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An Eulerian Method for Capturing Caustics
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A robust numerical method for the localization of caustics is proposed for general
Hamiltonians. It is based on the direct resolution of a system of partial differential
equations obtained through a local change of the time variable in the Hamilton—
Jacobi equation and complemented by a set of transport equations. Numerical results
(1- to 3-D) are presented. © 2000 Academic Press
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1. INTRODUCTION

Caustics are commonly observed as an optical phenomenon and the easiest and intt
definition of such an object relies on light rays: a caustic is the envelope of a family
rays. It is also a place where rays concentrate and the pattern of a caustic can easil
distinguished as light intensity increases dramatically there (“kaustikos” means burni
in ancient Greek). This phenomena occurs when rays are bent either by diffraction or
variation of the optical properties of the medium, or simply when the source of the light
such that the rays focus (remember the parabolic mirrors of Archimedes that set the Ror
war fleet on fire using the rays of the sun).

Of course the actual perception we have of this phenomenon is not really of rays (no ¢
has ever observed a single light ray). It would be more accurate to speak of a continuun
a field of rays. Rays are simply a convenient and natural way of modeling and understa
ing the underlying phenomena. In this paper, numerical methods based on rays are ce
Lagrangian because of the analogy between rays and particle trajectories in fluid mect
ics: various physical quantities are computed but only along characteristic curves wh
themselves depend on the physics. In this framework, determining caustics on rays is e
The main drawback of the Lagrangian method is the difficulty of maintaining a uniformre
olution in space when increasing the number of computed rays. Caustic curves and surf:
(in 3-D) are then represented by collections of possibly sparse points belonging to differ:
rays. The continuous vision we have of this optical phenomenon is therefore difficult
achieve numerically in the Lagrangian framework (a possible fix is to use sophisticat
representation/interpolation techniques as in [16, 26]).
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An alternate modeling possibility, in some sense closer to our visual perception, isto |
functions defined on the continuous medium and which also describe the propagatior
light. They are generally called phase (or travel-time or eikonal) and amplitude (or intensi
and they solve two partial differential equations, respectively a Hamilton—Jacobi equat
and a transport equation. Numerical methods based on this approach are called Eule
the discretization of the support of the solution is fixed a priori and in particular doe
not depend on the rays. The space resolution of the numerical method is therefore ec
maintained and the accuracy of the approximation depends on this resolution. One is
of geometrical optics is to formalize the relationship between rays, phase, and amplitu
In particular, this theory predicts an infinite amplitude at caustics or equivalently the loc
dilatation rate of the field of rays is 0. The present piece of work shows that it is possib
but not straightforward, to determine caustics in the Eulerian framework.

It is well known that Lagrangian solutions, which are the bicharacteristics of a give
Hamiltonian system, match the Eulerian solutions of the corresponding Hamilton—-Jac
equation as long as they are “classical”’ [14, 27]. This means that rays are not allowec
cross or equivalently that the phase transported by the rays remains an Eulerian functio
space: it is single valued and defined everywhere. This assumption is right at the heat
the problem and we can identify two distinct sources of trouble.

First, while the Lagrangian method naturally sweeps several times the same space locze
producing a multi-valued solution, the Eulerian method only computes a single-valu
solution. It is known that in multi-valued regions, the so-called viscosity solution (th
output of stable upwind schemes) only yields the minimum phase pointwise [5, 25]. Qu
a number of attempts at producing Eulerian or mixed Eulerian/Lagrangian methods
solving the multi-valued problem can be found in [1, 4, 8, 11, 12, 18, 22].

The secondissueis the problem of determining caustics as free boundaries for the Eule
approach. The caustic location indeed depends on the solution, which is only defined
one side of the caustic envelope.

In [5], where a generic algorithm for the splitting of the multi-valued solution into sever:
single-valued Eulerian solutions is presented, a heuristic method is proposed to locate ¢
tics. This work is probably the first to address this problem, as caustics are generically ne
associated with the minimum phase and cannot be observed in plain viscosity solution:

In this paper, we focus on caustic capturing and we explain how the two fundamer
difficulties mentioned above combine to make the problem of Eulerian caustic capturi
difficult. Then we propose a robust algorithm to do this.

Section 2 recalls the bases of Lagrangian and Eulerian approach. Section 3 discu
the different problems we face when using Eulerian methods. Section 4 presents
Eulerian caustic capturing algorithm. Section 2 to 4 are written for a general Hamiltoni
and illustrated by one-dimensional numerical simulations. Section 5 presents 2-D and :
numerical caustic capturing for a problem modeling laser beam propagation in a plasm

2. BASIC TOOLS

2.1. The Lagrangian Method

A Hamiltonian functionH (t, y. p) is given, defined ofR;" x R§ x RS; d is the space
dimension of the probleni®;” x Rd is the time—space conflguratlon in which rays can
evolve, ancRd X Rd is called the phase space. The Hamiltonian is assumed to be continuc
up to its second derlvatlves and convex and coercive in its last vanable
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The Lagrangian method then consists in solving the Hamilton system formed by t
following set of ordinary differential equations (ODEs) [2, 27]:

y(s, X% = Hp(s, y(s, X%, p(s, x?), y(0,x% = x°,
p(s, X% = —Hy(s, y(s, X°), p(s, x9), p(0, x%) = ¢S (x%),
@(s,x%) = p(s, x% - Hp(s, y(s, X%, p(s, x%) — ...

H(s, y(s, X%, p(s, x%), 9(0, x% = ¢°(x%).

1)

The dot stands for time differentiatiqr) = % Ox (X1, X2) @andgyx; (X1, X2) respectively
denote the gradient and the Hessiargofith respect tax;, and(xi, X;), ¢0 is the initial
phase and also appears in the initial conditiongoFor eachx® e Rd (or a subset oRY )
the system generates “bicharacteristics strigss, x°), p(s, x°)) Iylng in phase space W|th
smooth dependence srandx®. The projections of the strips onRy: y(s, x°), are called
the rays. Each ray is therefore “labeled” by its initial positign The phases(s, x°) is
transported by the corresponding rag, x°) and, when rays are crossing, is a multi-valued
function of the configuration spad” x RY.

It happens in particular at caustics which are the points on the rays where an infinitesir
tube of neighboring rays collapses. Mathematically, ax@yx®) encounters a caustic point
when the determinant (denoteg) of the Jacobian matrix of with respect to°,

ay(s, x%)
axo

: (@)

a(s, X% = ’

is zero. The quantity is sometimes called “geometrical spreading” as it provides a loce
measure of the geometrical convergence or divergence of the rays.

The Lagrangian method therefore needs to evalugsex®) along the rays to locate
caustic points. The computation 8§(s, x°)/dx° is performed using a set of additional
ODEs obtained via a linearization of the system (1) with respex?,to

=% (S x) 25(s. x)
’ = A, Y(s, X9, p(s, x%) - |
axo (S XO) 3)(0 (S XO)

(3)
200, X% Iddxd
B0x0)) \L%09)
where
Hpy(S, Y, P) Hpp(s, Y, P)
Att, Y, p)=< > P ) (4)
—Hyy(s,y, p)  —Hyp(s,y, p)

This is a set of 82 ODEs but as it is written each unknown of system (3) ds>ad matrix
and the matrix vector product must be understood in the correct algebra.

Lagrangian caustic localization therefore consists in solving (1)—(3) and evaluatil
a(s, x%) along a ray using (2). When it vanishes or more precisely changes its sign, t
ray has passed a caustic point.
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2.2. Eulerian Viscosity Solutions

The Eulerian method is based on the alternate formulation of the problem as a Hamiltc
Jacobi equation

9
a—f(t, X) + H(t, X, ¢x(t, X)) =0, for(t,x) € R} x R‘j

5
#(0,x) = ¢%(x), forx e IRi‘y’. ®)

When the solution is classical, typicalyy’ is C* anda does not vanish, a classical result
of the calculus of variations [14, 27] proves that the Eulerian phdsex) evaluated at the
Lagrangian coordinates specified by the rays matches the Lagrangian phase and its gra
the p components of the bicharacteristics:

¢(s, y(s,x%) = p(s, x%

0 0 (6)

?x(S, (8, X7)) = p(s, X).
We will come back to this correspondence and prove it as a particular case of our n
Eulerian formulation in Section 4.3.

When the conditions for a classical solution are not satisfied, there is still a notion
global weak solution for Eq. (5), called “viscosity solution” [3, 9]. Viscosity solutions are
the correct object to consider here because any “reasonable” numerical scheme conve
to this class of solution [10, 21]. These schemes are generally called upwind because
discretize space derivatives on the side opposite to the direction of the rays (should the |
be traced).

A link can still be made between Lagrangian and Eulerian solutions using the theory
optimal control (see [5]). The viscosity solution can be characterized as the value funct
of the optimization problem

t
dt,x) = inf / L(s, y(s), y(s)) ds+ ¢°(x), 7
{(x0eRy,y()eWL+=(R): /O
y(0)=x°,y(t)=x}

where the minimization is performed with respect to the admissible cyrvegnd their
initial point x°. The Lagrangian functioh (t, x, v) = suppeRp{p -v— H(, x, p)}is the
Legendre transform afl with respect top.

When only one ray matches the end point condition and it has no caustic point, 1
solution is “classical” and the value function of problem (7) is exactly the integral of th
phase ODE in (1).

If more than one ray (still with no caustic points) reaches the time—space(pointand
if we denote asxf)kzl__n then initial points of these curves, the viscosity solutipselects
the absolute minimum of the associated phases:

$(t.x) = min o (t, ;). (®)

If no ray reaches this point, the viscosity solution implicitly generates “non-classica
rays to fill this empty space. This means that the optimal curves will satisfy the Hamiltoni
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system (1) with different initial conditions on tiiecomponent. We discuss this phenomenon
in the next section, as well as the behavior of the viscosity solution in the presence of caust
When the configuration space is bounded, the optimal curves may only satisfy the |
equations (1) piecewise (they can be reflected or diffracted) or they may creep along bou
aries. This will not be the case in this paper (see [15] for an investigation of this questiol
Of course (5) alone only provides information on the phase. As in the Lagrangian methe
we will need additional equations to determine caustics. We therefore introduce a new |
lerian vector-valued variabBt, x) configured in time-spadg, x) € R;" x R‘y’ and defined
by (-7 is the transpose o

ay(s, x% ap(s, x%)\ '
y(s, x®) ap( )>. ©)

axo 7 9xo

3(s, y(s,x°%) = (

As for the Hamilton—Jacobi equation (see Section 4.3), each compon&t ®f, §; (t, X)
can be shown to satisfy the transport equation

%(t7 X) + Hp(t9 X5 ¢X) : 6i,X(t’ X) = A(t7 X’ ¢X(X)) : Sl (t’ X)’ I = 17 2

T (10)
Smm)z(%mggm%),fmxeRW

As in (3) the unknowns; ared x d matrix and we here have matrix equations where
the differential operators must be applied componentwise and ititdicates the proper
inner multiplication. The solution of this system, when coupled to (5), gives the necess:
information to compute a Eulerian counterpartdodenoteds(t, x):

B(s, y(s. X)) = a(s, x). (11)

Finally 8 can simply be expressed only in terms of Eulerian variables (using (2) (9)):

B, X) = [81(t, X)| (12)

Alternate methods for the computation@tan be found in [7, 13, 23].

The Eulerian method should therefore be able to determine caustic pointsgudihg
situation is however not so simple because the restrictions imposed by the propertie:
the viscosity solution (i.e., (7) and (8)) do not allow direct access to these points. This
the subject of the next section and the Eulerian way to caustics is presented in Section

3. EULERIAN PATHOLOGIES

These phenomena are generically linked to the occurrences of caustics. In 2-D (includ
the time dimension), fold or cuspidal caustics are generic for general Hamilton—Jac
equations. We refer to [5] and the references therein for more on this topic. In high
dimension there may be additional type of caustics but the pathologies discussed in
section are general.

We concentrate on a particular Hamiltonian for a problem in 1-D space dimension arisi
from 2-D geometric optics (see [25, 5])

H(t9 X, p) =V nz(ts X) - pzv (tv X, p) € R:— X Ry X va (13)

wheren(t, x) is a positive smooth index of refraction.



CAPTURING CAUSTICS 137

0sf v

08f A\

071 N 4

061 }

~05r

04r

03f

02

01F

0 . | | | . | |
0 0.1 02 03 04 05 06 07 08 09 1
X

[T 100 . o . _ .
FIG.1. Raysforn=15,¢%x) = — M Precaustic part: solid line. Postcaustic part: dashed line.
Caustic points: stars.

3.1. Multi-valuedness

With the particular choice (13), multi-valuedness may occur either because of the variat
of n (as for a lens) or even whanis constant but the initial phag€ is such that rays will
focus.

Figure 1 shows rays corresponding to

n=15,
{¢O(X) _ /1+16x(x—052 (14)
- 2

This particular choice leads to converging initial direction for the rays (givej1Byx°) =
Hp(0, X, ¢%(x%))). Rays focus and form an envelope called a cuspidal caustic. The systs
(1)—(3) is solved using a fourth order Runge—Kutta method for rays equally spated On
Whena changes its sign (here from positive to negative) the rays change from plain lines
dashed line. The caustic points are marked with stars. Inside the caustic envelope ray:s
crossing. More precisely, if we could visualize the rays associated to all kbefsthe real
axis, each point would be passed by three rays and the associated phase is triple-value
On Fig. 2, we superimposed the level curves of the viscosity solution. It is computt
on a Cartesian grid using a second order ENO Godunov scheme in space and an a
tive third order Runge—Kutta in time [17, 24]. We use outgoing boundary conditions, ¢
we implicitly assume that rays are flowing outward. This is, of course, not necessar
true but does not infer with the solution in the caustic zone. This boundary condition can
numerically implemented either simply by forcing the upwinding of the Godunov schen
inward in the code or setting the Dirichlet value of the solution to a large number (whic
yields the same effect). In our case, it produces a “rarefaction” fan near the vertical bound
where homogeneous Neumann boundary conditions can also be used. We come bac
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FIG. 2. As Fig. 1 with level curves of the phase added. The phase increases from bottom to top.

this phenomenon in the next section. The usual observation is that rays and “fronts” (
color level curves) are orthogonal. This is simply because the direction of the rays is giv
by ¢x whenH, is collinear top (see (6)). It is therefore possible to keep tract visually of
the Lagrangian to Eulerian correspondence. In the multi-valued zone, the viscosity sc
tion picks up only one of the coexisting rays according to rule (8). It produces a curve
singularities in the gradient @f called a kink (or shock) when the solution “jumps” from
left-going rays to right-going rays.

The important remark is that the kink occurs on the rays before they reach their caus
points with the notable exception of the cusp which is a kink and a caustic point at the sa
time (and plays a fundamental role in the algorithm proposed in [5]).

So, even when solving (10) coupled to (5) and evaluatinte viscosity solution misses
the caustics. This can be seen in Fig. 3 where a color mgp®tlisplayed. The kink can
be observed and takes a zero value only at the cusp and the rest of the caustic cannot
seen as it “belongs” to later “branches” of the multi-valued solution.

3.2. Dark Zones

There can be zones with no rays at all for several reasons (we already observed
phenomenon in the previous example). We present the simplest case here but the
section will show that it is a general rule with caustics.

We keep the same constant index of refraction but now chose

3% |x — 0.5

NG (15)

¢°(x) =

which has a singularity at = 0.5.
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FIG. 3. Eulerian geometrical spreadifigassociated to the phase in Fig. 2.

On each side of 0.5 it is possible to trace classical rays. Several of them are plottec
Fig. 4 and of course there is no caustic in this case.

The interesting phenomenon occurs when we proceed to compute the viscosity solut
The level lines of the phase are again superimposed on the rays in Fig. 5. Of course
viscosity solution does not know that the classical rays do not reach the middle region (
dark zone) and fills it according to rule (7). The solution actually behaves as a propagat
frontwhich initially has a corner at= 0, x = 0.5. The corner generates a diffracted circular
front which fills the dark zone. The viscosity solution implicitly generates diffracted ray
(imagine a fan of rays in the dark zone). We refer to [15] for a mathematical investigati
of the link between diffraction and viscosity solutions.

It must be said that these two effects exactly correspond to shock and rarefaction we
for scalar hyperbolic conservation laws such as Burger's equation (just differentiate |
Hamilton—Jacobi equation in space).

3.3. Combination of the Two

Really bad things happen when these two phenomena (described in Sections 3.1 anc
combine in the presence of caustics.

We are now considering a variable index of refraction made of a constant part in whi
the rays are straight lines and a vertical layer which bends the rays in the negative
direction

nx)=1 forx<05

3 (16)
nix)=1-(x—-0.5)° forx > 05
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FIG.5. As Fig. 4 with level curves of the phase added. The phase increases from bottom to top.
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FIG. 6. Rays forn as in (16). Initial and boundary conditions as in (17)—(18). Precaustic part: solid line
Postcaustic part: dashed line. Caustic points: stars.

The initial phase prescribes an incoming oblique plane wave

Jo n(xo) dxo
NG

and we add a compatible boundary condition at 0 which also generates incoming rays
to avoid rarefaction effects on the left side:

¢°(x) = : 17

1
o« (t,0) = ﬁ,\v’t. (18)
It generates a stationary solution when the contribution of the rays associated to the ini
Cauchy condition have disappeared. The rays are presented in Fig. 6 and we obsel
folded caustic. It is as if we only considered half of a cuspidal caustic. Dashed lines ag
represent rays after they pass a caustic point (stars). Notice the dark zone on the right o
caustic (which is by definition the envelope of the rays).

The viscosity solution in Fig. 7 exhibits a kink lying on the left of the caustic. Itis produce
by the conflicting classical rays and diffracted rays (not represented) which implicit
correspond to the viscosity solution in the dark zone and are bent back in the illuminal
zone. The post caustic rays (dashed lines) are not represented by the viscosity solutic
they produce later phases. Classical and diffracted rays actually generate a hew cusj
caustic and classical rays are implicitly “blocked” by a kink before reaching the caustic |
the diffracted rays. This can be seen in the geometrical spreading (Fig. 8), fvisarmsally
discontinuous along the kink and only takes a relevant zero value at the tip of the caust
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FIG. 8. Eulerian geometrical spreadimfgassociated to the phase in Fig. 7.
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4. EULERIAN CAUSTIC CAPTURING

Section 3.3 diagnoses the “pollution” effect which a priori prevents the viscosity solutic
to capture caustics. We insist again on the idea that this is a generic pathology which r
occur for any Hamilton—Jacobi equation in any dimension. More or less successful heuri
attempts at fixing locally the Eulerian upwind scheme are proposed in [5, 6, 19].

We present in this section a general approach valid for any dimension and illustrate it
the test case of Section 3.3. We first present it as a modification of the Lagrangian met
(even though there is nothing really to fix in this framework except the space resolution
the method) and then explain how to convert this idea to the Eulerian framework.

4.1. The Lagrangian Version

The idea of the fix is easier to present with rays. As explained in Section 3, the Euleri
viscosity solution follows classical rays as long they exist and yield minimum phase. Trout
starts as soon as the tip of a caustic is reached. Rays then leave an empty zone an
viscosity solution sees the effect of new polluting diffracted rays.

The idea of the method is to modify (1)—(3) such that rays will reach the caustic but or
asymptotically in time. A change of variable in time dependingrds used to that effect.
More precisely, we define a new tirdalong each ray(s, x°) given by

(s, x%) = / T 1 do. (19)

o a(o,x9

For convenience, we reset our equations in a general framework. Let
U (s, x% = (y(s, X%, p(s, X%, o(s, xo) (s XO) 58 XNT: (20)

then the Lagrangian system (1)—(3) can be compactly written in a genera{For@&, and
U° are defined using (1)—(3) and (2)) as

U, x% = F(s,U(s, x%), U@, x% =U° (21)
anda(s, x% can be written as a function &f:
a(s, X% = GU (s, x9)). (22)

The new rays are obtained simply be changing from trt@time §(s, x°) (19). Let us
set

U (s, x%, x% = U (s, X%, (23)
which naturally satisfies the modified system

U@ x% = a@ xOFE UG x%), 00, x% =U°,

. 24
a8, x% = GU G, x%). (24)

Of course, the dot here stands for the new time dlfferentle(tbﬁ d() . Itis easy to check
thatd (3(s, x%), x% = a(s, x°) and therefore the system (24) will elther be stationary wher
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it reaches the caustic or only reach it asymptotically in time. Either options depend on t
convergence or divergence of the integral (19) as the ray approaches the caustic.

In our caseg (s, x°) is a decreasing function of tingand is zero, say at tins#, when the
ray passes a caustic poyts*, x°). Whena (s*, x%) is bounded, the integral (19) diverges
fors = s* and

sI|_r)r; &(s, X°) = +o00; (25)
otherwise there exists & such that
Jim &, x%) = §*. (26)
In either cases the solutions of the new system satisfy

lim U, x% = U (s, x9. (27)

§—+o0

Moreoverd(s, x°) is invertible with respect te and we noteS(§, x°) its inverse which
satisfies the additional ODE

535, x% = a3, x%, S0, x% = 0. (28)

The meaning of (27) is that we have defined modified rays which fill the time—spa
configuration but correspond to old rays until they reach the caustic. The rays in the
time variable (20) can be recovered using (28) as ((23) again)

U (SGE, x%, x% = U3, x9). (29)

4.2. From Lagrangian to Eulerian

The pathologies of Section 3 being fixed (at least in the Lagrangian framework) we der
an Eulerian method from the modified Lagrangian system (24)—(28).
The new-time Eulerian vector-valued function, denoteW €s x), is defined by

VS, 98, x%) = U, x°). (30)

Thefirst step is to differentiate (30) with respecidhe chain rule gives for ajl(V;, Fj,
andU? are thejth components o/, F, andU?)

ovi _ . . oo o~
85‘ (& 9G X)) +9GE X% Vi xE IE X)) = ...

aG xOF; (3, VG §5, x9)), (31)
Vj(0,x% = UP(x%, vx°,

where we can eliminati(g, x°) andd (3, x°) (using (24))

ovi _ . . o Y . I
a§ (5, 935, x9) + GV (G, G, X)) Hp(E, 95, x%), PGB, x9) - Vx5, §(8,x%) = ...

G(V(E, 95, x))F;j (5, V(. ¥, x9)), (32)
Vj(0,x% = UP(x%, vx°,
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Under the new-time parameterization, the field of r§iy& x°) advantageously avoids
caustics and remains single valued and defined everywhere. In partigglac®y may tend
to O if the corresponding ray heads towards a caustic but will never actually take a z
value.

The definition (30) is therefore proper; the functiviit, x) is single-valued and cor-
rectly defined. We can write the system (32) in Eulerian coordindtes (instead of the
Lagrangian(, §(§, x%))); for all j

AV,
ot

T x) + GV (& x)Hp(, x, Vaf, X)) - VjxE, x) = ...
GV x)F;, vV, x), (33)
Vj (0, x) = UP(x), ¥x.

wherep(3, x°) was eliminated using the identit (3, §(s, x°) = p(8, x°) (from (20) (29)
(30)).

Because of our new non-local time parameterization of the problem (19), (45) (ne
section) does not simplify and we have to solve the full Eulerian system (33). An Euleri
variableT (f, x) for the old time can be defined likewise,

T, 96, x%) = SG, X%, (34)
and satisfies the Eulerian transport equation

%(f, X) + GV, x)Hp(, x, Vo, x)) - Tx(d, x) = GV (E, x)),

(35)
T(0,x) =0, Vx.

It is used to recover the Eulerian solution in the old time setting, call&tl, x) (set
W(s, y(s, x%) = U (s, x9)), using the identity

W(T {, x), x) = V(, x). (36)

This Eulerian system of coupled non-linear transport equations (33)—(35) is used
capture caustics. Before the numerical discussion and the presentation of our simula
results, we explore in the next section the connection between these new-time Eulerian
Lagrangian variables (which simplify in the classical case to give the relations (6)).

4.3. More on Eulerian/Lagrangian Correspondence

We focus on the phasg(, x)
¢ (8. 9(5.x%) = Va(8, §(s, x%) = (5. x°). @37
The third equation of (32) is

0
a—‘g(s Y&, x9) + @@, xOHpG, §&, x°), PG, x%) - x5, & x%) = ...

a3 x0(PEG, x% - Hp@, 98, x9), P&, x%) — HE, §G6, X9, PG, x%)  (38)
¢(0,x% = ¢2(x%), vx°,



146 BENAMOU AND SOLLIEC

The next “classical” step is usually to identify theeomponent of the bicharacteristics with
#x. This is done by differentiating (38) with respectx® (now theith component 0k°).
Without expanding the time derivation on the left hand side, we get

ER {_{)( X% - (3, 3, XO))} _
o

550 PG X% - Hp(8, §(5, X%, P, x%) — H(E, 9(8, x9), p(E, x%)) (39)

+&(, x > {p(s x%) - Hp(E, 55, x%), P&, x%) — H(E, §(5, x%), P, x%)).

It is possible to simplify the right hand side (the calculations are easier to perform in terr
of (¥, p)) and we obtain

L A N
8§{axi0(sv X ) ¢X(Ss y(51 X ))} -

. . (40)
TV &0 s x0 L 2% & 0 E G x0). BE xO
3§{8xi°(5’x ) - PGS, x )} aXiO(S,X YH (S, ¥(5, X5), P(S, X))
It can be checked that
ad o mon oo
S5 (HEIE. X%, pE X)) =0, (41)
and after subtracting
s 8"‘ s
/O o X dr L (H, 96X, BiE X)) (42)
to (40) we obtain
)Y 0 }
= (3. X% - ¢x(3. 93, x%) ¢ =
93 | ax? (43)

9 [3Y « 0 = o/§ 0 2 o0& w0y B 0
—q —5 . - — drH .
aé{ axio(s’ X7) - P8, x°) 1, axio(r, X7)drH (S, Y5, X5), PES, x7))
We verify that the initial values§(= 0) for the quantities inside braces match (the ini-
tialization of ¢ and p is precisely designed for) and then, along a ray and for,athe

equation

9y

0 (3, X% - (5, 9G53, x%) =...

5 (44)

l( x%) - P&, x%) — / @(r, x%) dTH @, §(8, x9), p(3, x%)
0 i

ax?

is satisfied. The no caustic conditien# 0 ensures that the family of vectai&y/9x°)i—1. g
is a basis oRRY. Therefore the identification formula

PG x%) = ¢x(3, §(3. x%) + H(E, ¥, X%, B, x"))Z{ /0 (T, x°>drn.} (45)
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holds, withn; a vector depending on the coordinates of the usual orthonormal basis vect
in (99/0x%)i_1.4.

The classical results of Section 2.2 and the relations (6) are now easily established.
simply notice that the initial Lagrangian method (21) is recovered by seittiadlin (24)
(and then% =0). We also find back the no caustic condities 0 when passing from
(44) to (45) . In this case the phase equation (38) decouples from the rest of system (32)

we recover the system of Hamilton—Jacobi/transport equations (5)—(gMrial 5.

4.4. 1-D Numerical Results

We perform our 1-D test on the same example as in Section 3.3. We first solve the O
system (24). The new-time rayg3, x°) are displayed in Fig. 9. They rapidly reach the
caustic and are time asymptotically stationary.

On the same figure are drawn the color level curves of the new-time pligse. As in
Section 3, we solved the system (33)—(35) on a Cartesian grid using a second order E
scheme in space and an adaptive third order Runge—Kutta in time.

We now deal with a set of transport equations with advecting B (t, x))H, ({, x,
Va(t, X)); so we just test for the sign of this quantity to decide whether to upwind in th
positive or negativex direction. The phase behaves as the ray field and becomes const
in time at the caustic. As predicted by (45), wheis tonstant (fox < 0.5) the fronts and
the rays are normal. Whendecreases and the second component on the left hand side
(45) is non zero, it is not true anymore.

=

FIG. 9. The new time parameterized solution. Rays and level curves of the phase.
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=

FIG. 10. Level curves of the old time variable (solution of (35)).

As explained in Sections 4.2 and 4.3 we can recover the old time solution living befo
the caustic using (29) and (36). The old time is the solution of Eq. (35) (see Fig. 10) a
also becomes constant in time (stationary) at the caustic. So, when we map back in tt
andt variables the solutions in Fig. 9 (see Fig. 11), the time transformation crushes do
the solution above the caustic and accurately determines both the caustic location, the
zone and the phase associated to solid rays. One must also cgdngiaed=ulerian marker
for the caustic (see Fig. 12 and compare it to Fig. 8).

We want to emphasize that this method provides an easy and convenient way of adapti
refining the meshing near caustics. We use a regular Cartesian grid in space agidxime
The grid points are denoted ( x;). Figure 13 zooms on these grid points mapped back ir
the old-time configuration. That is, we plot a dot at poifitsf(, xi), xi). They concentrate
near the caustic and it explains in particular why the solution of Fig. 12 is much smooth
and precise than in Fig. 8 where the time step is fixed. Remark that it is possiblestdarse
refining locally the space grid in order to maintain a constant CFL with respect to the ©
time configuration. The space grid mesh would then asymptotically go to 0 as we appro:
the caustic. Then the spatial resolution of the caustic could be arbitrarily accurate.

4.5. Remark on the Choice &fs)

As can be observed on the 1-D numerical results and even though the integral (19)
verges in this case, we were able to recover the stationary solution rapidly (in teéns of
This is because behaves in this case &8s — s*) (see Section 4.1). This means tBéd) is
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oldt

0 02 04

FIG. 11. The solutions of Fig. 9 in the old time variable computed using (35). The stars indicate the caus
points of Fig. 6.

09

0.8

107

old t

0 02 04 0.6 0.8 1 12
X

FIG. 12. Eulerian geometrical spreadimgassociated to the phase in Fig. 9.
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old t

FIG. 13. Grid points in the old time configuration.

like a Log ofs near the caustic or equivalently tHa) will reachs* (the caustic-reaching
time) exponentially fast even though it is slowed by our change of variable.

The 2- to 3-dimensional numerical tests we carried out exhibit the same behavior. It mi
be said that this could be checked (possibly after lengthy computations) for the differe
types of caustics on the generic classification of these objects (fold and cusp in 2-D, m
in 3-D).

We finally stress that (19) is the simplest possible definitior§§ey but any power ot
or even some non-linear monotone function of it can be used.

5. 2- TO 3-DIMENSIONAL RESULTS

Our Hamiltonian function is now defined foy, p) € RS x R (d = 2, 3) by

H(y. p) = VIIplIZ+ N(y) — 1. (46)

This Hamiltonian arises from the high frequency asymptotic of the Maxwell equation.
is used to model laser beam propagation in a plasma of electronic d&hEgity, 20]. We
have used an Osher/Godunov scheme for the computation of the viscosity solution ar
Van Leer slope limiter scheme for our new-time system of transport equations (33)—(3
The time discretization is explicit and first order.

5.1. 2-D

The spatial domain is limited tg = (x1, X2) € [0, 1] x [0, 1]. The space discretization
is uniform throughout this section and we use@@x 50)-point grid. The densit\N(y) is
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given by

N(X1, X2) =0, forx;+x, <1.1

) (47)

N(X1, X2) = 2% (X1 + Xo — 1.1)*, else
We enforce an in-going plane wave boundary condition omihke 0 andx, = 0 boundaries
of our time—space cube,

(Pxs> Px) (t, X1 = 0, Xp) = (COSH, sing), Vi, Vxy,

. (48)
(¢X1? ¢X2)(t7 Xla X2 = 0) = (COSG’ Slng)’ Vta VX]_,

and out-going boundary conditions elsewhere. We also specify a compatible initial condit
#°(X1, X2) = COSO * X1 + SiNG * Xo. (49)

As in the 1-D case, both the initial conditions and the boundary conditions correspond
rays flowing in the domain. As can be observed on the rays (Fig. 14) the outgoing bound
condition onx, = 1is clearly not adapted to our ray solutions, as rays first flow out and the
flow in through this boundary. This induces a new pollution effect on the caustic, which c
again be related to “diffracted rays” discussed earlier. To avoid this problem we have u:
the classical technique of enlarging the domain to confine these errors to an outer la
This layer has been removed in all the figures we present.

After some time (approximately 1s) the only remaining contribution to the Lagrangie
solution comes from the boundary. The boundary condition being stationary, we obtai
stationary solution and stationary caustic curve. Its location can be determined analytic:
and for@ = x/24 (our example) corresponds to the curyet x, = 1.66 (for a density
depending only on one coordinate sgyalong a directiornV and in any dimension, the
caustic hypersurface is analytically given by the equaligiX) = cos(®) where® is the
angle of the incoming plane wave of rays with the ved?o(see [20]); we also use this
formula in the 3-D section).

The projection onto space of the rays corresponding to the stationary regime is plot
in Fig. 14. In 1-D, it trivially corresponds to one time slice and the projection gives a sing
plain line fromx =0 to the caustic point and the same reverse dotted line which returi
from the caustic. The crosses again indicate that we have reached a caustic point.

We will focus in this section on the stationary solution and show how our method recove
the caustic curve. The results are in some sense similar to what we obtained in Sect.
In both cases we recover a caustic curve for a two-dimensional Hamiltonian: time plus ¢
space dimension in one case and two space dimension but a stationary solution in the o

The pollution effect described previously on the Eulerian solution of the Hamilton—Jacc
equation can be observed in Figs. 15-18. They show to the contour lines of the phas
successive times and the associated geometrical spreading. The kink effect is presen
(as in the 1-D Fig. 7) is not stationary. With this technique there is no hope of recoveri
the stationary solution and its caustic (indicated by a dark line).

We now proceed exactly as in 1-D, solve our time-modified system (33)—(35) over 6
and map back the solution in the old-time variable using (36). The stationary soluti
(see Fig. 6) is crushed down in time and for instande=a8 s (our old-time slice) the dark
side is empty as it should be. The phase is displayed in Fig. 19ahe geometrical
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FIG. 14. Projection of the rays on thg, y) plane at the stationary regime in 2-D. The stars indicate the
caustic points.

spreading in Fig. 20. The location of the theoretical caustic is indicated by a black or wh
line. As in 1-D the pollution effect on the dark side of the caustic has been suppressec
the new-time solution cannot cross the caustic.

The contour line of the phase does not reach the caustic because of our graphical soft
(we use a rather coarse space discretization). Figure 21 is a zoom of Fig. 20 near
caustic. The exact caustic line obviously separates grid points on each side of the cat

FIG. 15. Levellines of the phase (left) and associated geometrical spreddnmght) at time 0.4 s. The dark
line is the theoretical caustic.
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FIG. 16. Levellines of the phase (left) and associated geometrical spreAdinght) at time 1.2 s. The dark
line is the theoretical caustic.
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FIG. 17. Level lines of the phase (left) and associated geometrical spregdinght) at time 2 s. The dark
line is the theoretical caustic.
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|
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FIG. 18. Level lines of the phase (left) and associated geometrical spreAdimght) at time 2.8 s. The dark
line is the theoretical caustic.
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FIG. 19. Level curves of the phase mapped back in the old time variable. The dark line is the theoretic

caustic.

FIG.20. Eulerian geometrical spreadiffgassociated to the phase in Fig. 19. The white line is the theoretica

caustic.
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FIG.21. Zoom of Fig. (20) near the caustic.
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FIG. 22. Error in the caustic location determination versube mesh size.
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FIG. 23. Case 1: The isosurfaces of the phase and the theoretical caustic surface as a black meshgrid.

(dark and illuminated zones) which seems to indicate that our method is only limited by t
space discretization. We therefore expectthe errorin the determination of the caustic loca
to depend on the size of the mesh, agnd to be of orde© (h). We decide to consider as
the “numerical caustic” the envelope of the grid points which are placed in the illuminate
zone. In our 2-D experiment it consists in a diagonal line of boundary grid points which
parallel to the exact caustic. We define the error as the orthogonal distance between exac
numerical caustic. Figure 22 shows this error vetsind.og—Log scale. The numerical error
behaves ak®8. This confirms that our method is exact up to the space discretization. At tf
points on the numerical caustjé s of order 10 because its profile is very stiff. This also

FIG. 24. Same as Fig. 23 with different viewpoint.
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FIG. 25. Case 1: Eulerian geometrical spreadfgnd the theoretical caustic surface as a black meshgrid.

indicates that our method actually places the caustic somewhere further in the neighbo
mesh and that the above error is a rather bad estimate of the precision of our method.

5.2.3-D

The Hamiltonian is unchanged (given by (46)). We are now in a 3-D domain
(X1, X2, X3) € [0, 1] x [0, 1] x [0, 1] and the densit\ is a 3-D generalization of (47),

N(Xg, X2, X3) =0, forasX;+bsxXo+Cxx3 <21, (50)
N (X1, X, X3) = 2% (A% X1 + bx X0+ Cx x3 — 2.1)2, else

so thatN is really only a function oy x X3 + b % X2 4 ¢ * X3, i.e., varies in one direction
determined by the coefficients, b, c). The boundary and initial conditions now depend

FIG. 26. Same as Fig. 25 with different viewpoint.
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FIG. 27. Case 2: The isosurfaces of the phase and the theoretical caustic surface as a black meshgrid.

on two angle®; andb,,
(Bx;» Pxos Pxs) (1, X1 = 0, X2, X3) = (COSHy * COSHy, SiNGy * COSHy, SiNGp) Vi,
(Pxys Pxos Pxs) (L, X1, X2 = 0, X3) = (COSH1 * COSH7, SiNby * COSH, SiNbdy) Vi, (51)
(Bxy» Dxy» Do) (L, X1, X2, X3 = 0) = (COSHy * COSHz, SiNGy * COSHa, SiNbp) Vi,

05 45

FIG. 28. Same as Fig. 27 with different view point.
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FIG. 29. Case 2: Eulerian geometrical spreadfgnd the theoretical caustic surface as a black meshgrid.

and outgoing boundary conditions elsewhere. We again specify a compatible initial cor
tion

#O(X1, X2, X3) = COSH; * COSHa * X1 + SINOy * COSH, * X + SiNBa * X3. (52)

As in 1-D and 2-D, the rays are “reflected” from a caustic surface. Its equation can

? 0.5 .0.5 X

1

FIG. 30. Same as Fig. 29 with different viewpoint.
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FIG. 31. Case 3: The isosurfaces of the phase and the theoretical caustic surface as a black meshgrid.

computed analytically and is given by (see 2-D section)

axX;+bxxo+cxx3=...

214 1 *a*cosel*cosez+b*sinel*cos@2+c*sin92 (53)
V2 VaZ + b2 + c2 '

We show the results for three different sets of parameters. Cése-1,b=1, c=1);
Case 2(a=141,b=141c¢=0.71); Case 3(a=16,b=0.1,c=1.6). For all tests

FIG. 32. Same as Fig. 31 with different viewpoint.
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FIG. 33. Case 3: Eulerian geometrical spreadfgnd the theoretical caustic surface as a black meshgrid.

01 =6, = /48. The simulation new-time i@ is 9 s and we present the stationary solu-
tion at the old-times=4 s. We use a 5& 50 x 50 grid in space but only represent one
portion of the domairg]0.5, 1[x]0.5, 1[x]0.5, 1]) where the caustic appears.

Figures 23, 24, 27, 28, 31, and 32 show different viewpoints of the isosurfaces of t
phase function. The colormap has no meaning here and has been chosen for visibility of
surfaces. As in Fig. 19 the graphic processing has erased part of the data. The represent
of the geometrical spreadingy(Figs. 25, 26, 29, 30, 33, and 34) show that we recover th
correct location for the caustic. Agaifjs very stiff near the caustic and of order 0.1 in our
grid approximation. The effect of the inconsistent outgoing boundary condition can also
observed.

FIG. 34. Same as Fig. 33 with different viewpoint.
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6. CONCLUSION

Let us first say that caustics are the locus where energy concentrates and a reli
numerical method for the determination of such objects should be useful.

The present paper is a companion paper to [5] where an algorithm for the autome
splitting of multi-valued solutions partly based on caustic detection was proposed. C
algorithm is able to capture pieces of each caustic (curves or surfaces) on a single bre
of the multi-valued solution. When several branches contribute to a single caustic differe
and more complicated patterns occur. The way of splitting the 2-D generic cuspidal cau:
(A3 in the [2] terminology) is explained in [5] (the fold (A2) being a simple sub-case o
the cusp). The robustness and accuracy of our caustic capturing method makes it pos:
to work on the implementation of higher dimensional versions of the multi-valued splittin
algorithm. In 3-D, however, one should carefully study the possibility of carrying a simile
splitting on the other specifically 3-D generic caustic (A4 and D4, still [2]).

Caustics are also important theoretical objects and, for instance, our method could
used to study numerically unstable caustics (focal points).

The “dark zone” pathology raises an interesting question about viscosity solutions a
high-frequency asymptotics of wave propagation equations. The behavior of the viscos
solution in the areas not covered by classical rays indeed corresponds, at least in sin
cases, to diffraction phenomena (see [15]).

Further possible improvements of our method include the implementation of adaptat
gridding in space as suggested in Section 4.4, the use of robust high-order schemes
as WENO schemes (see [23]) and the reduction of the number of equations in our sys
using simpler methods for computing the geometrical spreading [7, 23].

Finally, the general presentation of the method in Section 4.1 (Egs. (21), (24)) sugge
that a similar change of variable may be useful in other free boundary problems.
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