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Recently, several methods have been proposed to simulate incompressible fluid flows using 
an artificial pressure evolution equation, avoiding the resolution of a Poisson equation. 
These methods can be seen as various levels of approximation of the compressible Navier–
Stokes equation in the low Mach number limit. We study the simulation of incompressible 
wall-bounded flows using several artificial pressure equations in order to determine 
the most relevant approximations. The simulations are stable using a finite difference 
method in a staggered grid system, even without diffusive term, and converge to the 
incompressible solution, both in direct numerical simulations and for coarser meshes, to 
be used in large-eddy simulations. A pressure equation with a convective and a diffusive 
term produces a more accurate solution than a compressible solver or methods involving 
more approximations. This suggests that it is near to an optimal level of approximation. 
The presence of a convective term in the pressure evolution equation is in particular 
crucial for the accuracy of the method. The rate of convergence of the solution in terms 
of artificial Mach number is studied numerically and validates the theoretical quadratic 
convergence rate. We demonstrate that this property can be used to accelerate the rate of 
convergence using an extrapolation in terms of artificial Mach number. Since the approach 
is based on an explicit and local system of equations, the numerical procedure is massively 
parallelisable and has low memory requirements.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Compressibility effects in fluids are characterised by the Mach number. When the Mach number tends towards zero, 
the velocity of acoustic waves becomes arbitrarily large compared to the velocity of the fluid, leading to the instantaneous 
propagation of any pressure disturbance. If conductive heat transfers and density variations are neglected, the Navier–
Stokes equations converge in the low Mach number regime to the incompressible Navier–Stokes equations [1–4], given for 
a Newtonian fluid by:

∂Ui

∂t
= −∂U j Ui

∂x j
− 1

ρ

∂ P

∂xi
+ ν

∂2Ui

∂x j∂x j
, (1)
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∂U j

∂x j
= 0, (2)

with ρ the density, ν the kinematic viscosity, t the time, P the pressure, Ui the i-th component of velocity and xi the Carte-
sian coordinate in i-th direction. The pressure in the incompressible Navier–Stokes equations acts as a Lagragian multiplier 
of the incompressibility constraint (2). Usually, the pressure is determined from the resolution of a Poisson equation together 
with a predictor-corrector projection scheme [5,6]. This operation is costly and often represents the most computationally 
expensive part of the numerical resolution of the incompressible Navier–Stokes equations.

Numerical methods based on an explicit and local evolution equation for the pressure have been developed to avoid the 
resolution of a Poisson equation. However, the use of the Navier–Stokes equations in their compressible form is inefficient 
at low Mach number because of the large disparity between the velocity of the fluid and the speed of sound. In artificial 
compressibility approaches, this numerical issue is addressed through the artificial reduction of the velocity of acoustic 
waves. First proposed by Chorin [7], the artificial compressibility (AC) method uses an explicit evolution equation for the 
pressure to enforce the incompressibility constraint

∂ P

∂t
= −ρc2 ∂U j

∂x j
, (3)

with c the artificial speed of sound. This pressure evolution equation drives the velocity towards a solenoidal field in the 
limit of steady state, as the time derivative of the pressure vanishes [8–11]. To extend the approach to unsteady flows, a 
dual timestepping procedure may be used. In that case, the system is for each physical timestep iterated in pseudo-time 
until convergence. This approach has been followed by various authors [12–18]. A review on the error analysis of artificial 
compressibility methods is given by Shen [19].

The use of the artificial compressibility method without subiteration has also been suggested in the literature for un-
steady flows, as well as various related methods [20]. O’Rourke and Bracco [21] proposed a scaling called α-transformation 
to artificially increase the effective Mach number. In the pressure gradient scaling (PGS) method [22], the pressure gradient 
in the momentum equation is modified to decrease the speed of sound. Wang and Trouvé [23] suggested the acoustic speed 
reduction (ASR) method, which keeps the momentum equation intact and instead alters the energy or pressure equation. 
A variant of the ASR method, the artificial acoustic stiffness reduction method (AASCM), was developed by Salinas-Vázquez 
et al. [24] to improve the stability of the numerical method. In Guerra and Gustafsson [25], Merkle and Choi [10,11], a 
perturbation expansion procedure is used to obtain a system of equations valid at arbitrarily low Mach numbers, follow-
ing mathematic studies of the convergence of the solution of the compressible Navier–Stokes equations to the solution 
of the incompressible Navier–Stokes equations [26–28]. Karlin et al. [29] recommended the use of the kinetically reduced 
local Navier–Stokes (KRLNS) equations [30] for the grand potential and the momentum. The entropically damped artificial 
compressibility (EDAC) method of Clausen [31] adds a diffusive term to the pressure evolution equation, and sometimes 
a convective term. Toutant [32] derived a general pressure (GP) equation from the compressible Navier–Stokes equation, 
which is equivalent. Tessarotto et al. [33] derived an exact pressure evolution equation for incompressible fluids based on 
the inverse kinetic theory approach proposed by Ellero and Tessarotto [34]. The lattice-Boltzmann (LB) method, which solves 
the Boltzmann transport equation on a discretised phase space [35], is also closely related to the AC method [36–38]. All 
these methods are explicit in time and local in space and thus particularly amenable to massively parallel GPU-based sim-
ulations and have low memory requirements [39–42,17]. The KRLNS equations [29,43,39–41], the EDAC method [31,44,42]
and GP equation [45] have been applied for different viscous incompressible flows. Kajzer and Pozorski [42] used the EDAC 
method to perform direct numerical simulations of a turbulent channel flow at the friction Reynolds number 180 and 395 
on a collocated grid system. Given the large number of artificial pressure equations suggested in the literature, the relevance 
of the various approximations made in each method is not clear. In this paper, some of these approximations are analysed 
numerically using successive simplifications of the compressible Navier–Stokes equations.

We consider the numerical simulation of a three-dimensional turbulent channel flow at a friction Reynolds number of 
180. First, we study the artificial compressibility method, investigate the effect of the artificial Mach number (Ma) on the 
accuracy of the simulation and show that the method is stable for all artificial Mach numbers investigated with the proposed 
numerical method. Then, we analyse the simulation of the channel with a variant of the artificial compressibility method 
which includes a convective term and a diffusive term in the pressure evolution equation, as in the GP equation [32] or 
as in the pressure equation of the EDAC method [31]. Two intermediate numerical methods are also considered in order 
to assess separately the effect of the convective term and of the diffusive term on the accuracy of the simulation. Finally, 
the method is compared to the simulation of the compressible Navier–Stokes equations at low Mach number, which is 
sometimes referred to as the weakly compressible (WC) method. The simulations are carried out on two meshes: a coarse 
mesh and a fine mesh, which is sufficiently resolved for mesh-converged direct numerical simulations. While previous 
authors [20,31,44,42] favoured a collocated grid system, we use a finite difference method in a staggered grid system 
with a third-order Runge–Kutta time scheme. The accuracy of the simulations is examined by comparison of the results 
to simulations of the channel using a projection method for the same mesh, domain size and numerical schemes. The 
convergence in terms of artificial Mach number of the methods to the reference projection simulation is studied numerically. 
The extrapolation of two simulations with the same mesh at two different artificial Mach numbers, following the expected 
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quadratic O(Ma2) rate of convergence of the solution [46,28,20,37], can be used to accelerate the convergence and obtain a 
simulation with a smaller velocity divergence.

A derivation of the artificial pressure equations used in this paper is given in section 2 in order to clarify the differences 
between the selected methods. The channel flow configuration and the numerical method are presented in section 3. The 
results are discussed and analysed in section 4.

2. Derivation of the artificial pressure equations

Pseudo-compressibility methods are based on simplifications of the Navier–Stokes equations in the limit of low Mach 
number. This section briefly presents a derivation of the main approaches relevant to this study, with the aim to highlight 
the differences between the various methods. Two main types of approximation are used to derive the artificial pressure 
equations investigated in the paper. First, the Mach number is artificially increased to reduce the number of timesteps 
required for the numerical resolution of the flow. Second, the governing equations are simplified in order to ensure a 
constant density and thermodynamical pressure and to reduce the number of operations per timestep. To perform the first 
step, three flows will be defined in the following. The flow F is an arbitrary flow to numerically resolve. In the flow F ′ , the 
velocity of the fluid is increased compared to the flow F in order to increase the Mach number. Using a change of variable, 
the artificial flow F ′′ may be defined, with the same typical fluid velocity as the flow F , but instead an artificially reduced 
speed of sound. The crucial point is that the flow F ′′ is associated with the same boundary conditions as the flow F but 
a modified system of equations. The simplification of this system of equations leads to the simplified forms investigated in 
the paper.

Consider the flow F of an ideal gas, associated with the spatiotemporal fields (U , ρ, P ) and characterised by a length 
scale xb , a velocity scale U b , a time scale tb = xb/U b , a temperature scale T b , a density scale ρb and a pressure scale 
P b = rρb T b . The Mach number Ma representative of the flow is Ma = U b/cb , where cb = √

γ rT b is the representative 
speed of sound, with γ = C p/Cv the adiabatic index and r is the ideal gas specific constant. Suppose that this flow can be 
modelled by the compressible Navier–Stokes equations, in which dissipation has been neglected in the pressure evolution 
equation:

∂ρ

∂t
+ ∂ρU j

∂x j
= 0, (4)

∂ρUi

∂t
+ ∂ρU j Ui

∂x j
= − ∂ P

∂xi
+ ∂

∂x j

(
μ

(
∂Ui

∂x j
+ ∂U j

∂xi

))
− 2

3

∂

∂xi

(
μ

∂U j

∂x j

)
, (5)

∂ P

∂t
+ ∂U j P

∂x j
= (γ − 1)

∂

∂x j

(
λ

∂T

∂x j

)
+ P (1 − γ )

∂U j

∂x j
, (6)

P = rρT , (7)

with some initial and boundary conditions which are functions of (xb, U b, T b, ρb). Without loss of generality, we included 
no body forces and no heat sources. If the Mach number Ma is small, the numerical resolution of these equations with an 
explicit time stepping is inefficient because the speed of sound is large compared to the velocity of the fluid.

Let α > 1 be a constant. Provided that α Ma remains small, the flow F can be approximated by another flow F ′ , associ-
ated with (U ′, ρ ′, P ′), with the same geometry, temperature scale T b , Prandtl and Reynolds numbers but characterised by 
the Mach number Ma′ = α Ma. The flow F ′ is more efficient to resolve than the F because the disparity between the veloc-
ity of the fluid and the velocity of acoustic waves is reduced. This is the essence of weakly compressible (WC) methods, in 
which the compressible Navier–Stokes equations are used to simulate incompressible or almost compressible flows [47–49]. 
However, the flow F ′ may only approximate the flow F in the nondimensionalised sense, since it necessarily has a different 
time scale t′b = tb/α, velocity scale U ′b = αU b , density scale ρ ′b = ρb/α and pressure scale P ′b = P b/α and thus requires 
adjusted initial and boundary conditions. An asymptotic development of each nondimensionalised variable as a function of 
the squared Mach number [50,1,51] suggests the approximations U/U b ≈ υ0, ρ/ρb ≈ 	0 and P/P b ≈ π0 + Ma2 π1, where 
υ0, 	0, π0 and π1 do not depend on the Mach number and π0 is constant in space. Thus, U ′ ≈ αU , ρ ′ ≈ ρ/α, P ′

0 ≈ P0/α

and P ′
1 ≈ αP1, with P0 = P bπ0 and P1 = P b Ma2π1.

We will use a change of variables to recover the time, velocity, density and pressure scales of F and instead modify the 
system of equations. We let t′′ = αt′ , U ′′ = U ′/α, ρ ′′ = αρ ′ , P ′′

0 = αP ′
0 and P ′′

1 = P ′
1/α, such that U ′′ ≈ U , ρ ′′ ≈ ρ , P ′′

0 ≈ P0

and P ′′
1 ≈ P1. The resolution of the flow F ′ with the compressible Navier–Stokes equations (4)–(7) is equivalent to the 

resolution of the artificial flow F ′′ , solution of the modified system of equations:

∂ρ ′′

∂t′′ + ∂ρ ′′U ′′
j

∂x j
= 0, (8)

∂ρ ′′U ′′
i

∂t′′ + ∂ρ ′′U ′′
j U ′′

i

∂x j
= −∂ P ′′

1

∂xi
+ ∂

∂x j

(
μ

(
∂U ′′

i

∂x j
+ ∂U ′′

j

∂xi

))
− 2

3

∂

∂xi

(
μ

∂U ′′
j

∂x j

)
, (9)
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∂ P ′′
1

∂t′′ + ∂U ′′
j P ′′

1

∂x j
= (γ − 1)

α2
λ

∂T

∂x j
+

(
P ′′

1 (1 − γ ) − γ P ′′
0

α2

)
∂U ′′

j

∂x j
− 1

α2

∂ P ′′
0

∂t
, (10)

P ′′
0 + α2 P ′′

1 = rρ ′′T , (11)

with the same time, velocity, density and pressure scales (and thus initial and boundary conditions) as the flow F . The 
decomposition of pressure in (8)–(11) is necessary to properly scale the pressure variations. The naive scaling P ′′ = αP leads 
to a system of equations akin to the pressure gradient scaling (PGS) method, in which pressure variations are amplified by 
a factor α2 [22]. The artificial flow F ′′ approximates the flow F in both the dimensional and nondimensionalised sense and 
is as efficient to resolve as the flow F ′ . The flow F ′ has the same speed of sound as the flow F but a larger fluid velocity. 
The flow F ′′ has the same typical fluid velocity as the flow F but an artificially low speed of sound.

Several approximations may be applied on the system (8)–(11) to reduce the number of independent variables and the 
numerical cost of its resolution and with the intent to bring its solution closer to the incompressible solution. In order 
to impose a constant density without adding a constraint on the divergence of velocity, the continuity equation (8) is 
removed from the system. In accordance, the time derivative of P ′′

0 is neglected in equation (10) Besides, we can neglect 
P ′′

1 as compared to P ′′
0/α2 in equation (10) as the thermodynamical pressure P0 is typically very large compared to the 

mechanical pressure P1 in low Mach number flows. Finally, the viscous term of the momentum conservation equation (9)
may be simplified by neglecting the contribution of the velocity divergence. This leads to:

∂ρ ′′U ′′
i

∂t′′ + ∂ρ ′′U ′′
j U ′′

i

∂x j
= −∂ P ′′

1

∂xi
+ ∂

∂x j

(
μ

∂U ′′
i

∂x j

)
, (12)

∂ P ′′
1

∂t′′ + ∂U ′′
j P ′′

1

∂x j
= (γ − 1)

α2

∂

∂x j

(
λ

∂T

∂x j

)
− γ P ′′

0

α2

∂U ′′
j

∂x j
, (13)

P ′′
0 + α2 P ′′

1 = rρ ′′T . (14)

Injecting (14) into (13) and neglecting the variations of the fluid properties with pressure, we obtain

∂ P ′′
1

∂t′′ + ∂U ′′
j P ′′

1

∂x j
= γ ν

Pr

∂2 P ′′
1

∂x2
j

− γ P ′′
0

α2

∂U ′′
j

∂x j
, (15)

with Pr = γμr/(λ(γ − 1)) the Prandtl number. Following Clausen [31], we use Pr = γ as a Prandtl number and define the 
artificial speed of sound c =

√
γ P ′′

0/(ρα2) ≈ cb/α. This leads to the artificial compressibility method with a convective and 
a diffusive term, given by equations (1) and

∂ P

∂t
= −∂U j P

∂x j
− ρc2 ∂U j

∂x j
+ ν

∂2 P

∂x2
j

. (16)

This equation is equivalent to the GP equation [32] and the pressure equation of the EDAC method [31]. Neglecting the 
convective term this equation leads to the artificial compressibility method with a diffusive term, given by equations (1)
and

∂ P

∂t
= −ρc2 ∂U j

∂x j
+ ν

∂2 P

∂x2
j

, (17)

while neglecting the diffusive term leads to the artificial compressibility method with a convective term, given by equations 
(1) and

∂ P

∂t
= −∂U j P

∂x j
− ρc2 ∂U j

∂x j
. (18)

Finally, neglecting all but the divergence term in the GP equation leads to the artificial compressibility equation (3) without 
subiteration. In the following, we will compare numerical methods based on equations (16), (17), (18) and (3) in order to 
assess the relevance of each approximation. A compressible solver based on equations (4)–(7) will also be used to study 
weakly compressible methods.

3. Numerical study configuration

We consider a fully developed three-dimensional turbulent channel flow. We denote x the streamwise direction, y the 
wall-normal direction and z the spanwise direction. The geometry is periodic in the x and z directions. The domain size 
is 4πh × 2h × 2πh. The flow is isothermal and incompressible. The mass flow rate is imposed at value corresponding, 
in a direct numerical simulation, to a friction Reynolds number Reτ = 180, where Reτ is defined as Reτ = Uτ h/ν with 
Uτ = √

ν(∂y 〈Ux〉)ω the friction velocity, where the subscript ω denotes wall values.
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Fig. 1. Staggered grid system.

We carry out coarse simulations of the channel on a coarse mesh, and direct numerical simulations of the channel on a 
fine mesh. The two meshes are uniform in the homogeneous directions and follow in the wall-normal direction a hyperbolic 
tangent law of the form

yk = h

(
1 + 1

a
tanh

[(
k − 1

N y − 1
− 1

)
tanh−1(a)

])
, (19)

where a is the mesh dilatation parameter and N y the number of grid points. The coarse mesh contains 48 × 50 × 48 cells 
and the cell sizes in wall-units are 
+

x = 68, 
+
y,ω = 0.50 at the wall and 
+

y,c = 25 at the center and 
+
z = 34. The fine 

mesh contains 384 ×266 ×384 cells and the cell sizes in wall-units are 
+
x = 5.8, 
+

y,ω = 0.0.085 at the wall and 
y,c = 2.9
at the center and 
+

z = 2.9. The same mass flow rate is imposed with the coarse and fine meshes but accordingly a different 
wall shear stress may be obtained, as seen in Dupuy et al. [52,53].

We use a finite difference method written in a divergence form in a staggered grid system [54,55]. The setting is il-
lustrated in Fig. 1 in the two-dimensional case. A fourth-order centred scheme is used for momentum convection and a 
second-order centred scheme is used for momentum diffusion [56]. We use the following discretisations for the terms of 
the pressure evolution equation:

(∇ · U )i jk = ui+1 jk − uijk


xi
+ vij+1k − vijk


y j
+ wijk+1 − wijk


zk
, (20)

(∇ · (U P ))i jk = ui+1 jk(Pi+1 jk + Pijk) − uijk(Pijk + Pi−1 jk)

2
xi

+ vij+1k(Pij+1k + Pijk) − vijk(Pijk + Pij−1k)

2
y j

+ wijk+1(Pijk+1 + Pijk) − wijk(Pijk + Pijk−1)

2
zk
,

(21)

(
P )i jk = (Pi+1 jk − Pijk)/(
xi+1 + 
xi) − (Pijk − Pi−1 jk)/(
xi + 
xi−1)


xi/2

+ (Pij+1k − Pijk)/(
y j+1 + 
y j) − (Pijk − Pij−1k)/(
y j + 
y j−1)


y j/2

+ (Pijk+1 − Pijk)/(
zk+1 + 
zk) − (Pijk − Pijk−1)/(
zk + 
zk−1)


zk/2
.

(22)

The time scheme is given by a semi-implicit third-order Runge–Kutta method. For the system of equations put in the form 
∂t P = G(U , P ) and ∂t U = F (U , P ), the algorithm can be expressed as [57]:

Pn+1/3 = Pn + b1
t�1, U n+1/3 = U n + b1
tk1, (23)

Pn+3/4 = Pn + b2
t�2, U n+3/4 = U n + b2
tk2, (24)

Pn+1 = Pn + b3
t�3, U n+1 = U n + b3
tk3, (25)

using the estimated slopes

�1 = G(U n, Pn), k1 = F (U n, Pn+1/3), (26)

�2 = G(U n+1/3, Pn+1/3) + a2�1, k2 = F (U n+1/3, Pn+3/4) + a2k1, (27)

�3 = G(U n+3/4, Pn+3/4) + a3�2, k3 = F (U n+3/4, Pn+1) + a3k2, (28)
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Table 1
Artificial Mach numbers (associated with 
the volumetric flow rate) and artificial 
friction Mach numbers of the simulations 
on the coarse and fine meshes.

Mesh Ma Maτ

Coarse 0.78 0.050
Coarse 0.55 0.035
Coarse 0.39 0.025
Coarse 0.25 0.016
Coarse 0.18 0.011
Coarse 0.12 0.008
Coarse 0.08 0.005

Fine 1.00 0.064
Fine 0.50 0.032
Fine 0.25 0.016
Fine 0.10 0.006

with the constants a2 = −5/9, a3 = −153/128, b1 = 1/3, b2 = 15/16 and b3 = 8/15. We use the pressure at the next 
intermediate timestep to compute the increment of velocity in equations (26), (27) and (28) to improve the stability of 
the numerical method. Since the numerical schemes are explicit in time and local in space, the numerical method does 
not require the resolution of a system of coupled algebraic equations and is well-suited to parallel implementation. The 
timestep is set according to the following Courant–Friedrichs–Lewy condition:


+
t = Maτ

Reτ

+

y,ω, (29)

where 
+
t = 
t Uτ /h is the timestep in wall units and Maτ = Uτ /c is the artificial friction Mach number. Since the timestep 

is smaller than in the corresponding simulation with a projection method, it is generally small compared to the flow physics 
and there are no accuracy issues associated with the timestep. With the fine mesh, the simulations are in addition mesh 
converged [56] and thus do not depend on the exact numerical method, provided that it is stable. A no-slip boundary 
condition is used at the walls. If the pressure equation does not involve a diffusive term, no wall boundary condition is 
required for the pressure. If the pressure equation involves a diffusive term, the pressure gradient at the wall is imposed to 
∂y P = μ∂2

y U y using a four-point Lagrange polynomial interpolation of the velocity to compute the second-order derivative, 
following [42], and the density convection is discretised using the third-order QUICK (quadratic upstream interpolation for 
convective kinetics) scheme [58]. This is performed using the TrioCFD software [59].

We performed simulations of the channel using artificial pressure equations. The artificial Mach numbers investigated on 
the coarse and fine meshes are reported in Table 1. We used the volumetric flow rate in order to define the Mach number 
Ma. To analyse the results, we also performed simulations of the channel using a projection method. The simulations with 
a projection method have been carried out using the same mesh, the same domain size and the same numerical schemes 
as the simulations using an artificial pressure equation. The numerical set-up has been validated in previous papers [56,60]
against the reference data of Moser et al. [61], Bolotnov et al. [62], Vreman and Kuerten [63] and Lee and Moser [64].

4. Results and discussion

4.1. Artificial compressibility method

We first study the numerical simulations of the turbulent channel flow with the artificial compressibility method, given 
by equations (1) and (3). The simulations are stable for all artificial Mach number investigated (see Table 1) with our meshes, 
timestep and numerical method. The velocity divergence is smooth and exhibits a clear correlation with the pressure field 
(Fig. 2(a)). The first-order and second-order statistics of turbulence given by the fine simulations are reported in Fig. 3. 
Our numerical results support the fact that as the artificial Mach number tends towards zero, the simulations converge to 
the incompressible solution, here represented by the corresponding simulation with a projection method. At Ma = 1.00, 
the friction velocity is underestimated and the standard deviation of streamwise velocity overestimated, while the standard 
deviation of the other velocity components and of pressure is underestimated. At Ma = 0.10, a very good general agreement 
is obtained. A slight difference of the results with the reference projection simulation is visible for the standard deviation 
of streamwise and wall-normal velocity and of pressure, while the mean streamwise velocity, the covariance of streamwise 
and wall-normal velocity, the standard deviation of streamwise velocity and the mean pressure are almost identical. On 
the coarse mesh (Fig. 4), the simulations also converge towards the incompressible solution, which differs from the results 
of the direct numerical simulation because of the insufficient mesh resolution. At Ma = 0.08, the results of the artificial 
compressibility simulations and the reference projection simulation are indistinguishable.



D. Dupuy et al. / Journal of Computational Physics 411 (2020) 109407 7
Fig. 2. Fields of instantaneous pressure (left) and velocity divergence (right) in wall units at the center of the channel (y = h plane) for simulations on the 
fine mesh at Ma = 0.25 using the artificial compressibility method (3) and the artificial compressibility method with a convective term (18). The velocity 
divergence is premultiplied by 106.

The rate of convergence of some turbulence statistics is represented in Fig. 5. A quadratic O(Ma2) rate of convergence is 
expected for the artificial compressibility method [46,28,20,37]. Numerically, the quadratic convergence rate of the second-
order turbulence statistics is very clear for the coarse simulations at high artificial Mach number (Fig. 5). At low artificial 
Mach number, our results deviate from this expected behaviour. The quadratic convergence rate can be used to extrapolate 
the results of two or more simulations to an artificial Mach number of zero, as suggested by Ohwada and Asinari [20]. We 
consider for the sake of simplicity the statistics of two simulations s1 and s2 at the respective artificial Mach numbers Ma1
and Ma2. The results are extrapolated to Ma0 = 0 using s0(y) = (s1(y)2/ Ma2

1 −s2(y)2/ Ma2
2)/(1/ Ma2

1 −1/ Ma2
2) for each wall-

normal coordinate y. Notice that no interpolation is required since the two simulations are carried out on the same mesh. 
The extrapolation of the simulations on the coarse mesh at Ma = 0.25 and Ma = 0.39 is more accurate than the simulation 
at Ma = 0.12 (Fig. 6). However, it requires 20% less computational time since the timestep of the simulation is inversely 
proportional to the artificial Mach number. Similarly, the extrapolation of the simulations at Ma = 0.39 and Ma = 0.55 more 
accurate than the simulation at Ma = 0.25 but requires 10% less computational time. This procedure thus accelerates the 
convergence of the artificial compressibility method. Given these promising results, it would be interesting to examine the 
applicability of the extrapolation method in more complex fluid flows.

4.2. Comparison of artificial pressure equations

As discussed in section 2, several numerical methods can be identified as intermediate approximations between the com-
pressible Navier–Stokes equations and the artificial compressibility method. We study the artificial compressibility method 
with a convective and a diffusive term (16), the artificial compressibility method with a diffusive term (17) and the artificial 
compressibility method with a convective term (18). We compare the standard deviation of velocity divergence obtained 
with the three methods on the coarse mesh at Ma = 0.12 in Fig. 7. The addition of a diffusive term to the pressure evolu-
tion equation has a negligible impact on the fluctuations of the velocity divergence. On the other hand, the addition of a 
convective term reduces the standard deviation of velocity divergence away from the wall. This has a large impact on the 
accuracy of the simulation.
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Fig. 3. Turbulence statistics for artificial compressibility simulations on the fine mesh and the corresponding simulation with a projection method: (a) mean 
streamwise velocity 〈Ux〉, (b) covariance of streamwise and wall-normal velocity 〈u′

xu′
y

〉
, (c) standard deviation of streamwise velocity 

√〈
u′2

x
〉
, (d) standard 

deviation of wall-normal velocity 
√〈

u′2
y

〉
, (e) standard deviation of spanwise velocity 

√〈
u′2

z
〉
, (f, bottom) mean pressure 〈P 〉, (f, top) standard deviation of 

pressure 
√〈

p′2
〉
.

Fig. 8 shows that with a convective term, simulations on the coarse mesh are in a good general agreement with 
the reference projection simulation at Ma = 0.55. In particular, the profiles of the Reynolds stresses are superimposed 
below Ma = 0.39 and remain within a moderate error range at Ma = 0.78. The standard deviation of pressure is also 
improved for most artificial Mach number but does not converge exactly to the reference projection simulation at 
low artificial Mach numbers. These results are surprising since the convective term could be expected to be negligi-
ble given the disparity between the convective velocity and the speed of sound [43,31,32], but support the analysis of 
Kreiss et al. [28], which first considered the artificial compressibility equations with a convective term. Besides, the con-
vective term is required to ensure the Galilean invariance of the pressure evolution equation. The main phenomenon 
affecting pressure is the transport by the velocity of the fluid, which is captured by the convective term, allowing 
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Fig. 4. Turbulence statistics for artificial compressibility simulations on the coarse mesh and the corresponding simulation with a projection method. See 
Fig. 3 for labels.

higher artificial Mach numbers. We expect this behaviour to only be valid for unsteady flows as equation (18) does 
not ensure the divergence-free condition in steady solenoidal flows while this condition is ensured using the origi-
nal artificial compressibility equation (3). The simulation on a fine mesh at Ma = 0.25, given in Fig. 9, confirms the 
powerful influence of the convective term for direct numerical simulations. The velocity divergence remains clearly cor-
related with the pressure field (Fig. 2(b)), but its magnitude is reduced by a factor of 10 at the center of the chan-
nel.

The addition of a diffusive term to the pressure evolution equation has a negligible impact on the prediction of the 
Reynolds stresses (Fig. 10). However, it improves the convergence of the standard deviation of pressure. Below Ma = 0.25, 
the artificial compressibility method with a convective and a diffusive term gives identical results to the reference projection 
simulation for all first-order and second-order statistics of turbulence. This represents a three-fold speedup compared to the 
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Fig. 5. Relative error between the artificial compressibility simulations on the fine mesh (a) or the coarse mesh (b) and the corresponding simulation with 
a projection method for the maximum value of the covariance of streamwise and wall-normal velocity 〈u′

xu′
y

〉
, the variance of streamwise velocity 〈u′2

x

〉
, 

wall-normal velocity 〈u′2
y

〉
, spanwise velocity 〈u′2

z

〉
, and pressure 〈p′2

〉
.

artificial compressibility method. Higher-order statistics, such as the skewness and flatness factors of velocity are also well 
represented (Fig. 11).

The artificial compressibility method with a convective and a diffusive term is compared to the resolution of the com-
pressible Navier–Stokes equations in Fig. 12. For a given Mach number, the results of the compressible solver deviate more 
significantly from the reference projection simulation than the artificial compressibility method. This can be explained by 
the fact that the density is imposed in the artificial compressibility method while the continuity equation is resolved in the 
compressible solver. This point also makes the artificial compressibility method simpler and slightly reduces the memory 
requirements and the computational time per timestep. Note also that the modification of the Mach number requires the 
adjustment of the initial and boundary conditions in the compressible solver while it is included in the numerical method 
in artificial compressibility methods (see section 2). The computational efficiency of the artificial compressibility method 
with a convective term and a diffusive term is investigated in Fig. 13. The code has been executed on twelve Intel Xeon 
E5-2690V3 (144 CPU cores in total) using MPI parallel computing. Communication costs are minimal because of the explicit 
and local nature of the governing equations. Thus, the method becomes increasingly more time efficient than the projection 
method when the number of cores of the simulation is increased.

5. Conclusion

Simulations based on an artificial pressure equation produce velocity and pressure fields that can be made arbitrarily 
close to the velocity and pressure fields of the incompressible Navier–Stokes equations, at the cost of an increasingly large 
computational time. Several artificial pressure equations can be used depending on the selected level of approximation 
of the compressible Navier–Stokes equation. Amongst the methods examined in this paper, the artificial compressibility 
method with a convective and a diffusive term produces the most accurate results for a turbulent channel flow. The con-
vective term is critical for the accuracy of the incompressibility constraint and all one-point turbulence statistics while 
the diffusive term only improves pressure fluctuations. The method is easily parallelisable because the system of equa-
tions is explicit in time and local in space, and has low memory requirements. The procedure is stable using a finite 
difference method in a staggered grid system and a third-order Runge–Kutta time scheme, even if no diffusive term is in-
cluded, and can be used for underresolved simulations, large-eddy simulations or direct numerical simulations. We may 
conjecture that the method is near to optimal, in the sense that it is more effective than a compressible solver us-
ing a minimal amount of approximations on the one hand and simpler methods obtained by neglecting one by one the 
terms of the equation on the other hand. The approach can be combined with an extrapolation in terms of artificial 
Mach number, following the quadratic rate of convergence of the solution, in order to accelerate the rate of conver-
gence.
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Fig. 6. Turbulence statistics for extrapolated artificial compressibility simulations on the coarse mesh and artificial compressibility simulations without 
extrapolation, presented as differences from the reference projection simulation. See Fig. 3 for labels.
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Fig. 8. Turbulence statistics for artificial compressibility simulations with a convective term on the coarse mesh and the corresponding simulation with a 
projection method. See Fig. 3 for labels.
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Fig. 11. Skewness (a) and flatness (b) factors of the longitudinal velocity for artificial compressibility simulations with a convective and a diffusive term on 
the coarse mesh and the corresponding simulation with a projection method.

Fig. 12. Turbulence statistics for artificial compressibility simulations with a convective and a diffusive term on the coarse mesh compared to a compressible 
solver for the Mach number 0.55. See Fig. 3 for labels.
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Fig. 13. Scalability of the artificial compressibility simulations with a convective and a diffusive term on the fine mesh and the corresponding simulation 
with a projection method.
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