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Abstract

Large-eddy simulations of incompressible Newtonian fluid flows with approximate deconvolution models based on the
van Cittert method are reported. The Legendre spectral element method is used for the spatial discretization to solve the
filtered Navier–Stokes equations. A novel variant of approximate deconvolution models blended with a mixed scale model
using a dynamic evaluation of the subgrid-viscosity constant is proposed. This model is validated by comparing the large-
eddy simulation with the direct numerical simulation of the flow in a lid-driven cubical cavity, performed at a Reynolds
number of 12,000. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such as
the lid-driven cubical cavity flow represents a challenging problem. Moreover, the coupling with the spectral element
method having very low numerical dissipation and dispersion builds a well suited framework to analyze the efficiency
of a subgrid model. First- and second-order statistics obtained using this new model are showing very good agreement with
the direct numerical simulation. Filtering operations rely on an invertible filter applied in a modal basis and preserving the
C0-continuity across elements. No clipping on dynamic parameters was needed to preserve numerical stability.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Large-eddy simulation; Approximate deconvolution models; Dynamic mixed scales model; Lid-driven cavity; Spectral element
methods
1. Introduction

Large-eddy simulation (LES) represents a way of reducing the number of degrees of freedom of the sim-
ulation with respect to the requirements of the direct numerical simulation (DNS). This is done by calcu-
lating only low-frequency modes in space and modeling high-frequency ones, the scale separation being
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performed by filtering in space the Navier–Stokes equations. Large-scale structures are obtained by the
computed flow dynamics while the behavior of subgrid scales and their interaction with large eddies are
modeled by the additional term in the LES governing equations resulting from filtering the Navier–Stokes
equations. The expression of the additional term as a function of the resolved field is referred to as subgrid
modeling.

Approximate deconvolution models (ADM) constitute a particular family of subgrid models. They rely on
the attempt to recover, at least partially, the original unfiltered fields, up to the grid level, by inverting the fil-
tering operator applied to the Navier–Stokes equations. The focus here is on the approximate iterative method
introduced by Stolz and Adams [1] which is based on the van Cittert procedure. This method was subsequently
applied to incompressible wall-bounded flows [2], to compressible flows and to shock-boundary layer interac-
tion [3] using a new variant ADM-RT, blending ADM with a relaxation term (RT) increasing the dissipative
character of the model. Transitional flows were also investigated by Schlatter et al. [4]. Over the past five years,
ADM spread over various fields of application. Gullbrand and Chow studied the effect of explicit filtering in
the case of channel flow [5]. ADM were also more recently applied to the LES of a rectangular jet and to com-
putational aero-acoustics by Rembold and Kleiser [6]. Particle-laden turbulent flows were investigated in the
ADM framework by Shotorban and Mashayek [7]. From the numerical viewpoint, Schlatter et al. [4] used a
parallel implementation of a mixed Fourier–Chebyshevier–Chebyshev spectral method. These models were
also implemented in a finite volume framework in the semi-industrial code NSMB, Navier–Stokes Multi-
Block, by von Kaenel et al. who applied it to shock-boundary layer interaction and channel flow in [8,9].
To our knowledge, the only implementation based on the spectral element method (SEM) is due to Iliescu
and Fischer [10] who used ADM based on the rational LES model (RLES) instead of the van Cittert one.
More recently, Pruett et al. proposed a temporal ADM for LES [11] and a stability analysis of the LES-
ADM equations was performed by Dunca and Epshteyn [12].

LES of Newtonian incompressible fluid flows with ADM based on the van Cittert method using Legendre-
SEM as spatial discretization to solve the filtered Navier–Stokes equations are envisaged for the first time in
this paper. Following the idea of Winckelmans et al. [13] who coupled the ADM based on the van Cittert
method and the Smagorinsky model [14], and Gullbrand and Chow [5] who proposed a dynamic version of
the previous model, a new variant which blends ADM and the mixed scale model introduced by Sagaut
[15] with a dynamic evaluation of the subgrid-viscosity constant based on a Germano–Lilly type of procedure
[16,17] is proposed.

A specific filtering operation adapted to SEM and preserving continuity across elements is applied in a
modal basis which was proposed in the p-version of finite elements and first used by Boyd [18] as a filtering
technique. Depending on the transfer function, this filter is not projective and is therefore invertible, this prop-
erty being essential for the deconvolution procedure.

A DNS of the flow in a lid-driven cubical cavity performed at Reynolds number of 12,000 with a Chebyshev
collocation method due to Leriche and Gavrilakis [19] is taken as the reference solution to validate the new
model. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such
as the lid-driven cubical cavity flow represents a challenging problem. As the flow is confined and recirculat-
ing, any under- or over-dissipative character of the subgrid model can be clearly identified. Moreover, the very
low dissipation and dispersion induced by SEM allows a pertinent analysis of the energetic action induced by
any subgrid model, which is not feasible in the framework of low-order numerical methods. The coupling of
the lid-driven cubical cavity flow problem with the SEM builds therefore a well suited framework to analyze
the accuracy of the newly defined subgrid model. Bouffanais et al. [20,21] have performed LES of the flow in a
lid-driven cubical cavity at a Reynolds number of 12,000 using the same physical parameters as the DNS from
Leriche and Gavrilakis [19]. The numerical framework of [20,21] is the same as the one used in the present
article. Standard subgrid models were used in [20,21]: dynamic Smagorinsky [16,17] or dynamic mixed models
[22].

The paper is organized as follows. In Section 2, the filtered Navier–Stokes equations are given, followed by
a brief description of the space–time discretization using the spectral element method. The subgrid modeling is
dealt in details in Section 3 and the numerical filters are described in Section 4. LES of the flow in the lid-dri-
ven cubical cavity, based on the subgrid models introduced in Section 3, is presented and thoroughly analyzed
in Section 5. Finally, in Section 6 we present the conclusions.
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2. Governing equations and numerical method

2.1. Governing equations

In the case of isothermal flows of Newtonian incompressible fluids, the LES governing equations for the
filtered quantities denoted by an overbar, obtained by applying a convolution filter G� to the Navier–Stokes
equations, read
o�ui

ot
þ o

oxj
ð�ui�ujÞ ¼ �

o�p
oxi
þ m

o

oxj

o�ui

oxj
þ o�uj

oxi

� �
� osij

oxj
; ð1Þ

o�uj

oxj
¼ 0; ð2Þ
the filtered velocity field �u ¼ G � u satisfying the divergence-free condition (2) through the filtered reduced
pressure field �p. The components of the subgrid tensor s are given by
sij ¼ uiuj � �ui�uj; ð3Þ

and m is the kinematic viscosity. The closure of the filtered momentum Eq. (1) requires s to be expressed in
terms of the filtered field which reflects the subgrid scales modeling and the interaction among all space scales
of the solution.

2.2. Space discretization

The numerical method treats Eqs. (1) and (2) within the weak Galerkin formulation framework. The
SEM consists in dividing the computational domain into a given number of spectral elements. In each
spectral element, the velocity and pressure fields are approximated using Lagrange–Legendre polynomial
interpolants. The reader is referred to the monograph by Deville et al. [23] for full details. The velocity
and pressure are expressed in the Pp � Pp�2 functional spaces where Pp is the set of polynomials of degree
lower than p in each space direction. This spectral element method avoids the presence of spurious pres-
sure modes as it was proved by Maday and Patera [24,25]. The quadrature rules are based on a Gauss–
Lobatto–Legendre (GLL) grid for the velocity nodes and a Gauss–Legendre grid (GL) for the pressure
nodes.

Borrowing the notation from Deville et al. [23], the semi-discrete filtered Navier–Stokes equations resulting
from space discretization are
M
d�u

dt
þ C�uþ mA�u�DT�p þDs ¼ 0; ð4Þ

�D�u ¼ 0: ð5Þ

The diagonal mass matrix M is composed of three blocks, namely the mass matrices M. The global vector �u
contains all the nodal velocity components while �p is made of all nodal pressures. The matrices A, DT, D are
the discrete Laplacian, gradient and divergence operators, respectively. The matrix operator C represents the
action of the nonlinear term written in convective form �u � r, on the velocity field and depends on �u itself. The
semi-discrete equations constitute a set of nonlinear ordinary differential equations (4) subject to the weak
incompressibility condition (5).

2.3. Time integration

Standard time integrators in the SEM framework handle the viscous linear term and the pressure implicitly
by a backward differentiation formula of order 2 (BDF2) to avoid stability restrictions such that mDt 6 C=p4,
while all nonlinearities, including the discretized subgrid term �Ds, are computed explicitly, e.g. by a second-
order extrapolation method (EX2), under the CFL restriction
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umaxDt 6 C=p2: ð6Þ

The implicit part is solved by a generalized block LU decomposition with a pressure correction algorithm
[23,26,27]. The overall order-in-time of the afore-presented numerical method is two.

3. Subgrid modeling

3.1. General considerations

The problem of subgrid modeling consists in taking into account the interaction between resolved and sub-
grid scales which is represented by the subgrid term r � s in the filtered momentum Eq. (1).

Following the terminology introduced by Sagaut [28], two modeling strategies are defined. A first group of
models, called structural, aims at making the best approximation of the tensor s by reconstructing it formally
from the resolved field �u. The closure consists in finding a relation such that
sm ¼ Csð�uÞ; ð7Þ

where the upper index ‘m’ distinguishes the modeled from the exact subgrid tensor. This group of models does
not require any foreknowledge about the nature of the interactions between resolved and subgrid scales. The
second group, called functional, consists in modeling the action of subgrid scales on the resolved field �u using
physical concepts and not at approximating the subgrid tensor s itself, even if a subgrid tensor is explicitly
constructed as for subgrid-viscosity models. Most of these models assume that the action of subgrid scales
on resolved ones is essentially energetic, so that the balance of energy transfers between both scales categories
is sufficient to describe the interaction.

The focus hereafter is on ADM which attempts to recover, at least partially, the original unfiltered fields, up
to the grid level, by inverting the filtering operator applied to the Navier–Stokes equations. Following the idea
of Winckelmans et al. [13] who coupled the ADM based on the van Cittert method and the Smagorinsky
model [14], and Gullbrand and Chow [5] who proposed a dynamic version of the previous model, a new var-
iant blending ADM and the dynamic mixed scale model introduced by Sagaut [15] is proposed.
3.2. Approximate deconvolution model

The deconvolution approach aims at reconstructing the unfiltered fields from the filtered ones. The subgrid
modes are not modeled but reconstructed using an ad hoc mathematical procedure which falls in the structural
modeling category. Writing formally the Navier–Stokes momentum Eq. (1) as
ou

ot
þ fðuÞ ¼ 0; ð8Þ
the evolution equation of the filtered quantities becomes
o�u

ot
þ fð�uÞ ¼ ½f;G��ðuÞ; ð9Þ
where the convolution filter G� ¼ ðL �PÞ� embodies the LES filter L� and the projective grid filter P� [5,13],
the latter being therefore implicitly accounted for in the sequel. It is important to note that the LES filter and
the grid filter do not commute since the effect of the SEM discretization is not a spectral cutoff filter, unlike the
case of spectral methods as reported by Gullbrand and Chow [5]. The subgrid commutator reads then
½f;G��ðuÞ ¼ fðG � uÞ � G � fðuÞ ¼ fð�uÞ � fðuÞ; ð10Þ

which is strictly equivalent to Eq. (1) given
½f;G��ðuÞ ¼ �r � s: ð11Þ
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The exact subgrid contribution appears as a function of the non-filtered field, which is not computed when
performing a LES. This field being unknown, the idea is to approximate it using the following deconvolution
procedure
u ’ u� ¼ QN � �u ¼ ðQN � GÞ � u ¼ ðQN �L �PÞ � u ¼ ðQN �LÞ � û; ð12Þ

where û ¼ P � u is the grid-filtered velocity. The operator QN� is an Nth-order approximation of the inverse of
the filter L�, since the grid filter is projective and therefore not invertible, such that
ðQN �LÞ ¼ Iþ OðDN Þ; ð13Þ

with I� the identity filtering operator and D the filter cutoff length associated to G�. Stolz and Adams pro-
posed in [1] an iterative deconvolution procedure based on the van Cittert method. If the filter L� has an in-
verse, it can be computed using the truncated van Cittert expansion series
L�1 ’ QN ¼
XN

i¼0

ðI�LÞi; ð14Þ
which is known to be convergent if
kI�Lk � 1: ð15Þ
The deconvolution error induced by the approximation (14) can be represented by a filter HN� defined by
HN ¼ I� QN �L: ð16Þ

The subgrid term is then approximated as
½f;G��ðuÞ ’ ½f;G��ðQN � �uÞ ¼ ½f;G��ðu�Þ; ð17Þ

and the model resulting from this approach is obtained by introducing Eq. (17) into the filtered Navier–Stokes
momentum Eq. (9)
o�u

ot
þ fð�uÞ ¼ ½f;G��ðu�Þ: ð18Þ
Using once more approximation (12) in Eq. (18) implies fð�uÞ ¼ fð�u�Þ and leads to the formulation commonly
used with ADM
o�u

ot
þ G � fðu�Þ ¼ 0: ð19Þ
It is noteworthy that this latter formulation introduces the deconvolution error and the error related to the
non-inversion of P� into the nonlinear advection term, thereby breaking the Galilean invariance [29]. Further-
more, the expression of the subgrid tensor of Bardina’s scale similarity model [30] is not recovered from the
deconvoluted formulation (19) when QN ¼ I, which is again due to the difference between the filtered and the
deconvoluted velocities. Based on the previous comments, the filtered formulation (18) appears to be the most
general and therefore, all LES presented in the sequel rely on it. No numerical instabilities were observed using
the formulation (18) associated with our explicit treatment of the nonlinear terms, see Section 2.3.

3.3. Coupling with a dynamic mixed scale model

Coupling ADM with a subgrid-viscosity model can be formally achieved by adding a source term sð�uÞ to
the right-hand side of Eq. (18)
o�u

ot
þ fð�uÞ ¼ ½f;G��ðu�Þ þ sð�uÞ; ð20Þ
where sð�uÞ is expressed in terms of the filtered rate-of-strain tensor S by
sð�uÞ ¼ r � ðmsgsðr�uþr�uTÞÞ ¼ r � ð2msgsSÞ; ð21Þ
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the superscript ‘T’ denoting the transpose operation and msgs the subgrid viscosity. For such functional models,
only the deviatoric part of the subgrid stress is modeled. On the other hand, the ADM part ½f;G��ðu�Þ includes
both isotropic and deviatoric parts. Using such subgrid-viscosity model, the only unknown is the subgrid vis-
cosity itself which implies a closure of the form
msgs ¼ Cmð�uÞ: ð22Þ
3.3.1. Mixed scale model

In the sequel, we focus on a subgrid-viscosity model proposed by Sagaut [15] having a triple dependency on
the large and small structures of the resolved field, and the filter cutoff length. With respect to the Smagorinsky
model used by Winckelmans et al. [13], the model proposed by Sagaut offers the advantage of automatically
vanishing if subgrid scales are absent of the solution. This model, which makes up the one-parameter mixed
scale family, is derived by taking a weighted geometric average of the models based on large scales and those
based on the energy at cutoff. The closure is given by
msgs ¼ CcjFð�uÞjcð�qcÞ
1�c

2 D1þc; ð23Þ
where Cc and c are the subgrid-viscosity and mixed scale constants, �qc is the resolved kinetic energy at cutoff
and
Fð�uÞ ¼ Sð�uÞ ¼ S or Fð�uÞ ¼ r � �u ¼ �x: ð24Þ

The resolved kinetic energy at cutoff can be evaluated using the formula
�qc ¼
1

2
�uc;i�uc;i; ð25Þ
where the cutoff velocity field �uc represents the high-frequency part of the resolved field, defined using a second
filter, referred to as test filter, designated by the tilde symbol and associated with the cutoff length eD > D
�uc ¼ �u� ~�u: ð26Þ

We note that for c 2 ½0; 1�, the subgrid viscosity is always defined. The constant Cc can be evaluated by the-
ories of turbulence in the case of statistically homogeneous and isotropic turbulent flow
Cc ¼ C1�c
q C2c

s ; ð27Þ
where the Smagorinsky constant Cs ’ 0:18 and Cq ’ 0:20.

3.3.2. Dynamic evaluation of the subgrid-viscosity constant

Theoretical values of the subgrid-viscosity constant cannot be used in our case because they are derived if
the model is used without the ADM structural contribution, that is to model the whole subgrid tensor. In
order to overcome this issue, we introduce a dynamic procedure of Germano–Lilly type to evaluate this
parameter as a function of space and time. Such procedure completes the definition of the subgrid model based
on the coupling of ADM with the dynamic mixed scale (DMS) model, called ADM–DMS in the sequel. This
requires the introduction of the twice-filtered Navier–Stokes equations. Applying the test filter T�, repre-
sented by a tilde, to the filtered Navier–Stokes momentum Eq. (9) gives
o~�u

ot
þ fð~�uÞ ¼ ½f;T��ð�uÞ þT � ½f;G��ðuÞ; ð28Þ
which can be recast in the form
o~�u

ot
þ fð~�uÞ ¼ �r � ðLþ ~sÞ ¼ �r � T; ð29Þ
where T ¼ Lþ ~s is an expression of the Leibniz identity referred to as multiplicative Germano identity in the
LES framework [16]. The components of s are given in Eq. (3) and those of L by
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Lij ¼ f�ui�uj � ~�ui~�uj; ð30Þ

leading to the following expression for the subgrid tensor T corresponding to the twice-filtered Navier–Stokes
equations:
T ij ¼ fuiuj � ~�ui~�uj: ð31Þ

The tensors corresponding to filtered and twice-filtered equations are modeled by blending ADM with the
mixed scale model previously introduced. Assuming each subgrid tensor can be modeled using the same dy-
namic parameter Cd replacing the constant Cc, which relies on the scale similarity hypothesis between test filter
and primary filter cutoff lengths eD and D, we obtain
sm
ij ¼ u�i u�j � u�i u�j þ Cdbij; bij ¼ �2D1þcjFð�uÞjcð�qcÞ

1�c
2 Sij; ð32Þ

T m
ij ¼ gu�i u�j � eu�i eu�j þ Cdaij; aij ¼ �2eD1þcjFð~�uÞjcðe�qcÞ

1�c
2 eSij; ð33Þ
where a and b are the subgrid-viscosity terms deprived of their constant. The parameter Cd is evaluated in
order to minimize the residual
Eij ¼ Lij � Lm
ij ; ð34Þ
where Lm ¼ Tm � ~sm. Using Eqs. (32) and (33), Eq. (34) reads
Eij ¼ Lij � ½ðgu�i u�j � eu�i eu�j þ CdaijÞ � ðgu�i u�j �gu�i u�j þgCdbijÞ�: ð35Þ
Assuming Cd is constant over an interval at least equal to the test-filter cutoff length such that gCdbij ¼ Cd
~bij,

we have
Eij ¼ Lij � ðH ij þ CdmijÞ; ð36Þ

where
mij ¼ aij � ~bij and H ij ¼ gu�i u�j � eu�i eu�j ; ð37Þ
which consists in a system of six independent equations leading to six possible different values of the constant.
In a similar framework and in order to obtain a single value, Lilly [17] proposed an evaluation based on a
least-squares minimization of the form
oEijEij

oCd

¼ 0; ð38Þ
leading to the solution of the following single scalar equation
Cd ¼
ðLij � H ijÞmij

mijmij
: ð39Þ
Smaller values than theoretical ones are expected for Cd using the previous dynamic procedure because of the
small difference between the tensors L and H, only induced by the deconvolution error. Indeed, the tensor H

can be explicitly written as
Hij ¼ gðQN � �uiÞðQN � �ujÞ � gðQN � �uiÞ gðQN � �ujÞ; ð40Þ

and if the deconvolution order N !1, corresponding to QN ! G�1 if the series (14) is convergent, one has
lim
N!1

H ij ¼ Lij; ð41Þ
which implies that the subgrid-viscosity term vanishes if exact deconvolution is performed up to the grid level.
This behavior of the eddy-viscosity part of our model, when the deconvolution order tends to infinity is strictly
equivalent to the one observed by Sagaut et al. [31] and Stolz et al. [2] using high-pass filtered subgrid-viscosity
models. Furthermore the relaxation term introduced by Stolz et al. [3,32] to stabilize their ADM-based LES
has the same behavior in the infinite deconvolution order limit. The choice of the deconvolution order N can
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be interpreted as a way of tuning the relative part taken by the subgrid-viscosity term which compensates the
deconvolution error to minimize the difference between L and Lm, in a least-squares sense. In the limit of N

going to infinity, the modeled subgrid stress tensor defined in Eq. (32) reduces solely to its ADM contribution
sm
ij ¼ ûiûj � ûiûj; ð42Þ
where û ¼ P � u is the grid-filtered velocity.

3.4. Particular cases of ADM–DMS

In this section we highlight two particular cases of ADM–DMS. The first one is the model proposed by
Zang et al. [22], based on Bardina and Smagorinsky models with a dynamic evaluation of the subgrid-viscosity
constant. The ADM–DMS expression of the subgrid tensor given by (32) can be explicitly written as
sm
ij ¼ ðQN � �uiÞðQN � �ujÞ � ðQN � �uiÞðQN � �ujÞ þ Cdbij: ð43Þ
Then choosing c = 1, N = 0 and Fð�uÞ ¼ S leads to
sm
ij ¼ �ui�uj � �ui�uj þ Cdbij; bij ¼ �2D2jSjSij; ð44Þ
which is the expression of the one-parameter dynamic mixed model. For N = 0, the tensor H explicitly ex-
pressed by Eq. (40) reads
H ij ¼ f�ui�uj � ~��ui
~��uj: ð45Þ
The second particular case of ADM–DMS is DMS, a dynamic version of the mixed scale model proposed by
Sagaut [15]. This model is formally obtained by imposing QN ¼ 0 in the developments of Section 3.3.2, which
leads to H ¼ 0 and to the following expression of the subgrid tensor
sm
ij ¼ Cdbij; bij ¼ �2D1þcjFð�uÞjcð�qcÞ

1�c
2 Sij; ð46Þ
with the dynamic parameter of DMS given by
Cd ¼
Lijmij

mijmij
: ð47Þ
Without the ADM contribution, higher values of the dynamic parameter are expected since the difference be-
tween L and H occurring in Eq. (39) disappears in Eq. (47). This phenomenon is in direct relation with the fact
that the subgrid-viscosity term is used to model the whole subgrid tensor in this particular case.

4. Filtering

Filtering techniques suited to SEM and LES must preserve C0-continuity of the filtered variables across
spectral elements and be applicable at the element level. In the sequel, we present a filter satisfying these con-
straints which is based on spectral techniques ensuring the element-level filtering property. The filtering oper-
ation is performed by applying a given transfer function in a modal basis. Depending on this transfer function,
this filter may not be projective, therefore ensuring its invertibility which is a key feature needed by the decon-
volution procedure. Hence, we will focus on the choice of the transfer function to fulfill this constraint.

4.1. Description of the filter

The modal basis introduced in the p-version of finite elements and first used by Boyd [18] as filtering tech-
nique is presented in its one-dimensional version, the extension to three dimensions being straightforward by
tensor product. It is built up on the reference parent element bX ¼ ½�1; 1� of the SEM as
/0 ¼ 1�n
2
; /1 ¼ 1þn

2
;

/j ¼ LjðnÞ � Lj�2ðnÞ; 2 6 j 6 p;
ð48Þ
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where Lj is the Legendre polynomial of degree j. Unlike the Lagrange–Legendre nodal basis used in our spec-
tral element calculations, this modal basis forms a hierarchical set of polynomials allowing to define in an ex-
plicit and straightforward manner a low-pass filtering procedure. Any variable v can be expressed in this basis
by the relation
Fig. 1.
Legend
vðnÞ ¼
Xp

j¼0

�vj/jðnÞ; n 2 bX; ð49Þ
which in matrix notation reads
v ¼ U�v; ð50Þ

where
Uij ¼ /jðniÞ: ð51Þ
The filtering operation is performed in the spectral modal space through a diagonal matrix K whose compo-
nents are chosen in order to fulfill the required properties of the filter. The filtering process for a one-dimen-
sional problem is expressed by
v ¼ UKU�1v ¼ Gv: ð52Þ
4.2. Transfer function

C0-continuity, conservation of constants, invertibility and low-pass filtering are obtained by properly
choosing the transfer function represented by the diagonal transfer matrix K. Imposing all these requirements
to the filter could seem like an intractable issue but appears feasible when visualizing the modal basis functions
presented in [33] and reported in Fig. 1. As the filter acts in another basis than the one used for our spectral
element calculations, C0-continuity is preserved if the boundaries of the elements are not affected by the filter-
ing procedure. One can notice that the only shape functions having non-zero values at the element boundaries
Bases associated with the filtering operation, shown for polynomial order p = 5 on the reference parent element bX ¼ ½�1; 1�. The
re polynomials (left column), the modal polynomials (right column).
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are /0 and /1, while /j; j P 2 are bubble functions. The functions /0 and /1 are responsible for imposing the
non-zero values on element edges. Therefore, the transfer function coefficients must satisfy
Fig. 2.
values
Kij ¼ dij; i; j 6 1; ð53Þ

with dij the Kronecker operator. If Kij verifies (53), the constants are conserved after filtering because they are
expressed as a linear combination of /0 and /1. The modal filter is not projective if all diagonal coefficients Kii

are non-zeros. The last required property is to perform low-pass filtering in frequency. As this modal basis
forms a hierarchical set of polynomials, low-pass filtering is done by damping the high-degree polynomial con-
tributions. The transfer matrix is expressed by
Kij ¼ dijKðiÞ; ð54Þ

with the continuous transfer function
KðkÞ ¼ 1

1þ g maxð0;k�1Þ
p

� �2
; g P 0; ð55Þ
where g is referred to as filtering rate (Fig. 2). The transfer function is such that the filter verifies all the re-
quired properties previously described. The cutoff frequency �k is arbitrarily defined by Kð�kÞ ¼ 1=2. Such fil-
tering technique has already been used by Blackburn and Schmidt for the LES of channel flow using SEM [33].
In the present work, the transfer function given by Eq. (55) and depicted on Fig. 2 ensures the invertibility of
the filter contrary to [33]. Moreover, the shape of the transfer function in Fig. 2 is similar to the one classically
used by Stolz et al. [3,32]. However, in the SEM framework the transfer function is defined element by element
in the spectral modal space which prevents from a direct comparison with the discrete filter implemented by
Stolz et al. in [3,32].

4.3. Filter cutoff length

The subgrid-viscosity term of ADM–DMS makes explicitly use of the filter cutoff length which needs to be
defined. For a one-dimensional problem, e.g. in the x-direction, using the SEM, a common choice of filter
width [20,21] is
Dx ¼
bDx

px;c

; ð56Þ
Transfer functions associated with G� for different values of the filtering rate g ¼ 1:25; 2:50; 5:00; 10:0 (left) and, H� for different
of the deconvolution order N ¼ 0; 1; 3; 5 with g = 25 (right). Polynomial order p = 8.
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where bDx is the element size and px;c the highest polynomial degree in the spectral decomposition (49) that is

the closest to the cutoff frequency �k
px;c ¼ maxðiÞ; such that i 6 �k; i ¼ 0; . . . ; p: ð57Þ
We notice that the filter length decreases when the element is refined and the polynomial degree augmented.
The straightforward three-dimensional extension for problems with rectilinear spectral elements is
Dðx; y; zÞ ¼ ðDxðxÞDyðyÞDzðzÞÞ1=3 ¼
bDx

px;c

bDy

py;c

bDz

pz;c

 !1=3

: ð58Þ
4.4. Filtering operators related to ADM

The filtering operators QN� and HN� are defined with respect to G�, see Eq. (14) and (16) respectively and
explicitly depend on the deconvolution order N. By representing in Fig. 2 the transfer function associated with
HN�, one can observe that the deconvolution error is important at the end of the modal spectrum, so that
HN� constitutes a high-pass filter. When increasing the deconvolution order N, the transfer function associ-
ated with the filter HN� diminishes, showing the increasing accuracy of the approximate deconvolution
procedure.

5. LES of the lid-driven cubical cavity flow

5.1. General considerations

The different LES presented hereafter refer to the flow in a lid-driven cubical cavity performed at Reynolds
number of 12,000. The flow domain X consists in a cubical cavity such that X ¼ ð�h; hÞ3, the axis origin being
assigned at the center of the cavity (Fig. 3). The flow is driven by imposing a non-zero velocity parallel to the
x-axis on the ‘‘top’’ wall. On the other walls, no-slip conditions are imposed. The moving wall will be referred
to as the lid while the faces normal to the z-axis will be referred to as side walls. The upstream and downstream
walls are normal to the x-axis and characterized by their relative position with respect to the lid motion. The
remaining face parallel to the lid is called bottom wall. As far as the velocity imposed on the lid is concerned,
the unit velocity induces severe discontinuities along the top edges. In order to avoid these defects, the imposed
velocity on the lid is given by the polynomial expression
uxðx; h; zÞ ¼ U 0ð1� ðx=hÞnÞ2ð1� ðz=hÞnÞ2; uy ¼ uz ¼ 0; ð59Þ
Fig. 3. Lid-driven cubical cavity. Geometry and definitions.
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where U 0 is a constant. The Reynolds number is defined using the maximum velocity U 0
Table
Nume

DNS
LES
Re ¼ 2hU 0

m
: ð60Þ
Although the geometry is very simple, the flow presents complex physical phenomena [19,21], no direction
of homogeneity and a large variety of flow conditions. For such Reynolds numbers, the flow over most of the
domain is laminar and turbulence develops near the cavity walls. Its main feature is a large-scale recirculation
which spans the cavity in the z-direction. Aside this large flow structure, the relatively high momentum fluid
near the lid is deviated by the downstream wall into a down flowing nonparallel wall jet which separates ahead
of the bottom wall. A region of high pressure and dissipation located at the top of downstream wall results
from this deviation. The energy resulting from the impingement of the separated layer against the bottom wall
is lost to turbulence and partly recovered by an emerging wall jet near the upstream wall where the flow slows
down and relaminarizes during the fluid rise. The flow is also characterized by multiple counter-rotating recir-
culating regions at the corners and edges of the cavity.

The physical and numerical parameters of the DNS and the LES are gathered in Table 1. The DNS con-
stitutes the reference solution and was obtained with a Chebyshev collocation method on a grid composed of
129 collocation points in each spatial direction [19]. For LES, the spectral elements are unevenly distributed
(Fig. 4) in order to resolve the boundary layers along the lid and the downstream wall. The spatial discreti-
zation has Ex ¼ Ey ¼ Ez ¼ 8 elements in the three space directions with px ¼ py ¼ pz ¼ 8 polynomial degree,
equivalent to 653 grid points in total. The mesh used for LES has therefore twice less points per space direction
than the DNS grid of Leriche and Gavrilakis but it is important to note that to achieve a DNS using the SEM
would require more than 1293 grid points due to the lower order of the SEM as compared to the Chebyshev
collocation method [23]. The space discretization is strictly equivalent to the one used for the LES reported by
Zang et al. [22] for a lower Reynolds number of 10,000. One should notice that the time-step for LES is slightly
smaller than for the DNS which is due to different CFL constraints for the two different numerical schemes
used, namely SEM and Chebyshev collocation.

The mixed scales constant is set to c = 0.5 in order to have the triple dependency on the large and small
structures of the resolved field as a function of the filter cutoff length. Furthermore, the ratio between both
filtering rates gT and gG in Eq. (55), corresponding to the test and primary filters T� and G� respectively,
is taken equal to two leading to a ratio of the filter cutoff lengths eD=D ¼ 7=4. The parameters chosen for
1
rical and physical parameters of the DNS [19] and LES

Time-step Lid velocity Initial time Nb. elements Polynomial degree
h/U0 n h/U0 ðEx;Ey ;EzÞ ðpx; py ; pzÞ
0.0025 18 1000 (1,1,1) (128,128,128)
0.0020 18 80 (8,8,8) (8,8,8)

Fig. 4. Spectral element grid in any plane normal to the z-direction.



Table 2
Models parameters for both ADM–DMS and DMS

LES model N gG gT c F

ADM–DMS 5 1.25 2.50 0.50 S

DMS – 1.25 2.50 0.50 S
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all LES analyzed hereafter are summarized in Table 2. The choice of the deconvolution order is based on the
observations of Stolz et al. [3,32] and, Gullbrand and Chow [5] who found that the value N ¼ 5 for the decon-
volution order is a good compromise between the precision in the approximate deconvolution and the com-
putational cost induced by higher N in the van Cittert expansion series. This choice is further justified by the
analysis of the approximate deconvolution error developed in Section 5.2.

A LES based on ADM–DMS with the same parameters as the ones in Table 2, except for F ¼ �x has been
carried out and has provided results extremely close to those from ADM–DMS with F ¼ S. Consequently,
ADM–DMS results for the case F ¼ S are the only ones reported in this article. A LES based on DMS, see
Section 3.4, with the same parameters as ADM–DMS for its dynamic mixed scale part, is also presented and
compared to ADM–DMS in order to identify the improvement induced by coupling ADM with DMS.

The different LES are all started from the same initial condition, namely an instantaneous velocity field
obtained from the DNS in the statistically steady range and re-interpolated onto the spectral element grid.
The projective filter due to this re-interpolation induces the unrecoverable loss of the subgrid scales.

In order to verify that our mesh is coarse enough and does not resolve all scales of the flow, a DNS of the
lid-driven cubical cavity flow was performed with SEM and with exactly the same physical and numerical
parameters as the ones reported in Table 1. One can observe on Fig. 5 that this under-resolved DNS (UDNS)
Fig. 5. In the mid-plane z/h = 0, UDNS (left column) and DNS (right column). Top row: contours of the x-component of the average
resolved velocity field from �0.2 to 1 by increments of 0.01. Bottom row: contours of the y-component of the average resolved velocity
field from �0.7 to 0.1 by increments of 0.01. Color scale from blue to red. Dashed contours correspond to negative levels. Levels in U0

units. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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is totally inoperative in the particular context of this simulation. Even first-order statistics are far from being
well predicted, not to mention second-order ones. These results allow us to confirm the sufficient under-res-
olution of the flow using the 653 SEM mesh.

We assume that a statistically steady state is reached and time averaging will be taken as ensemble averag-
ing. For any variable v, the Reynolds statistical decomposition
Fig. 6.
(limite
v ¼ hvi þ v� ð61Þ

introduces the time-averaged value denoted into brackets hvi and its fluctuating part v�. It is noteworthy
reminding here the difference between the filter splitting v ¼ �vþ v0 and the Reynolds decomposition. As the
initial condition of all LES is the same DNS instantaneous velocity field taken from the statistically steady-
state range, it is reasonable to also assume that LES will reach a statistically steady state very quickly, if sub-
grid modeling is efficient [21]. These assumptions are easily verified by evaluating the total kinetic energy of the
resolved field
Qð�uÞ ¼ 1

2

Z
X

�ui�ui dX; ð62Þ
which is expected to evolve within a relatively small fluctuation range. For Fig. 6, the results reported for
ADM–DMS correspond to a longer dynamic range of 200h=U 0 time units. However, all the statistical results
presented hereafter for both ADM–DMS and DMS are limited to the first 80h/U0time units. The time histories
of Qð�uÞ presented in Fig. 6 for ADM–DMS and DMS show an evolution within the same fluctuation range as
the DNS and around the average value of the total kinetic energy predicted by the DNS. As reported by Bouf-
fanais et al. [21] using a dynamic Smagorinsky model, which is a particular case of the present DMS over 800
h/U0 time units, further confirms the evolution of Qð�uÞ for DMS in the long run.

Additionally the time histories of the kinetic energy of the fluctuating resolved field Qð�u�Þ presented on
Fig. 7 is also evolving in the same fluctuation range as the DNS. The results on Figs. 6 and 7 for both
Qð�uÞ and Qð�u�Þ allow to conclude that the turbulent flow reaches a statistically steady state extremely quickly.
No transient can be clearly identified in this case. The same conclusion is made by Bouffanais et al. [21] for
LES using more classical subgrid models.

Since the scale separation used for LES leads to the removal of subgrid scales mainly responsible for the
energy dissipation, the subgrid model has to take into account this phenomenon. The flow in the cavity is con-
fined and recirculating so that the same fluid is conserved inside the cavity. Moreover, kinetic energy is con-
Total resolved kinetic energy Qð�uÞ in U 2
0h3 units with respect to the time t in h/U0 units and, for the DNS, ADM–DMS and DMS

d to 80 time units).



Fig. 7. Fluctuating resolved kinetic energy Qð�u�Þ in U 2
0h3 units with respect to the time t in h/U0 units and, for the DNS, ADM–DMS and

DMS (limited to 80 time units).
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stantly provided to it by viscous diffusion. Hence, integral energy quantities over the flow domain such as Qð�uÞ
and Qð�u�Þ are a direct indication of any under- or over-dissipative character of the subgrid model, keeping in
mind the very low numerical dissipation and dispersion of the SEM. The results obtained for Qð�uÞ using
ADM–DMS and DMS clearly show that the energy balance is achieved when using these models in this
context.

5.2. Validation of the approximate deconvolution procedure

The first step towards a complete validation of the ADM–DMS model, resides in investigating the accuracy
of the deconvolution procedure based on the van Cittert method, with respect to the deconvolution order N.
Fig. 8. Parametric analysis of the deconvolution error eu with respect to the deconvolution order N. The filtering rate g is increased from 1
to 9 with unit increments.



Fig. 9. In the mid-plane z/h = 0, DMS (left column), ADM–DMS (central column) and DNS (right column). Top row: contours of h�uxi
from �0.2 to 1 by increments of 0.01. Bottom row: contours of h�uyi from �0.7 to 0.1 by increments of 0.01. Color scale from blue to red.
Dashed contours correspond to negative levels. Levels in U0 units (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).

256 M.A. Habisreutinger et al. / Journal of Computational Physics 224 (2007) 241–266
For this purpose, we define the relative error in L2-norm between a non-filtered DNS velocity field, extracted
from the DNS database of Leriche and Gavrilakis [19], and its deconvoluted counterpart QN � �u
eu ¼
ku� QN � �ukL2ðXÞ

kukL2ðXÞ
: ð63Þ
Fig. 8 displays the parametric analysis of the relative error with respect to the deconvolution order, with the
filtering rate gG as parameter. One can notice that the van Cittert expansion series is convergent and the error
increases with the filtering rate gG. In practical tests the deconvolution order must be set lower to 30 in order to
avoid having binomial coefficients of very high values which would inevitably induce precision errors. This
numerical issue justifies the ‘‘apparent divergence’’ of the approximate deconvolution procedure for all filter-
ing rates observed in Fig. 8 for large values of N. The filtering rate is increased from 1 to 9 by unit increments
showing that the deconvolution error is larger with higher values of the filtering rate, which corresponds to the
expected result. One can also notice that the error growth in the ‘‘apparent divergence’’ occurs earlier with
lower filtering rates. It is very interesting to note that the error analysis is being performed using a velocity
field corresponding to a turbulent flow including laminar regions. The resulting deconvolution error is clearly
higher than the one obtained with a smooth analytically defined field.

5.3. A posteriori validations

In this section, results of the LES are compared with the available reference results by analyzing first- and
second-order statistics. The measurements reported by Leriche and Gavrilakis [19] were taken in the mid-plane
z/h = 0, which is the statistical symmetry plane of the flow domain. For the sets of DNS data, the total velocity
field is considered whereas in the case of LES, only its resolved part is presented. In consequence, the statistical
moments computed from the resolved field cannot be equal to those computed from the DNS. One solution to
overcome this issue would have been to apply the same filtering as is used for the scale separation to the ref-



Fig. 10. In the mid-plane z/h = 0, DMS (dashed lines), ADM–DMS (dotted lines) and DNS (solid lines). Top: h�uxi on the horizontal
centerline x/h = 0. Bottom: h�uyi on the vertical centerline y/h = 0.
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erence solution [34]. We refer the reader to the monograph by Sagaut [28] for more details. The statistics for all
LES and UDNS are based on a sampling approximately 10 times smaller than the one of the original DNS,
but about twice longer than the one of the LES of Zang et al. [22]; more precisely 400 samples are collected
over 80h/U0 time units. The original reference DNS statistics were performed using 4000 samples extracted
over an integration range of 1000h=U 0. Therefore, the LES statistics are not expected to be identical to the
reference ones, especially the second-order ones.

The comparisons with the DNS results are performed by plotting identical series of contour levels of the
average velocity. Fig. 9 displays the average values of the velocity field for DMS, ADM–DMS, and the
DNS in the mid-plane of the cavity. This figure is complemented by the corresponding one-dimensional plots
presented in Fig. 10 on the horizontal/vertical centerlines in the mid-plane z/h = 0. A rapid overview of these
figures indicates that ADM–DMS provides results very close to the DNS references, which has to be com-
pared with the UDNS results of Fig. 5. In addition, it appears that ADM–DMS results are more satisfactory
than those from DMS. Secondary corner eddies located above the bottom wall and below the lid next to the
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Fig. 11. In the mid-plane z/h = 0, DMS (left column), ADM–DMS (central column) and DNS (right column). Top row: contours of
h�u�2x i

1=2 from 0 to 0.07 by increments of 0.005. Central row: contours of h�u�y 2i1=2 from 0 to 0.15 by increments of 0.005. Bottom row:
contours of h�u�x�u�yi from �0.0007 to 0.0065 by increments of 0.0002. Color scale from blue to red. Dashed contours correspond to negative
levels. Levels in U0 units for h�u�2x i

1=2 and h�u�2y i
1=2 and in U 2

0 units for h�u�x�u�y i. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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upstream wall are correctly resolved in the mean flow. The flow below the lid and near the corner with the
downstream wall presents wiggles in the LES contours for h�uyi. More limited effects are noticeable for the
equivalent x-component field. We assume that these very limited defects find their origin in a local too impor-
tant under-resolution due to the very high shear rate near the downstream corner right below the lid [21]. The
previous comparisons of ADM–DMS with the DNS and DMS for first-order moments require to be comple-
mented by plotting identical series of contours of three components of the resolved Reynolds stress tensor.
Fig. 11 showcases the improvement achieved in terms of subgrid modeling by coupling ADM with DMS.
Moreover, Figs. 12–14 provide the associated one-dimensional plots of these quantities in the vertical and hor-
izontal centerlines of the mid-plane of the cavity. Indeed, the variations of h�u�2x i

1=2, h�u�2y i
1=2 and h�u�x�u�yi for

ADM–DMS reproduce quite accurately the intense-fluctuations zones in the mid-plane z/h = 0, and more spe-
cifically in the vicinity of the downstream corner eddy. DMS appears clearly not as effective as ADM–DMS.
The lower intensity of the Reynolds stress components for ADM–DMS as compared to the DNS are induced
by the lower sampling of all LES. A longer dynamic range would produce more intense results as reported in
[21].



Fig. 12. In the mid-plane z/h = 0, DMS (dashed lines), ADM–DMS (dotted lines) and DNS (solid lines). h�u�2x i
1=2 on the vertical centerline

y/h = 0 (top) and on the horizontal centerline x/h = 0 (bottom).
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5.4. Reynolds stresses production

As mentioned by Leriche and Gavrilakis in [19], the largest Reynolds stresses production rates in the cavity
are to be found in the primary elliptical jets parallel to the downstream wall, near the impact points just above
the bottom wall. The budget equations of the resolved second-order moments h�u�i �u�j i governing the resolved
Reynolds stresses, see [35,36], comprise a term named here P ij, defined by
P ij ¼ �h�u�i �u�ki
oh�uji
oxk
� h�u�j �u�ki

oh�uii
oxk

ð64Þ
and corresponding to the interaction of the mean flow and the Reynolds stress tensor. This quantity can be
interpreted as responsible for the production of resolved Reynolds stresses and couples first- and second-order
statistical moments.



Fig. 13. In the mid-plane z/h = 0, DMS (dashed lines), ADM–DMS (dotted lines) and DNS (solid lines). h�u�2y i
1=2 on the vertical centerline

y/h = 0 (top) and on the horizontal centerline x/h = 0 (bottom).
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In the specific case of the separated downstream-wall jet, the term P 22 is the largest out of the set of P ij

terms. After probing in the cavity, the maxima of the field P 22 was found in the plane y/h = �0.9384 just at
a very short distance above the bottom wall. The contours of the resolved Reynolds stress production term
P 22 in this plane are shown in Fig. 15. First, it can be noted that these contours are qualitatively very close
to the ones obtained by Leriche and Gavrilakis in [19] and presents secondary structures of negative Reynolds
stress production. The distribution of contours allows to clearly visualize the trace of the separated elliptical
jets just before their impingement on the bottom wall. This separation is clearer for ADM–DMS than for
DMS which shows once again the superiority of the coupled model.

5.5. Dynamic parameter for ADM–DMS

In practical LES presented in the sequel, local negative values of the dynamic parameter Cd are encoun-
tered. It was not found necessary to clip them as commonly done—e.g. in [22,33]—to conveniently get rid
of locally destabilizing negative values.



Fig. 14. In the mid-plane z/h = 0, DMS (dashed lines), ADM–DMS (dotted lines) and DNS (solid lines). h�u�x�u�y i on the vertical
centerline y/h = 0 (top) and on the horizontal centerline x/h = 0 (bottom).

Fig. 15. Contours of P 22 from �0.01 to �0.01 by increments of 0.01. DMS (left), ADM–DMS (center), DNS (right). Plane y/h = �0.9384.
Color scale from blue to red. Dashed contours correspond to negative levels. Levels in U 3

0=h units. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Contours of the average dynamic parameter Cd from �0.001 to 0.001 for ADM–DMS. Plane y/h = �0.9384. Color scale from
blue to red. Dashed contours correspond to negative levels. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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It is worth analyzing the variations of the dynamic parameter Cd for ADM–DMS in the plane
y/h = �0.9384 where the maximum of the resolved Reynolds stress production is found. As discussed in Sec-
tion 3.3.2, we expect that, by employing ADM as the base model for the scale similarity part of the subgrid
stress tensor, the magnitude of the dynamic parameter Cd will be reduced compared with that from the
dynamic mixed model and even more reduced compared with that from the dynamic Smagorinsky model
[22]. This is confirmed by our LES where three orders of magnitude separate the dynamic parameters for
DMS and ADM–DMS. The distribution of contours of the average dynamic parameter Cd in Fig. 16 appears
clearly correlated with the contours of the resolved Reynolds stress production P 22 in the same plane and pre-
sented in Fig. 15. Indeed, the trace of the separated elliptical jets is discernibly apparent in Fig. 16.

In addition, the maximum of P 22 localized at the point H0 of coordinates x=h ¼ 0:7874, y/h = �0.9384,
y/h = �0.3371 (see Fig. 15) corresponds to a region of maximal values for the dynamic parameter. The time
Fig. 17. Time history of the local value of the dynamic parameter Cd for ADM–DMS at the point H0 whose coordinates are x/h = 0.7874,
y/h = �0.9384, y/h = �0.3371.
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history of the local value of Cd at the point H0 is reported in Fig. 17 and present a limited number of high
value peaks. Leriche and Gavrilakis in [19] and Bouffanais et al. [20] identified in this region of the cavity a
pair of counter-rotating vortices responsible for the intermittent and intense production of Reynolds stresses.
The presence of this coherent vortical structure seems to be detected by the intense values of the dynamic
parameter.

5.6. Subgrid activity

As a next step, we are mostly interested in identifying the regions where turbulence occurs inside the cavity.
For this purpose, we assume that if subgrid scales exist, the flow is locally turbulent and energy is exchanged
between subgrid and resolved scales. In other words, the activity of the term modeling subgrid scales is a direct
indication of the turbulence occurring in the cavity flow. A measure of subgrid activity is given by the subgrid
energy transfer �em defined by
Fig. 18
bottom
referre
�em ¼ �sm
ij Sij: ð65Þ
This latter quantity is only relative in value because the dissipation induced by the fluid viscosity, denoted by
�em,
�em ¼ 2mSijSij; �em P 0; ð66Þ

is also responsible for an energetic action. It appears therefore legitimate to define and analyze the relative
subgrid energy transfer
�em
r ¼

j�emj
�em þ j�emj ; ð67Þ
which is referred to as subgrid activity in the sequel. If it is close to zero, the energetic phenomena are mainly
induced by the viscous effects showing that the flow is mainly laminar. Conversely, values close to the unit
indicate a strong energetic action of the subgrid model reflecting that turbulence is mainly responsible of en-
ergy transfers.

As one can see in Fig. 18, turbulence essentially occurs in the vicinity of the cavity walls but, as expected,
very close to the walls the energetic action is essentially due to viscous effects. High values of subgrid activity
are also identified at the bottom of the cavity and near upstream and downstream walls. One can also notice
that subgrid activity is clearly reduced at the edges of the elements. This is a direct consequence of the nature
of the filter which is not active at the element boundaries. This issue cannot be avoided in this framework since
C0-continuity of the variables across elements is essential for numerical stability and physical consistency
reasons.
. Map of the average relative subgrid energy transfer heri from 0 (blue) to 1 (red) for ADM-DMS. Upstream wall x/h = 0 (left),
wall y/h = 0 (center) and mid-plane z/h = 0 (right). (For interpretation of the references to color in this figure legend, the reader is

d to the web version of this article.)



Fig. 19. Map of the ratio between the resolved and the subgrid kinetic senergy in the plane z/h = 0.9384.
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5.7. Subgrid kinetic energy

In order to complement the previous study of the subgrid activity and give further details about the impor-
tance of the subgrid terms in the ADM–DMS simulation, energetic quantities related to the subgrid scales are
analyzed. For this purpose, we consider the filtered subgrid kinetic energy �q0 which is expressed—see [28,36]—
as the difference between the total filtered kinetic energy and the kinetic energy of the resolved field �q ¼ �ui�ui=2,
�q0 ¼ 1

2
ðuiui � �ui�uiÞ ¼

1

2
sii ’

1

2
sm

ii ; ð68Þ
where sm is the modeled subgrid tensor defined in Eq. (32). In order to provide the reader with deeper insight
into the relative importance of the subgrid terms, we introduce the relative subgrid kinetic energy j as the ratio
between the subgrid kinetic energy and the kinetic energy of the resolved field
j ¼ �q0

�q
: ð69Þ
As one can notice on Fig. 19, the average values of j reported in the plane z/h = 0.9384, have negative val-
ues mainly located at the top-left corner of the cavity. This shows that the subgrid model predicts backscat-
tering, that is the energy transfer from subgrid to resolved scales. This region of inverse energy transfer
corresponds to the region of intense subgrid activity as reported in Fig. 18 in the mid-plane z/h = 0.
Fig. 20. Iso-surface of vanishing subgrid kinetic energy in the cavity.
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The importance of the subgrid terms already observed for the local energy fluxes and analyzed through the
subgrid activity, is further confirmed by the presence of regions of intense hji. More precisely, four regions
with high values of hji and corresponding to the zones where the wall-jets detach from their respective walls
[19] are easily identified in Fig. 18.

In order to highlight the zones where backscattering occurs, the iso-surface h�q0i ¼ 0 is plotted in Fig. 20
thereby defining the boundary between the backscattering and the forward-energy transfer regions. This figure
shows that this phenomenon mainly occurs below the lid and in the down flowing jet next to the downstream
wall. It also demonstrates the need for a complex subgrid model with such anisotropic flows containing var-
ious flow conditions and no direction of homogeneity.

6. Conclusions

LES of Newtonian incompressible fluid flows with ADM based on the van Cittert method using Legendre-
SEM have been performed. A coupling with a dynamic mixed scale model was introduced. The coupling of the
lid-driven cubical cavity flow problem at Reynolds number of 12,000 with the SEM having very low numerical
dissipation and dispersion appears to be a well suited framework to analyze the accuracy of the proposed sub-
grid model.

The filtering operation is performed in a spectral modal space, generated by a hierarchical basis using the
Legendre polynomials, through the application of a specifically designed transfer function. This transfer func-
tion is constructed in order to ensure continuity across elements, conservation of the constants, invertibility of
the filter and to perform low-pass filtering. From the computation viewpoint, the filtering technique presented
in this article, is the essential link between the SEM and ADM-based subgrid models.

The validation of the deconvolution procedure performed using a DNS velocity sample, shows that the van
Cittert method is convergent. Accounting for the reduced sampling and integration time, the LES performed
with ADM–DMS show good agreement with the reference results. More precisely, first- and second-order sta-
tistics are in good agreement when compared to their DNS counterparts. Results for the Reynolds stresses
production, coupling first- and second-order statistical moments, are also well predicted using this new model
even with such reduced sampling. The analysis of the results obtained with DMS allows us to clearly identify
the improvement induced by coupling ADM with DMS. Subgrid activity has been analyzed showing a qual-
itative correlation with the localization of small-scale structures in the cavity depicted in [21]. The importance
of the subgrid kinetic energy as compared to the kinetic energy of the resolved field highlights the essential
need for an appropriate subgrid modeling. Furthermore, regions of backscatter are identified by ADM–DMS.

All the presented results emphasize the efficiency of ADM–DMS when dealing with laminar, transitional
and turbulent flow conditions such as those occurring in the lid-driven cubical cavity flow at Re = 12,000.

Acknowledgments

The authors would like to thank Dr. Roland von Kaenel from CFS Engineering, Lausanne, for insightful
discussions.

This research is being partially funded by a Swiss National Science Foundation Grant (No. 200020–
101707), whose support is gratefully acknowledged.

The DNS data were obtained on supercomputing facilities at the Swiss National Supercomputing Center
CSCS and the LES data on Pleiades and Pleiades2 clusters at EPFL–ISE.

References

[1] S. Stolz, N.A. Adams, An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids 11 (1999) 1699–1701.
[2] S. Stolz, P. Schlatter, L. Kleiser, High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent

flow, Phys. Fluids 17 (2005) 065103.
[3] S. Stolz, N.A. Adams, L. Kleiser, The approximate deconvolution model for large-eddy simulations of compressible flows and its

application to shock-turbulent-boundary-layer interaction, Phys. Fluids 13 (2001) 2985–3001.
[4] P. Schlatter, S. Stolz, L. Kleiser, LES of transitional flows using the approximate deconvolution model, Int. J. Heat Fluid Flow 25

(2004) 549–558.



266 M.A. Habisreutinger et al. / Journal of Computational Physics 224 (2007) 241–266
[5] J. Gullbrand, F.K. Chow, The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and
without explicit filtering, J. Fluid Mech. 495 (2003) 323–341.

[6] B. Rembold, L. Kleiser, Noise prediction of a rectangular jet using large eddy simulation, AIAA J. 42 (2004) 1823–1831.
[7] B. Shotorban, F. Mashayek, Modeling subgrid-scale effects on particles by approximate deconvolution, Phys. Fluids 17 (2005)

081701.
[8] R. von Kaenel, Large-eddy simulation of compressible flow using the finite-volume method, Ph.D. Thesis, no. 15255, Swiss Federal

Institute of Technology, ETH Zürich, 2003.
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