 100 grid points while leaving everything else unchanged. In this case the boundary layer due to
concentration c is represented vertically only by one to two grid points (see the discussion on resolution and reference solu-
7 We would like to thank Hannes Grimm-Strele for performing the 2D solar convection simulations with ANTARES to test the stability properties of Heun’s
non-SSP explicit third order Runge–Kutta scheme.
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tions further above). While during the diffusive phase no major differences become apparent, the behaviour found for the
advection-dominated, turbulent phase was discrepant: whereas nothing suspicious occurred for the scheme (33), the
time-step of the scheme of [36] dropped to arbitrarily small values after 
113 scrt, which indicates the occurrence of
two-point instabilities, and the simulation had to be terminated.

We conclude that only Runge–Kutta methods which are strong-stability-preserving have the necessary prerequisites for
stable time integrations of astrophysical convection simulations. If, in addition, the time-step is limited by diffusion pro-
cesses, this limitation can be overcome by IMEX methods provided their explicit and implicit parts are strong-stability-pre-
serving. To ensure stability also in cases of low resolution IMEX SSP methods should also have a nontrivial region of absolute
monotonicity as required by Theorem 1.1.

5. Conclusions and outlook

In this paper we have given an extensive discussion of the mathematical properties and practical usefulness of total-
variation-diminishing implicit–explicit Runge–Kutta methods for the time integration of advection–diffusion equations aris-
ing in the simulation of double-diffusive convection in astrophysics. In this section, we summarize the results obtained in
Sections 3 and 4 (stability, dissipativity, accuracy and efficiency), and give a brief outlook on future developments.

The stability regions for the IMEX methods, their implicit sub-parts and the explicit schemes are given for comparison in
Fig. 16. The left boundaries of the stability regions zleft, the points where the amplification factors from the dissipativity anal-
ysis become zero and their moduli exceed 1, and the error constants C for all the methods we have investigated are summed
up in Table 10.
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Fig. 16. Stability regions for IMEX methods (first row) and their implicit and explicit sub-parts (second and third row).
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We found that methods introduced in [20–22,36] excel over the classical explicit methods [41]. It was found that among
explicit schemes, only the explicit SSPRK(3,2) scheme first proposed in [28] is competitive in situations where explicit time
integration can be expected to yield sufficient efficiency and accuracy. Examples for such a scenario include simulations of
solar granulation at moderately high spatial resolution, where the time-step limitation associated with diffusion is negligible
(see [35] for results on this problem obtained with the ANTARES code and [44] for a review on the underlying physics).

From Fig. 16 and Table 10, clearly there is no single scheme which features the most advantageous properties in all con-
sidered aspects. However, we found in numerical experiments that the most efficient method seems to be (29) with the
choice c = 0.24. This value deviates from the optimal value for strong stability, but leads to a scheme with favourable dissip-
ativity, stability, and accuracy properties. Depending on the domain of stability required for a given problem the value of c in
(29) may be optimized such that it is sufficiently large for stability, but small enough to minimize the error constant, while
showing favourable dissipation properties (a strictly positive amplification factor with modulus less than 1 for any wave
number k other than zero).

We note that for numerical problems arising from a method of lines approach to the equations of hydrodynamics, as dis-
cussed in this paper, lower order methods usually have sufficient efficiency to be competitive, since the spatial discretization
limits the overall accuracy. Hence, the best explicit scheme we have tested for this kind of application is SSPRK(3,2), as it
permits the largest CFL numbers among methods of this class at an affordable computational cost and with sufficient accu-
racy. By comparison, the classical methods of second and third order [41] offer the convenience of being usable together as
an embedding formula. However, this approach is more than twice as expensive as SSPRK(3,2), as can be seen from a com-
parison with SSPRK(3,3) using Table 9.

We have also demonstrated that the larger time-steps achieved by SSP IMEX methods reduce the accuracy of the solution
during the diffusive phase of the semi-convection simulations by an acceptably small amount. For the applications shown
here, and indeed for a majority of astrophysical fluid dynamical simulations, the accuracy is limited by spatial resolution
(and thus eventually by existing computational resources) while the time-steps are limited by stability. This makes IMEX
methods attractive, since quite often the most severe limitations stem from stiff terms representing diffusion processes
(for restrictions due to sound waves other operator splitting based methods are existing). However, as we have shown by
a comparison with results from non-SSP methods, it is important that the IMEX methods are strong-stability-preserving
to maximize stable time-steps no matter whether the constraint is due to the implicitly integrated terms (diffusion) or
the explicitly integrated ones (advection). From that point of view SSP IMEX methods with a non-trivial region of absolute
monotonicity as defined by Theorem 1.1 are the most robust methods, because they allow achieving optimally large time-
steps also at low resolution. We note here that while the region of absolute monotonicity has to be observed with respect to
the explicitly integrated advection operator of the dynamical equations, stable time integration can be performed with step
sizes falling outside it, if the restriction is due to the implicitly integrated diffusion terms. Thus, the class of optimal integra-
tors for this kind of problem is probably larger than that of the SSP IMEX methods. However, none of the other time inte-
gration methods could significantly outperform them with respect to the time-steps achievable, and we have always
found at least one case, where competing methods fell substantially short or even failed.

There is potential to further optimize the implementation of IMEX methods. The additional computational effort due to
the implicit subpart is compensated for by accuracy and stability, but could be reduced in the future by replacing the solver
for the linear equations associated with the arising generalized Poisson problem by a multigrid solver. In the Boussinesq
approximation, additional solution of a Helmholtz equation is necessary instead. This widens the choice of fast solvers for
the system of linear equations introduced through implicit time integration. The benefits expected from faster solvers would
allow taking full advantage of the potential of method (33) that is implied by the large time steps reported in Table 8. Such an
improvement would likewise be useful for the present problem to minimize the overhead by any of the implicit schemes in
the regime where the time-step is limited by sfluid rather than sT.
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Appendix A

A.1. The explicit SSP scheme of IMEX SSP2(3,3,2)

We also give the corresponding results for the explicit SSPRK(3,2) scheme A from (33), since in Section 4 we show it to
excel in its practical value over the classical explicit SSP Runge–Kutta schemes schemes [41]. This scheme was first published
in [28] and later declared the optimal second order scheme with three stages in [42] as well as in [37], and independently
also in [12].

The stability function is
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Fig. 17. Stability region of method SSPRK(3,2) (scheme A from (33)).

Table 11
Values of g(h,l) for some h, SSPRK(3,2) scheme (explicit scheme A from (33)),
three point space discretization (8).

h g(h,l)

0 1
p
4 1þ l

ffiffiffi
2
p
� 2lþ 3l2 � 2l2

ffiffiffi
2
p
þ 7=6l3

ffiffiffi
2
p
� 5=3l3

p
2 1 � 2l + 2l2 � 2/3l3

p 1 � 4l + 8l2 � 16/3l3

Table 12
Values of g(h,l) for some h, SSPRK(3,2) (explicit scheme A from (33)), fourth order space
discretization (9).

h g(h,l)

0 1
p
4 1� 5=2lþ 4=3l

ffiffiffi
2
p
þ 353

72 l2 � 10=3l2
ffiffiffi
2
p
� 1015

288 l3 þ 803
324 l3

ffiffiffi
2
p

p
2 1� 7=3lþ 49

18 l2 � 343
324 l3

p 1� 16=3lþ 128
9 l2 � 1024

81 l3
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RAðzÞ ¼ 1þ zþ z2

2
þ z3

12
:

The stability region where jR(z)j < 1 occupies a bounded region in the negative half-plane, and is tangent to the imaginary
axis, see Fig. 17. Note that limRðzÞ!�1jRðzÞj ¼ 1.

The point where the stability region intersects the negative real half-line is located at x � �4.519.
The dissipativity analysis for A yields the amplification factors for the standard three-point space discretization (8) and

the fourth order stencil (9). These amplification factors are evaluated at the points h 2 f0; p4 ; p2 ;pg in Tables 11 and 12,
respectively.

For the three-point space discretization (8), the first positive zero of g(p,l) is �0.8968, where the function changes its
sign, and g(p,l) = �1 for l � 1.129. The first positive zero of g(p,l) is �0.6726 for the fourth-order space discretization
(9), where the function changes its sign, and g(p,l) = � 1 at l � 0.8474.
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