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1. Introduction

Recently a noticeable growth of the attention of researches to the fractional differential equations has been observed.
It is caused by numerous effective applications of fractional calculation to various areas of science and engineering [1-6].
For example, mathematical language of fractional derivatives is irreplaceable for the description of the physical process of
statistical transfer and, as it is known, leads to diffusion equations of fractional orders [7,8].

Consider the time fractional diffusion equation with variable coefficients

ogu(x,t) =Lux, )+ f(x,t), O0<x<l, 0<t<T, (1)
u(0,t)=0, u(l,Lt)y=0, 0<t<T, uk,0)=up(x), 0=<x<lI, (2)
where
t
1 du(x, n) _
agu(x, t) = F(l—a)/ o t—n)"%n, O0<a<l1 (3)
0

is the Caputo derivative of the order «,

Lu(x,t) = %(k(x, t)g—i) —qx, tu,

k(x,t) >c1 >0, q(x,t) >0 and f(x,t) are sufficiently smooth functions.
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The time fractional diffusion equation represents a linear integro-differential equation. Its solution not always can be
found analytically; therefore it is necessary to use numerical methods. However, unlike the classical case, we require infor-
mation about all the previous time layers, when numerically approximating a time fractional diffusion equation on a certain
time layer. For that reason algorithms for solving the time fractional diffusion equations are rather time-consuming even in
one-dimensional case. Upon transition to two-dimensional and three-dimensional problems their complexity considerably
increases. In this regard constructing stable differential schemes of higher order approximation is a very important task.

A widespread difference approximation of fractional derivative (3) is the so-called L1 method [2,9] which is defined as
follows

: t
j s+1

1 X, tsy1) —u(x, ts) / dn i
80( ,t — j+]’ 4
By U0 = o > J G +r (4)

t —t
$—0 s+1 s

where 0 =tg <t; <... <tjq1, and ri+1 is the local truncation error. In the case of the uniform mesh, T =ty — ts, for
all s=0,1,...,j+1, it was proved that rit1 = O(¢2-%) [10-12]. The L1 method has been widely used for solving the
fractional differential equations with Caputo derivatives [10-16].

Difference schemes of the increased order of approximation such as the compact difference scheme [14,17-19] and
spectral method [11,20,21] were applied to improve the spatial accuracy of fractional diffusion equations. However, it is
rather difficult to get a high-order time approximation due to the singularity of fractional derivatives.

A good approximation of the L1 method is observed in case of a nonuniform mesh, when it is refined in a neighborhood
of the point t;;1 [9]. Though the nonuniform mesh turns out to be more effective in comparison with the uniform one, it
will not generate the second order of approximation in all points of the mesh.

In [22] a new difference analog of the Caputo fractional derivative with the order of approximation O(z3~%), called
L1-2 formula, is constructed. On the basis of this formula calculations of difference schemes for the time-fractional sub-
diffusion equations in bounded and unbounded spatial domains and the fractional ODEs are carried out. If the stability and
convergence of difference schemes from [22] will be strictly proved, then this will undoubtedly be a significant progress in
computing the time-fractional partial differential equations.

Using the energy inequality method, a priori estimates for the solution of the Dirichlet and Robin boundary value prob-
lems for the diffusion-wave equation with Caputo fractional derivative have been obtained in [15,23].

In this paper a new difference analog of the fractional Caputo derivative with the order of approximation O (z3~%) for
each o € (0, 1) is constructed. Properties of the obtained difference operator are studied. Difference schemes of the second
and fourth order of approximation in space and the second order in time for the time fractional diffusion equation with
variable coefficients are constructed. Using the method of energy inequalities, the stability and convergence of these schemes
in the mesh Ly-norm are proved. Numerical calculations of some test problems confirming reliability of the obtained results
are carried out.

2. Family of difference schemes. Stability and convergence

In this section, families of difference schemes in a general form set on a non-uniform time mesh are investigated.
A criterion of the stability of the difference schemes in the mesh L,-norm is obtained. The convergence of solutions of
the difference schemes to the solution of the corresponding differential problem with the rate equal to the order of the
approximation error is proved.

2.1. Family of difference schemes
In the rectangle Q1 = {(x,t): 0 <x <[, 0 <t <T} we introduce the mesh @, = @, x @, where &y = {x; = ih,

i=0,1,...,N; hN=1}, o ={tj: O=to <ty <ty <...<ty_1 <ty =T}
Basically the family of difference schemes, approximating problem (1)-(2) on the mesh @y, has the form

08 yi=AyT 4l =12 N-1 j=01.. M1, (5)
y(0,t) =0, y(l,t)=0, tewe, y(x,0) =ug(x), xe€awp, (6)
where
j . .
eAG =2 (T et g >, (7)
s=0

is a difference analog of the Caputo derivative of the order o (0 <« < 1), A is a difference operator approximating the con-
tinuous operator £, such that the operator —A preserves its positive definiteness ((—Ay, y) > x||y||2, » > 0), for example

) = Ait1Yit1 — @ip1 +0)Yi +aiyYi-1

(Ay)i = ((@yn)x — dy); e —diyi, (8)
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a, d and ¢ are the mesh functions approximating k, q and f, respectively, y(©i+1) = aH]yj“ + (1 - aj+1)yj, 0<oj11=1,
at j=0,1,....M =1, yxi= (¥i — Yi-0)/h, yxi = (Vi1 — yi)/h.

2.2. Stability and convergence

Lemma 1. If g]‘H > gjﬂ > ... > gé“ >0,j=0,1,...,M — 1 then for any function v(t) defined on the mesh w. one has the
inequalities
vittas y=loae 02y L oag W) (©)
E70tj11 " = 9870t 2gj+l &0t ’
J
: 1 1 2
J o _ a 2
v gAOI'j+1 = ngOthr] (V ) z(g_H_l ]+1) (g 0tjiq V) ’ (10)
where g! | =0.
Proof. Let us consider the difference
j+1 A 1 A 2
Vi eBo, vV T 5e orHl(V )
. J i1 J i VS—H + VS
— V]+1 Zgg+ (vs+1 _ VS) _ Zg;+ (VS+] _ vs)( 5 )
s=0 s=0
AN s + v
= el v (v - )
s=0
_ . JH1 /. s+1 s 1 s+1 s k+1
=y el v (Lo 2
s=0 =s+1
1 J 5 J ’ k—
s+1 Vs k+1 s+1 s
_EZ(; v¥) +I;(v Z —v9). (11)

Here we consider the sums to be equal to zero if the upper summation index is less than the lower one.
Let us introduce the following notation: Y¥_; gl™!(vs*1 — vs) = wk*1, then vl — v0 = (gJ™)~Tw!, vk+1 — vk =
(gf])—](w’<+l —wk), k=1,2,...,j, and rewrite the equality (11) as

j .
;(géﬂ) (Wl)z_‘_%Z(g’J{H)*l(wkﬂ +Z ]+1 wh+1 Wk)wk
k=1
1 2 1 i 2 2
g(géH) (w') +22(g£+1) (W) = (wh)
k=1
1 ) ; gJ-H g1+1 1 ‘ 5
E(gjﬂ) (W]Jrl) +§Z k-:_] 1+k1 (Wk+1) E(gjﬂ) (W_]Jrl),
k=0 Ek+18k
which is valid since g/*] —g/*' > 0,k=0,1,....j 1.

Let us prove now the inequality (10). Since v/ = vit! — (vit1 — vJ), one obtains

1 2
— . (AG)
2/t —glth
1

2] - gD

VIAgY 2 A (v) +

= VI AG Y~ A% () + (A& V)" — (V' — vi)Agy
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g]H gH] 2
j+1 ]+1 k+1 k k+1
(g]) w T3 Z gl gt (W)
2120 Siasi
1 ) =1, i1 N
+ (w”l) _ (g]. ) (W1+ _ WJ)WJ+
1 1 J
288" — gt
j+1 j+1 Jj+1 2 j+1 j+1
Ei1 ( ; g —8i_q g] 1~ & 2
_ witl g 21 eiml i) 4 2 Z<+—<(Wk+1) >0.
J+1 J+1_ il j+1 T =z
(g  —&i-1) 84 2l S8
The proof of Lemma 1 is completed. O
1 1 1 gl
Corollary 1. Ing' > gf'] > gé+ > 0and W <0j41 <1,where j=0,1,...,M—1,g', =0, then for any function
] =
v(t) defined on the mesh w; one has the inequality
) : 1
+1 2
@V T+ (1 =0y v))gAG v = igAg‘th (v3). (12)
Theorem 1. If
g1+1
Jj+1 Jj+1 j+1 J )
g >&_.1>--->8 >c2>0, mioﬁﬂil,
& 8i1
where j=0,1,...,M—1, gl_l =0, then the difference scheme (5)-(6) is unconditionally stable and its solution satisfies the following
a priori estimate:
12 012 1 iz
[y o = 19716 + 5 max o7 [[g, (13)

2x%Cy 0<j<M

where (y,v) = YN yivih, 1y12 = (v, »).

Proof. Taking the inner product of Eq. (5) with y©@i+1), we have
(y( Ojt1) gAOtJHy) _ (y(UJ-H)’ Ay(aj+1)) — (y(aﬁ—l)’ (pJ+ ) (14)

Using inequality (12) and the positive definiteness of operator A = —A from identity (14) one obtains

1 1
oA YRy < ey L2 >0 15)

From (15), at € = x we get

88,1913 = oo} (16)

Let us rewrite inequality (16) in the form
j
2 _ 2 1 192
g My o= (e ey lo+ g 1Y lo + 5 e s (7

s=1

Noticing that gé“ >y >0, we get

j
102 2 1 102
e R 3 e T (P R S T (1)
s=1

Denote

024 |12
= [+ 2oy gmax ¢ lo-

The inequality (18) is reduced to
j
g Yo=Y - gDyl + & E. (19)

s=1
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It is obvious that at j = 0 the a priori estimate (13) follows from (19). Let us prove that (13) holds for j=1,2,... by
using the mathematical induction method. For this purpose, let us assume that the a priori estimate (13) takes place for all
j=0,1,...,k—1:

|y 2 <E, j=0,1,....k—1.
From (19) at j =k one has

k
gt Iy Ie = 2o (ed — gt [y o + e
s=1
Z Mg E+gg M E=g{T'E. (20)
The proof of Theorem 1 is completed. O
A priori estimate (13) implies the stability of difference scheme (5)-(6).
Theorem 2. If the conditions of Theorem 1 are satisfied and difference scheme (5)-(6) has the approximation order O(N~" + M~2),
where r1 and r, are some known positive numbers, then the solution of difference scheme (5)-(6) converges to the solution of differ-

ential problem (1)-(2) in the mesh Ly-norm with the rate equal to the order of the approximation error O(N~™ + M~"2),

Proof. Let us introduce the error z=y — u and substitute it into (5)-(6). Then we obtain the problem for the error

gA%z = AZ(UJ“) yi L i=1,. N=1, j=0,1,... ., M1, 1)
z(0,t) = z(,t) =0, te cT),, z(x,0) =0, xe€w, (22)
where 1//]+1 Au(am) Agu; +<p, , wijﬂ =ONT + M),

Since the COl‘ldlthl‘lS of Theorem 1 are fulfilled, then a priori estimate (13) holds true for the solution of problem
(21)-(22) and, therefore, the following inequality takes place

max ||W|| =O(NT + M),

llzllo <
2xCy 0<j<M

which implies the convergence in the mesh Ly-norm with the rate O(N~" + M~ "2). 0O
3. Anew L2-1, fractional numerical differentiation formula

In this section a difference analog of the Caputo fractional derivative with the approximation order @ (t3~%) is con-
structed and its basic properties are investigated.

Let us consider the uniform mesh @w; ={tj = jr, j=0,1,...,.M; T=1tM}. Leto =1— 2 then for the Caputo fractional
derivative of the order o, 0 <« < 1, of the function u(t) € C3[0, T] at the fixed point tivo, j€{0,1,..., M—1} the following
equalities hold

ljto ,
o, ut) = ! W n)dn
A ra-ow tjro — MY
0
1 daf wond U "(n)d
u u
=—Z/ L S e (23)
Pa-a) & ) @G =" Ta-a) | Go—n
s—1 J

As in [22], on each interval [ts_1,ts] (1 <s < j), denoting the quadratic interpolation IT, su(t) of u(t) using three points
(ts—1, u(ts—1)), (ts, u(ts)) and (tsy1, u(ts11)), we get

Ty su(®) = u(ts_1) (t— fs)z(;— tst1) Ut (t— fs—1i(2f —ts+1) Ut (t— ts;;)z(f —t5) ’
(Mo,su(t)) = g s + g (£ — tsy1/2) = Ug s—1 + Uz o (E — Es—1/2), (24)
and
W(Ss)
u(t) — I su(t) = (t —ts—1)(t — ts)(t —ts41), (25)

where t € [ts_1, ts41], & € (tsfl 1), ts—12 =t — 05T, U s = (Uts1) — u(ts))/T, ug g = (U(ts) — u(ts—1))/7.
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n (23), we use T ;u(t) to approximate u(t) on the interval [t;_1,ts] (1 <s < j). Taking into account the equality

2—a
/ (= ts172) (tjyo — 1)~ %dn = —ab§°i’f+)1, 1<s<j (26)
ts—1
with

1 1
b = o [U+ 0 — (= 14+0)* ] = J[A+ )™ + (= 1+0)' ],

[>1, from (23) and (24) we obtain the difference analog of the Caputo fractional derivative of the order (0 < < 1) for
the function u(t) in the following form:

ts ljto

9wy = ! ZJ: / wopdn 1 W (i
Oito Fra-o & J o —m* Td-a) J (o —0*
s—1 j
j ts , ljto
o1 3 (IT,su(n)'dn LS f
ra-o & ) @Go-—m* Ta-o) J EGo—n°
s—1 j
. ts tito
1 Y / st Ues (0 = Eso1/2)dn | e / dn
ra-o & (jra =17 ra-a J @i —m*
s—1 J
1—0:

(a,a) (@.0),
X)) (0525 e s 1+b1 s+1“tts ) +aq fJ)

/\
mM\

=1

_ j
“Te “a) (; a7 e so1 b7 (e s — us1)) + a5 7 u w‘)
1—a j
F(2 @ SX:C ut s = AOtW,”’ (27)
where
g“’)_al_“, (ao) (H—O)l o (l—1+a)1_“, 1>1:
¢ — gl for j=0; and for j>1,
a@®) 4 p@), s—0.
o =1a*? 4 b7 —b*7, 1<s<j-1, (28)
a'®?) _p@o), s=j.

]

We call the fractional numerical differentiation formula (27) for the Caputo fractional derivative of order o (0 < < 1)
the L2-1, formula.

Lemma 2. For any « € (0, 1) and u(t) € C3[0, tj11]

e, U — A, ul= o(r37). (29)

Proof. Let 3% u— A% u=R! 4+ R where
0t 140 4o 1R

; ts . ts
R 1§ / wopdn 1 i (Mo, su(m))'dn
] rad-a) s=1 (thrU - n)a r'd—-o =1 (tj+o - 77)“
T b T b1
i b

m—a)Z / u() = Mo,su () (1o =~ "dn

s=l¢ 4
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ik
= T -0a) —Ol) g / u(n) — My su(m))(tjte — m~dy

= WZ /u’”(éfs)(n—ts 1D = t) (1) = ts11) e —m) " d,
_1% 1
tito tito

)
4o _ 1 u'tmdn —— ugj

j _r(l—oz)t (tjvo — M F<1—a>t/<tj+a—n>a
J

J

ljito ,
1 (' (n) —ue, j)dn

T -a) S e =)
i
tjito , y ljito
1 W' (tjr1/2) —ue)dn - u’(tjr12) (n —tjt172)dn + O
ri-o (tj10 — M Fa-o ) "G —n*
i i

tito
u”(t; —t; d
_ (tj+1/2) n j+1/2)a77+0(r3,a).
INQEe))] ; Ejro — M)
j

We estimate the error R{ similarly to [22]:

i alu” (£)]
}R” = WX; /(n_ts D(ts = M (Est1 = M Ejro =M™ ldy
R TS|
alu”©)|r? a—1 0l|um($)|7f / a—1
S - 3Ird—a) Z / (tjire —m " 'dn 31_,(1 (tjtoe —n) " dn
n 1 ] n
_ " )3 _ > < [u™ &)l B39 £e, ).
3rl—a)\o%t® (j4+o)*t?* 309T(1 — )
Since
ljito 1
/ (n —tjy12)dn _ Tty *(20 +a —2) _
; tjito — M 20-o)2—a)
J
the error |R§+°| =O(t3%). Lemma 2 is proved. O

3.1. Basic properties of the new L2-1, fractional numerical differentiation formula

Lemma3.Foralls=1,2,...and 0 < o < 1 the following inequalities hold

1 1
- <X <
2 2—«

)

where
G+ (51402 Y- Q2-a)(s—1+0)
B Q-a)((s+0)%—(s—1+0)"%) '

Proof. Let us consider two functions

1
X+D2Y 22— [ (z+0)C—x

_ T—a _ l-ay T el x>0
C-a)(x+1) x1—a) (1+x) X
0

fa®) =
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and

_ _ 1 dé
@+ —x1"% 2y e

= , 0<z<1,x>0.
(1+X)l—a_xl—a

8a(z,%) = T
Jo wrew

For all x> 0 and 0 < z < 1 the following inequalities hold

/1 ¢ /] ¢ /] & /] e
< < =Z S E———
, x+&) . (x+z8)% . (zx + z&)* ) (x+&)~

Therefore, for the function g,(z, x) for all x> 0 and 0 < z < 1 the inequalities

2<8u(z,%) <2'7¢

are valid.
Integrating (30) with respect to z from 0 to 1, we get the inequalities

L fat <
=< < —,
2 ¢ 2—«

which hold for all x > 0. Lemma 3 is proved. O

Corollary 2. Forany & (0 < & < 1), it holds b**® > 0, s > 1.
The latter follows from the equality

bET =[(s+0) " —(s—1 +a)1*“]<x5 - %)

Lemma 4. Forany o (0 <o < 1) and c¢**% (0 <s < j, j > 1) defined in (28), it holds

(‘oz,a)

€j

1—o . —a
>——(>0+o0)™",
2
cé“’a) > cﬁa’g) > cé“‘o) >...> cg-(f’f) > c}“‘o),
20 — l)c(()“'o) - acga’o) >0,

whereo =1—«/2.

Proof. For j > 1 we get

e e
CY“=ﬂ?“—b?“=«1+ml“—u—1+m1%<——m>

: 1-a _ 5 -« %_ 1
> ((j+0) (J—140) )(2 z_a)

1
1-«a dn 1-a . a
-7 Gra e Ao
0

Inequality (31) is proved. Let us prove inequality (32).
For 1 <s<j—2(j>3)we have

(or,0) (a,0) _
o — =

o ga,a) _ a(a,a) + 2b(ot,a) _ bga,a) _ b(a,a)

¢ s+1 s+1 s+2

C a

1
=5 (+240)7 =36 +140) 436 +0) = (5= 14+0)'7%)

1
+ ﬂ(—(s+2 +0) 7 +3(5+1+0)2 ¥ =365+0) Y+ (s—1+0)"7%)

431
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1 1 1
a(l—a)(1+a)/'dz /dz / dz3
! 2] =140 +z1+2 +23)%*2
0 0 0

1

+a a)/dz /dz/ dz
V) 5140 +z2 +22 + 23910
0 0 0

a(l-o)(1+a)
ST T
2

54+24+0) 2 4a(l-a)s+2+0) 1 >0.

For s=j—1 (j>2) we get

(a o) (a,0) (a,0) (a,0) (a,0) (a,a) (a,0) (a,0)
Cs —Cyy =Cj1 —C =a; a; +2b. —bj_]
(@,0) (oc,o) (,0) (@,0) (@,0)
>a;7y i +2bj —b];l bﬁ]
al—-a)(1+wo) . o . —a—
>¢(]+1+0) 2L g(1—a)(j+1+0) 2 1>0.

2

For inequality (32) it remains to prove the case s =0, that is c(” o) S (‘“’)

enough to prove inequality (33).
For j=1 we get

20 — e ? —oc*? =20 = (@ ” + b)) — o (@*? - b{*)

:<20—1 _20—1>(1+0)1,a: 20 -11=0) | ia_g
20 2 20

which obviously follows from (33). It is

For j > 2 we get

Qo — 1) o = 20 — 1)@ +b*7) — o (a7 4 b*P — p(*)
1-«a
4o — 40 —1 1
iy et =aroy (2 1y L
20 20
40 —1 1— 20 —1)(1—
s toye(tel_y_lmey_2o-bd-o)
20(1+0)

20 1+0
Here we used the inequality (1+t)” <1+ yt which is valid for all t >0 and 0 < y < 1. Lemma 4 is proved. O

3.2. Test example

In this subsection, the validity and numerical accuracy of the new presented L2-1, formula (27) are demonstrated by a
test example.
Let us take a positive integer M, let T =1/(M — 1+ o) and denote

L2 10'(‘[) |80fM 1+Gf(t) OI'M ‘1+(Tf(t)|'

Example. Let f(t) =t*"*, 0 <o < 1. Compute the o-order Caputo fractional derivative of f(t) at t =ty_14¢ = 1 numeri-
cally.
The exact solution is given by

t4+a| F(S —I—(x)
=17 24

Taking different temporal stepsizes M = 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, we compute the example using
L[2-1, formula (27) and compare the results with those obtained with the help of the L1-2 formula in [22]. Table 1 lists the
computational errors and numerical convergence order (CO) at ty;—1+o = 1 with different parameters « = 0.9, 0.5, 0.1.

aOt

4. A second order difference scheme for the time fractional diffusion equation

In this section for problem (1)-(2) a difference scheme with the approximation order @(h? + t2) is constructed. The
stability of the constructed difference scheme as well as its convergence in the mesh Ly-norm with the rate equal to the
order of the approximation error is proved. The obtained results are supported with numerical calculations carried out for
a test example.
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Table 1
Computational errors and convergence order with different temporal stepsizes.
o M EM_,(1) [22] COp__ E’L"é_la (1) COE%-M
0.9 10 1.070471e—1 1.922978e—-2
20 2.699702e—2 1.99 4.368964e—3 2.07
40 6.545547e—3 2.04 1.009364e—3 2.08
80 1.556707e—3 2.07 2.347614e—4 2.09
160 3.666902e—4 2.09 5.473732e—5 2.09
320 8.595963e—5 2.09 1.277246e—-5 2.10
640 2.010152e—5 2.10 2.980723e—6 2.10
1280 4.694884e—6 2.10 6.955612e—7 2.10
2560 1.095840e—6 2.10 1.622925e—7 2.10
5120 2.556990e—7 2.10 3.786340e—8 2.10
0.5 10 1.350657e—2 3.756950e—3
20 2.612085e—3 2.37 7.231988e—4 2.33
40 4.861786e—4 2.43 1.367574e—4 2.38
80 8.864502e—5 2.46 2.544814e—5 2.42
160 1.597499e—5 2.47 4.673501e—6 2.44
320 2.859085e—6 2.48 8.495470e—7 2.46
640 5.095342e—7 2.49 1.532461e—7 2.47
1280 9.056389e—8 2.49 2.748687e—8 2.48
2560 1.606869e—8 2.49 4.909831e—9 2.48
5120 2.847764e—9 2.50 8.743961e—10 2.49
0.1 10 6.238229e—4 2.686107e—4
20 9.663202e—5 2.69 4.492624e—5 2.57
40 1.444281e—5 2.74 7.204745e—6 2.64
80 2.111896e—6 2.77 1.119177e—6 2.68
160 3.043133e—7 2.79 1.696376e—7 2.72
320 4.338827e—8 2.81 2.522442e—8 2.75
640 6.136347e—9 2.82 3.694254e—9 2.77
1280 8.622698e—10 2.83 5.344856e—10 2.79
2560 1.205229e—10 2.84 7.656497e—11 2.80
5120 1.676992e—11 2.85 1.087796e—11 2.82

4.1. Derivation of the difference scheme

Lemma 5. For any functions k1 (x) € Cf and v(x) € C,‘} the following equality is valid:

9 (oL
™ (q (x) dxv(x)>

Let u(x, t)er be a solution of the problem (1)-(2). Let us consider Eq. (1) for (x,t):(xi,tHg)eaT,i:1,2,...,N—
1, j=0,1,....M—1,0=1—-0a/2:

d u
33‘% u= P (k(x, t) a)

Since

i k(x t)a—u
ax T ax

_ k1(Xip12)v(Xig1) — (k1 (Xig1/2) + k1 (Xi—12))v (%) + k1 (Xi—1/2) vV (Xi—1) +o?),

= (34)

X=Xj

—qXi, tiro)uXi, tize) + f(Xi, tjre). (35)

(*itjto)

3%u
:k(xi,tj-s-o)m(thj—&-a)"l‘ (Xz,tﬁ-cr) (Xz7t]+c7)

(Xi»tj+0)
2

u 9%u
=k(Xi, tjt+o) 0 o i tip1) + (1 = o) oog (Xi 1)

ok 2
+5(Xi,tj+(r)< (X,,tﬁ_])—l—(l—d) (Xht])>+o(f )

2

o‘u ok
:G<k(xi7tj+0)a—2(xivtj+])+ (X,,t]_H;) (Xht]+1)>

32 ok
+(1 _U)<k(xivtj+a)a_;21(xistj)+ (xlst]+0') (sztj)>+(’)(f2)
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d
=0 (k(x t]Jra‘) U(X f1+1)>

X=X;

+0(7?),

X=X;

a ad
+Q —o)&<k(x t]+o) u(x t])>

q(Xi, tiro Ui, tro) = G0, o) (Ui, Eir1) + (1 — o)ulxi, £))) + O(T?),
by virtue of Lemma 5 we have

LU, D (xtj1) = O AU, tj1) + (1= 0) Au(xi, t)) + O(h* + 72),

where the difference operator A is defined by formula (8) with the coefficients a{“ =kXi—1/2, tjto)s d{“ =q(xi, tjys). Let
gz),.”l = f(Xi,tj1o), then with regard to Lemma 2 we get the difference scheme with the approximation order Oh? +12):

A, vi=Ay YO 4t =12, ,N=1,j=0,1,....M -1, (36)
y(0,1) =0, yd,t)=0, tedwr, y(x,0) =uo(x), Xe€ wp. (37)

It is interesting to note that for « — 1 we obtain the Crank-Nicolson difference scheme.
4.2. Stability and convergence

Theorem 3. The difference scheme (36)-(37) is unconditionally stable and its solution satisfies the following a priori estimate:

o 2 PTT( -w)
o = 1yl + = gmax Il (38)

Proof. For the difference operator A using Green’s first difference formula and the embedding theorem [24] for the func-
tions vanishing at x=0 and x =1, we get (—Ay,y) > 4“ ||y|\ that is for this operator it is possible to take » = 41%.

(CN]

Since difference scheme (36)-(37) has the form (5)-(6), where g’+1 = % then Lemma 4 implies validity of the
following inequalities:
(a.B)
J+1 _ € 1 1
o ™ > Sa > 2 s
T2 —w) ZtH_gF(l —a) 2Tl —ow)
j+1 j+1 j+1
g >gil > >8
j+1
g] :
— <o <1
Jj+1
Zgj 81

Therefore, validity of Theorem 3 follows from Theorem 1. Theorem 3 is proved. O

From Theorem 2 it follows that if the solution and input data of problem (1)-(2) are sufficiently smooth, the solution of
difference scheme (36)-(37) converges to the solution of the differential problem with the rate equal to the order of the
approximation error O(h? + 72).

4.3. Numerical results

Numerical calculations are performed for a test problem when the function
u(x, t) =sin(x) (2 +36% + 1)

is the exact solution of the problem (1)-(2) with the coefficients k(x, t) =2 — sin(xt), q(x,t) =1 —cos(xt) and =1, T =1.
The errors (z =y —u) and convergence order (CO) in the norms | -[lo and |- llc(@,,), where ||y llc@,,) = MaXe, ey, [V,
are given in Table 2.
Table 2 shows that as the number of the spatial subintervals and time steps is increased keeping h = 7, a reduction
in the maximum error takes place, as expected and the convergence order of the approximate scheme is O(h?) = O(t?),

where the convergence order is given by the formula: CO = logh1 ‘} Z] H (z; is the error corresponding to h;).

Table 3 shows that if h =1/1000, then as the number of t1me steps of our approximate scheme is increased, a reduction
in the maximum error takes place, as expected and the convergence order of time is @ (t?), where the convergence order
is given by the following formula: CO = logr Zl ”
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Table 2
Ly-norm and maximum norm error behavior versus grid size reduction when 7 =h.
o h maxo<n<m 12" llo COin || - llo zllc@nr) COin || - llc@y,)
0.10 1/160 1.0224e—4 1.4518e—4
1/320 2.5558e—5 2.0001 3.6294e—5 2.0000
1/640 6.3894e—6 2.0000 9.0733e—6 2.0000
0.50 1/160 7.8417e—5 1.1153e—4
1/320 1.9604e—5 2.0000 2.7882e—5 2.0000
1/640 4.9009e—6 2.0000 6.9705e—6 2.0000
0.90 1/160 6.6666e—5 9.4949e—5
1/320 1.6669e—5 1.9998 2.3740e—5 1.9999
1/640 4.1678e—6 1.9998 5.9360e—6 1.9998
0.99 1/160 6.5660e—5 9.3532e—5
1/320 1.6415e—5 2.0000 2.3384e—5 1.9999
1/640 4.1039e—6 1.9999 5.8460e—6 2.0000
Table 3
Ly-norm and maximum norm error behavior versus t-grid size reduction when h =1/1000.
o T maxo<n<m [1Z" llo COin | - llo zllc(@pe) COin | - llc@ne)
0.10 1/10 1.9062e—3 2.6962e—3
1/20 4.7789%e—4 1.9959 6.7593e—4 1.9960
1/40 1.1779%e—4 2.0205 1.6659e—4 2.0206
0.50 1/10 7.6326e—3 1.0795e—2
1/20 1.9130e—3 1.9963 2.7058e—3 1.9962
1/40 4.7697e—4 2.0039 6.7461e—4 2.0039
0.90 1/10 1.0286e—2 1.4547e—2
1/20 2.5706e—3 2.0005 3.6357e—3 2.0004
1/40 6.4066e—4 2.0045 9.0608e—4 2.0045
0.99 1/10 1.0449e—2 1.4777e-2
1/20 2.6102e—3 2.0011 3.6915e—3 2.0011
1/40 6.5050e—4 2.0045 9.1998e—4 2.0045

5. A higher order difference scheme for the time fractional diffusion equation

In this section for problem (1)-(2), we construct a difference scheme with the approximation order @(h* + 72) in the
case when k =k(t) and g = q(t). The stability and convergence of the constructed difference scheme in the mesh L,-norm
with the rate equal to the order of the approximation error are proved. The obtained results are supported by the numerical
calculations carried out for a test example.

5.1. Derivation of the difference scheme

Let us assign a difference scheme to differential problem (1)-(2) in the case when k =k(t) and q =q(t):

Ag‘w%hy,-:af“y;‘x’j.—df“thl?‘”Jthgo{“, i=1,...,N—1, j=0,1,...,.M—1, (39)
y(@0,t) =0, y(,t)=0, te€we, y(x,0) =ug(x), xe€wn, (40)

where Hpvi = vi+h?vgi/12,i=1,....N =1, /1 =k(tj30), &7 =q(tjse), §0,-j+1 =f(Xi, tjyo), 0 =1—0a/2.
From [9] and Lemma 2 it follows that if u € Cff then the difference scheme has the approximation order O(t2 + h?).

5.2. Stability and convergence

The difference scheme (39)-(40) differs from (5)-(6) due to the presence of the operator . However, deriving a priori
estimate for the solution of difference scheme (39)-(40) does not differ significantly from proving Theorem 1.

Theorem 4. The difference scheme (39)-(40) is unconditionally stable and its solution satisfies the following a priori estimate:

PTer (1 — )

i 2 2
[y 41 = oy + 0=

in2
max | Hug’ |5, (41)
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Proof. Taking the inner product of Eq. (39) with Hyy©) = (Hpy)©, we have
(Hay @, G, Hny) — T 0y @y D) + 7 1y @, Hny @) = (Hay ), Hag? ). (42)

Let us transform the terms in identity (42) as

(o) 1
(th A(]tH_ Hh)’) AOtH—J ”thnm

2
N—-1
2 1
~(Hny @ ) == vd) - nyx)llo 197116 = 15 2o (05 = v5 )
i=1
) N
> ||yl - ||y(”)]|o —|| (6)]|o—3,2||y(")||0, where ||y1I§ =" y?h,

i=1

. 1 .
(Hny @ Hnp ™) < [ Hny @ [+ o [Hne g

(o) (o) (o)
+10y:7’ + 1 ; 1 -
—ez(” —_— ”“) + el < |y )+ o [

Taking into account the above-performed transformations, from identity (42) at € = 2% one arrives at the inequality

2 .
Bty MG = 5 [ o

The following process is similar to the proof of Theorem 1, and it is omitted.
The norm || HpYyllo is equivalent to the norm | y|o, which follows from the inequalities

IIYIIO <1 Hayli§ < Iy15-

Slmllarly to Theorem 2, we obtain the convergence result. O

Theorem 5. Assume that u(x,t) € Cff is the solution of the problem (1)-(2) in the case k = k(t), q = q(t), and let
{yi] |0<i<N, 1< j< M} be the solution of the difference scheme (39)-(40). Then it holds that

|uG.t) =y, <Cr(r?+h%), 1<j=<M,
where Cy is a positive constant independent of T and h.

5.3. Numerical results

In this subsection we present a test example for a numerical investigation of difference scheme (39)-(40).
Consider the following problem:

o 3%u
I (x,t) =k(t)W(X, ) —qu,t)+ f(x,t), 0<x<1,0<t=<1, (43)
u(0,t) =0, u(l,t)=0, 0<t<l, u(x,00=0, 0<x<1, (44)
where k(t) =et, q(t) =1 — sin (2t),
2—a
20200 200 o .
fx)= [n te' +t*(1 —sin (20)) + —FG_Q)}sm(nx),

whose exact analytical solution reads u(x, t) = t2 sin(;rx).

Table 4 presents the Ly-norm, the maximum norm errors and the temporal convergence order for o = 0.75, 0.85, 0.95.
Here we can see that the order of convergence in time is two.

Table 5 shows that if T = 1/20000 is kept fixed, while h varies, then one obtains the expected fourth-order spatial
accuracy.

Table 6 shows that as the number of spatial subintervals and time steps is increased keeping h? = 7, a reduction in the
maximum error takes place, as expected and the convergence order of the approximate of the scheme is O(h%).

In Table 7 for the case N = [+/M] the maximum error, the convergence order and CPU time (seconds) are given. For this
case we obtain the expected rate of convergence O(t?2).
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Table 4
Ly-norm and maximum norm error behavior versus t-grid size reduction when h =1/100.
o T maxo<n<m 12" [lo COin || - [lo lzllc@nr) CO in || - llc@y,)
0.75 1/10 1.6336e—3 2.3103e—3
1/20 4.0889e—4 1.9983 5.7826e—4 1.9983
1/40 1.0229e—4 1.9990 1.4466e—4 1.9990
1/80 2.5581e—5 1.9995 3.6177e—5 1.9995
0.85 1/10 1.7130e—3 2.4225e—3
1/20 4.2856e—4 1.9989 6.0607e—4 1.9989
1/40 1.0718e—4 1.9994 1.5158e—4 1.9994
1/80 2.6801e—5 1.9997 3.7902e—5 1.9997
0.95 1/10 1.7582e—3 2.4865e—3
1/20 4.3967e—4 1.9996 6.2179e—4 1.9996
1/40 1.0993e—4 1.9998 1.5547e—4 1.9998
1/80 2.7484e—5 1.9999 3.8868e—5 1.9999
Table 5
Ly-norm and maximum norm error behavior versus h-grid size reduction when 7 =1/20000.
o h maxo<n<m 12" lo COin | -lo 1zl c@ne) COin |- llc(@ne)
0.10 1/4 1.1004e—3 1.5562e—3
1/8 6.7512e—5 4.0267 9.5476e—5 4.0267
1/16 4.2000e—6 4.0067 5.9397e—6 4.0067
1/32 2.6213e—7 4.0021 3.7070e—7 4.0021
0.50 1/4 1.0836e—3 1.5325e—3
1/8 6.6485e—5 4.0267 9.4024e—5 4.0267
1/16 4.1360e—6 4.0067 5.8491e—6 4.0067
1/32 2.5790e—7 4.0034 3.6472e—7 4,0034
0.90 1/4 1.0654e—3 1.5067e—3
1/8 6.5371e—5 4.0266 9.2449e—5 4.0266
1/16 4.0665e—6 4.0068 5.7510e—6 4.,0068
1/32 2.5346e—7 4.0040 3.5844e—7 4.0040
Table 6
Lp-norm and maximum norm error behavior versus grid size reduction when h? = .
o h maxo<n<m 12" [lo Coin |- llo llzllc@ne) COin || - llc(@ne)
0.10 1/10 2.4349e—5 3.4434e—5
1/20 1.5166e—6 4.0049 2.1448e—6 4.0049
1/40 9.4708e—8 4.0012 1.3394e—7 4.0012
1/80 5.9180e—9 4.0003 8.3693e—9 4,0003
0.50 1/10 1.4211e-5 2.0097e—5
1/20 8.8285e—7 4.0087 1.2485e—6 4.0087
1/40 5.5094e—8 4.0022 7.7914e—8 4,0022
1/80 3.4420e—9 4.0006 4.8677e—9 4.0006
0.90 1/10 1.5119e—5 2.1381e—5
1/20 9.5080e—7 3.9910 1.3446e—6 3.9911
1/40 5.9571e—8 3.9965 8.4247e—8 3.9964
1/80 3.7274e—9 3.9984 5.2714e—9 3.9984

6. Conclusion

In this paper, the stability and convergence of a family of difference schemes approximating the time fractional diffusion
equation of a general form is studied. Sufficient conditions for the unconditional stability of such difference schemes are
obtained. For proving the stability of a wide class of difference schemes approximating the time fractional diffusion equa-
tion, it is simple enough to check the stability conditions obtained in this paper. A new difference approximation of the
Caputo fractional derivative with the approximation order O(z3~%) is constructed. The basic properties of this difference
operator are investigated. New difference schemes of the second and fourth approximation order in space and the second
approximation order in time for the time fractional diffusion equation with variable coefficients are constructed as well. The
stability and convergence of these schemes in the mesh L,-norm with the rate equal to the order of the approximation error
are proved. The method can be easily extended to other time fractional partial differential equations with other boundary
conditions.
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Table 7
Maximum norm error behavior versus grid size reduction when N = [+/M] and CPU time (seconds).
o M 1zl ¢ (@pr ) CO in | - llc(any) CPU(s)
0.70 10 2.0986e—3 0.0156
30 2.1085e—4 2.0916 0.0468
90 2.3672e—5 1.9905 0.1404
270 2.6359e—6 1.9980 0.5460
810 2.9428e—7 1.9956 3.0108
2430 3.2802e—8 1.9971 22.2925
0.80 10 2.1403e-3 0.0156
30 2.2690e—4 2.0427 0.0468
90 2.5342e—5 1.9953 0.1716
270 2.8146e—6 2.0004 0.5616
810 3.1383e-7 1.9968 3.2604
2430 3.4962e—8 1.9976 23.3065
0.90 10 2.2549e-3 0.0156
30 2.4088e—4 2.0358 0.0468
90 2.6745e—5 2.0007 0.1404
270 2.9607e—6 2.0033 0.5460
810 3.2949e—-7 1.9986 3.6670
2430 3.6670e—8 1.9985 22.7605

Numerical tests completely confirming the obtained theoretical results are carried out. In all the calculations MATLAB is
used.
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