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In this paper, we introduce some new high-order discrete formulations on general 
unstructured meshes, especially designed for the study of irrotational free surface flows 
based on partial differential equations belonging to the family of fully nonlinear and 
weakly dispersive shallow water equations. Working with a recent family of optimized 
asymptotically equivalent equations, we benefit from the simplified analytical structure of 
the linear dispersive operators to conveniently reformulate the models as the classical 
nonlinear shallow water equations supplemented with several algebraic source terms, 
which globally account for the non-hydrostatic effects through the introduction of auxiliary 
coupling variables. High-order discrete approximations of the main flow variables are 
obtained with a RK-DG method, while the trace of the auxiliary variables are approximated 
on the mesh skeleton through the resolution of second-order linear elliptic sub-problems 
with high-order HDG formulations. The combined use of hybrid unknowns and local post-
processing significantly helps to reduce the number of globally coupled unknowns in 
comparison with previous approaches. The proposed formulation is then extended to a 
more complex family of three parameters enhanced Green-Naghdi equations. The resulting 
numerical models are validated through several benchmarks involving nonlinear waves 
transformations and propagation over varying topographies, showing good convergence 
properties and very good agreements with several sets of experimental data.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The propagation and transformations of incompressible, homogeneous and inviscid nonlinear surface waves in nearshore 
areas are ideally governed by the free surface Euler equations. In particular, the mathematical and numerical modeling 
of such processes require an accurate description of both dispersive and strongly nonlinear effects. In its full generality, 
this problem remains mathematically and numerically challenging. To acquire a better understanding of major physical 
processes associated with the nonlinear and non-hydrostatic propagation over uneven bottoms, several improvements have 
been obtained recently in the derivation and mathematical understanding of particular asymptotic models able to describe 
the behavior of the solution in some physical specific regimes. A recent review of such models can be found in [46]. The 
shallow-water regime is of particular interest in nearshore oceanography: the mean water depth H0 is assumed to be small 
compared to the typical wave length λ:
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(shallow water regime) μ := H2
0

λ2
� 1.

In such shallow-water regime, the weakly nonlinear regime has been widely studied for several decades: the typical ampli-
tude a of the waves are small, in the sense that

(weakly nonlinear regime) ε := a

h0
= O (μ). (1)

In such shallow water and weakly nonlinear regime, depth averaged approximations of order O (μ2) of the free surface Euler 
equations are furnished by the Boussinesq systems. Many types of (possibly enhanced) Boussinesq-like models, which are 
all O (μ2) accurate approximations of the free surface Euler equations, have been derived, theoretically and numerically 
studied, see for instance and among others [5,8,58,62,65]. All these approximations generally differ through their linear 
and nonlinear dispersion properties. However, the small nonlinearity assumption is too restrictive for many applications in 
coastal oceanography and such Boussinesq-type models are often used outside of their range of validity, especially when 
nonlinear effects become overriding, like in the shoaling area and in the vicinity of breaking. In such situations, fully 
nonlinear models should be used instead, see for instance [80]. In this paper, we therefore focus on the less restrictive 
fully-nonlinear and shallow water regime:

(fully nonlinear regime) ε := a

h0
= O (1). (2)

In this regime, the corresponding equations have been first derived in the horizontal surface dimension d = 1 in [70,71], 
and by Su and Gardner [75] and Green and Naghdi [42] in the d = 2 case. These have been recently mathematically justi-
fied in [1]. Concerning the development of numerical approximations, the Green-Naghdi (GN) equations have only recently 
really received attention and various numerical methods have been introduced, mostly in the surface horizontal d = 1 case, 
like Finite-Differences (FD) approaches [2], Finite-Volumes (FV) [7,14], WENO [10,22], pseudo-spectral (PS) [35], (continuous) 
Finite-Elements (FEM) [39,59,60], FV and FEM methods on hyperbolic relaxed approximating models [37,44] and discontinu-
ous Galerkin approaches (possibly mixed with FEM) in [26,28,33,52,63,72]. In the far less studied d = 2 case, several methods 
have been developed on cartesian meshes: FD approaches [3,80,83], FV methods [50], hybrid FV-FD methods [66,73] and 
WENO-FD [47], a PS method (in the rotating case) [64] and more recently a Hybridizable-DG method [69] and a Central 
DG-FE method in [53]. Numerical approximations of GN equations on general unstructured meshes are considered in [34].

We have also recently introduced in [47] some new families of enhanced GN models in order to optimize the dispersive 
properties of the classical GN equations, while allowing for easier and faster numerical approximations. High-order fully 
discontinuous Galerkin formulations based on the Local Discontinuous Galerkin (LDG) approach have been subsequently 
introduced for some of these models in [33] for the d = 1 case and [34] for the d = 2 case. In these works, the GN 
equations are written as coupled nonlinear (pseudo) hyperbolic-elliptic problems, relying on the (non-dispersive) NonLinear 
Shallow Water (NSW) equations [21] supplemented by additional algebraic source terms, which fully accounts for the O (μ2)

nonlinear dispersive correction. These source terms are themselves computed as the solutions of a cascade of 2 auxiliary 
linear second order elliptic problems. The computational cost of the solutions of these elliptic problems is significantly 
alleviated through the use of a new reformulation of the regularizing second order operator that allows to decouple the 
time evolution of the two directional components and to assemble and factorize the associated matrix in a pre-processing 
step, while preserving the O (μ2) asymptotic consistency with the Euler equations.

We observe from these works that high-order discontinuous formulations are particularly well-suited for the approxi-
mation of the solutions of nonlinear and weakly dispersive equations. Indeed, it is well known that DG methods exhibit 
several well-known appealing features, such as local conservation, stability, the straightforward ability to handle arbitrary 
high-order polynomial approximations, a great flexibility regarding the underlying geometrical discretization or the compact 
stencils and minimal inter-element communications allowing highly parallelizable implementations. Beyond these general 
features, DG formulations provide a general and unified discrete framework allowing to accurately approximate both the 
hyperbolic and elliptic parts of the GN equations. Targeting nearshore oceanography large-scale applications, such a frame-
work may allow to easily handle adaptive algorithms, since refining or coarsening a grid can be achieved without enforcing 
the continuity property commonly associated with the conforming elements. This appealing feature may be additionally 
exploited together with the use of higher order approximations in regular flow areas, e.g. far from wave breaking and sub-
mersion areas. Moreover, the strong robustness of DG methods in the vicinity of sharp gradients also appears to be well 
suited for the modelization of wave steepening and breaking, see for instance [68].

However, when compared with the FEM method, the DG formulations introduced in [34] require solutions of unsym-
metric systems of linear equations with more unknowns for the same grids and are therefore more expensive in terms of 
computational cost and storage requirements. In particular, even if the use of the optimized GN formulations of [47] greatly 
alleviate the computational cost usually associated with the classical GN equations, there is still a significant computational 
overhead when compared with the solution of the classical hyperbolic NSW equations. This overhead is mostly due to the 
resolution of the global elliptic problems associated with the dispersive corrections. As an answer to this weakness, and in 
order to lower as much as possible this computational overhead, we focus in this work on the development of a combined 
Hybridized Discontinuous Galerkin (HDG) and RK-DG strategy. HDG methods, relying on the hybridization through the faces 
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of the elements in combination with a Schur complement strategy, were introduced in [18] in the framework of diffusion 
problems. These methods were shown to share appealing features with the Raviart-Thomas (RT) and Brezzi-Douglas-Marini 
(BDM) mixed Finite-Elements methods, allowing equally efficient implementations and achieving optimal order of conver-
gence for all the computed fields and possibly super-convergence of some of them, while retaining the inherent advantages 
of DG methods. Moreover, HDG methods are known to reduce the number of globally coupled degrees of freedom, when 
compared to other DG methods, relying on the introduction of intermediate face-based unknowns (the hybrid unknowns) in 
addition to the cell-based ones and the elimination of the cell-based unknowns by a static condensation process.

During the last decades, HDG methods have been successfully adapted to a wide range of applications, see for instance 
[16] for a review, and we develop, in the following, some new discrete formulations especially designed for the optimized 
GN equations introduced in [47]. In these formulations, we combine:

�1 a RK-DG formulation to approximate the main flow variables through the resolution of the nonlinear (pseudo)-
hyperbolic part of the systems,

�2 symmetric HDG formulations to approximate the trace of the auxiliary/coupling variables issued from the elliptic sub-
problems written in mixed form.

Both elliptic and (pseudo)-hyperbolic problems are coupled through the local reconstruction of corresponding in-cells aux-
iliary variables, which are then used to compute the non-hydrostatic/dispersive source terms through integration on mesh 
elements. We emphasize that the approximations of auxiliary variables traces on the mesh edges are obtained through 
the resolution of global sparse linear systems and that, for high-order polynomial approximations (i.e. k ≥ 2), such an hy-
brid approach leads to a significant decreasing of the size of these systems when compared to classical DG methods, like 
L-DG or IP-DG, as the resulting set of algebraic equations has globally coupled degrees of freedom only on the skeleton 
of the computational mesh. The in-cell reconstruction of these auxiliary variables may also explicitly benefit from a local 
element-by-element post-processing of the potential variables in the mixed formulations to lower the order of polynomial 
approximation of the dispersive correction, while preserving the observed order of convergence of the main flow variables. 
This conveniently allows to further decrease the size of the corresponding global algebraic systems without losing the ex-
pected accuracy. Additionally, in comparison with [34], the considered elliptic sub-problems rely on a slightly modified 
formulation of the dispersive operator that leads to symmetric formulations for both local and global problems in the HDG 
formulations. Such an hybrid formulation is also extended to a more complex family of three parameters optimized GN 
equations, allowing to consider a wider window of application with respect to frequency dispersion properties. Note that 
we purposely avoid to consider in this work the additional issues of vorticity and flows with wave-current interactions, as 
well as wave breaking and occurrence of dry areas. These particular topics will be addressed in subsequent works.

The remainder of this work is organized as follows: we briefly recall the considered mathematical models together with 
the associated initial-boundary problems and the corresponding notations in the next section. Section 3 is devoted to the 
introduction of the discrete settings and discrete formulations. The proposed approach is then validated in the last section, 
with convergence studies and comparisons with data taken from several experiments, with a particular attention paid to 
the study of waves refraction, diffraction and focusing over submerged shoals.

2. The physical models

Let us denote by x = (x, y) ∈Rd the horizontal variables, where d = 2 denotes the horizontal dimension, z the vertical 
variable and t the time variable. In the following, ζ(t, x) describes the free surface elevation with respect to its rest state, 
H0 is a reference depth, −H0 + b(x) is a parametrization of the bottom and H := H0 + ζ − b is the water depth, as shown 
on Fig. 1. Denoting by Uhor the horizontal component of the velocity field in the fluid domain, we define the vertically 
averaged horizontal velocity v = (v1, v2)

ᵀ ∈Rd as

v(t,x) = 1

H

ζ∫
−H0+b

Uhor(t,x, z)dz,

and we denote by q = Hv the corresponding horizontal momentum.

2.1. One parameter optimized equations

Following [7], the original GN equations may be written as follows:{
∂tζ + ∇ · (Hv) = 0,[

I + T [H,b]] (∂t(Hv) + ∇ · (Hv ⊗ v)) + g H∇ζ + HQ1[H,b](ζ,v) = 0,
(3)

where the operators T [H, b] and Q1[H, b] are defined as follows for all regular enough Rd-valued function w:
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Fig. 1. Free surface flow description: main notations.

T [H,b]w = R1[H,b](∇ · w) +R2[H,b](∇b · w), (4)

Q1[H,b](w) = −2R1[H,b](∂1w · ∂2w⊥ + (∇ · w)2) +R2[H,b](w · (w · ∇)∇b), (5)

(here ∂1 and ∂2 denote space derivatives along the two horizontal directions and for a given R2-valued function w =
(w1, w2)

ᵀ , we have w⊥ = (−w2, w1)
ᵀ) with, for all smooth enough scalar-valued function w ,

R1[H,b]w = − 1

3H
∇(H3 w) − H

2
w∇b, (6)

R2[H,b]w = 1

2H
∇(H2 w) + w∇b. (7)

We focus in this work on the asymptotically equivalent and computationally efficient formulation of the GN equations, 
introduced in [47], called GN-LM equations as a shortcut in the following. Defining the water depth at rest, which does not 
depend on time:

Hb = H0 − b = H − ζ,

the GN-LM equations of [47] read as follows:{
∂tζ + ∇ · (Hv) = 0,[
1 +T[Hb]] (∂t(Hv) + ∇ · (Hv ⊗ v)) + g H∇ζ +Q[H,b](ζ,v) = 0,

(8)

where the linear operator T[Hb] is defined as follows for all smooth enough R-valued function w:

T[Hb]w = −C[Hb] w

Hb
, (9)

with

C[Hb]w = ∇ · (δ[Hb]∇w), and δ[Hb] = 1

3
(Hb)3, (10)

and

Q[H,b](ζ,v) = H(Q1[H,b](v) + gQ2[H,b](ζ )) +Q3[H, Hb]
([

1 +T[Hb]]−1
(g H∇ζ )

)
, (11)

is a second order nonlinear operator with

Q2[H,b](ζ ) = −H(∇⊥H · ∇)∇⊥ζ − 1

2H
∇(H2∇b · ∇ζ ) + (H

2
�ζ − (∇b · ∇ζ )

)∇b, (12)

and for all smooth enough R2-valued function w

Q3[H, Hb]w = 1

6
∇w∇(H2 − (Hb)2) + H2 − (Hb)2

3
�w − 1

6
�(H2 − (Hb)2)w. (13)

We also recall that the linear dispersion properties of (8) can be improved in several ways by adding some terms of order 
O (μ2) to the momentum equation, which consequently do not affect the accuracy of the model. In [47], an asymptotically 
equivalent enhanced family of models parametrized by α > 0, and referred to as α-GN-LM equations in the following, is 
given by⎧⎨⎩

∂tζ + ∇ · (Hv) = 0,[
1 + αT[Hb]](∂t(Hv) + ∇ · (Hv ⊗ v) + α − 1

α
g H∇ζ

)
+ 1

α
g H∇ζ +Qα[H,b](ζ,v) = 0, (14)
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with

Qα[H,b](ζ,v) = H(Q1[H,b](v) + gQ2[H,b](ζ )) +Q3[H, Hb]
([

1 + αT[Hb]]−1
(g H∇ζ )

)
. (15)

Remark 1. We actually show in [47] that it is indeed possible to replace the inversion of I + αT [H, b] occurring in (3)
by the inversion of 1 + αT[Hb], where T[Hb] depends only on the fluid at rest (i.e. ζ = 0), while keeping the asymptotic 
O (μ2) order of the expansion. 1 + αT[Hb] has a simplified scalar structure, i.e. it can be written in matricial form as(

1 − α∇ · (δ[Hb]∇ 1
Hb ·) 0

0 1 − α∇ · (δ[Hb]∇ 1
Hb ·)

)
. (16)

From a numerical viewpoint, this structure allows to compute each component of the discharge q separately, and to alleviate 
the computational cost associated with the dispersive correction of the model, as the discrete version of 1 + αT[Hb] may 
be assembled and factorized once and for all, in a preprocessing step.

Remark 2. Another difference with (3) is the presence of the modified quadratic term Qα [H, b], where no computation 
of third order derivative is needed. The price to pay is the inversion of extra linear systems, through the computation 
of Q3[H, Hb] 

([
1 + αT[Hb]]−1

(g H∇ζ )
)

. However, this extra computational cost is largely off-set by the gain obtained by 

using the time independent scalar operator T[Hb], as shown in [47].

Assuming that the water depth at rest Hb is bounded away from 0, we see that for any sufficiently smooth scalar-valued 
function v:

(1+αT[Hb])v = β[Hb] v

Hb
− ∇ ·
(
δα[Hb]∇

( v

Hb

))
, (17)

with

δα[Hb] := αδ[Hb], β[Hb] := Hb. (18)

Defining the total free surface elevation η = H + b, denoting W = (η, q)ᵀ ∈ R1+d the corresponding collection of primal 
variables, introducing two novel auxiliary Rd-valued variables d and m, and provided that W, d, m are regular enough, the 
enhanced model (14) can be conveniently rewritten as

∂tW + ∇ ·F(W,b) +Dα(W,d) =B(W,∇b), (19a)

β[Hb]d− ∇ · (δα[Hb]∇d
)= 1

α
g H∇η + Q̃α[H,b](W,m), (19b)

β[Hb]m− ∇ · (δα[Hb]∇m
)= g H∇η, (19c)

with

F(W,b) =
⎛⎝ qᵀ

q ⊗ q

η − b
+ 1

2
g(η2 − 2ηb)I

⎞⎠ , (20)

B(W,∇b) = (0,−gη∇b)ᵀ , Dα(W,d) =
(

0, Hbd− 1

α
g H∇η

)ᵀ
,

Q̃α[H,b](W,m) = H(Q1[H,b](v) + gQ2[H,b](ζ )) +Q3[H,b](Hbm), (21)

where (19b) and (19c) should be respectively intended as the definition of the auxiliary variables d and m and I refers 
to the second order identity tensor. This last formulation clearly highlights that the dispersive correction operator D(W, d)
only acts as a source term in the momentum conservation equation, and is obtained as the solution of a cascade of auxiliary 
second-order elliptic sub-problems.

We recall that the particular form of the second component of the nonlinear flux F(W, b) comes from the pre-balanced
reformulation of the model, explicited in [54] for the case d = 1 and [31] for the case d = 2, using the following splitting of 
the hydrostatic pressure term:

gh∇ζ = 1

2
g∇(η2 − 2ηb) + gη∇b. (22)

The use of the pre-balanced formulation allows to straightforwardly construct a discrete formulation that exactly preserves 
motionless steady states, as detailed in §3.4.2. It also helps to slightly reduce the number of quadrature nodes needed to 
exactly achieve such a preservation.
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Remark 3. Considering the case of bounded connected domains � ⊂ Rd , with d = 2, with boundary ∂� and outgoing unit 
normal vector n on ∂�, the formulation (19) highlights the need to add suitable boundary conditions on W|∂� but also 
on d|∂� and m|∂� to be well-defined. We only consider one type of boundary conditions here: reflective/solid-wall boundary 
conditions. This is achieved by applying mixed homogeneous Dirichlet/Neumann conditions on W (see for instance [26]) 
and by enforcing homogeneous Neumann boundary conditions on (19b) and (19c), as follows:

∇η · n = 0, on ∂�, (23a)

q = 0, on ∂�, (23b)

(δα[Hb]∇d)n = 0, on ∂�, (23c)

(δα[Hb]∇m)n = 0, on ∂�. (23d)

Basically, a vertical wall at the boundary may be modeled only through the assumption that there is no flux at the cor-
responding boundary, and thus only enforcing q = 0 at the corresponding boundary. It is however generally observed and 
admitted that the reflection at a vertical wall is equivalent to the head-on collision of two counter-propagating solitary 
waves of the same shape. In practice, during the interaction of a solitary wave with a wall, the normal component of the 
derivative ∇η on the boundary is indeed negligible, and the additional homogeneous conditions (23c) and (23d) may be in-
troduced relying on similar symmetry argument. Although not rigorously justified, such a choice for the reflective boundary 
conditions is numerically validated in §4.

Remark 4. Anticipating on the construction of the combined HDG-RKDG formulations, we observe that an equivalent mixed 
formulation for the elliptic sub-problems can be straightforwardly obtained as follows:

∂tW + ∇ ·F(W,b) +Dα(W,d) =B(W,∇b), (24a)

δα[Hb]−1Sd + ∇d= 0, (24b)

β[Hb]d− ∇ ·Sd = 1

α
g H∇η + Q̃α[H,b](W,m), (24c)

δα[Hb]−1Sm + ∇m= 0, (24d)

β[Hb]m− ∇ ·Sm = g H∇η, (24e)

in which Sd and Sm are second-order tensor fluxes respectively associated with the potentials d, m. Note that the boundary 
conditions (23c)-(23d) may be reformulated as

Sdn = 0, on ∂�, (25a)

Smn = 0, on ∂�. (25b)

Remark 5. The original GN equations (3) may be supplemented by an energy conservation property, which may be formu-
lated as follows, for a flat bottom:

d

dt
E(t) = 0, E(t) := 1

2

∫
R

gζ 2 + H|v|2 + 1

3
H|H∇ · v|2 dx. (26)

We emphasize that model (8), as well as optimized model (14), only preserve this energy up to O(μ2) accuracy.

Remark 6. As pointed out in [47], a simpler model that avoids the resolution of an extra linear system could be obtained 
by replacing Q3[H, Hb] 

([
1 + αT[Hb]]−1

(g H∇ζ )
)

in (15) by Q3[H, Hb] (g H∇ζ ), keeping the same O (μ2) accuracy. This 

would however leads to (linear) instabilities. This is due to the fact that Q̃3(ζ ) contains third order derivatives in ζ that can 
create high frequencies instabilities. We refer to [47] for more details on this issue.

2.2. Three parameters optimized equations

A three parameters optimized GN model has also been introduced in [47]. It is indeed possible to improve the dispersive 
properties of the previous model without modifying its asymptotic accuracy. This can be achieved by introducing a set of 
three parameters α, θ, γ and considering the following change of variables for the velocity:

∀θ ≥ 0, v :=
(

1 − θ
C[H]
)

vθ ,

H
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leading to the following set of equations:⎧⎪⎨⎪⎩
[
1 + γT[Hb]](∂tη + ∇ · (Hvθ )

)
− θ∇ · (C[H]vθ

)= 0,[
1 + α(1 + θ)T[Hb]](∂t(Hvθ ) + ∇ · (Hvθ ⊗ vθ ) + α − 1

α
g H∇η

)
+ 1

α
g H∇η +Qα,θ [H,b](η,vθ ) = 0,

(27)

with

Qα,θ [H,b](η,v) = H(Q1[H,b](v) + gQ2[H,b](η))

+ (1 + θ)Q3[H, Hb]
([

1 + α(1 + θ)T[Hb]]−1
(g H∇η)

)
+ θQ4[H](v), (28)

and

Q4[H]v := −∇ · (C[H]v)v + 2

3
H2∇ · (Hv)�v + H∇(H∇ · (Hv)) · ∇v

+ 2

3

∑
k=1,2

H3(∇vk · ∇)∂kv + H vk
(∇ (H∂k H) · ∇)v.

(29)

This model is referred to as (α, θ, γ )-GN-LM equations in the following. Taking θ = γ = 0, (27) coincides with (14). It is 
possible to find optimized values of (α, θ, γ ) to improve the dispersion properties of the equations, see the next section. In 
many practical configurations, when higher harmonics are released and larger values of relative depth |k|H0 are reached, 
working with the (α, θ, γ )-GN-LM equations may help to improve the quality of the flow description with a better descrip-
tion of higher order harmonics interactions. Again, an equivalent mixed formulation can be straightforwardly obtained:

∂tWθ + ∇ ·F(Wθ ,b) +Dα,θ,γ (Wθ ,χ,d) =B(Wθ ,b), (30a)

δγ [Hb]−1gχ + ∇χ = 0, (30b)

β[Hb]χ − ∇ · gχ = θ∇ · (C[H]vθ
)
, (30c)

δα,θ [Hb]−1Sd + ∇d = 0, (30d)

β[Hb]d− ∇ ·Sd = 1

α
g H∇η + Q̃α,θ [H,b](W,m), (30e)

δα,θ [Hb]−1Sm + ∇m= 0, (30f)

β[Hb]m− ∇ ·Sm = g H∇η, (30g)

in which gχ is a first-order tensor flux associated with the scalar potential χ and

Dα,θ,γ (Wθ ,χ,d) =
(

Hbχ, Hbd− 1

α
g H∇η

)ᵀ
.

Considering the case of an open bounded connected domain � ⊂R2, with boundary ∂� and solid-wall boundary conditions, 
these equations may be supplemented with the following set of boundary conditions:

∇η · n = 0, on ∂�, (31a)

q = 0, on ∂�, (31b)

gχ · n = 0, on ∂�, (31c)

Sdn = 0, on ∂�, (31d)

Smn = 0, on ∂�. (31e)

2.3. Dispersion properties

As already highlighted in our previous studies, the presence of the operator (1 + αT[Hb])−1 for (14) and (1 + α(1 +
θ)T[Hb])−1, (1 + γT[Hb])−1 for (27) make these models very robust with respect to high frequency perturbations. Consid-
ering, for the sake of simplicity, the case of flat bottom, we investigate the linear behavior of small perturbation (ζ̇ , V̇ ) to 
the motionless constant state solution (ζ = 0, v = 0). The linear equations that govern these perturbations are
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Fig. 2. Dispersion relations of optimized linearized GN equations: normalized phase velocities (top) and group velocities with respect to wave numbers. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)⎧⎪⎨⎪⎩

[
1 − γ

3
H2

0�
]
∂t ζ̇ + H0∇ · v̇ − θ

3
H3

0∇ · (∇ · ∇v̇) = 0,[
1 − α(1 + θ)

3
H2

0�
](

∂t v̇ + α − 1

α
g∇ζ̇
)+ 1

α
g∇ζ̇ = 0.

(32)

Looking for plane wave solutions of the form (ζ 0, v0)ei(k·x−ωt) to this linearized system, one finds the following dispersion 
relation

ωα,θ,γ (|k|)2 = g H0|k|2 (1 + (α−1)(θ+1)
3 (|k|H0)

2)(1 + θ+γ
3 (|k|H0)

2)

(1 + γ
3 (|k|H0)2))(1 + α(θ+1)

3 (|k|H0)2)
. (33)

We observe of course that setting θ = γ = 0 in (33) leads to the dispersion relation associated to the linearized version of 
(14)

ωα(|k|)2 = g H0|k|2 1 + α−1
3 (|k|H0)

2

1 + α
3 (|k|H0)2

, (34)

while additionally setting α = 1 allows to recover the relation associated to the classical GN equations (3). These relations 
have to be compared with the one coming from the linear Stokes theory, (see for instance [45] for a full derivation from the 
Zakharov-Craig-Sulem formulation of the free surface water waves equations):

ωS(|k|)2 = g|k| tanh(H0|k|). (35)

For the applications considered here, we are interested in obtaining a model with the widest possible range of validity and 
the discussion concerning the choices of (α, θ, γ ) that improve the dispersive properties of the model follows the usual 
procedure, see for instance in [7,15,62]. For the one parameter α-GN-LM equations (14), we take α = 1.159 throughout this 
article.

Concerning model (27), the two additional parameters offer the opportunity to optimize further the dispersive properties. 
Optimizing the errors in term of phase and group velocities, we show on Fig. 2 the ratio of GN phase velocities on Stokes 
phase velocity Cα,θ,γ

p /C S
p and the ratio of GN group velocities on Stokes group velocity Cα,θ,γ

g /C S
g with respect to the values 

of |k| for three different sets of parameters: (α, θ, γ ) = (1, 0, 0) (the original GN equations), (α, θ, γ ) = (1.159, 0, 0) (the 
α-GN-LM equations) and (α, θ, γ ) = (1.018, 0.191, 0.097). We see that this last set of parameters offers very good approx-
imation properties up to kH0 = 10 for the phase velocity and kH0 = 6 for the group velocity with an error smaller than 2%.

Remark 7. Several techniques are available to improve the linear frequency dispersion of the models. We choose here to use 
a classical trick consisting in trading a time derivative of v for a space derivative of ζ in the higher order terms, together 
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with changing the choice of the velocity unknown. Note that we did not find any modified model with two parameters that 
allows to improve the dispersive properties of the one-parameter model.

3. The discrete settings

3.1. Domain partitioning

Let � ⊂ Rd , with d = 2, denotes an open bounded connected polygonal domain with boundary ∂�. We consider a 
geometrically conforming partition Th of � defined as a finite collection of |Th| nonempty open disjoint triangular elements 
T of boundary ∂T such that � =⋃T ∈Th

T and we set ∂Th = {∂T , T ∈ Th}. We denote |T | the area of T and the partition 
is characterized by the meshsize h := maxT ∈Th

hT , where hT is the diameter of the element T . For all T ∈ Th , we denote 
by nT the unit outward normal on ∂T , and by xT its barycenter.

Mesh faces are collected in the set Fh , which is partitioned as Fh = F 0
h ∪F ∂

h , where F 0
h collects the internal faces (also 

called interfaces, i.e. there exist T1, T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2) and F ∂
h the boundary faces (i.e. there exists T ∈ Th

such that F ⊂ ∂T ∩∂�). The length of a face F ∈ Fh is denoted by |F |, the barycenter of a face F ∈ Fh is denoted by xF , and 
we let hF denote the minimum length of the mesh elements to which F belongs. For all T ∈ Th , FT := {F ∈ Fh | F ⊂ ∂T }
denotes the set of faces belonging to ∂T and, for all F ∈ FT , nT F is the unit normal to F pointing out of T . For any 
internal face F ∈ F 0

h , we choose an arbitrarily oriented but fixed unit normal nF , and we set nF := nT F for all boundary 
face F ⊂ ∂T ∩ ∂�. Additionally, Th is partitioned as Th = T 0

h ∪ T ∂
h , with T 0

h = {T ∈ Th, FT ∩ F ∂
h = ∅} and T ∂

h = {T ∈
Th, FT ∩ F ∂

h 
= ∅}.

3.2. Functional and interpolation setting

Given an integer polynomial degree k ≥ 0, we consider the following discontinuous finite elements spaces:

Pk
h =Pk(Th) :=

{
v ∈ L2(Th) | v |T ∈ Pk(T ) ∀ T ∈ Th

}
, (36)

where Pk(T ) denotes the space of bivariate polynomials in T of total degree at most k, and

Pk
h :=
{

v ∈ (L2(Th))
d | v|T ∈ (Pk(T ))d ∀ T ∈ Th

}
, (37)

Pk
h :=
{
V ∈ (L2(Th))

d×d | V |T ∈ (Pk(T ))d×d ∀ T ∈ Th

}
. (38)

In addition, we introduce finite element spaces on the (interior) mesh skeleton:

Mk
h :=
{
μ ∈ L2(F 0

h ) | μ|F ∈ Pk(F ) ∀ F ∈ F 0
h

}
, (39)

which consists of functions which are continuous inside the interfaces, but discontinuous at their borders, and

Mk
h :=
{
μ ∈ (L2(F 0

h ))d | μ|F ∈ (Pk(F ))d ∀ F ∈ F 0
h

}
. (40)

We define the following inner products(
v, w
)
�

:=
∫
�

v w,
(

v, w
)

T :=
∫
T

v w,
〈
v, w
〉
∂T :=
∫
∂T

v w ∀T ∈ Th,
〈
v, w
〉
F :=
∫
F

v w ∀F ∈ Fh,

for smooth enough scalar-valued functions v, w respectively defined on �, T , ∂T and F . Similar inner products are also 
respectively defined for smooth enough vector-valued functions v, w:(

v,w
)
�

:=
∫
�

v · w,
(
v,w
)

T :=
∫
T

v · w,
〈
v,w
〉
∂T :=
∫
∂T

v · w ∀T ∈ Th,
〈
v,w
〉
F :=
∫
F

v · w ∀F ∈ Fh,

and for second order tensor functions V, W :(
V,W
)
�

:=
∫
�

V :W,
〈
V,W
〉
F :=
∫
F

V :W ∀F ∈ Fh,

(
V,W
)

T :=
∫
T

V :W,
〈
V,W
〉
∂T :=
∫
∂T

V :W ∀T ∈ Th.

We also define the mesh elements inner products as



10 F. Marche / Journal of Computational Physics 418 (2020) 109637
(
v, w
)
Th

:=
∑

T ∈Th

(
v, w
)

T ,
(
v,w
)
Th

:=
∑

T ∈Th

(
v,w
)

T ,
(
V,W
)
Th

:=
∑

T ∈Th

(
V,W
)

T ,

for v, w ∈ L2(Th), v, w ∈ (L2(Th))d , V, W ∈ (L2(Th))d×d , and the mesh elements boundaries inner products as〈
μ,ν
〉
∂Th

:=
∑

T ∈Th

〈
μ,ν
〉
∂T ,
〈
μ,ν
〉
∂Th

:=
∑

T ∈Th

〈
μ,ν
〉
∂T ,

for μ, ν ∈ L2(∂Th), μ, ν ∈ (L2(∂Th))d . The following shortcuts are also defined:〈
μ,ν · n

〉
∂Th

:=
∑

T ∈Th

〈
μ,ν · nT

〉
∂T ,
〈
Vn,ν
〉
∂Th

:=
∑

T ∈Th

〈
VnT ,ν

〉
∂T ,

〈
ν,Vn
〉
∂T 0

h
:=
∑

T ∈T 0
h

〈
ν,VnT

〉
∂T +
∑

T ∈T ∂
h

∑
F∈FT ∩F0

h

〈
ν,VnT F

〉
F ,

〈
ν,Vn
〉
∂T ∂

h
:=
∑

T ∈T ∂
h

∑
F∈FT ∩F ∂

h

〈
ν,VnT F

〉
F ,

for μ ∈ L2(∂Th), ν ∈ (L2(∂Th))d , V ∈ (L2(∂Th))d×d (these two expressions respectively refers to inner products on interfaces 
and boundary mesh edges). For all T ∈ Th , we denote pk

T the L2-orthogonal projector onto Pk(T ) and pk
Th

the L2-orthogonal 
projector onto Ph . Applying pk

T or pk
Th

to Rd-valued functions, we respectively define L2-orthogonal projectors onto (Pk(T ))d

and Ph .
Similarly, we denote IkT the element nodal interpolation into Pk(T ). The corresponding nodal distributions in elements 

and edges are approximate optimal nodes introduced in [11], which have better approximation properties than equidistant 
distributions. The global IkTh

interpolation into Ph is obtained by gathering the local interpolating polynomials defined on 
each element. Applying IkT or IkTh

to Rd-valued functions, we respectively define interpolations onto (Pk(T ))d and Pk
h .

For a given final computational time tmax > 0, we consider a partition (tn)0≤n≤N of the time interval [0, tmax] with 
t0 = 0, tN = tmax and tn+1 − tn =: �tn . More details on the computation of the time step �tn and on the time marching 
algorithms are given in §3.4.3. For any sufficiently regular scalar-valued function of time w and Rd-valued function w, we 
let wn := w(tn) and wn := w(tn).

3.3. Discrete gradient, divergence and Laplace operators

Following [29], we define the jump and average operators such that, for a sufficiently smooth function ϕ and an interior 
vertex F ∈ F i

h such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements T1 and T2,

�ϕ� := ϕ|T1 − ϕ|T2 , {{ϕ}}F := 1

2
(ϕ|T1 + ϕ|T2). (41)

In what follows, and when no confusion can arise, we omit the subscript F from both �v�F and { {v} }F .
To discretize the linear and nonlinear operators that appear in our models, we need discrete counterparts of the gradient, 

divergence and of the Laplace operators applied to discontinuous polynomial functions. For any vh ∈Pk(Th), we define the 
following global lifting of the jumps of vh , see for instance [25]):

Rk
h(�vh�) :=

∑
F∈Fh

rk
F (�vh�),

where, for all F ∈ Fh , the local lifting operator rk
F (�vh�) ∈ Pk

h is defined as the unique solution of the following problem:(
rk

F (�vh�),ψh

)
�

= 〈�vh�, {{ψh}}nF
〉
F ∀ψh ∈ Ph.

Following [25, Section 2.3], we define the discrete gradient operator Gk
h : Pk

h → Pk
h such that, for all vh ∈ Pk

h ,

Gk
h(vh) := ∇h vh −Rk

h(�vh�). (42)

This gradient has better asymptotic consistency properties than the discontinuous (element-by-element) gradient ∇h , as it 
accounts for the jumps of its argument through the second contribution; see [24, Theorem 2.2] for further insight into this 
point. In a similar way, a discrete gradient operator Gk

h : Pk
h → Pk

h may also be straightforwardly defined for all Rd-valued 
function vh ∈ Pk

h with applying (42) on each scalar directional component of vh , together with a discrete orthogonal gradient 
Gk,⊥

h : Pk
h → Pk

h such that, for all vh ∈ Pk
h, Gk,⊥

h (vh) := Gk
h(vh)⊥ . For the sake of simplicity, for vh ∈ Pk

h , we will denote by 
∇2 vh the second order tensor obtained from the double application of the discrete gradient Gk .
h h
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For any integer k ≥ 1, we also define the discrete divergence operator Dk
h : Pk

h → Pk
h such that, for all vh ∈ Pk

h with 
cartesian component (vh,i)1≤i≤d ,

Dk
h(vh) :=

d∑
i=1

(
∇h vh,i −Rk

h(�vh,i�)
)

· ei,

where ei denotes the ith vector of the cartesian basis on Rd . The discrete divergence operator enjoys consistency property 
similar to the ones satisfied by the previous discrete gradient; see [24, Proposition 6.28].

We also introduce the discrete Laplace operator Lk
h : Pk

h → Pk
h such that, for all vh ∈ Pk

h ,

Lk
h(vh) = Dk

h(G
k
h(vh)).

Note that, by construction, we also have Lk
h(vh) = T r(∇2

h (vh)). In a similar way, a discrete Laplace operator Lk
h : Pk

h → Pk
h is 

defined for any Rd-valued function uh ∈ Pk
h by applying the discrete Laplace operator Lk

h on each scalar component of uh . 
It can be proved that, for any v ∈ H1

0(�) ∩ Hk+1(�), it holds

inf
vh∈Pk(Th)

‖∇v − Gk
h(vh)‖ � hk, inf

vh∈Pk
h

‖∇ · v −Dk
h(vh)‖ � hk, inf

vh∈Pk(Th)
‖�v −Lk

h(vh)‖ � hk−1,

where a � b means a ≤ Cb with real number C > 0 independent of the meshsize h.

3.4. The discrete formulations

3.4.1. A combined semi-discrete in space HDG-RKDG formulation
We consider in the following (k, r) ∈N2, and we assume that k ≥ 2 and r ∈ {k − 1, k}. The topography parameterization 

b and the associated water depth at rest Hb are approximated through high-order polynomial interpolation respectively as 
bh = IkTh

(b) and Hb
h = IkTh

(Hb), allowing to compute the required approximations Gk
h(bh), ∇2

h bh and ∇3
h bh (third order tensor 

associated with third order discrete derivatives of bh), as well as Gk
h(Hb

h) and Lk
h(Hb

h).
The semi-discrete in space combined HDG-DG approximation of (19) written in the mixed formulation (24) reads as 

follows: find Wh = (ηh, qh) ∈ Pk
h × Pk

h , (Sd
h , dh, ̂dh) ∈ Pr

h × Pr
h × Mr

h , (Sm
h , mh, ̂mh) ∈ Pr

h × Pr
h × Mr

h such that:(
∂tWh,ϕh

)
Th

+ (A�
α (Wh),ϕh

)
Th

= 0, ∀ϕh ∈ Pk
h, (43a)

(
δα[Hb

h]−1Sd
h ,Φh
)
Th

− (dh,∇ · Φh
)
Th

+ 〈̂dh,Φhn
〉
∂T 0

h
+〈dh,Φhn

〉
∂T ∂

h
= 0, ∀Φh ∈ Pr

h, (43b)(
β[Hb

h]dh,ψh

)
Th

+ (∇ ·Sd
h ,ψh

)
Th

+ 〈(Ŝd
h −Sd

h )n,ψh

〉
∂Th

= (Q̃�
α,h,ψh

)
Th

, ∀ψh ∈ Pr
h, (43c)〈

Ŝd
h n,νh
〉
∂T 0

h
= 0, ∀νh ∈ Mr

h, (43d)

Ŝd
h nT :=

{
Sd

h nT + S∂T (dh − d̂h) on FT ∩ F 0
h ,

0 on FT ∩ F ∂
h ,

∀T ∈ Th, (43e)

(
δα[Hb

h]−1Sm
h ,Ψh
)
Th

− (mh,∇ · Ψh
)
Th

+ 〈m̂h,Ψhn
〉
∂T 0

h
+〈mh,Ψhn

〉
∂T ∂

h
= 0, ∀Ψh ∈ Pr

h, (43f)(
β[Hb

h]mh,φh

)
Th

+ (∇ ·Sm
h ,φh

)
Th

+ 〈(Ŝm
h −Sm

h )n,φh

〉
∂Th

= (g HhGk
h(ηh),φh

)
Th

, ∀φh ∈ Pr
h, (43g)〈

Ŝm
h n,μh

〉
∂T 0

h
= 0, ∀μh ∈ Mr

h, (43h)

Ŝm
h nT :=

{
Sm

h nT + S∂T (mh − m̂h) on FT ∩ F 0
h ,

0 on FT ∩ F ∂
h ,

∀T ∈ Th, (43i)

where:

(i) (43a) is a DG semi-discrete formulation associated with (19a) and the nonlinear operator A�
α acting on any admissible 

discontinuous polynomial approximation Wh ∈ Pk
h × Pk

h is defined by(
A�

α (Wh),ϕh
)
Th

:= − (F(Wh,bh),∇ϕh
)
Th

+ 〈F̂n,ϕh
〉
∂Th

+ (D�
,ϕh
) − (B(Wh,bh),ϕh

)
, ∀ϕh ∈ Pk,

(44)

α,h Th Th h
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where F̂n ∈ (Pk(∂Th))d+1 is such that for all T ∈ Th , F̂n|∂T is a numerical approximation of the trace of the normal 
component of the interface flux F(Wh, bh)nT on ∂T , whose precise expression will be given in Section 3.4.2 below, and 
D

�
h is an in-cells discontinuous polynomial approximation of the dispersive correction D(W, d), defined by:

(
D

�
α,h,ϕh
)
Th

:=
(

0,
(

Hb
hd

�
h − 1

α
g HhGk

h(ηh),ϕh
)
Th

)ᵀ
, ∀ϕh ∈ Pk

h, (45)

the definition of d�
h is given below,

(ii) (43b)→(43e) and (43f)→(43i) are HDG discrete formulations respectively associated with the elliptic sub-problems 
written in mixed form (24b)→(30e) and (24d)→(24e). These HDG problems allow to compute polynomial approxi-
mations of the traces of the potentials d and m on the mesh interior edges. More precisely, (43e) and (43i) should 
be intended as the definitions of the trace of the normal component of the numerical fluxes Ŝd

h nT and Ŝm
h nT on 

∂T , for all T ∈ Th , while (43d) and (43h) are transmission equations enforcing the fact that the traces of the normal 
numerical fluxes Ŝd

h and Ŝm
h are single valued on internal faces. These two sets of transmission equations allow to 

set-up the global problems respectively leading to the computation of (̂dh, ̂mh) ∈ (Mr
h)2. In a second time, (43b)-(43c)

and (43f)-(43g) are local element-by-element problems defined with (Sd
h , dh) and (Sm

h , mh) as unknowns, once the 
approximations of the traces on the mesh edges ̂dh and m̂h are known.
Note that this formulation only accounts for the case of homogeneous Neumann boundary conditions (23) correspond-
ing to global solid-wall boundary conditions on all boundary edges. Although not used in this paper, the case of 
(one-directional) periodic boundary conditions may also be straightforwardly implemented by enforcing accordingly 
the continuity of the potential and fluxes through the connected (periodic) boundaries.

(iii) the nonlinear discrete operator Q̃�
α,h occurring in (43c) aims at approximating the nonlinear term (21) as follows:

Q̃
�
α,h := 1

α
g HhGk

h(ηh) + HhQ1,h[Hh,bh](pk
Th

(
qh

Hh
)) + g HhQ2,h[Hh,bh](ηh) +Q3,h[Hh, Hb

h](m�
h ),

with for all uh ∈ Pk
h:

HhQ
h
1[Hh,bh](uh) := 2H2

hG
k
h(Hh)
(
(Gk

h(uh)
ᵀe1) · (Gk

h(u⊥
h )ᵀe2) +Dk

h(uh)
2)

+ 2

3

(
H3

h

(
Gk

h(Gk
h(uh)

ᵀe1)(Gk
h(u⊥

h )ᵀe2)
)

+
(
Gk

h(Gk
h(u⊥

h )ᵀe2)(Gk
h(uh)

ᵀe1)
)

+ 2Dk
h(uh)Gk

h(Dk
h(uh))
)

+ H2
h

(
(Gk

h(uh)
ᵀe1) · (Gk

h(u⊥
h )ᵀe2) +Dk

h(uh)
2)Gk

h(bh)

+ 1

2
H2

h

(
2Gk

h(uh)∇2
hbhuh + (∇3

hbhuh)uh

)
+ Hh
(
uh · (uh · Gk

h)Gk
h(bh)
)
Gk

h(bh)

+ Hh
(
uh · (uh · Gk

h)Gk
h(bh)
)
Gk

h(Hh), (46)

for all ζh ∈ Pk
h:

HhQ2,h[Hh,bh](ζh) := − H2
hG

k
h

(
Gk,⊥

h (ζh)
)ᵀGk,⊥

h (Hh) − HhGk
h(Hh)
(
Gk

h(bh) · Gk
h(ζh)
)

− 1

2
H2

h

(∇2
hζhGk

h(bh) + ∇2
hbhGk

h(ζh)
)

+ Hh
(Hh

2
Lk

h(ζh) − Gk
h(bh) · Gk

h(ζh)
)
Gk

h(bh), (47)

and:

Q3,h[Hh, Hb
h](m�

h ) := 2

6

(
m

�
h Gk

h(Hb
h)ᵀ + Hb

hδα[Hb]−1Sm
h

)(
HhGk

h(Hh) − Hb
hG

k
h(Hb

h)
)

+ 1

3

(
H2

h − (Hb
h)2
)(

Lk
h(Hb

h)m
�
h + Hb

hD
k
h(δα[Hb]−1Sm

h ) + 2δα[Hb]−1Sm
h Gk

h(Hb
h)
)

− 2

6

(
Gk

h(Hh) · Gk
h(Hh) +Lk

h(Hh) − Gk
h(Hb

h) · Gk
h(Hb

h) −Lk
h(Hb

h)
)

Hb
hm

�
h . (48)

(iv) d
�
h ∈ Pk

h and m�
h ∈ Pk

h are discontinuous polynomial approximations of the auxiliary variables d and m (see (19b) (19c)) 
computed from the trace approximations d̂h ∈ Mr

h and m̂h ∈ Mr
h and which exact definition depends on the chosen 

value of r ∈ {k − 1, k}. More precisely:
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− if r = k, we set d�
h = dh and m�

h = mh ,

− if r = k − 1, d�
h and m�

h are defined as locally post-processed super-convergent polynomial approximations of d
and m respectively obtained from (Sd

h , dh) ∈ Pk−1
h × Pk−1

h and (Sm
h , mh) ∈ Pk−1

h × Pk−1
h relying on the optimal 

convergence of both the primal and the dual variables, see for instance [19] and [74]. These are respectively defined 
as the unique elements of Pk

h satisfying respectively the local problems(∇d
�
h ,∇ψh

)
T = −(δα[Hb

h]−1Sd
h ,∇ψh

)
T , ∀ψh ∈ Pk

h, ∀T ∈ Th, (49a)(
d
�
h ,1
)

T = (dh,1
)

T , ∀T ∈ Th, (49b)

and (∇m
�
h ,∇ψh

)
T = −(δα[Hb

h]Sm
h ,∇ψh

)
T , ∀ψh ∈ Pk

h, ∀T ∈ Th, (50a)(
m

�
h ,1
)

T = (mh,1
)

T , ∀T ∈ Th. (50b)

(v) S∂T ∈ (P0(∂T ))d×d is a second order tensor consisting of stabilization parameters for the HDG formulation. In the 
following, we simply set S∂T = I, ensuring both stability and optimal convergence rates for all the computed fields, see 
for instance [17].

Remark 8. From a practical viewpoint, the two sets of transmission equations through internal faces (43d) and (43h) lead to 
the same square and symmetric system of linear equations associated with the linear operator (17). As this operator does 
not depend on time, the corresponding sparse matrix is assembled once and for all in a preprocessing step.

Remark 9. We emphasize that (̂dh, ̂mh) ∈ Mr
h × Mr

h are globally defined discontinuous approximations of the traces of the 
auxiliary variables d and m over the (interior) mesh edges, that (dh, mh) ∈ Pr

h ×Pr
h are reconstructed discontinuous approxima-

tions over the mesh elements, while (d�
h , m�

h ) are reconstructed (post-processed if r = k − 1) discontinuous approximations 
over the mesh elements belonging to P k

h × P k
h .

When r = k − 1, we seek for traces d̂h, ̂mh and auxiliary variables dh, mh in a smaller dimension polynomial space 
of degree k − 1. Thanks to the local post-processing, we ultimately recover approximations (m�

h , d�
h ) ∈ (P k

h)2, which are 
respectively used to compute the right hand side of the local problem (43c) and the dispersive correction D�

α,h occurring in 
the nonlinear equations (43a), see (45).

Remark 10. The HDG formulations (43b)→(43e) and (43f)→(43i) rely on the fact that we only consider homogeneous 
Neumann boundary conditions on d and m, see (25). Hence, we borrow the alternative formulation with Neumann local 
problems of [23], which consists in prescribing the Neumann boundary conditions directly in the local problem and consid-
ering the modified definition of the numerical traces of the fluxes (43e) and (43i) instead of the usual trace definition, see 
[61]. This formulation leads to slightly smaller global problems, as we only seek for unknowns on the interior edges, and 
may provide a better accuracy of the solution near Neumann boundaries, as pointed out in [23].

Remark 11. At first sight, formulation (43a)→(43i) may appear as unattractive, involving more unknowns and approxima-
tions than the initial problem (19a)→(19c). However, since d̂h and m̂h are only defined on the mesh edges, this approach 
allows to significantly reduce the total number of globally coupled unknowns needed to compute the dispersive correction 
D

�
α,h , while preserving the overall accuracy of the approximation and the (expected) optimal convergence rates of the solu-

tions, see §4 for numerical validations. Indeed, the hybridization of the method and the static condensation strategy allow 
for a computationally efficient implementation of the method, writing the resulting problem as two (diagonal bloc) algebraic 
systems of linear equations where only the traces ̂dh and m̂h appear as globally coupled unknowns, eliminating the variables 
(Sd

h , dh) and (Sm
h , mh) through the computation of the Schur-complement matrix system for the trace unknowns. This leads 

to dim(Mr
h) = (r + 1) card(F 0

h ) globally coupled unknowns, while the use of (non-hybridized) SWIP-DG or L-DG methods 
leads to dim(Pk(Th)) = (k+1)(k+2)

2 card(Th) coupled unknowns. More details about the sparsity of the associated stiffness 
matrices may be found in [18], in which bounds on the number of non-zero coefficients are provided and compared with 
those of IP-DG and L-DG methods.

After solving these two global problems for d̂h and m̂h , (Sd
h , dh) and (Sm

h , mh) can respectively be inexpensively com-
puted in an element-by-element fashion with the local problems (43c)-(43d) and (43g)-(43h).

When r = k −1, the number of globally coupled faces unknowns is further reduced (with k card(F 0
h ) coupled unknowns), 

while the post-processing steps allow to recover polynomial approximations of degree k in mesh elements is also inexpen-
sively computed in an element-by-element fashion.
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3.4.2. Interface nonlinear fluxes
The high-order reconstructed numerical flux detailed in [32] is a good default choice to approximate the interface fluxes 

F̂n ∈ (Pk(∂Th))d+1, leading to a well-balanced scheme that preserves motionless steady states. Considering T ∈ Th such 
and F ∈ FT (we only focus on the case F ∈ F i

h and do not detail the case F ∈ F b
h ) we denote Ŵ− = (η̂−, ̂q−) and Ŵ+ =

(η̂+, ̂q+) respectively the interior and exterior traces on F , with respect to the elements T . Similarly, b− and b+ stand for 
the interior and exterior traces of bh on F . We define:

b∗ = max(b−,b+), b̌ = b∗ − max(0,b∗ − η−) (51)

and

ȟ− = max(0, η− − b∗), ȟ+ = max(0, η+ − b∗), (52)

η̌− = ȟ− + b̌, η̌+ = ȟ+ + b̌, (53)

leading to the new interior and exterior values:

W̌− = t(η̌−,
ȟ−

η− − b− q−), W̌+ = t(η̌+,
ȟ+

η+ − b+ q+). (54)

Now we set〈
F̂n,ϕh
〉
∂Th

=
∑

T ∈Th

∑
F∈FT

〈̂
FnT F ,ϕh

〉
F , (55)

and

F̂nT F = Fh(W̌−,W̌+, b̌, b̌,nT F ) + F̃T F , (56)

as the numerical flux function through the interface F , where:

1. the numerical flux function Fh is the global Lax-Friedrichs flux:

Fh(W−,W+,b−,b+,nT F ) = 1

2
((F(W−,b−) +F(W+,b+))nT F − λTh (W+ − W−)), (57)

with λTh
= max

T ∈Th

λ∂T and

λ∂T = max
∂T

(∣∣∣∣ qh|T
ηh|T − bh|T

· nT

∣∣∣∣+√g(ηh|T − bh|T )

)
. (58)

2. F̃T F is a correction term defined as follows:

F̃T F =
⎛⎝ 0 0

gη̌−(b̌ − b−) 0
0 gη̌−(b̌ − b−)

⎞⎠nT F . (59)

Note that the modified interface flux (56) only induces perturbations of order k + 1 when compared to the regular Lax-
Friedrichs flux straightforwardly applied to the (not reconstructed) traces.

3.4.3. Time discretization
Supplementing the α-GN-LM equations with an initial data W(0, ·) = W0, and introducing the corresponding discrete 

initial data W0
h = pk

Th
(W0), the time stepping is carried out using explicit SSP-RK schemes [41]. Up to k = 3, we consider 

RK-SSP schemes of order k + 1. A fourth order SSP-RK scheme is used for k ≥ 3. For instance, advancing Wh from time level 
n to n + 1 with the third-order SSP-RK scheme involves two intermediate stages denoted Wn,i

h , i = 1, 2 and is computed as 
follows :⎧⎪⎪⎪⎨⎪⎪⎪⎩

Wn,1
h = Wn

h − �tnA�
α (Wn

h) ,

Wn,2
h = 1

4 (3Wn
h + Wn,1

h ) − 1
4 �tnA�

α (Wn,1
h ),

Wn+1
h = 1

3 (Wn
h + 2wn,2

h ) − 2
3 �tnA�

α (Wn,2
h ),

(60)

where the corresponding time step �tn is computed adaptively using the following CFL condition:

�tn ≤ 1

2k + 1
min
T ∈Th

(
hT

λ∂T
), (61)

with λ∂T defined in (58).
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3.4.4. Well-balancing for motionless steady states
The preservation of motionless steady states can be deduced from the corresponding property obtained for the nonlinear 

(non-dispersive) shallow water equations, see for instance [32], provided that the problems (43b)→(43e) and (43f)→(43i)
are well-defined.

Proposition 1. The formulation (43) together with the interface fluxes discretization (56) and a first order Euler time-marching algo-
rithm preserves the motionless steady states, provided that the integrals of (43a) are exactly computed for the motionless steady states. 
In other terms, we have for all n ∈N:({

ηn
h ≡ ηe

qn
h ≡ 0

)
⇒
({

ηn+1
h ≡ ηe

qn+1
h ≡ 0

)
, (62)

with ηe constant,

Proof. Assuming that the equilibrium Wh = (ηe, 0) holds, we have to show that(
A�

α (Wh),ϕh
)
Th

= 0, ∀ϕh ∈ Pk
h.

We first observe that the local solvers (43b)-(43c)-(43e) and (43f)-(43g)-(43i) are well defined. Indeed, looking at (43f)-(43g), 
we have for homogeneous conditions (i.e. m̂h = 0 and g HhGk

h(ηh) = 0):(
δα[Hb

h]−1Sm
h ,Ψh
)
Th

− (mh,∇ · Ψh
)
Th

+ 〈mh,Ψhn
〉
∂T ∂

h
= 0, ∀Ψh ∈ Pr

h,(
β[Hb

h]mh,φh

)
Th

+ (∇ ·Sm
h ,φh

)
Th

+ 〈(Ŝm
h −Sm

h )n,φh

〉
∂Th

= 0, ∀φh ∈ Pr
h,

Ŝm
h nT :=

{
Sm

h nT + S∂Tmh on FT ∩ F 0
h ,

0 on FT ∩ F ∂
h ,

∀T ∈ Th,

which gives locally, for (Ψh, φh) = (Sm
h , mh):(

δα[Hb
h]−1Sm

h ,Sm
h

)
T − (mh,∇ ·Sm

h

)
T + 〈mh,S

m
h nT
〉
∂T \∩�

= 0, ∀T ∈ Th,(
β[Hb

h]mh,mh
)

T + (∇ ·Sm
h ,mh
)

T + 〈S∂Tmh,mh
〉
∂T \∂�

− 〈Sm
h nT ,mh

〉
∂T ∩∂�

= 0, ∀T ∈ Th,

where the restriction of global functions to the considered element T are not explicitly written, for the sake of simplicity. 
Summing both equations straightforwardly yields to Sm

h = 0 and mh = 0. Then, from this definition of the local solver 
(43f)-(43g) and the trace (43i), the existence and uniqueness of the global solution m̂h ∈ Mr

h satisfying〈
Ŝm

h n,μh

〉
∂T 0

h
= 0, ∀μh ∈ Mr

h,

can be obtained following, for instance, the unified formalism of [18] for hybridized methods and is the trivial one. Observ-
ing that, from definitions (42)-(46)-(47)-(48), we have Q̃�

α,h = 0 at steady states, similar considerations lead to d̂h = 0 and 
hence (

D
�
α,h,ϕh
)
Th

= 0 ∀ϕh ∈ Pk
h,

no matter what type of in-cell reconstructions d�
h and m�

h are used. From now, proving that

−(F(Wh,bh),∇ϕh
)
Th

+ 〈F̂n,ϕh
〉
∂Th

−(B(Wh,bh),ϕh
)
Th

= 0, ∀ϕh ∈ Pk
h,

at equilibrium follows for instance the lines of [34]. �
Remark 12. Although not detailed in this work, a positivity preservation property for the water height can also be obtained 
following for instance the approach of [82], already developed in [34].

Remark 13. The study of stability and dispersive properties of the whole discrete formulations for our models is a 
difficult issue, even in the simplified case of linearized equations. This is mainly due to the occurrence of the term 
Q3[H, Hb] 

([
1 + αT[Hb]]−1

(g H∇ζ )
)

. The existence and uniqueness result for the discrete elliptic problems relies on the 
discrete stability of the chosen HDG discretization, following [18]. Considering the classical (non-dispersive) linearized shal-
low water equations, several results closely related to the discrete stability and dispersive properties of DG methods may be 
found in [51].
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3.4.5. Boundary conditions
Boundary conditions are imposed weakly. For equations (43a), the solid-wall conditions (23a) and (23b) are enforced 

through suitable values of Ŵ+ at virtual exterior quadrature nodes on mesh boundaries F ∂
h , allowing to compute the cor-

responding interface fluxes in A�
α (Wn

h). As shown in formulation (43a)→(43i), the corresponding homogeneous Neumann 
boundary conditions on the elliptic equations associated with the dispersive corrections are directly enforced in the local 
HDG problems (43b)-(43c) and (43f)-(43g), following the approach described in [23]. Although not used in this work, pe-
riodic boundary conditions on opposite domain boundaries, for instance for rectangular domains, can also be obtained by 
enforcing the continuity of the corresponding variables and fluxes.

These simple boundary conditions possibly have to be supplemented with ad-hoc absorbing boundary conditions, allow-
ing the dissipation of the incoming waves energy together with an efficient damping of possibly non-physical reflections, 
and generating boundary conditions that mimic a wave generator of free surface waves. We use relaxation techniques and 
we enforce periodic waves combined with generation/absorption by mean of a generation/relaxation areas, following the 
ideas of [57] and using the relaxation functions described in [79]. The computational domain is therefore locally extended 
to include a generating layer at the inlet boundaries and a sponge layer at the outlet boundaries. Note that the generating 
layer may also be supplemented with a sponge layer in order to avoid possibly reflected waves. The relaxed solution along 
the domain is defined as follows:

Wrel
h = FaWh + (1 − Fa)Fg R(t)Wenf , (63)

where Fa , F g stand for the absorption and generation profiles and R governs the time evolution of the generation process. 
Above, Wenf defines the targeted (enforced) wave profile. Concerning the relaxation functions, we follow [79] and consider 
the following smooth profiles:

Fa(x) = 1 − exp
(
(xr)

n − 1)
)

exp(1) − 1
, Fg(x) = 1 − exp

(
(1 − xr)

n − 1)
)

exp(1) − 1
,

where xr = x − xR

�R
, n is a positive parameter, and xR , �R are respectively the beginning and the width of the relaxation 

zone. In agreement with other works, the length of the sponge layers �R is calibrated for each test case (generally 2 or 3 
wavelengths); the parameter n is set to 3. The reader is referred to the above references for more details. Note that new 
generating boundary conditions for GN equations based on dispersive boundary layers, inspired from [49], are currently 
under study.

3.4.6. A combined HDG-RKDG formulation for the (α, θ, γ )-GN-LM equations
The combined semi-discrete in space HDG-DG problem (43) can be extended to approximate the solutions of the 

(α, θ, γ )-GN-LM equations (30). In the following, we only give details concerning the additional terms and correspond-
ing modifications and do not recall parts of the formulation similar to those of (43). The main differences between (24)
and (30) are on one hand the occurrence of a new second order and scalar elliptic problem in the first equation of (30a)
(the mass conservation equations, which is therefore not an exact conservation equations but an approximate conservation 
equation up to O (μ2) terms) and on the other hand the occurrence of an additional source term, namely Q4, in the def-
inition of the fully nonlinear term Q̃α,θ [H, b]. One also has to deal with the occurrence of optimization parameters γ and 
θ . Considering the construction of an associated discrete formulation, this leads to the construction of two different linear 
discrete operators, respectively associated with 1 + γT[Hb] and 1 + α(1 + θ)T[Hb]. These operators are built relying on 
the same HDG method as in (43), considering now two different sets of continuity equations through mesh edges (see the 
vectorial systems (64d)-(64h) and the scalar system (64l) besides).

Still assuming k ≥ 2 and r ∈ {k − 1, k}, this extended discrete formulation reads as follows: find Wθ
h = (ηh, qθ

h) ∈ Pk
h × Pk

h , 
(g

χ
h , χh, ̂χh) ∈ Pr

h × P r
h × Mr

h , (Sd
h , dh, ̂dh) ∈ Pr

h × Pr
h × Mr

h , (Sm
h , mh, ̂mh) ∈ Pr

h × Pr
h × Mr

h such that:(
∂tWθ

h,ϕh
)
Th

+ (A�
α,θ,γ (Wθ

h),ϕh
)
Th

= 0, ∀ϕh ∈ Pk
h, (64a)

(
δα,θ [Hb

h]−1Sd
h ,Φh
)
Th

− (dh,∇ · Φh
)
Th

+ 〈̂dh,Φhn
〉
∂T 0

h
+〈dh,Φhn

〉
∂T ∂

h
= 0, ∀Φh ∈ Pr

h, (64b)(
β[Hb

h]dh,ψh

)
Th

+ (∇ ·Sd
h ,ψh

)
Th

+ 〈(Ŝd
h −Sd

h )n,ψh

〉
∂Th

= (Q̃�
α,θ,h,ψh

)
Th

, ∀ψh ∈ Pr
h, (64c)〈

Ŝd
h n,νh
〉
∂T 0

h
= 0, ∀νh ∈ Mr

h, (64d)

Ŝd
h nT :=

{
Sd

h nT + S∂T (dh − d̂h) on FT ∩ F 0
h ,

0 on FT ∩ F ∂
h ,

∀T ∈ Th, (64e)

(
δα,θ [Hb

h]−1Sm
h ,Ψh
)
T

− (mh,∇ · Ψh
)
T

+ 〈m̂h,Ψhn
〉
∂T 0+〈mh,Ψhn

〉
∂T ∂ = 0, ∀Ψh ∈ Pr

h, (64f)

h h h h
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(
β[Hb

h]mh,φh

)
Th

+ (∇ ·Sm
h ,φh

)
Th

+ 〈(Ŝm
h −Sm

h )n,φh

〉
∂Th

= (g HhGk
h(ηh),φh

)
Th

, ∀φh ∈ Pr
h, (64g)〈

Ŝm
h n,μh

〉
∂T 0

h
= 0, ∀μh ∈ Mr

h, (64h)

Ŝm
h nT :=

{
Sm

h nT + S∂T (mh − m̂h) on FT ∩ F 0
h ,

0 on FT ∩ F ∂
h ,

∀T ∈ Th, (64i)

(
δγ [Hb

h]−1g
χ
h ,πh
)
Th

− (χh,∇ · πh
)
Th

+ 〈χ̂h,πh · n
〉
∂T 0

h
+〈χh,πh · n

〉
∂T ∂

h
= 0, ∀πh ∈ Pr

h, (64j)(
β[Hb

h]χh,ϕh
)
Th

+ (∇ · gχ
h ,ϕh
)
Th

+ 〈(ĝχ
h − g

χ
h ) · n,ϕh

〉
∂Th

= (θMh(vθ
h),ϕh
)
Th

, ∀ϕh ∈ P r
h, (64k)〈

ĝ
χ
h · n, κh

〉
∂T 0

h
= 0, ∀κh ∈ Mr

h, (64l)

ĝ
χ
h · nT :=

{
g
χ
h · nT + S∂T (χh − χ̂h) on FT ∩ F 0

h ,

0 on FT ∩ F ∂
h ,

∀T ∈ Th, (64m)

where:

(i) (43a) is a DG discrete formulation associated with (19a) and the discrete nonlinear operator A�
α,θ,γ acting on any 

admissible discontinuous polynomial approximation Wθ
h ∈ Pk

h × Pk
h is defined by(

A�
α,θ,γ (Wθ

h),ϕh
)
Th

:= − (F(Wθ
h,bh),∇ϕh

)
Th

+ 〈F̂n,ϕh
〉
∂Th

+ (D�
α,θ,γ ,h,ϕh

)
Th

− (B(Wθ
h,bh),ϕh

)
Th

, ∀ϕh ∈ Pk
h,

(65)

where D�
α,θ,γ ,h ∈ Pk

h × Pk
h is a numerical approximation of the dispersive correction Dα,θ,γ (Wθ , χ, d), defined by:

(
D

�
α,θ,γ ,h,ϕh

)
Th

:=
((

Hb
hχ

�
h ,ϕh
)
Th

,
(

Hb
hd

�
h − 1

α
g HhGk

h(ηh),ϕh
)
Th

)ᵀ
, ∀ϕh ∈ Pk

h, (66)

with the definition of χ�
h given below,

(ii) (64j)→(64m) is an additional HDG formulation associated with (30b)−(30c). χ�
h ∈ Pk

h is defined as follows:

− if r = k, we set χ�
h = χh ,

− if r = k − 1, χ�
h is defined as a locally post-processed super-convergent discontinuous polynomial approximation of 

the auxiliary variable χ obtained from (gχ
h , χh) ∈ Pk−1

h × Pk−1
h . More precisely, χ�

h is defined as the unique element 
of Pk

h satisfying(∇χ
�
h ,∇ψh

)
T = −(δγ [Hb

h]−1g
χ
h ,∇ψh

)
T , ∀ψh ∈ Pk

h, ∀T ∈ Th, (67a)(
χ

�
h ,1
)

T = (χh,1
)

T . ∀T ∈ Th, (67b)

(iii) the additional third order source term Mh in the mass evolution equations is defined as follows:

Mh(vθ
h) := 1

3

{
6HhGk

h(Hh)
ᵀGk

h(vθ
h)ᵀGk

h(Hh) + 3H2
hG

k
h(Hh) ·Lk

h(vθ
h) + H3

hD
k
h(L

k
h(vθ

h))

+ 3H2
h

(
Gk

h(vθ
h)ᵀ : ∇2

h Hh + Gk
h(Hh) · Gk

h(Dk
h(vθ

h))
)}

, (68)

where : stands for the inner product with two indices,
(iv) the nonlinear discrete operator Q̃�

α,θ,γ ,h occurring in (64c) aims at approximating (28) as follows:

Q̃
�
α,θ,γ ,h := 1

α
g HhGk

h(ηh) + HhQ1,h[Hh,bh](pk
Th

(
qθ

h

Hh
)) + g HhQ2,h[Hh,bh](ηh)

+ (1 + θ)Q
�
3,h[Hh, Hb

h](m�
h ) + θQ4,h[Hh](vθ

h), (69)

where Q4,h is a discrete operator built upon definition (29) as follows:

Q4,h[Hh](vθ
h) := −Mθ,h(vθ

h)vθ + 2

3
H2

hD
k
h(qθ

h)Lk
h(vθ

h) + HhGk
h(vθ

h)ᵀGk
h(pk

Th
(HhGk

h(qθ
h))

+ 2

3
H3

h

(
Gk

h(Gk
h(vθ

h)) : Gk
h(vθ

h) + qθ
h,1G

k
h(vθ

h)ᵀGk
h ◦ pk

Th
(HhGk

h(Hh) · e1)

+ qθ
h,2G

k
h(vθ

h)ᵀGk
h ◦ pk

T (HhGk
h(Hh) · e2)

)
. (70)
h
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We have the following well-balancing result:

Proposition 2. The formulation (64) together with the interface fluxes discretization (56) and a first order Euler time-marching al-
gorithm preserves the motionless steady states, providing that the integrals of (64a) are exactly computed for the motionless steady 
states.

Proof. The proof follows the line of Proposition 1, accounting for the additional elliptic problem (64j)→(64m). �
4. Numerical results

In this section, we assess the previous formulations with several benchmarks. Unless stated otherwise, we use the α-GN-
LM equations with α = 1.159. We consider solid-wall boundary conditions on ∂� and the time step restriction is computed 
according to (61). Some numerical accuracy and convergence analysis are performed in §4.3 using the L2 norm defined, for 
any arbitrary scalar valued piecewise polynomial function wh ∈ Pk

h , as follows:

‖wh‖2
Th

= (wh, wh
)
Th

.

When generating/absorbing layers are needed, we add a generating/absorbing layer of 3λin at the inlet boundary and an 
absorbing layer of 2λin at the outlet boundary, where λin is the incident wave-length, see §3.4.5 for details. For several 
test cases, we conveniently summarize the corresponding computational set up in Tables. We recall that k refers to the 
polynomial order of the in-cell DG approximations of the main flow variables (ηh, qh), r refers to the polynomial order of 
the HDG approximations of the auxiliary variables (d̂h, m̂h) (and possibly χ̂h is the (α, θ, γ )-GN-LM equations are used) on 
the mesh skeleton, |Th| refers to the number of mesh elements, |F 0

h | refers to the number of interior mesh edges, hmin
and hmax refers respectively to the minimum and maximum edges lengths of the mesh. For test cases 4.3, 4.4, 4.5 and 4.6, 
which rely on extruded one-dimensional channels with one dimensional flow features, we apply a rotation of angle π/4
with respect to the horizontal direction on the corresponding meshes in order to activate all the components of the flow 
variables during the computations.

4.1. Remarks on implementation

The combined HDG-RKDG formulations (43) and (64), as well as the d = 2 extension of the SWIPDG-RKDG formula-
tion of [26] (which is provided in Appendix for the sake of completeness), have been implemented into our C++ WaveBox
framework. The linear algebra is handled with the Eigen library [43]. The linear systems arising from the discrete formula-
tions are solved using the supernodal Cholesky CHOLMOD library [13]. The proposed formulations may be implemented on 
general polytopal unstructured meshes and do not rely on any particular properties of the polynomial basis functions. Yet, 
the numerical results shown in this section are obtained using structured (for the convergence studies) and unstructured 
simplicial meshes and the Dubiner basis functions [30] with an implementation relying on the nodal polymorphic approach 
of [40] for the sake of efficiency. Every piece of stationary information is computed once, in a set-up pre-processing step. 
In particular, the sparse matrices issued from the global problems associated with the elemental transmission conditions 
(43d) and (43h), the dense matrices associated with the local solvers (43b)-(43c) and (43f)-(43g), as well as the local post-
processing (49)-(50) operators are assembled and (Choleski) factorized once and for all in a preliminary set-up step. Yet, 
at this level of implementation, the emphasize was put on developing a unified framework with a generic interface for 
wave flow problems and no particular attempt has been made to improve the code performance. In particular, we do not 
investigate yet the solver efficiency or the parallelization possibilities of the HDG formulations for the computation of local 
problems.

In contrast with [34] in which a quadrature free implementation was used for the computations of the discrete version 
of the nonlinear operator (21), we carefully compute every piece of polynomial integration with an exact quadrature rule 
and high-order rules are used for the integration of non-polynomial terms to lower the associated aliasing errors. For the 
tests shown in the following, no additional stabilization mechanism is needed. In particular, we do not need to introduce 
any filtering to eliminate short wave/high-frequency components generated by the nonlinear interactions.

4.2. Preservation of motionless steady state

This preliminary test case is devoted to briefly check the ability of the formulation to preserve motionless steady states. 
The computational domain is the [-1,1] × [-1,1] square, and we use an unstructured mesh of 8466 elements. The bottom 

elevation involves a bump and a hollow having same dimensions, respectively located at x1 = (−1

3
, −1

3
) and x2 = (

1

3
, 

1

3
), 

leading to the following analytic profile:

b(r1, r2) = 1 + d e−(r1/L)2 − d e−(r2/L)2
, (71)
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Fig. 3. Solitary wave propagation over a flat bottom: initial free surface.

Table 1
Solitary wave propagation over a flat bottom: number of 
coupled freedom degrees with respect to the polynomial 
order of approximation and the chosen formulation for the 
elliptic problems.

SWIP-DG (k) HDG (r=k) HDG (r=k-1)

k= 2 76800 56352 37568
k= 3 128000 75134 56352
k= 4 192000 93920 75134

where r1,2 are respectively the distances from x1 and x2 and we set d = 0.45 and L = 0.15. The reference water depth is 
H0 = 1.5 m. Numerical investigations confirm that this initial condition is preserved up to the machine accuracy for any 
value of polynomial order k. For instance, the L2 numerical errors obtained at t = 100 s using a k = 3 approximation are 
respectively 2.40e-15, and 7.2e-14 for η and q.

4.3. Solitary wave propagation over a flat bottom

We consider the time evolution of a solitary wave profile over a flat bottom b = 0, defined as follows:{
η(t,x) = H0 + εH0 sech2 (κ(x · e1 − ct)) ,

q(t,x) = c (η(t,x) − H0) ,
(72)

with κ =
√

3ε

4H2
0(1 + ε)

and c = √
g H0(1 + ε). Note that (72) is an exact solution of the original GN equations (3), but only 

a solution of the GN-LM models up to O(μ2) terms. However, for small enough values of ε, such profiles are expected to 
propagate over flat bottoms without noticeable deformations, possibly with a small dispersive tails propagating backward. 
The computational domain is a channel [0, 200] × [0, 5] with a reference water depth H0 = 1 m. A solitary wave of relative 
amplitude ε = 0.1 is initially centered at x0 = 80 m (see Fig. 3). To study the h-convergence properties of the formulation 
(43), we consider a sequence of regular triangular meshes, with a level of mesh refinement defined by the number of 
equi-spaced segments along each side of the domain, with mesh size h ranging from h0 to h0/2p , with h0 = 1.25 m and 
p = 3, together with polynomial expansions of degrees ranging from k = 1 to k = 4. The time step is chosen small enough to 
ensure that the dominant component of the error is related to the spatial discretization. As an exact solution is not available, 
we use a reference solution which computed on a refined mesh of size h = h0/24 and using k = r = 6. We compute the 
L2-errors at tmax = 0.1 s, the h-convergence curves and the corresponding convergence rates obtained by linear regression 
for both the free surface elevation η and the discharge q. Two possible formulations are investigated:

− k ≥ 1 and r = k: we seek the trace of the auxiliary variables in the same space as the one used for the main flow 
variables (η, q). The corresponding results are reported on Fig. 4,

− k ≥ 2 and r = k − 1: we seek the trace of the auxiliary variables in a smaller space than the one used for the main 
flow variables, leading to smaller global linear systems. The expected order of convergence are then recovered relying 
on local post-processing, see Fig. 5.

We assume k ≥ 2 in §3.4 to avoid the lowest order approximation r = k − 1 = 0 for the trace space, as no super-convergent 
post-processing is available. However, even if not used in practice as this formulation produces too much numerical dis-
sipation and dispersion errors for the study of dispersive problems, the choice r = k = 1 is of course allowed and leads 
to the expected convergence rate, as reported on Fig. 4. As expected, we observe overall rates ranging between O(hk+ 1

2 )

and O(hk+1) for both variables and both formulations, although the L2-errors on η are generally one order of magnitude 
smaller than those on q. For the finer mesh of the sequence (|Th| = 12800 and |F 0

h | = 18784), we provide in Table 1 a 
comparison of the number of freedom degrees associated with the elliptic sub-problems for both SWIP-DG with order k, 
HDG formulation of order r = k and HDG formulation of order r = k − 1. In particular, we point out that the same level of 
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Fig. 4. Solitary wave propagation over a flat bottom - L2-error for the free surface η (left) and the discharge q (right) vs. mesh size h for k = 1, 2, 3, 4 and 
r = k at t = 0.1 s.

Fig. 5. Solitary wave propagation over a flat bottom - L2-error for the free surface η (left) and the discharge q (right) vs. mesh size h for k = 2, 3, 4 and 
r = k − 1 with local-post-processing of the auxiliary variables at t = 0.1 s.

accuracy may be reached with either choices r = k and r = k − 1, but with significantly smaller global systems than with 
the SWIP-DG formulation.

4.4. Head-on collision of solitary waves

We consider now the head-on collision of two identical solitary waves propagating in opposite directions [20]. The 
collision of the two waves implies rapidly modifies the nonlinear dispersion characteristics of the flow and the discrete 
formulation has to ensure the equilibrium between amplitude and frequency dispersion to propagate the wave profile 
at constant shape and speed. The computational domain is a channel of 300 m length and 2 m width. We initialize the 
computation with two solitary waves (72) of relative amplitude ε = 0.2 initially located at x = −50 m and x = 50 m and with 
opposite velocities. We set the order of polynomial approximations to (k = 2, r = 1) and use a regular mesh of triangular 
elements, with edges lengths ranging from hmin = 0.2 m to hmax = 0.25 m. We show in Fig. 6 some snapshots of the free 
surface at various times during the propagation with equations (14). The obtained numerical results are in agreement with 
[59,67] and those exhibited in [20] using Euler equations. As in the d = 1 case, we observe some minor differences with the 
results obtained with the original GN equations. The maximum amplitude during the collision is qualitatively similar and 
there is no phase shift. We notice, however, some small variations in the amplitude of the oscillations in the dispersive tails 
before and after the collision, mainly due to the fact that (72) is only an approximated solution of (14).
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Fig. 6. Head-on collision of solitary waves: free surface elevation at several times.

Fig. 7. Shoaling and reflection of a solitary wave on a sloping beach: topography and initial free surface.

4.5. Shoaling and reflection of a solitary wave over a sloping beach

Next, we investigate the reflection of a solitary wave on a sloping beach. The aim of this test is to study the shoaling and 
full reflection of a non-breaking solitary wave propagating above a regular sloping beach, before reaching a vertical solid 
wall, following the set-up of [78]. We consider the computational domain � = [−55, 20] × [0, 5] (in m) and a topography 
defined with the following slope:

s(x) =
{

0 if x ≤ 0,

1/50 if x ≥ 0.
(73)

The water depth at rest is H0 = 0.7 m, the solitary wave is initially centered at x = −30 m, we use a mesh with a charac-
teristic size h = 0.2 and set (k = 2, r = 1). We show a sketch of a cut of the topography and initial free surface on Fig. 7. 
We compute time series of the free surface at a location near the vertical wall (x = 17.75 m) and compare numerical results 
with experimental data taken from [78]. Two runs are performed with ε = 0.1 (�A) and ε = 0.171 (�B) and the results are 
shown on Fig. 8.

We clearly identify the two expected peaks corresponding respectively to the incident and reflected waves, with a very 
good matching between simulations and experimental data for both the wave’s celerity and amplitude. In comparison with 
the numerical results obtained with the original GN equations, we observe a slightly more oscillating dispersive tail for 
the second (more nonlinear) case, in agreement with the fact that the initial solitary wave is not an exact solution of the 
modified α-GN-LM equations.
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Fig. 8. Shoaling and reflection of a solitary wave on a sloping beach: time series of the free surface at x = 17.75 m for the α-GN-LM model.

Fig. 9. Propagation of periodic highly dispersive waves: the Dingemans experiments - Locations of wave gages and (rescaled) 3d view of the free surface 
during the propagation.

Table 2
Propagation of periodic highly dispersive waves: the 
Dingemans experiments - computational set-up.

k r |Th | |F 0
h | hmin hmax

2 1 5400 8409 0.11 0.17

4.6. Propagation of periodic highly dispersive waves: the Dingemans experiments

We now study the Dingemans case [27] which highlights the ability of the models to compute the propagation and the 
interaction of higher order harmonics. Using the set-up introduced in [4], we compute the propagation of regular periodic 
waves over a submerged bar, see Fig. 9. For this test, we generate periodic waves at the left boundary, with an amplitude 
of 0.01 m, a time period of 2.02 s and mean water depth H0 = 0.4 m. When the incident wave encounters the upward part 
of the bar, it shoals and steepens, which generates higher-harmonics as the nonlinearity increases. These higher-harmonics 
are then freely released on the downward slope and propagates after the bar. For the numerical computation, we consider a 
channel of 40 m long and 1 m wide. The corresponding computational set-up is provided in Table 2. With k = 2, the use of 
hybrid HDG-DG formulation allows to halve the number of globally coupled freedom degrees needed for the computation 
of the dispersive correction with the SWIP-DG method of [26] or the L-DG method of [34].

Comparisons are performed between the two sets of parameters corresponding to the α-GN-LM model and the (α, θ, γ )-
GN-LM model with and the data taken from the experiment, for the last four wave gauges. Time series of the free surface 
elevation at the four last wave gauges of the experiment are plotted on Fig. 10. As already pointed out in our previous 
study [26], we observe that the α-GN-LM is not able to provide an accurate free surface evolution at the last wave gauge 
11. This last gauge is the most discriminating one as the higher-harmonics are completely released and interact together. We 
observe the improvements obtained using the (α, θ, γ )-GN-LM model at the last two wave gauges. It is worth highlighting 
that for this case, the use of the (α, θ, γ )-LM-GN equations allows to obtain the same quality of approximation than the 
one obtained for instance with the two-layers model of [56], with a computational overhead of less than 10%.
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Fig. 10. Propagation of periodic highly dispersive waves: the Dingemans experiments - Time series of the free surface at the last 4 wage gauges. Comparison 
between experimental data at wave gauges (o) and numerical results (−).

Fig. 11. Waves focusing by a topographical lens: Whalin experiments - 3D view of the topography.

4.7. Waves focusing by a topographical lens: Whalin experiments

Whalin [81] carried out a set of experiments studying the focusing effects on monochromatic periodic waves of a semi-
circular bottom topography in a wave tank of 25.6 m long and 6.096 m wide (see Fig. 11). The following equations describe 
the topography:

b(x, y) =
⎧⎨⎩ 0 if 0 ≤ x ≤ 10.67 − �(y),

(10.67 − G(y) − x)/25 if 10.67 − �(y) ≤ x ≤ 18.29 − �(y),

0.30480 if 18.297 − �(y) ≤ x,
(74)

with �(y) = √
y(6.096 − y). We focus here on the computation of case � B: T = 2.0 s and a = 0.0075 m where T refers 

to the wave train period and a the amplitude, leading to μ
1
2 = 0.117 and ε = 0.0165. The numerical domain is defined as 

[−8, 36] × [0, 6.096] (meters). The computational set-up used for this test is reported in Table 3. We compute the waves 
propagation up to tmax = 100 s and we extract time series of wave elevation at several locations along the centerline during 
the last 25 s. The time series of the surface elevation is analyzed in the frequency domain to obtain the first, second and 
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Table 3
Wave focusing by a topographical lens: Whalin 
experiments - computational set-up.

k r |Th | |F 0
h | hmin hmax

3 2 5162 7625 0.21 0.54

Fig. 12. Waves focusing by a topographical lens: Whalin experiments - Comparison between experiment (case B) and numerical results for the amplitudes 
of the first three harmonics.

third harmonic amplitudes and we consider their spatial evolution. These numerical results are compared to the experimen-
tal data on Fig. 12.

The hybrid formulation allows to obtain very good agreements with the measurements, using a very coarse mesh. The 
energy transfert towards the second and third harmonics through the focusing is accurately reproduced. As a comparison, 
the results shown in [47] and obtained with our previous FV-WENO formulation on cartesian grid relies on a mesh with 
equidistant spacing δx = δy = 0.12, and the results obtained in [55] and [67] with FE formulations respectively rely on 55018
(structured) and 30705 (unstructured and adapted) triangular elements. Of course, this low number of mesh elements is 
partially balanced by the number of freedom degrees in each element but we also emphasize that the chosen formulation 
leads to global systems coupling only 22875 freedom degrees. This number has to be compared with the 46458 global 
freedom degrees needed by the SWIP-DG formulation or L-DG method of [34] to reach the same level of polynomial ap-
proximation of the dispersive correction. It is always tricky to fairly compare the efficiency of different numerical methods, 
as much optimization may be achieved or not relying on the chosen implementation. However, relying on the same back-
ground implementation and the same computational set-up, denoting by tIPDG and tHDG the total CPU times (elapsed times 
on an otherwise-idle system) respectively needed to reach the final time of the computations respectively for the SWIPDG-
RKDG formulation of order k and the proposed HDG-RKDG formulation, we measure that (tIPDG − tHDG)/tIPDG ≈ 0.23. This is 
a mean value obtained from 3 different runs, and we recall that the global matrices are assembled in a preprocessing step, 
so that we consider the solve rather than the matrix setup CPU time.

4.8. Periodic waves propagation over an elliptic shoal: Berkhoff experiment

We now reproduce the experiment carried out in [6] to study the refraction and diffraction of 2D monochromatic wave 
train over a varying bottom. The wave tank is 20 m wide and 22 m long. The bathymetry consists of an elliptic shoal built 
on a ramp of constant slope, forming a 20◦ angle with the y axis (see Fig. 13). Introducing the rotated coordinates

xr = x cos(20◦) − y sin(20◦) , yr = x sin(20◦) + y cos(20◦),

the topography is defined by b = zb + zs , where:

zb(x, y) =
{

(5.82 + xr)/50 if xr ≥ −5.82 ,

0 elsewhere ,

zs(x, y) =
⎧⎨⎩−0.3 + 0.5

√
1 −
( xr

3.75

)2 −
( yr

5

)2
if (

xr

3
)2 + (

yr

4
)2 ≤ 1 ,

0 elsewhere .
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Fig. 13. Periodic wave propagation over an elliptic shoal: Berkhoff experiment - the topography.

Table 4
Periodic waves propagation over an elliptic shoal: Berkhoff ex-
periments - computational configurations.

k r |Th | |F 0
h | hmin hmax

Set-up 1: 2 2 45562 68025 0.14 0.23
Set-up 2: 3 2 15222 22645 0.22 0.40

The propagating periodic wave train has an amplitude a = 2.32 cm and a period T = 1 s. The corresponding computa-
tional domain has dimensions [−14.5, 15] × [−10, 10] (in meters) including a 4.5 m generating-absorbing zone at the inlet 
boundary of the domain and a 3 m absorbing layer at the opposite (outlet) boundary. In the original experiment, the wave 
elevation is measured along several sections defined as follows:

section 1 : {x = 1 m, −5 m ≤ y ≤ 5 m},
section 2 : {x = 3 m, −5 m ≤ y ≤ 5 m},
section 3 : {x = 5 m, −5 m ≤ y ≤ 5 m},
section 4 : {x = 7 m, −5 m ≤ y ≤ 5 m},
section 5 : {x = 9 m, −5 m ≤ y ≤ 5 m},
section 6 : {y = −2 m, 0 m ≤ x ≤ 10 m},
section 7 : {y = 0 m, 0 m ≤ x ≤ 10 m},
section 8 : {y = 2 m, 0 m ≤ x ≤ 10 m}.

We investigate two different numerical configurations, which are summarized in Table 4. For this particular test case, the 
formulation resulting with the choice (k = 2, r = 1) lead to under-resolved computation, even with the use of higher order 
post-processing for the coupling variables, and was therefore not retained here.

Time series of the free surface elevation are obtained at several locations along the sections, between t = 30 s and 
t = 50 s. The signal is then analyzed with the zero up-crossing method to isolate single waves and compute mean wave 
heights, which are normalized by the incoming (targeted) wave heights (2a). We show on Fig. 14 a comparison between 
numerical results and experimental data along the sections, obtained with the set-up 1. Although not shown here, very 
similar results are obtained with the set-up 2. We observe the expected wave focusing behind the shoal and due to the 
sloping beach, the waves continue shoaling after passing the shoal. We obtain very satisfying results, comparable with other 
studies found in the literature, see for instance [67,76,79] but with significantly coarser meshes. As in the previous test case, 
averaging the measured CPU times on 3 different runs, we measure that (tIPDG − tHDG)/tIPDG ≈ 0.14 for set-up 1, and 0.22
for set-up 2.

4.9. Waves propagation over a circular shoal: Chawla and Kirby experiments

We now present the comparison of numerical results with a test issued from the experiments performed by Chawla and 
Kirby in the directional wave basin at the University of Delaware in 1996, see [9]. The physical wave basin is approximately 
18 m long and 18.2 m wide. A circular shoal of radius 2.57 m is placed in a otherwise flat basin, leading to the following 
topography parameterization:

b(x, y) = 8.73 −
√

82.81 − (x − 5)2 − (y − 8.98)2.

We consider the propagation of a monochromatic train of waves with H0 = 0.45, a wave height at the input boundary of 
2.36 cm and a wave period T = 1.0 s, corresponding to the Test 4 of [9]. Accounting for boundary layers, the computational 
domain is 25.5 m long and 18.2 m wide. The physical experiment provides measured significant wave heights along seven 
sections covering most the areas of the submerged shoal and behind the shoal, see again Fig. 16. A schematic view of the 
domain and the gauges locations is shown on Fig. 16. The numerical set-up used for this test is summarized in Table 5.
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Fig. 14. Periodic waves propagation over an elliptic shoal: Berkhoff experiments - Comparison of the computed mean wave height with the experimental 
data along the height wave gauges sections.

Table 5
Periodic waves propagation over a circular shoal: 
Chawla and Kirby experiments - computational set-up.

k r |Th | |F 0
h | hmin hmax

2 2 30082 44865 0.15 0.25

We collect time series of wave elevation at several locations corresponding to the following sections

section A : {2 m ≤ x ≤ 14 m, y = 8.98 m},
section B : {x = 11.12 m, 2 m ≤ y ≤ 16 m},
section C : {x = 9.65 m, 2 m ≤ y ≤ 16 m},
section D : {x = 7.995 m, 2 m ≤ y ≤ 16 m},
section E : {x = 6.35 m, 4 m ≤ y ≤ 14 m},
section F : {x = 5.075 m, 4 m ≤ y ≤ 14 m},
section G : {x = 3.885 m, 4 m ≤ y ≤ 14 m},

between t = 30 s and t = 50 s. Again, mean wave heights are extracted and normalized by the initial incoming wave height, 
leading to the comparisons shown on Fig. 15. As pointed out in [12], even if the values of wave period and H0 are close 
or equal to those in the previous test case, the resulting wave fields for these two experiments exhibits several differences. 
Indeed, the focusing of waves is much stronger in this second case and occurs on the top of the shoal, while the focus 
of waves in the previous test case occurs at a location further behind the shoal. This focusing is well reproduced here, 
with results close to those shown in [12] and obtained with mesh sizes of 0.05 m and 0.1 m respectively in the x and 
y directions. Our model reproduces very well the transverse (asymmetric) variations of the wave field resulting from the 
effects of combined refraction/diffraction and the slightly off-centered shoal location.
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Fig. 15. Waves propagation over a circular shoal: Chawla and Kirby experiments - Comparison of the computed normalized mean wave height with the 
experimental data along the seven transects.

4.10. Waves propagation over an elliptic shoal: Vincent and Briggs experiments

We conclude this section with a computation corresponding to the M1 experiment of Vincent and Briggs [77] and which 
aims at showing preliminary computational results obtained with the (α, θ, γ )-GN-LM equations. Here again, we study the 
transformations of a non-breaking monochromatic train of waves over a submerged shoal. The experimental basin is 25 m
long and 30 m large. The elliptic shoal is centered at (x0, y0) = (6.1, 13.72) and is 6.1 m long in the x-direction and 7.92 m
wide in the y-direction. Its perimeter is defined by(

x − x0

3.05

)2

+
(

y − y0

3.96

)2

= 1,

and the corresponding topography is defined by

b(x, y) = −H0 + 0.7620(1 −
(

x − x0
)2

+
(

y − y0
)2

),

3.81 4.95
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Fig. 16. Waves propagation over a circular shoal: Chawla and Kirby experiments - Experimental set-up and wave gauges transects locations.

Table 6
Periodic waves propagation over an elliptic shoal: Vincent 
and Briggs experiments - computational set-up.

k r |Th | |F 0
h | hmin hmax

2 2 28302 42701 0.22 0.40

Fig. 17. Waves propagation over an elliptic shoal: Vincent and Briggs experiments - contour view of the free surface (up) and 3d view (down) at t = 35 s.

with H0 = 0.4572. Following [56], we generate a wave train at the left boundary with a wave height of 0.048 m and a wave 
period T = 1.3 s. The computational set-up used for this test is detailed in Table 6.
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Fig. 18. Waves propagation over an elliptic shoal: Vincent and Briggs experiments - significant wave heights along sections 7-9.

A snapshot of the quasi-steady state free surface taken at t = 32 s is shown on Fig. 17. As expected, we observe that 
oblique wave interactions dominate the wave-field behind the shoal, creating an irregular sea surface. We ran this test case 
with the two sets of equations: α-GN-LM and (α, θ, γ )-GN-LM with the parameters given in section §2.3. The significant 
wave heights (in cm) are extracted from time series of the free surface taken along the section located at y = 13.72 m and 
ranging from x = 2.0 m to x = 17 m, hence covering the wave variations over and behind the shoal. The results obtained 
for both models are then compared with the measurements taken from sections 7 − 9 of [77] and shown on Fig. 18. As in 
Test §4.6, we observe that the higher-frequency waves generated due to nonlinear transfers on the shoal strongly interacts 
behind the shoal, and if the two models give satisfactory agreements with the data from the experiment, we observe that 
the (α, θ, γ )-GN-LM equations provide a slightly better matching regarding the maximum wave amplification in the vicinity 
of the shoal. The amplitude after the shoal is over-predicted by both models. We also note that the discrete formulation 
associated with the (α, θ, γ )-GN-LM equations seems to be more sensible with respect to high frequency perturbations and 
further studies regarding additional stabilization are required for this more elaborated 3 parameters model to be used with 
confidence for long time simulations.

5. Conclusion

In this work, we further investigate the design of high-order discontinuous formulations for fully nonlinear and weakly 
dispersive shallow water equations. We introduce a new combined HDG-RKDG method for the asymptotically equivalent 
models of [48]. The main flow variables are approximated by in-elements polynomial approximations, while the coupling 
variables are approximated on the mesh skeleton, contributing to alleviate the computational overhead associated with the 
non-hydrostatic effects. This also offers the possibility to use different kind of polynomial approximations for each problem, 
and we take benefit from the existence of super-convergent post-processing for the auxiliary variables to further reduce the 
size of the global algebraic problems associated with the discrete trace space of the dispersive correction. The computational 
efficiency of this new hybrid approach allows to consider its extension to the further optimized three parameters (α, θ, γ )-
GN-LM model of [47]. Our numerical investigations show that the expected convergence properties are recovered, together 
with interesting approximation capabilities for the study of waves transformations in d = 2 horizontal configuration and 
an enjoyable robustness for the α-GN-LM model, as no additional stabilization mechanism is needed. On-going and future 
works will investigate the enforcement of positivity preservation through sub-element resolution to accurately model run-
up, wave-breaking and occurrence of vorticity following the preliminary works of [48] and parallelized implementations 
[38].
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Appendix A. SWIP-DG formulation for the α-GN-LM equations

In this section, for the sake of completeness, we extend to the d = 2 case the Symmetric Weighted Interior Penalty 
Discontinuous Galerkin (SWIP-DG) discrete formulation introduced in [26] in the d = 1 case. Let κ ∈ L∞(�) denote a uni-
formly positive scalar valued function and set κT := κ|T for all T ∈ Th . We consider the following bilinear form ah(κ; ·, ·) on 
Ph × Ph:
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ah(κ; vh, wh) := (κ∇h vh,∇h wh
)
Th

+
∑

F∈Fh

〈ξκ,F

hF
�vh�, �wh�

〉
F

−
∑

F∈Fh

(〈{{κ∇h vh · nF }}ω, �wh�
〉
F + 〈�vh�, {{κ∇h wh · nF }}ω

〉
F

)
,

with diffusion-dependent penalty coefficient

ξκ,F :=
{

ξF
2κT1 κT2
κT1 +κT2

if F ∈ F i
h is such that F = ∂T1 ∩ ∂T2,

ξF κT if F ∈ F b
h is such that F = ∂T ∩ ∂�,

(77)

where ξ is defined in Remark 15, and with the weighted average operator defined such that, for a sufficiently smooth 
function ϕ and an interior face F ∈F i

h such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements T1 and T2,

{{ϕ}}ω,F := ω2ϕ|T1 + ω1ϕ|T2 , ωi := κTi

κT1 + κT2

∀i ∈ {1,2}. (78)

Note that when κ ≡ C in � for some real number C > 0, we have ω1 = ω2 = 1
2 , and also the subscript ω is omitted. We 

also introduce the associated discrete Laplace operator La,k
h : Pk

h → Pk
h such that, for all vh ∈ Pk

h , La,k
h (vh) solves

−(La,k
h (vh),ψh

)
Th

= ah(1; vh,ψh) ∀ψh ∈ Pk
h.

Under a mesh quasi-uniformity assumption, it can be proved that, for any v ∈ H1
0(�) ∩ Hk+1(�), it holds

inf
vh∈Pk(Th)

‖�v −La,k
h (vh)‖ � hk−1.

We assume in the following k ≥ 1. The semi-discrete in space SWIP-DG approximation of (19) reads as follows: find Wh =
(ηh, qh) ∈ Pk

h × Pk
h , (dh, ph, mh) ∈ Pk

h × Pk
h × Pk

h such that:(
∂tWh,ϕh

)
Th

+ (Ah(Wh),ϕh
)
Th

= 0, ∀ϕh ∈ Pk
h, (79)

(
dh,ψh

)
Th

+ (g HhGk
h(ηh),ψh

)
Th

= (Hb
hph,ψh

)
Th

, ∀ψh ∈ Pk
h, (80)

ah(δα[Hb
h];mh,φh) + (β[Hb

h]mh,φh

)
Th

= (g HhGk
h(ηh),φh

)
Th

, ∀φh ∈ Pk
h, (81)

ah(δα[Hb
h];ph,πh) + (β[Hb

h]ph,πh
)
Th

= (Q̃α,h,πh
)
Th

, ∀πh ∈ Pk
h, (82)

where

(i) the discrete nonlinear operator Ah in (43a) is defined by(
Ah(Wh),ϕh

)
Th

:= − (F(Wh,bh),∇ϕh
)
Th

+ 〈F̂n,ϕh
〉
∂Th

+ (Dh,ϕh
)
Th

− (B(Wh,∇bh),ϕh
)
Th

, ∀ϕh ∈ Ph,
(83)

where F̂n ∈ (Pk(∂Th))d+1 is still defined as in (55), and the discrete dispersive correction Dh is(
Dh,ϕh
)
Th

:=
(

0,
(
dh,ϕh
)
Th

)ᵀ
, ∀ϕh ∈ Ph. (84)

(ii) The discrete nonlinear operator Q̃α,h in (82) is defined by

Q̃α,h := g HhGk
h(ηh) + HhQ1,h[Hh,bh](pk

Th
(

qh

Hh
)) + HhQ2,h[Hh,bh](ηh) +Q3,h[Hh, Hb

h](mh),

with Q1,h and Q2,h defined according to (46) and (47) and

Q3,h[Hh, Hb
h](mh) := 2

6

(
mhGk

h(Hb
h)ᵀ + Hb

hG
k
h(mh)
)(

HhGk
h(Hh) − Hb

hG
k
h(Hb

h)
)

+ 1

3

(
H2

h − (Hb
h)2
)(

La,k
h (Hb

h)mh + Hb
hL

a,k
h (mh) + 2Gk

h(mh)Gk
h(Hb

h)
)

− 2 (
Gk

h(Hh) · Gk
h(Hh) +La,k

h (Hh) − Gk
h(Hb

h) · Gk
h(Hb

h) −La,k
h (Hb

h)
)
mh. (85)
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Remark 14. The definition of Q3,h implies the computation of the second order tensor Gk
h(mh), as in contrast with the 

previous HDG formulation, the SWIP-DG method does not provide approximations of the flux variable Sm .

Remark 15. The penalty coefficient ξF used in (77) denotes a user-defined parameter sufficiently large to ensure coercivity. 
Following [36], this coefficient is defined as

ξF := 6δα[Hb
h]2

δα[Hb
h]2

k(k + 1) max
T ∈Th

cot θT , (86)

where δα[Hb
h] and δα[Hb

h] are respectively the global lower and upper bounds of δα[Hb
h] on � and cot θT is the cotangent 

of the smallest angle in a triangle T (we choose not to distinguish interior from boundary faces for the sake of simplicity).

Remark 16. An extended SWIP-DG formulation can be accordingly designed for the (α, θ, γ )-GN-LM equations. This has 
been implemented and used in §4.10 to estimate the computational speed-up observed when using our new hybrid formu-
lations.
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