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A high order, deterministic direct numerical method is proposed for the non-relativistic
2Dx � 3Dv Vlasov–Maxwell system, coupled with Fokker–Planck–Landau collision opera-
tors. The magnetic field is perpendicular to the 2Dx plane surface of computation, whereas
the electric fields occur in this plane. Such a system is devoted to modelling of electron
transport and energy deposition in the general frame of Inertial Confinement Fusion appli-
cations. It is able to describe the kinetics of the plasma electrons in the nonlocal equilib-
rium regime, and permits to consider a large anisotropy degree of the distribution
function. We develop specific methods and approaches for validation, that might be used
in other fields where couplings between equations, multiscale physics, and high dimen-
sionality are involved. Fast algorithms are employed, which makes this direct approach
computationally affordable for simulations of hundreds of collisional times.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the context of interactions between intense, short laser pulses and solid targets [1] or Inertial Confinement Fusion (ICF)
schemes [2,3], the electron energy transport is an important issue. In this latter field of applications (ICF), it determines the
efficiency of plasma heating and the possibility to achieve the fusion conditions. The appropriate scales under consideration
here are about one hundred mean free paths for the typical spatial sizes, and several hundreds of collisional times.

Several key features should be accounted for. First of all, in typical ICF configurations, a significant amount of energetic
electrons have a large mean free path, exceeding the characteristic gradient length of the temperature and the density: the
particle motion exhibits strong nonlocal features. Moreover, a wide range of collisional regimes should be dealt with to de-
scribe the propagation and the slowing down of energetic electrons from the underdense corona of the target to its dense
and compressed core. The collisions are important even if the beam particles themselves are collisionless [2]: these particles,
when propagating in a plasma, trigger a return current that neutralizes the incident one. This return current is determined by
collisions of thermal, background electrons. The structure of the generated electron distribution function is then often aniso-
tropic, with a strongly intercorrelated two population structure. For a non-relativistic laser intensity, smaller than
1018 W cm�2, a small angle description for collisions between the two populations is well-suited, leading to the classical Fok-
ker–Planck–Landau collision model. The Coulomb potential involves multiple collisions with small energy exchanges be-
tween particles, so that the Landau form of the Fokker–Planck operator is required here. Such a configuration with two
counterstreaming beams typically leads to the development of microscopic instabilities that can modify strongly the beam
. All rights reserved.
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propagation. We refer to the two-stream and filamentation instabilities, where the wave vector of the perturbation is respec-
tively parallel and perpendicular to the direction of the incident beam [4,5]. A self-consistent description of electromagnetic
fields is then required to describe the plasma behavior and associated instabilities. Furthermore, in the process of plasma
heating, strong magnetic fields are generated at intensity that can reach a MegaGauss scale and may affect the energy trans-
port [6–8]. The sources of magnetic field generation include, on the one hand, the effects of the rotational part of the electron
pressure, which is a cross gradient rT �rn effect, and, on the other hand, the exponential growth of perturbations of an
anisotropic distribution function (Weibel instability). These electromagnetic processes can be strongly coupled with non-
local effects [9,10].

The plasma model studied in this paper is based on the non-relativistic Vlasov–Maxwell equations, coupled with Fokker–
Planck–Landau collision operators. It corresponds to the listed requirements that are relevant for the standard ICF approach
with a central point ignition. At higher laser intensities corresponding to the fast ignition approach for ICF, a relativistic treat-
ment should be considered [2,11], and collision operators with a large energy exchange are required. Here, the production of
secondary fast electrons proves to be non-negligible, particularly in dense plasmas.

There are several numerical methods that treat the Vlasov–Maxwell model together with Fokker–Planck–Landau type
operators. Among them, the collisional Particle-In-Cell (PIC) method has been originally designed to describe accurately col-
lective effects, it gives satisfying results in a limited range of collisional regimes. However, it suffers from the ‘‘finite grid
instability”, that involves numerical heating. Also the statistical noise and a low resolution of the electron distribution func-
tion by PIC solvers generally lead to an inaccurate treatment of collisions, particularly when dealing with low temperature
and high density plasmas. In the high density regions (hundreds of critical densities), the computational resources needed by
the PIC method become currently excessive. Recent collisional PIC solvers [12] rely on the weighted macro-particles to attain
high densities, together with high order numerical schemes, to reduce the numerical heating. Another type of widely used
methods consists in the expansion of the angular dependance of the distribution function in a series of Legendre polynomials
or the spherical harmonics, retaining a limited number of lowest order terms [13,14,2,15,16]. However, this approach cannot
apply to a situation that is relevant to the ICF fast ignition, where a collisionless beam-like fast electron population is coupled
with a collision dominated thermal population. Also, the study of laser-driven parametric instabilities require an accurate
description of collective effects, together with a collisional treatment, in the regions close to the critical density.

Here, we propose a different and complementary approach, that could potentially address these complicated situations.
It consists in approximating the full model by a direct deterministic numerical method. Such a method does not involve
any perturbative expansion or linearization of the distribution function around an equilibrium state, to obtain reduced and
tractable collision operators. It discretizes directly the initial set of equations and enables to preserve at the discrete level
the physical invariants of the model (the positivity of the distribution function, the conservation of total mass and total
energy, the entropy decreasing behavior, etc). Many deterministic schemes of this type have already been considered for
homogeneous Fokker–Planck type operators [17–21]. The nonhomogeneous case, that includes the transport part (see [22]
for a comparison between Eulerian Vlasov solvers), involves a large computational complexity that can only be reduced
with fast algorithms. Multipole expansion [23] and multigrid [19] techniques, as well as fast spectral methods [20,24],
have been applied to the Landau equation. For computational complexity constraints, very few results on the accuracy
of these methods are known in the nonhomogeneous case [25,24], particularly when the coupling with magnetic fields
is considered [26].

On the one hand for the transport part discretization, our starting point is a second order finite volume scheme introduced
in [25]. Its main feature is that it preserves exactly the discrete energy when slope limiters are not active. Here, we introduce
additional dissipation on these limiters in order to successfully address the two-stream instability test case. Moreover, we
will underline the important role of the limitation procedure for the accuracy, on the second order scheme. This scheme is
compared in this test case with a fourth order MUSCL scheme [27], with a limitation ensuring the positivity of the distribu-
tion function [28]. A similar approach, with the introduction of a fourth order scheme for transport to avoid numerical heat-
ing, has already been proposed in the context of PIC solvers [12].

On the other hand, the discretization of the Maxwell equations is performed with a Crank–Nicholson method, allowing
the time steps to be of the order of the collision time. It is designed to preserve the discrete total electromagnetic energy,
which is an important issue when we consider the coupling between the Vlasov equation and the Maxwell system to capture
accurately energy deposition phenomenon. Finally, for the Landau operator a fast multigrid technique is used that proves to
be accurate in a wide range of collisional regimes. Moreover, the use of domain decomposition techniques and distributed
memory MPI standard on the space domain leads to affordable computational cost, and to the treatment of time dependent,
2Dx � 3Dv problems.

The paper is organized as follows. First, we present the model and its properties in Section 2. Then we discuss the numer-
ical schemes for the transport part, their properties, and propose several numerical tests (Sections 3 and 4). In Section 5, the
discretization for the collision operators is treated and we finally present physical test cases 1Dx � 3Dv and 2Dx � 3Dv that
show the accuracy of the present algorithm (Section 6).

2. The kinetic model

Two particle species (ions and electrons) are considered: ions are supposed to be fixed assuming an electron–ion mass
ratio me=mi � 1, whereas the evolution of electrons is described by a distribution function feðt;x;vÞ where for the more
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general case ðx;vÞ 2 X� R3, with X � R3. The non-relativistic Vlasov equation with Fokker–Planck–Landau (FPL) collision
operator is given by
@fe

@t
þrx � ðvfeÞ þ

qe

me
rv � ððEþ v � BÞfeÞ ¼ Ce;eðfe; feÞ þ Ce;iðfeÞ; ð1Þ
where qe ¼ �e is the charge of an electron and me is the mass of an electron. On the one hand, electromagnetic fields (E,B)
are given by the classical Maxwell system
@E
@t � c2rx � B ¼ � J

�0
;

@B
@t þrx � E ¼ 0;

(
ð2Þ
where �0 represents the permittivity of vacuum and c is the speed of light. The current density is given by
Jðt;xÞ ¼ qe

Z
R3

feðt; x;vÞv dv:
Moreover, Maxwell system’s is supplemented by Gauss law’s
rx � E ¼
q
�0
; rx � B ¼ 0; ð3Þ
where q is the charge density:
q ¼ qeðne � noÞ ¼ qe

Z
R3

feðt;x;vÞdv� n0

� �
;

and n0=Z is the initial ion density.
In this model, the Vlasov equation stands for the invariance of the distribution function along the particles trajecto-

ries under the effects of electromagnetic fields E and B. The Vlasov transport terms, in the left-hand side of Eq. (1), are
written in their conservative form, but they can also be written in an equivalent non-conservative form, while the Max-
well equations (2), (3) provide with a complete self-consistent description of electromagnetic fields. The coupling be-
tween both is performed via the Lorentz force term Eþ v � B in the Vlasov equation, and the current source terms in
the Maxwell equations.

On the other hand, in Eq. (1), the right-hand side represents collisions between particles, which only act on the velocity
variable (the x variable will be dropped). The FPL operator Ce;eðfe; feÞ stands for the electron–electron collision operator
Ce;eðfe; feÞ ¼
e4 ln K

8p�2
0m2

e

rv �
Z

R3
Uðv � v0Þ½feðv0ÞrvfeðvÞ � feðvÞr0vfeðv0Þ�dv0

� �
; ð4Þ
whereas Ce;iðfeÞ is the electron–ion collision operator
Ce;iðfeÞ ¼
Zn0e4 ln K
8p�2

0m2
e

rv � ½UðvÞrvfeðvÞ�; ð5Þ
where ln K is the Coulomb logarithm, which is supposed to be constant over the domain and UðuÞ is an operator acting on
the relative velocity u
UðuÞ ¼ kuk
2Id� u� u

kuk3 : ð6Þ
The FPL operator is used to describe elastic, binary collisions between charged particles, with the long-range Coulomb inter-
action potential. Classical but important properties of the system (1)–(3) together with operators (4) and (5), are briefly re-
called. For detailed proofs, we refer to [25,29]. As we assume ions to be fixed, the FPL operator can then be simplified for
electron–ion collisions [25], and reduced to the Lorentz approximation. We refer to [30] for a physical derivation.

2.1. Kinetic equation with self-consistent electromagnetic fields

In this section, collision operators are neglected and we only consider a periodic or infinite space domain. The Vlasov–
Maxwell system (1)–(3) with a zero right-hand side is strictly equivalent to (1) and (2) provided the Gauss’s laws (3) are
initially satisfied. This gives a compatibility condition at initial time.

The mass and momentum are preserved with respect to time for the Vlasov–Maxwell system, i.e. system (1) and (2) with-
out collision operators
d
dt

Z
R3�R3

feðt;x;vÞ
1
v

� �
dxdv ¼ 0; t P 0:
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Moreover, the conservation of energy can be proved for the Vlasov–Maxwell system by multiplying Eq. (1) by mekvk2=2 and
integrating it in the velocity space. It gives after an integration by parts
1
2

d
dt

Z
R3

�0kEðt;xÞk2 þ 1
l0
kBðt;xÞk2 þ

Z
R3

mekvk2feðt;x;vÞdv
� �� �

dx ¼ 0; t P 0;
with c2�0l0 ¼ 1. The Vlasov–Maxwell system also conserves the kinetic entropy
d
dt

HðtÞ ¼ d
dt

Z
R3�R3

feðt; x;vÞ logðfeðt;x;vÞÞdxdv ¼ 0; t P 0:
2.2. Collision operators

The FPL operator is used to describe binary elastic collisions between electrons. Its algebraic structure is similar to the
Boltzmann operator, in that it satisfies the conservation of mass, momentum and energy
Z
R3

Ce;eðfe; feÞðvÞ
1
v
kvk2

0B@
1CAdv ¼ 0; t P 0:
Moreover, the entropy is decreasing with respect to time
dH
dt
ðtÞ ¼ d

dt

Z
R3

feðv; tÞ logðfeðv; tÞÞdv 6 0; t P 0:
The equilibrium states of the FPL operator, i.e. the set of distribution functions in the kernel of Ce;eðfe; feÞ, are given by the
Maxwellian distribution functions
Mne ;ue ;Te ðvÞ ¼ ne
me

2pTe

� �3=2

exp �me
kv � uek2

2Te

 !
;

where ne is the density, ue is the mean velocity and Te is the temperature, defined as
ne ¼
R

R3 feðvÞdv;
ue ¼ 1

ne

R
R3 feðvÞv dv;

Te ¼ me
3ne

R
R3 feðvÞkv � uek2 dv:

8><>:

On the other hand, the operator (5), modelling collisions between electrons and ions, is a Lorentz operator. It satisfies the
conservation of mass and energy
Z

R3
Ce;iðfeÞðvÞ

1
kv � uek2

� �
dv ¼ 0:
Moreover, the equilibrium states for this operator are given by the set of isotropic functions:
KerðCe;iÞ ¼ ffe 2 L1ðð1þ kvk2ÞdvÞ; f eðvÞ ¼ /ðzÞ; z ¼ kv � uek2g:
Finally, each convex function w of fe is an entropy for Ce;iðfeÞ,
d
dt

Z
R3

wðfeÞdv 6 0; t P 0:
In addition to these properties, we present a symmetry property. This property may have some importance, in particular in
presence of self-consistent magnetic fields. Indeed, any break of symmetry due to an inadequate discretization method could
lead to generation of artificial magnetic fields, via current source terms.

Proposition 2.1. If fe has the following symmetry property with respect to the direction k at time t0
feðt0;vÞ ¼ feðt0;vkÞ; ð7Þ
with components for
vk
i ¼

þvi if i – k;
�vi if i ¼ k:

�

Then, this symmetry property is preserved with respect to time.
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3. Numerical scheme for transport

We present a finite volume approximation for the Vlasov–Maxwell system (1) and (2) without collision operators. Indeed,
it is crucial to approximate accurately the transport part of the system to asses the collective behavior1 of the plasma, that
occurs typically at a shorter time scale than the collision processes. We introduce a uniform 1D space discretization
ðxiþ1=2Þi2I; I � N, of the interval ð0; L1Þ, in the direction denoted by the index 1. The associated space variable is denoted
by x1. We define the control volumes Ci;j ¼ ðxi�1=2; xiþ1=2Þ � ðvj�1=2;vjþ1=2Þ, the size of a control volume in one direction in
space Dx and velocity Dv .

The velocity variable v ¼ tðv1;v2;v3Þ is discretized on the grid vj ¼ jDv ¼ tðv j1 ;v j2 ;v j3 Þ with j ¼ tðj1; j2; j3Þ 2 Z3.
Moreover we note vjþ1=2 ¼ tðj1 þ 1=2; j2 þ 1=2; j3 þ 1=2ÞDv . Finally, the time discretization is defined as tn ¼ nDt, with
n 2 N.

Let f n
i;j be an average approximation of the distribution function on the control volume Ci;j at time tn, that is
1 By c
collision
potenti
f n
i;j ’

1
DxDv3

Z
Ci;j

f ðtn; x;vÞdxdv:
Moreover since the discretization is presented in a simple 1Dx space geometry, the electromagnetic field has the follow-
ing structure: E ¼ tðE1ðt; x1Þ; E2ðt; x1Þ;0Þ; B ¼ tð0; 0;B3ðt; x1ÞÞ. Hence we denote by tðEn

1;i; E
n
2;iÞ an approximation of the elec-

tric field tðE1; E2Þ where as Bn
3;i represents an approximation of the magnetic field B3 in the control volume ðxi�1=2; xiþ1=2Þ

at time tn.

3.1. Second order approximation of a one-dimensional kinetic equation

For the sake of simplicity, we focus on the discretization of a 1D kinetic transport equation; the extension to higher
dimensions is straightforward on a grid. The generic 1D scheme is applied in the five phase space directions, without requir-
ing time splitting techniques between transport terms. In this section, the index 1 is dropped both in space and velocity
directions, for this simple 1Dx geometry.

Let us consider the following equation for t P 0 and x 2 ð0; LÞ,
@f
@t
þ v @f

@x
¼ 0; ð8Þ
where the velocity v > 0 is given. By symmetry it is possible to recover the case when v is negative. In the following we skip
the velocity variable dependency of the distribution function. Using a time explicit Euler scheme and integrating the 1D Vla-
sov equation on a control volume ðxi�1=2; xiþ1=2Þ, it yields
f nþ1
i ¼ f n

i �
Dt
Dx
F n

iþ1=2 � F n
i�1=2

h i
; ð9Þ
where F n
iþ1=2 represents an approximation of the flux vf ðtn; xiþ1=2Þ at the interface xiþ1=2.

The next step consists in the approximation of the fluxes and the reconstruction of the distribution function. With this
aim, we approximate the distribution function f ðtn; xÞ by fhðxÞ using a second order accurate approximation of the distribu-
tion function on the interval ½xi�1=2; xiþ1=2Þ, with a reconstruction technique by primitive [25]
fhðxÞ ¼ f n
i þ �þi

ðx� xiÞ
Dx

f n
iþ1 � f n

i

� 	
: ð10Þ
We introduce the limiter
�þi ¼

0 if f n
iþ1 � f n

i

� 	
f n
i � f n

i�1

� 	
< 0;

min 1;
2 kf 0k1�f n

ið Þ
f n
i
�f n

iþ1

� �
if f n

iþ1 � f n
i

� 	
< 0

min 1;
2f n

i
f n
iþ1
�f n

i


 �
else;

8>>>><>>>>: ð11Þ
and set F n
iþ1=2 ¼ vfhðxiþ1=2Þ. This type of limiter introduces a particular treatment for extrema. At this price only (dissipation

at extrema), we were able to recover correctly the two-stream instability test case, without oscillations destroying the sali-
ent features of the distribution function structure. Another choice for the limitation consists in choosing the ‘‘Van Leer’s one
parameter family of the minmod limiters” [31,32]
ollective effects, we denote here the self-consistent interaction of electromagnetic fields and particles. Some collective effects are also considered in the
processes, which make two particles interact via the Coulomb field. The self-consistent electrostatic field then screens the long-range Coulomb

al and removes the singularity in the Fokker–Plank–Landau operator.
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�þi ¼minmod b
f n
iþ1 � f n

i

� 	
Dx

;
f n
iþ1 � f n

i�1

� 	
2Dx

; b
f n
i � f n

i�1

� 	
Dx

� �
; ð12Þ
where
minmodðx; y; zÞ 	maxð0;minðx; y; zÞÞ þminð0;maxðx; y; zÞÞ; ðx; y; zÞ 2 R3;
and 1 6 b 6 2. The importance of the choice of limiters will be observed on the two-stream instability test case.
Finally, this reconstruction ensures the conservation of the average and the positivity on fhðxÞ [25].
3.2. Fourth order transport scheme

We turn now to a higher order approximation (fourth order MUSCL TVD scheme) [27]. This scheme has also been con-
sidered in [28], in the frame of VFRoe schemes for the shallow water equations, where the authors proposed an additional
limitation. Here we note that an optimized limitation procedure is possible in our case, breaking the similar treatment for
both right and left increments, and taking advantage of the structure of the flux in the non-relativistic Vlasov equation: the
force term does not depend of the advection variable.

For this MUSCL scheme, we only give here the algorithm for the implementation of this scheme and refer to [28,27] for
the derivation procedure of this scheme.

The high order flux at the interface xiþ1=2, at time tn reads
F n
iþ1=2 ¼ F f n

i;r ; f
n
iþ1;l


 �
¼

vf n
i;r if v > 0;

vf n
iþ1;l if v < 0:

(

This numerical flux involves the reconstructed states: f n
i;r ¼ f n

i þ ðDf Þþi and f n
i;l ¼ f n

i þ ðDf Þ�i , where ðDf Þ
i are the reconstruction
increments.

An intermediate state f �i , defined by 1
3 f n

i;r þ f �i þ f n
i;l


 �
¼ f n

i is introduced. It is shown in [28] that the introduction of this

intermediate state preserves, provided the CFL condition is formally divided by three, the positivity of the distribution func-
tion. Following [27,28], the fourth order MUSCL reconstruction reads
Algorithm of reconstruction.
Compute
ðDf Þ�i ¼ � 1
6 ð2D��f i�1=2 þ D�~f iþ1=2Þ;

Df Þþi ¼ 1
6 ðD

��f i�1=2 þ 2D�~f iþ1=2Þ;
where

D��f i�1=2 ¼minmodðD�fi�1=2;4D�fiþ1=2Þ;
D�~f iþ1=2 ¼minmodðD�fiþ1=2;4D�fi�1=2Þ
and

D�fiþ1=2 ¼ Dfiþ1=2 � 1

6 D3�f iþ1=2;

D3�f iþ1=2 ¼ D�f a
i�1=2 � 2D�f b

iþ1=2 þ D�f c
iþ3=2;
with

D�f a

i�1=2 ¼ minmodðDfi�1=2;2Dfiþ1=2;2Dfiþ3=2Þ;
D�f b

iþ1=2 ¼ minmodðDfiþ1=2;2Dfiþ3=2;2Dfi�1=2Þ;
D�f c

iþ3=2 ¼ minmodðDfiþ3=2;2Dfi�1=2;2Dfiþ1=2Þ;
with the notation Dfiþ1=2 ¼ fiþ1 � fi.

Reminding that the minmod limiter is given by
minmodðx; yÞ ¼

0 if xy 6 0;

x if jxj 6 jyj;

y else;

8>>><>>>: ð13Þ
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with ðx; yÞ 2 R3. The limitation proposed in [28] is then applied and allows the positivity of the reconstructed states to be
satisfied.
Algorithm for the limitation involving the intermediate state

Compute ðDf Þlim;
 such that
i
f n
i þ ðDf Þlim;�

i P 0;
f n
i þ ðDf Þlim;þ

i P 0;

and

f �i ¼ f n

i � ðDf Þlim;�
i � ðDf Þlim;þ

i P 0:
This limitation reads:

ðDf Þlim;�
i ¼ h max ðDf Þ�i ;�f n

i

� 	
;

ðDf Þlim;þ
i ¼ h max ðDf Þþi ;�f n

i

� 	
;

(

where

h ¼
1 if max ðDf Þ�i ;�f n

i

� 	
þmax ðDf Þþi ;�f n

i

� 	
6 0;

min 1;
f n
i

max ðDf Þ�i ;�f n
ið Þþmax ðDf Þþi ;�f n

ið Þ

� �
otherwise:

8<:
3.3. Application to the Vlasov–Maxwell system We exactly follow the same idea to design a scheme for the full Vlasov
equation in phase space ðx;vÞ 2 X� R3. In addition, a centered formulation for the electromagnetic fields is chosen:
Enþ1=2 ¼ 1
2
ðEnþ1 þ EnÞ and Bnþ1=2 ¼ 1

2
ðBnþ1 þ BnÞ: ð14Þ
The discretization of the Maxwell equations (2) and (3) is performed via an implicit h-scheme, with h ¼ 1=2, which corre-
sponds to the Crank–Nicholson scheme and thus preserves the total discrete energy. This discretization is presented in a sim-
ple 1D space geometry. The electric field E ¼ tðE1; E2;0Þ and the magnetic field B ¼ tð0;0;B3Þ are collocated data on the
discrete grid. These fields are solution of the system
Enþ1
1;i �En

1;i

Dt ¼ � Jn
1;i
�0
;

Enþ1
2;i �En

2;i

Dt þ c2 Bnþ1=2
3;iþ1

�Bnþ1=2
3;i�1

2Dx ¼ � Jn
2;i
�0
;

Bnþ1
3;i �Bn

3;i

Dt þ
Enþ1=2

2;iþ1
�Enþ1=2

2;i�1
2Dx ¼ 0:

8>>>>><>>>>>:
ð15Þ
This scheme is well suited for the situations involving the electromagnetic fields that are treated in the test cases.
The approximation for the current in (15) Jn

1 and Jn
2 has been chosen such as
Jn
1;i ¼

X
j2Z3

Dv3v j1 f n
i;j and Jn

2;i ¼
X
j2Z3

Dv3v j2 f n
i;j: ð16Þ
Unfortunately, these expressions do not preserve the total energy when slopes limiters are active, but we will show that they
have the important feature to reproduce the discrete two-stream dispersion relation.

First, we remind discrete properties concerning positivity, mass and energy conservation [25] of the second order scheme
(9) and (10) coupled with (14)–(16), considering now the magnetic component.

Proposition 3.1. Let the initial datum ðf 0
i;jÞi;j2Z3 be nonnegative and assume the following CFL type condition on the time step
Dt 6 C minðDx;DvÞ; ð17Þ
where C > 0 is related to the maximum norm of the electric and magnetic fields and the upper bound of the velocity domain.
Then the scheme (9) and (10) coupled with (14)–(16) , when extended to the infinite 3Dx � 3Dv geometry, gives a

nonnegative approximation, preserves total mass and energy when slopes limiters are not active on the transport in the velocity
directions
1
2

X
i2I

Dx3 �0kEn
i k

2 þ 1
l0
kBn

i k
2 þme

X
j2Z3

Dv3kvjk2f n
i;j

24 358<:
9=; ¼ C0; n 2 N:
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Remark 3.2. Both the second order scheme and its fourth order extension preserve the positivity of the distribution func-
tion, provided the CFL criteria are satisfied. The positivity is essential to describe correctly the high energy tail of the distri-
bution function, where the particle density is. In all test cases presented, the time increment is chosen small enough to
satisfy this CFL condition, together with the diffusive-type CFL condition that comes from the collision operators.

In addition to these properties, we justify our choice for the numerical current thanks to a discrete dispersion relation on
the two-stream instability. In the rest of the section, we drop the index 1 on the variables x1; v1; E1 and J1, because the
transport is considered 1Dx � 1Dv .

Proposition 3.3. Consider the second order scheme (9) and (10) coupled with (14)–(16) , when slope limiters are not active, to
approximate the Vlasov–Ampère system
@f
@t þ v @f

@xþ
qe
me

E @f
@v ¼ 0;

@E
@t ¼ �

J
�0
:

(
ð18Þ
Then the definition (16) for the current J defines a discrete dispersion relation that converges toward the continuous dispersion
relation when Dv ; Dx and Dt tend to 0.

Proof. The two-stream instability configuration can be fully analyzed with the Vlasov–Ampère system (18) extracted from
Eqs. (1)–(3). The dispersion relation for a perturbation f ð1Þ / eiðkx�xtÞ of an initial equilibrium state f ð0Þ, with kf ð1Þk � kf ð0Þk,
then reads
1þ q2
e

�0me

Z
R

v
xðx� kvÞ

@f ð0Þ

@v dv ¼ 0: ð19Þ
Here the crucial point is the discretization on the velocity part of the phase space, so that we perform a semi-discrete anal-
ysis. In the frame of the discretization (9) and (10) coupled with (14)–(16), we consider the semi-discrete scheme approx-
imating (18)
@f
@t þ v @f

@xþ
qe
me

E fjþ1=2�fjþ1=2
Dv ¼ 0;

@E
@t ¼ �

qe
�0

P
j2Z

Dvv jfj;

8><>: ð20Þ
with
fjþ1=2 ¼
fjþ1 þ fj

2
;

assuming the slope limiter is not active. Then we perform a discrete linearization around an equilibrium state
fj ¼ f ð0Þj þ f ð1Þj ;
where kf ð1Þk � kf ð0Þk. Using f ð1Þj / eiðkx�xtÞ in (20), it yields
�iðx� kv jÞf ð1Þj þ qe
me

Eð1Þ
f ð0Þ
jþ1=2

�f ð0Þ
j�1=2

Dv ¼ 0;

�ixEð1Þ ¼ � qe
�0

P
j2Z

Dvv jf
ð1Þ
j :

8><>: ð21Þ
These equations lead to the discrete dispersion relation
1þ q2
e

�0me

X
j2Z

v j

xðx� kv jÞ
f ð0Þjþ1=2 � f ð0Þj�1=2

Dv

" #
Dv ¼ 0: ð22Þ
We recover the continuous dispersion relation (19) when passing to the limit Dv ! 0. Any other choice for the discrete cur-
rent in (21) would introduce an additional error of order OðDv2Þ in the dispersion relation (22). For instance, the choice
J ¼
X
j2Z

Dvv jfjþ1=2
would lead to the
1þ q2
e

�0me

X
j2Z

ðv j � DvÞ
xðx� kv jÞ

f ð0Þjþ1=2 � f ð0Þj�1=2

Dv

" #
Dv ¼ 0; ð23Þ
which is a ‘‘shifted” dispersion relation, with a OðDvÞ accuracy, compared to the second order accurate relation given by
(22). h
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3.4. Boundary conditions

3.4.1. Truncation of the velocity domain
The discretization in the velocity space imposes a truncation of the infinite velocity domain, and the introduction of

boundary conditions. We only need to consider the direction v1, where the discretized velocity variable is v j1 , with
j1 2 ½�nv1 ;nv1 � � Z, and 2nv1 þ 1 is the total number of discretization points. If the second order scheme (respectively the
fourth order scheme) is considered, then the boundary conditions are applied on two ghost points (respectively three ghost
points). This is due to the extension of the stencil. Considering the second order scheme, the ghost points at the velocity do-
main are v j1 with j1 ¼ 
nv1 ; 
ðnv1 þ 1Þ. Therefore, at these points, we impose the truncation f nþ1

j1
¼ 0.

3.4.2. Boundary conditions in the space domain
The boundary conditions for the space directions satisfy also naturally the positivity constraint with our scheme. It is in-

deed designed with reconstructed numerical fluxes, that maintain the positivity (under the CFL condition) if the distribution
function at the previous time step is positive. At a boundary interface, x�1=2 at the left boundary, where the numerical flux
should be computed, the only requirement is to specify a positive distribution at ghost points to impose the boundary con-
ditions. We explicit here the non-trivial ghost point used by a zero current left boundary (with temperature TL) condition, in
the direction x1:
f n
�1;j ¼ C�1=2 exp �kv jk2

2TL

 !
; ð24Þ
where C�1=2 > 0 and satisfies
X
j

F n
�1=2;j ¼ 0: ð25Þ
4. Numerical simulations in the collisionless regime

We first propose a validation strategy in the linear, collisionless regime, based on the work of Sartori and Coppa [33], to
describe the transient behavior of the solution to the Vlasov–Poisson system, in the non-relativistic and relativistic cases,
when the initial data are close to the equilibrium. Their approach, relying on Green kernels, is recalled in Appendix A, in
the non-relativistic regime. Our aim is to capture kinetic effects in the linear regime, such as the Landau damping and the
two-stream instability. A semi-analytical solution is obtained, with a prescribed accuracy. Moreover, this method allows the
exploration of wavenumber ranges, where other approaches relying on dispersion relations fail. We recall that classical val-
idations of kinetic solvers dedicated to plasma physics [25,34] are based on the calculation of the growth rates (instability),
or decrease rates (damping) in the linear regime. We will show the efficiency of the semi-analytical method on the two-
stream instability test case.

The transport schemes are tested, without collision operators, with a low number of dimensions, 1Dx � 1Dv for the test 1
(the computational resources are then very low), or 1Dx � 3Dv for the test 2. For this latter test, a parallelisation technique is
employed, with a domain decomposition in the space dimension. The simulation is performed with 42 processors to accel-
erate the calculations, on the CEA-CCRT-platine facility. This facility is a cluster of Novascale 3045 servers, including 932
nodes, each one having 4 Intel Itanium dual core processors, at 1.6 GHz. Each processor has a memory of 24 Go. The Nova-
scale servers are interconnected by a Voltaire network, with technology Infiniband DDR. We first present the appropriate
scaling to be considered.

4.1. Scaling with the plasma frequency

Scaling parameters can be introduced to obtain a dimensionless form of the Vlasov–Maxwell–Fokker–Planck equations.
The plasma frequency xpe, the Debye length kD, the thermal velocity of electrons v th, and the cyclotron frequency xce are
defined as follows
xpe ¼

ffiffiffiffiffiffiffiffiffiffiffi
n0e2

�0me

s
; kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0jBT0

n0e2

s
; v th ¼

ffiffiffiffiffiffiffiffiffiffiffi
jBT0

me

s
; xce ¼

eB
me

: ð26Þ
These parameters enable us to define dimensionless parameters marked with tilde:

� Dimensionless time, space and velocity, respectively,
~t ¼ xpet; ~x ¼ x
kD
; ~v ¼ v

v th
: ð27Þ
� Dimensionless electric field, magnetic field and distribution function, respectively,
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eE ¼ eE
mev thxpe

; eB ¼ eB
mexpe

¼ xce

xpe
; ~f e ¼ fe

v3
th

n0
: ð28Þ
This leads to the following dimensionless equations
@fe
@t þrx � ðvfeÞ � rv � ððEþ v � BÞfeÞ ¼ m

Z Ce;eðfe; feÞ þ mCe;iðfeÞ;
@E
@t � 1

b2rx � B ¼ nu;
@B
@t þrx � E ¼ 0;
rx � E ¼ ð1� nÞ; rx � B ¼ 0;

8>>>><>>>>: ð29Þ
where b ¼ v th=c; m is the ratio between electron–ion collision frequency and plasma frequency
m ¼ Zn0e4 ln K
8p�2

0m2
ev3

thxpe
¼ Z ln K

8pn0k
3
D

¼ me;i

xpe
with me;i ¼

Zn0e4 ln K
8p�2

0m2
ev3

th

:

The zero and first order moments of the distribution function are
nðt;xÞ ¼
R

R3 feðt;x;vÞdv;
uðt;xÞ ¼ 1

nðt;xÞ
R

R3 feðt;x;vÞv dv;

(

which are normalized respectively by n0 and v th.

Moreover, in (29) the dimensionless collision operators are considered
Ce;eðfe; feÞ ¼ rv �
R

R3 Uðv � v0Þ½feðv0ÞrvfeðvÞ � feðvÞr0vfeðv0Þ�dv0
� 	

;

Ce;iðfeÞ ¼ rv � ½UðvÞrvfeðvÞ�;

(
ð30Þ
with U given by (6).

4.2. Test 1: 1D two-stream instability

The ICF physics involves a propagation of electron beams in plasma. The plasma response to the beam consists in a return
current that goes in the opposite direction to the beam in order to preserve the quasineutrality. This leads to a very unstable
configuration favorable to the excitation of plasma waves. We focus here on the instability with a perturbation wavevector
parallel to the beam propagation direction, namely the two-stream instability. Of course, this stands as an academic numer-
ical test but it is closely related to the physics of ICF.

This numerical test is a very demanding for numerical schemes of transport, that have to be specially designed (see Prop-
osition 3.3). In particular, a discrete dispersion relation relative to that problem is developed to justify numerical choices for
the second order scheme. For this scheme also, during the limitation procedure, an additional dissipation at extrema is intro-
duced, compared to [25], in order to preserve the solution from spurious oscillations. We will show the sensitivity of the
scheme with respect to the chosen limiter, for this particular test case. Moreover, the fourth order scheme is introduced
to reduce numerical heating, for simulations intended to deal with the two-stream instability.

We consider the 1Dx � 1Dv Vlasov–Ampère system (18) and choose the scaling (26)–(28), with m ¼ 0. The initial distribu-
tion function and electric field are
f 0ðx;vÞ ¼ 1
2 ½ð1þ A cosðkxÞÞM1;vd

ðvÞ þ ð1� A cosðkxÞÞM1;�vd
ðvÞ�;

E0ðxÞ ¼ 0;

(

where
M1;vd
ðvÞ ¼ 1ffiffiffiffiffiffiffi

2p
p exp �kv � vdk2

2

 !

is the Maxwellian distribution function centered around vd.

In order to compare the numerical dissipation associated to the second and fourth order schemes, we choose a strong
perturbation amplitude A ¼ 0:1. The perturbation wavelength is k ¼ 2p=L and the beam initial mean velocities are
vd ¼ 
4; L ¼ 25 being the size of the periodic space domain. We choose a truncation of the velocity space to be
vmax ¼ 12 and time steps are chosen to be Dt ¼ 1=200, such as to satisfy the CFL criteria and maintain the positivity of
the distribution function.

The objectives of this numerical simulation are on the one hand to compare the second order finite volume scheme (spe-
cially designed to conserve exactly the discrete total energy, except if the slope limiters are active) for different slope limiters
and the fourth order MUSCL scheme. On the other hand we want to explore the effect of a reduced number of grid points on
the conservation of the discrete invariants.
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In Fig. 1, two countersteaming beams that are initially well separated in the phase space (a) start to mix together. They
finally create a complicated vortex structure, involving wave–particle interactions. This behavior remains quantitatively the
same whatever the transport scheme is, second or fourth order. In Fig. 2, we present the evolution of the electric energy for
different schemes and several configurations from 322 points to 2562. We observe that with a reduced number of grid points
(smaller than 128 points in velocity), the second order scheme with the slope limiters (11), and fourth order scheme, present
a different behavior on the total electric energy and total energy. Indeed, for a reduced grid resolutions (322 or 642 points),
the fourth order scheme proves to be better than the second order one. For 322 points, plasma oscillations at the plasma fre-
quency in the nonlinear phase are not reproduced with the second order scheme, whereas they can be seen with the fourth
order scheme (see Fig. 2). Moreover for this resolution, the transition from the linear phase to the nonlinear phase occurs
earlier than it should for the second order scheme. Furthermore, as the grid resolution increases, the accuracy remains better
for the fourth order scheme than for the second order one in the nonlinear phase. The convergence toward curves with 1282

or 2562 resolution grid is indeed better. We recall that quantities in Fig. 2 are plotted with a logarithmic scale, that smoothes
out discrepancies between curves. In addition to these results, the respect of total discrete energy conservation proves to be
better for the fourth order scheme than for the second order one at a reduced grid resolution, see Figs. 3 and 4.

The use of the slope limiters (12) for the second order scheme improves the results. The plasma wave structure can then
be captured at reduced grid resolutions, see Fig. 2(b) and (c). However, the energy dissipation remains quantitatively the
same as the second order scheme with the limiters (11), see Figs. 3 and 4. Only in the case of the second order scheme with-
out limiter, could the energy be exactly conserved. The counterpart would be the loss of any exploitable solution (loss of
stability).

As this test case requires both a good preservation of invariants and accuracy when nonlinear phenomena occur, we
might conclude that the fourth order scheme, with a resolution along each velocity direction greater than 32 cells, is well
suited for our physical applications.
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Fig. 1. Beams phase space (a) at initial time and (b) at 20 plasma periods (after saturation), with 642 grid points.
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Fig. 2. Evolution of the electrostatic energy for 322; 642, 1282; 2562 grid points, and the semi-analytical solution in the linear regime. Results are shown for
the second order with (a) slope limiters (11) and (b) slope limiters (12) with b ¼ 2 and (c) fourth order transport scheme.
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4.3. Test 2: 1D X-mode plasma in a magnetic field

This numerical test stands as a validation of the schemes in the linear regime when the Vlasov equation is coupled with
the Maxwell system, without the collisions between particles. The second order scheme is used for the transport terms in the
x1; v1; v2 and v3 directions. A particular initial data is chosen (see the derivation in Appendix B) to trigger an X-mode plas-
ma wave at a well-defined frequency x. This type of wave presents a mixed polarization (longitudinal and transverse with
respect to the magnetic field), that propagates in the plane P?, perpendicular to the magnetic field direction.

The chosen frequency x is a solution of the dispersion relation (74) of the linearized Vlasov–Maxwell equations, intro-
ducing the equilibrium state f ð0Þðkvk2Þ. The initial data are chosen such that f ð0Þ; bE1; bE2 and bB3 only depend on
x; Bð0Þ; k1 ¼ 2p=L1 and A; where f̂ n; bB3; bE1 and bE2 are the reconstructed (in Appendix B) Fourier transforms of the distri-
bution function and electromagnetic fields. The magnetic field Bð0Þ is the nonperturbed magnitude of the magnetic field,
L1 is the length of the periodic space domain, A is the perturbation amplitude. The initial data can then be constructed with
the help of truncated Fourier series
f ð0Þðx1;vÞ ¼ f ð0Þðkvk2Þ þ
P2

n¼�2
f̂ nðv?Þeik1x1þinw; x1 2 ð0; L1Þ; v 2 R3;

E1ðt; x1Þ ¼ bE1e�ixtþik1x1 ; x1 2 ð0; L1Þ;
E2ðt; x1Þ ¼ bE2e�ixtþik1x1 ; x1 2 ð0; L1Þ;
Bðt; x1Þ ¼ Bð0Þ þ bB3e�ixtþik1x1 ; x1 2 ð0; L1Þ:

8>>>>>>><>>>>>>>:
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We define w as the angle in the cylindrical coordinates for the velocity, where the axial direction is the magnetic field direc-
tion (see Appendix B).

The scaling is defined by the relations (26)–(28), with m ¼ 0. We choose Bð0Þ ¼ 2 and a rather strong amplitude perturba-
tion A ¼ 0:1 with periodic boundary conditions on the space domain and b ¼ v th=c ¼ 0:05. Hence, the dispersion relation has
been solved for these parameters. One of the solution x ’ 5:1432 is choosen in the initial data set.

We considered 126 points along the 1D space direction, and 64 points along each velocity direction v ¼ tðv1;v2;v3Þ. The
dimension of the space domain is L1 ¼ 25, whereas the truncation of the velocity space occurs at vmax ¼ 7 for each velocity
direction. Furthermore, the time step is Dt ¼ 1=200, which ensures the positivity of the distribution function here.

The Fourier spectrum in Fig. 5(a) exhibits a well defined frequency f ¼ 1=T ’ 1:6375 (corresponding to a period T) for the
total magnetic energy, that corresponds to a frequency f=2 for the magnetic field oscillations. We finally find
x ¼ 2pf=2 ’ 5:1443 from the numerical solution, to be compared with the analytical results 5.1432. This proves a good
accuracy of the numerical results, while the distribution function is greatly affected by the magnetic field. As an illustration,
we show in Fig. 5(c) how the magnetic field makes the distribution function rotate in the velocity space perpendicular to the
magnetic field axis.

5. Approximation of the collision operators

In this section, we focus on the approximation of collision operators. Since the space variable is a parameter, we only con-
sider the space homogeneous equation,
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Fig. 5.
v1 � v2

x1 ¼ 0;
@f
@t ¼ Ce;eðf ; f Þ þ Ce;iðf Þ;
f ð0;vÞ ¼ f ð0ÞðvÞ;

(

where Ce;eðf ; f Þ and Ce;iðf Þ are given by (30).

5.1. Discretization of the Lorentz operator

We consider fj an approximation of the distribution function f ðvjÞ and introduce the operator D, which denotes a discrete
form of the usual gradient operator rv , whereas D� represents its formal adjoint, which represents an approximation of
�rv� . Therefore, for any test sequence ðwjÞj2Z3 , we set ðDwjÞj2Z3 as a sequence of vectors of R3
Dwj ¼ tðD1wj;D2wj;D3wjÞ 2 R3;
where Ds is an approximation of the partial derivative @
@vs

with s 2 f1;2;3g. In order to preserve the property of decreasing
entropy at the discrete level, we use the log weak formulation of the Lorentz operator [17]
Z

R3
Ce;iðf ÞðvÞwðvÞdv ¼ �

Z
R3

UðvÞf ðvÞrv logðf ðvÞÞ � rvwðvÞdv;
where U is given by (6) and w is a smooth test function. Then, using the notations previously introduced, the discrete oper-
ator CDv

e;i ðf Þ is given by
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CDv
e;i ðf ÞðvjÞ ¼ �D�

1

kvjk3 Sð~vjÞfjDðlogðfjÞÞ
" #

; ð31Þ
where Sð~vjÞ is the following matrix
Sð~vjÞ ¼ k~vjk2Id� ~vj � ~vj:
Now, ~vj has to satisfy the discrete conservation of energy
D1ðkvjk2Þ
~vj1

¼ D2ðkvjk2Þ
~vj2

¼ D3ðkvjk2Þ
~vj3

: ð32Þ
Then, we consider the 8 uncentered operators D�, with the formalism:
D� ¼ tðD�1
1 ;D

�2
2 ;D

�3
3 Þ;
with � ¼ tð�1; �2; �3Þ, and �i 2 fþ1;�1g for i 2 f1;2;3g. More precisely, the operator D�i is the forward uncentered discrete
operator if �i ¼ þ1 and the backward uncentered discrete operator if �i ¼ �1:
D�Wj ¼
1

Dv

�1½Wj1þ�1 �Wj1 �
�2½Wj2þ�2 �Wj2 �
�3½Wj3þ�3 �Wj3 �

0B@
1CA: ð33Þ
This 8 operators respectively match to 8 expressions of ~v�j , following (32)
~v�j ¼
1
2
ðvj þ vjþ�Þ:
This choice has been made to avoid the use of the centered discrete operator that conserves non physical quantities. On the
other hand, the uncentered operators, taken separately, introduce some artificial asymmetry in the distribution function
leading to a loss of accuracy when coupling to Maxwell equations. To overcome these difficulties, following the idea of
[18], we introduce a symmetrization of the discrete operator based on the averaging over the eight uncentered
discretizations:
CDv
e;i ðf ÞðvjÞ ¼

1
8

X
�

C�e;iðf Þ;

C�e;iðf Þ ¼ �D�;�
1

kvjk3 Sð~v�j ÞfjD
�ðlogðfjÞÞ

" #
:

This final expression presents the desirable properties: the mass and energy conservation, the entropy decreasing behavior, the
positivity preservation of the distribution function in a finite time sequence. The proofs are not detailed here but can be deduced
easily from those presented in [25]. Also, it introduces an additional discrete symmetry property, compared to the operator pre-
sented in [25]. Indeed, we obtain the operator as an average over the full set of the uncentered operators. The motivation of this
averaging comes from the isotropization effect of the Lorentz operator: it diffuses in angle. This averaging leads to a discrete
analogous of the symmetry property presented in Proposition 2.1. This symmetry concerns the directions that are aligned with
the grid. The symmetries along directions that are not aligned with the grid are preserved with marginal errors.

Proposition 5.1. Under the condition (32) on ~vj, the discretization (34) to the Lorentz operator (5) satisfies the following
properties,

� it preserves the mass and energy,
� it decreases the discrete entropy
HðtÞ ¼ Dv3
X
j2Z3

fjðtÞ logðfjðtÞÞ;
� there exists a time-sequence Dtn such that the scheme
f nþ1
j ¼ f n

j þ DtCDv
e;i ðf ÞðvjÞ;
defines a positive solution at any time i.e.
P

nDtn ¼ þ1.

Furthermore, if fj is symmetric with respect to 0 in the direction jk at time tn, then this property is preserved at time tnþ1,
X
j2Z3

CDv
e;i ðf ÞðvjÞv jk Dv3 ¼ 0: ð34Þ
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Proof. The proofs of all the properties but the last one can be found in [25]. We prove the last property and rewrite the oper-
ator (34) in a different manner, assuming we have a symmetry along the velocity direction v jk
CDv
e;i ðf ÞðvjÞ ¼

1
8

X
�

C�e;iðf ÞðvjÞ ¼
1
8

X
�

1
3

X3

k¼1

1
2

C�
þ;ðkÞ

e;i ðvjÞ þ C�
�;ðkÞ

e;i ðvjÞ

 �" #

; ð35Þ
where the notation �
;ðkÞ refers to
�

;ðkÞ
i ¼ 
1 if i ¼ k;

�

;ðkÞ
i ¼ �i if i – k:

(
ð36Þ
We are interested in the cancellation of the operator
P

j2Z3 CDv
e;i ðf ÞðvjÞv jk . This is equivalent to the cancellation of
Q ðkÞ :¼
X
j2Z3

C�
þ;ðkÞ

e;i ðvjÞ þ C�
�;ðkÞ

e;i ðvjÞ

 �

v jk

¼
X
j2Z3

1

kvjk3 fj S ~v�
þ;ðkÞ

j


 �
D�þ;ðkÞ logðfjÞ

h i
� D�þ;ðkÞv jk þ

X
j2Z3

1

kvjk3 fj S ~v�
�;ðkÞ

j


 �
D��;ðkÞ logðfjÞ

h i
� D��;ðkÞv jk :
Then, since D�þ;ðkÞv jk ¼ D��;ðkÞv jk ¼ ek, it yields
Q ðkÞ ¼
X
j2Z3

1

kvjk3 fj

X
i–k

~v�
þ;ðkÞ
i

ji

� �2
 !

D�
þ;ðkÞ
k ðlogðfjÞÞ �

X
j2Z3

1

kvjk3 fj ~v
�þ;ðkÞ

k
jk

X
i–k

~v�
þ;ðkÞ
i

ji
D�

þ;ðkÞ
i ðlog fjÞ

 !

�
X
j2Z3

1

kvjk3 fj

X
i–k

~v�
�;ðkÞ
i

ji

� �2
 !

D�
�;ðkÞ
k ðlogðfjÞÞ �

X
j2Z3

1

kvjk3 fj ~v
��;ðkÞ

k
jk

X
i–k

~v�
�;ðkÞ
i

ji
D�

�;ðkÞ
i ðlog fjÞ

 !
:

Then using definition (36) and the symmetry of f n
j with respect to 0 in the velocity direction v jk , we obtain Q ðkÞ ¼ 0. Then

multiplying (35) by v jk and integrating in the full velocity space gives the relation (34). This relation implies that f nþ1
j is sym-

metric with respect to 0 in the direction v jk . h
5.2. Discrete Landau operator

We consider the discretization of the FPL operator (4) on the whole 3D velocity space. It is based on the entropy conser-
vative discretization introduced in [17], where a discrete weak log form of the FPL operator is used. This discretization yields:
dfjðtÞ
dt ¼ ðD

�qðtÞÞj; j 2 Z3;

qðtÞ ¼ Dv3 P
m2Z3

fjðtÞfmðtÞUðvj � vmÞðDðlogðf ðtÞÞjÞ � Dðlog f ðtÞÞmÞ;

8<: ð37Þ
where D stands for a downwind or upwind finite discrete operator approximating the usual gradient operator rv . This unc-
entered approximation ensures that the only equilibrium states are the discrete Maxwellian. The use of centered discrete
operators would have lead to non physical conserved quantities. The discretization of the FPL operator is then obtained
as the average over uncentered operators, but here for a different reason compared to the previous section, on the elec-
tron–ion collision operator discretization. In [19], the scheme is rewritten as the sum of two terms: a second order approx-
imation and an artificial viscosity term in Dv2 which kills spurious oscillations. However, the computational cost of a direct
approximation of (37) remains too high. Therefore, a multigrid technique has been used. We refer to [19,35] for the details of
the implementation on the FPL operator. Nevertheless, these latter approaches introduce a new approximation than can af-
fect the accuracy. Based on [20], Crouseilles and Filbet proposed another approach and noticed that the discrete FPL operator
(37) in the Fourier space can be written as a discrete convolution, which directly gives a fast algorithm. Here we adopt the
multigrid method, detailed in [19], that has a complexity of order Oðn3

v log n3
v Þ.

This discrete approximation preserves positivity, mass, momentum, energy, and ensures that the entropy is decreasing.
Moreover, the discrete equilibrium states are the discrete Maxwellian. We refer to [17] for the proofs and to [25] for numer-
ical tests cases illustrating these properties in the homogeneous case.

6. Numerical results for the full kinetic model

6.1. Scaling with the collision frequency

For the analysis of collisional processes, a new scaling is introduced here, that allows time steps to be of the order of the
electron–ion collision time. In order to take into account transport phenomena occurring at the collision time scale, several
parameters are required: the electron–ion collision frequency me;i, the associated mean free path ke;i, the thermal velocity v th

and the cyclotron frequency xce
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me;i ¼
Zn0e4 ln K
8p�2

0m2
ev3

th

; ke;i ¼
v th

me;i
; v th ¼

ffiffiffiffiffiffiffiffiffiffiffi
jBT0

me

s
; xce ¼

eB
me

: ð38Þ
These parameters enable us to define the dimensionless parameters marked with a tilde:

� Dimensionless time, space and velocity, respectively,
~t ¼ me;it; ~x ¼ x=ke;i; ~v ¼ v=v th: ð39Þ
� Dimensionless electric field, magnetic field and distribution function, respectively,
eE ¼ eE
mev thme;i

; eB ¼ eB
meme;i

¼ xce

me;i
; ~f e ¼ fe

v3
th

n0
: ð40Þ
This leads to the following dimensionless equations
@fe
@t þrx � ðvfeÞ � rv � ððEþ v � BÞfeÞ ¼ 1

Z Ce;eðfe; feÞ þ Ce;iðfeÞ;
@E
@t � 1

b2rx � B ¼ 1
a2 nu;

@B
@t þrx � E ¼ 0;
rx � E ¼ 1

a2 ð1� nÞ;
rx � B ¼ 0;

8>>>>>>><>>>>>>>:
ð41Þ
where a ¼ me;i=xpe and b ¼ v th=c. The collision terms Ce;eðfe; feÞ and Ce;iðfeÞ are given in (30).

6.2. 1D temperature gradient test case

In the context of laser produced plasma, the heat conduction is the leading mechanism of energy transport between the
laser energy absorption zone and the target ablation zone.

In such a system, the parameters of importance for the heat flux are

� The effective electron collision mean free path ke.
� The electron temperature gradient length kT .
� The magnetic field B and its orientation with respect to rT .

These parameters enable to distinguish different regimes of transport, according to the Knudsen and the Hall parameters.
On the one hand, the Knudsen number Kn is a measure of the thermodynamic non-equilibrium of the system
Kn ¼
ke

kT
: ð42Þ
A regime characterized by Kn ! 0 refers to an hydrodynamic limit, whereas a regime characterized by Kn P 1 refers to a
kinetic limit, where nonlocal phenomena occur. Let us note that typical parameters for ICF yield that Kn P 0:1, while the
hydrodynamic regime (or local approach) fails at Kn P 0:01. This premature failure of the local approach in plasma is ex-
plained by a specific dependence of the electron mean free path on the electron energy. In our applications the energy is
transported by the fastest electrons, which have a much longer mean free path.

On the other hand, the Hall parameter v ¼ xcs quantifies the relative importance of magnetic and collisional effects.
xc ¼ eB=me is the electron cyclotron frequency and s the mean electron–ion collision time
s ¼ 12p2�2
0
ffiffiffiffiffiffi
me
p

T3=2
effiffiffiffiffiffiffi

2p
p

niZ
2e4 ln K

: ð43Þ
The aim of this section is to validate our solver in different regimes, in order to show its robustness with respect to the vari-
ations of the Knudsen and Hall parameters. Thus, we consider a simple gradient temperature configuration, shown in Fig. 6,
modelling a layer of homogeneous plasma. A laser deposits its energy on the hot temperature side and the absorbed energy is
transported with electrons to the cold temperature side. A heat flux is created, contributing to preheating (with the fastest
particles) of the region down the temperature gradient, and to smoothing of this temperature gradient. The charge separa-
tion induced by the movement of particles generates electric currents and electric fields. The heat flux and electric field are
important in a preliminary transient phase. Latter in time they decrease and stabilize due to the collisional effect and the
return current of cold particles. These quantities may be inhibited in the direction of the temperature gradient if the mag-
netic field, constant in the domain, is present. In that case, heat fluxes and electric fields are created also in the direction
perpendicular to the temperature gradient. A Knudsen boundary layer is observed, having the extension of several collision
mean free paths. It is due to the zero boundary current condition, where the populations that leave and enter the compu-
tational domain have different temperatures. However, since the boundaries are far enough from the temperature gradient,



Fig. 6. Initial configuration for the temperature gradient test case: a temperature profile is considered between to two domains of plasma with particles at a
thermodynamical equilibrium. Zero current boundary conditions enable to maintain the mass conservation. A heat flux is generated wherever there is a
nonzero temperature gradient, as well as boundary layers on the heat flux, temperature and electromagnetic profiles.
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this boundary layer does not influence the heat flux propagation in the region of the temperature gradient. We observed that
the presence of a strong magnetic field enforces the variation of the fluxes inside this boundary layer.

6.3. Test 3: electron transport in the local regime

Here, we consider configurations that present small Knuden parameters: Kn � 1. In order to validate the numerical
scheme in the local regime, we compare the heat flux Q FP and electric field EFP computed from the numerical solution of
(41), with those analytically computed from an hydrodynamic model [6,36].

6.3.1. Hydrodynamic model
Let us define the average over velocity of a function AðvÞ
hAi ¼ 1
ne

Z
R3

AðvÞf ðvÞdv; ð44Þ
where neðt;xÞ ¼
R

R3 f ðt; x;vÞdv is the density of electrons.
Following [6,36], we introduce the macroscopic quantities
j ¼ qenehvi;
q ¼ 1

2 menehðv � vÞvi;
R ¼

R
R3 mevCe;iðfeÞdv;

8><>: ð45Þ
and
p ¼ neTe ¼ 1
3 menehðv � hviÞ � ðv � hviÞi;

P ¼ 1
3 menehðv � hviÞ � ðv � hviÞi � pI;

qloc ¼ 1
2 meneh½ðv � hviÞ � ðv � hviÞ�ðv � hviÞi;

8><>: ð46Þ
where j is the electric current, q the total heat flow, R the friction force accounting for the transfer of momentum from ions to
electrons in collisions, Te is the temperature, p is the scalar intrinsic pressure, P is the stress tensor, qloc is the intrinsic heat
flow and I the unit diagonal tensor.

Quantities p; P and qloc are defined in the local reference frame of the electrons, whereas j, q and R are defined relative to
the ion center of mass frame. Ions are supposed to be at rest. We have the relation
qloc ¼ qþ j � 5pIþ 2P
2nee

þ j
menehvi2

2nee
: ð47Þ
The validation of our Fokker–Planck–Landau solver in the domain close to the hydrodynamic regime (local regime) requires
knowledge of the transport coefficients. Following the formalism of Braginskii [6] for the transport relations, the transport
coefficients in the hydrodynamic regime have been calculated by Epperlein [36]. These coefficients aep, bep; jep, are the elec-
trical resistivity, thermoelectric and thermal conductivity tensors, respectively. From these quantities, we are able to com-
pare the heat flux and the electric field issued from the Fokker–Planck solver to those calculated analytically in [36], in the
local regime.
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The classical derivation procedure to obtain the transport coefficients involves the linearization of the Fokker–Planck–
Landau equation, assuming the plasma to be close to the thermal equilibrium. The distribution function is approximated
using a truncated Cartesian tensor expansion
f ðt;x;vÞ ¼ f ð0Þðkvk2Þ þ v
kvk � f

ð1Þðt;x; kvkÞ:
Following [36], P and menehvi2 are neglected and we consider appropriate velocity moments of fð1Þ, electric fields and heat
fluxes are expressed as a function of thermodynamical variables. The coefficients of proportionality, in the obtained rela-
tions, are defined as the transport coefficients. Several notations can be used, depending on the chosen thermodynamical
variables. Adopting the Braginskii notations, we obtain
R ¼ rpþ eneE� j� B ¼ aep �j
nee � bep � rTe;

q ¼ � 5
2

j
e Te � jep � rTe � bep � j Te

e :

(
ð48Þ
We want to compare of the results of the solver with the analytical electric fields and heat fluxes in the local regime. For that
purpose, we use the values of coefficients, for Z ¼ 1, that are tabulated in [36]. As for the components of these tensors, we
make use of the standard notations k; ? and ^. Directions denoted with k and ? are respectively parallel and perpendicular
to the magnetic field. Consequently, the parallel and perpendicular components of a vector u are respectively uk ¼ bðu � bÞ
and u? ¼ b� ðu� bÞ, where b is the unit vector in the direction of the magnetic field. The direction defined by the third
direction in a direct orthogonal frame is denoted by ^. In the system (48), the relation between any transport coefficient ten-
sor u and vector u is defined by
u � u ¼ ukbðb � uÞ þu?b� ðu� bÞ 
u^b� u ð49Þ
where the negative sign applies only in the case u ¼ aep.
These coefficients can be expressed in dimensionless form
ac
ep ¼ aep

s
mene

;

bc
ep ¼ bep;

jc
ep ¼ jep

me
nesTe

:

8><>: ð50Þ
The dimensionless transport coefficients ac
ep; bc

ep; jc
ep are functions of Z and the Hall parameter v ¼ xcs only.

The heat flux and the electric field in (48) can then be rewritten in terms of dimensionless quantities, for the particular 1D
geometry of our temperature gradient configuration. In that case, the scaling using a collision frequency (38)–(40) is used:
q1 ¼ � 5
2 Ten�1

e j1 � vTeB�1
3 rx1 Tej

c
ep;? � Te bc

ep;?j1 � bc
ep;^j2


 �
;

q2 ¼ � 5
2 Ten�1

e j2 � vTeB�1
3 rx1 Tej

c
ep;^ � Te bc

ep;?j2 þ bc
ep;^j1


 �
;

E1 ¼ n�1
e j2B3 � n�1

e rx1 p�rx1 Teb
c
ep;? þ n�1

e B3v�1 ac
ep;?j1 þ ac

ep;^j2


 �
;

E2 ¼ �n�1
e j1B3 �rx1 Teb

c
ep;^ þ n�1

e B3v�1 ac
ep;?j2 � ac

ep;^j1


 �
:

8>>>>>>>><>>>>>>>>:
ð51Þ
The Hall parameter v is expressed in terms of the dimensionless quantities B3 and Te:
v ¼ 3
ffiffiffiffi
p
p

2
ffiffiffi
2
p B3T3=2

e

Z
: ð52Þ
We denote by Q BR the heat flux and by EBR the electric field computed from the system (51). The transport coefficients
aep; bep; jep have been tabulated in [36] and will be compared with those obtained by our numerical solution approaching
the kinetic FPL equation (41).

Let us note that in this configuration source terms can be considered stiff; the discretization of the collision operator is
then of crucial importance and its accuracy can be tested. Moreover we provide, in this local regime, with validation results
for a wide range of Hall parameters corresponding to ICF applications.

The initial temperature gradient Teðx1Þ has the form of a step
Teðx1Þ ¼
TR

e ðx1Þ if x1 > xm
1 ;

TL
eðx1Þ else;

(
ð53Þ
where TR
e and TL

e are third order polynomials in x1 � xm
1 ; x1 standing for the space coordinate and xm

1 for the mid-point of the
1D domain. The coefficients of these polynomials are chosen such as they verify the following conditions at xm

1

@TL
e

@x1
xm

1

� 	
¼ @TR

e
@x1

xm
1

� 	
¼ TR�TL

xR
1
�xL

1ð Þ=k ;

TL
e xm

1

� 	
¼ TR

e xm
1

� 	
¼ TRþTL

2 ;

8<: ð54Þ
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and at the boundaries
Fig. 7.

against
agreem
TL
e xL

1

� 	
¼ TL;

TR
e xR

1

� 	
¼ TR;

@TL
e

@x1
xL

1

� 	
¼ @TR

e
@x1

xR
1

� 	
¼ 0;

8>><>>: ð55Þ
where TL (resp. TR) is the initial temperature of the leftmost (resp. rightmost) point xL
1 (resp. xR

1) of the domain. Here, k is a
parameter that determines the initial stiffness of the temperature gradient.

The simulations are performed with the following parameters: the size of the dimensionless domain
L ¼ xR

1 � xL
1 ¼ 5400; 2� vmax ¼ 12, the ion charge Z ¼ 1, the frequency ratio me;i=xpe ¼ 0:01, the electron thermal velocity

such as v th=c ¼ 0:05. The magnetic field is found from the Maxwell equations; the initial values are B3ðt ¼ 0; x1Þ ¼ 0:001,
0.01, 0.1 or 1. In the test cases in the local regime, any variation to this initial value proved to be negligible. The initial electric
field is zero over the domain: E1ðt ¼ 0; x1Þ ¼ E2ðt ¼ 0; x1Þ ¼ 0. The initial distribution function is a Maxwellian function
depending on the local temperature, with a density that is constant over the domain. The initial temperature profile is cho-
sen such as TL ¼ 0:8; TR ¼ 1:2 and k ¼ 10. This set of parameters enables us to consider the local regime, close to the hydro-
dynamic limit (the Knudsen number is about 1=500). The second order scheme is used for the transport terms in the
x1; v1; v2 and v3 directions. The dimensionless time step and mesh size are Dt ¼ 1=500; Dx1 ¼ L=126; Dv ¼ 2vmax=32,
respectively. The grid has 126 points in space and 323 points in velocity; 42 processors were used for each simulation
(CEA-CCRT-platine facility). The domain decomposition on the space domain allows each processor to deal only with 3 points
in space. The fourth order scheme is used for the space and velocity transport terms. The zero current boundary condition is
written explicitly in Section 3.4. The boundary conditions for fields are chosen with ghost points at their initial value (zero
for the electric field and 0.001, 0.01, 0.1 or 1 for the magnetic field). The results are presented in Figs. 7–9. The typical run
time is 24 h for 40 collision times, with that set of parameters. The maximum difference between the numerical and the ana-
lytical solution is less than 10% for longitudinal macroscopic quantities (heat flux and electric field); 20% for transverse ones.
Transverse quantities have only been considered for simulations presented in Figs. 8 and 9 where the magnetic field was
strong enough so that

� The transverse heat flux can attain its asymptotic value during the simulation time.
� Transverse quantities have the value comparable to the longitudinal ones.

These conditions are fulfilled for B3 ¼ 0:1, 1.
In Figs. 7–9, the results for simulations with B3 ¼ 0:001; B3 ¼ 0:1; B3 ¼ 1 are shown, respectively. The simulation with

B3 ¼ 0:01 proved to show no significant differences with those with B3 ¼ 0:001.
The numerical results are shown Figs. 7–9: a transient phase is observed before attaining a stationary regime. The oscil-

lations are enforced by the magnetic field as it is observed in Fig. 9, whereas the oscillations of electric fields are the signature
of the plasma waves excited by the initial conditions. Then, these oscillations are damped in a few electron–ion collision
times. These plasma oscillations are smoothed out by the large time steps we used in simulations, permitted by the implicit
treatment of the Maxwell equations. However, these oscillations have a little importance on the asymptotic values and a
little importance for accuracy. With a larger magnetic field, Fig. 9, we observe frequency modulations at xc ¼ me;i (corre-
sponding to B3 ¼ 1), both in electric fields and heat fluxes. The total energy is conserved with a 0.1% accuracy in the case
B3 ¼ 0:001, and with a 1% accuracy with B3 ¼ 1. The total density is conserved with accuracy of 0.01%.
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the dimensionless time. The dimensionless magnetic field is B3 ¼ 0:001. Asymptotic behavior, where the flux is well established, shows good
ent (less than 5% error) with analytical solution (Braginskii formalism), denoted by subscript BR.
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time. Longitudinal quantities (along the temperature gradient) agree with the theoretical values with about 10% accuracy in the asymptotics. Transverse
quantities agree with the theory with about 20% accuracy in the asymptotics. The dimensionless magnetic field is B3 ¼ 0:1.
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In order to investigate Larmor rotation effects for simulations presented in Figs. 8 and 9, we refined the space grid below
the dimensionless Larmor radius rL ¼ B�1

3 . Thus the simulation presented in Fig. 8 was repeated with the same parameters on
the same time period: we have refined the grid to 1260 points in space (420 processors). In the same manner, the simulation
presented in Fig. 9 has been repeated with 6300 grid points in space (2100 processors) and Dt ¼ 1=1000 (according to the CFL
condition), during the same time period. The results prove to be similar to those with coarse space grids, both for macro-
scopic quantities and for the distribution functions. Thus no dependence on the Larmor radius is found. We recall here that
the cyclotron period is always resolved, as the time steps are constrained by the CFL condition on the collision operators. The
positivity property is always maintained.

6.4. Test 4: electron transport in the nonlocal regime without magnetic fields

Here, we consider configurations that present Knudsen parameters up to Kn ’ 1. Therefore, we observe the behavior of
the transport coefficients far from the hydrodynamic regime. These coefficients are normalized with the coefficients in
the Spitzer–Härm regime, denoted by the subscript SH. The Spitzer–Härm regime is the hydrodynamic regime, with a zero
magnetic field. Then it is possible to evaluate directly the ratio of effective thermal conductivity to the Spitzer–Härm con-
ductivity, j=jSH , by the relation:
j
jSH
¼ q1

qSH
; ð56Þ
where q1 is the heat flux in the x1 direction. It is calculated from the numerical solution and qSH from (51) in the Spitzer–
Härm limit.

Transport coefficients are extracted from the domain where the flux and temperature gradient attain their maximum val-
ues. The effective Knudsen number, characterized by the wavelength of the temperature perturbation kke;i in the Fourier
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space, is computed from the gradient temperature profile. This enables us to evaluate a range for kke;i (due to an uncertainty
for the estimation of kke;i in the 1Dx space), corresponding to this temperature gradient. The results are compared with the
analytical formula from [37]
Table 1
Compar

Parame
Size of
Stiffnes
Numbe
Numbe

Results
kke;i

Analyti
Numer

Fig. 10.
simulat
j
jSH
¼ 1

1þ ð30kke;ibÞ4=3 ; ð57Þ

b ¼ 3p
128

3:2ð0:24þ ZÞ
ð1þ 0:24ZÞ

� �1=2 Z1=2

2
: ð58Þ
This formula has been obtained by a fit of data issued from the Fokker–Planck solver SPARK [37]. While considering the com-
parison between the numerical results and the analytical solution shown in Table 1, one should keep in mind that the test
procedure involves a large domain of uncertainty. Three runs have been performed with the same precision for the temper-
ature gradient. The CFL conditions are respected, maintaining the positivity of the distribution function.

6.5. Test 5: electron transport in the nonlocal regime perpendicularly to the magnetic field

The objective of this section is to illustrate a competition between the nonlocal and magnetic effects on the distribution
function. More precisely, we consider a situation where the Knudsen number Kn ’ 1=10. This corresponds to a situation with
a stiffness parameter k ¼ 100. The 1D domain goes from 0 to L ¼ 540, the grid has 1260 points in space, 420 processors were
used for each simulation (10 collision times), during 6 h. Other parameters are kept identical to those in the test cases in the
local regime. Two cases are distinguished, respectively, with weak magnetic fields effects, xc=mei ¼ 10�2 (see Figs. 11 and
12(a)), and strong magnetic fields effects, xc=mei ¼ 1 (see Figs. 10(b) and 12(b)). The magnetic field is calculated from the
Maxwell equations; no more than 0.1% departure from their initial value is encountered after 10 collision times. The posi-
tivity of the distribution function is maintained, and the CFL conditions are satisfied. In Figs. 10 and 11, the averaged distri-
bution function is shown in the region of the temperature gradient
ison between the numerical results and the analytical solution.

RUN1 RUN2 RUN3

ters
the domain 5400 540 540
s parameter k 10 10 100
r of points along the gradient 126 126 1260
r of processors 42 42 420

10�3 0.05 ± 0.03 0.2 ± 0.1
cal j=jSH 0.998 [0.93–0.67] [0.60–0.26]
ical j=jSH 1.03 0.675 0.395
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Averaged distribution function in the v2 and v3 directions, in the region of the temperature gradient, at initial time (a), and at tmei ¼ 10 (b), for a
ion with xc=mei ¼ 1.
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xc=mei ¼

Fig. 12.
xc=mei ¼
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X
j2 ;j3

feðt; x1; v j1 ;v j2 ;v j3 Þ:
The initial distribution function, Fig. 10(a), is a Maxwellian function with a temperature that depends on the space variable
x1. It is symmetric in the v1 direction. After 10 collision times, for the simulation with xc=mei ¼ 10�2, Fig. 11, the distribution
function keeps the same structure for the bulk electrons. Only the structure for the fastest electrons is modified. The fast
electron population with positive velocities is depleted in the hot side of the temperature gradient, whereas the fast electron
population with negative velocities is enforced, contributing to smoothing of the temperature gradient and heating of the
bulk. These nonlocal effects are important, because the main contribution to the heat flux comes from the fastest particles.

The same distribution function is shown in Fig. 10(b), at the same time, but for a simulation with a strong magnetic field
xc=mei ¼ 1. The distribution function is here stronger localized. This means that the magnetic field tends to inhibit the elec-
tron transport, while forcing the Larmor rotation of electrons.

In order to gain more insight in the processes at stake, we show in Fig. 12 the quantity
X
j2 ;j3

½feðt; x1;v j1 ;v j2 ; v j3 Þ � feðt; x1;�v j1 ; v j2 ;v j3 Þ�;
which is odd in the variable v j1 . It accounts for the asymmetries between the positive and negative velocities, along the
direction v1, and contributes to the heat flux and the current. We observe that the fast population contributes to the total
current with a negative sign, whereas the bulk population contributes to the return current, with a positive sign. Comparing
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. Averaged distribution function in the v2 and v3 directions, in the region of the temperature gradient, at tmei ¼ 10, for a simulation with
10�2.
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½feðt; x1;v j1 ; v j2 ;v j3 Þ � feðt; x1;�v j1 ; v j2 ;v j3 Þ� is shown, in the region of the temperature gradient, at the same time tmei ¼ 10, for

10�2 in panel (a), and xc=mei ¼ 1 in panel (b). It corresponds to the odd part of the distribution function.
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Fig. 12(a) and (b), we observe that the asymmetries are strongly re-localized in the region of the temperature gradient, with a
strong magnetic field.

6.6. Test 6: 2D nonlocal magnetic field generation

We present here results on the nonlocal magnetic field generation in the relaxation of cylindrical laser hot spots, having a
periodic structure, in a plasma with an initial constant density. This stands as a first step to prove the 2Dx capabilities of the
solver, and also as a comparison in the nonlocal regime with a model from the literature [39]. The extension of the present
numerical schemes is straightforward on a 2Dx grid. The fourth order scheme is used for the transport terms in the
x1; x2; v1; v2 and v3 directions.

We consider a planar geometry with periodic boundary conditions for the distribution function and fields. For this appli-
cation, the scaling using a collision frequency (38)–(40) is used. The initial dimensionless temperature profile is
Fig. 13.
the mo
article.)
Teðx; t ¼ 0Þ ¼ 1þ 0:12 exp � x2

R2

� �
;

with R ¼ 5:6. We used the following parameters for the simulation: the frequency ratio is me;i=xpe ¼ 0:003, the ion charge is
Z ¼ 5. We do not consider here the electron–electron collision operator, because the electron–ion collisions dominate. Then
the relaxation only acts with electron–ion collisions on the anisotropic part of the distribution function. The electron thermal
velocity is such as v th=c ¼ 0:05. These parameters are close to those used in [38]. The size of the simulation domain is L ¼ 70
for one space direction, 2� vmax ¼ 12 for one velocity direction. The initial electric and magnetic fields are zero over the do-
main. The initial distribution function is a Maxwellian function depending on the local temperature, the initial density being
constant over the domain. The dimensionless time step and mesh size are Dt ¼ 1=500, Dx ¼ Dy ¼ L=100; Dv ¼ 2vmax=32,
respectively. The grid has 1002 points in space and 323 points in velocity; 625 processors are used for this simulation. With
these parameters, the CFL conditions are satisfied and the distribution function remains positive. The simulation time is 24 h.

6.6.1. First order process of temperature relaxation
The dominant process that is at play in this test case is the temperature relaxation of the hot spot. In this case the ratio size

of a hot spot/distance between hot spots is small enough, allowing to consider, at first order, that each hot spot relaxes inde-
pendently without interaction with neighbors. Therefore, we employ the 1Dx non-magnetized nonlocal heat transport model
[39], to validate this process. This model is designed to take into account nonstationary effects, which account for the depen-
dance of the transport coefficients on time. Two characteristic relaxation regimes are identified in [39], respectively at the
hydrodynamic and collisionless kinetic time scale.

Both electron–electron and electron–ion collisions are considered in [39]. Owing the fact that we have chosen Z ¼ 5, the
electron–electron collisions can be considered negligible in the model [39], for this particular set of parameters.

Fig. 13 presents the evolution of the maximum of the temperature, obtained from the 2Dx � 3Dv Maxwell–Fokker–
Planck–Landau solver and from the model; it shows good agreement. The total mass is exactly preserved and the total energy
is preserved with a 0.01% accuracy.

Several theoretical publications [40–43], consider configurations where magnetic field effects are important.

6.6.2. Second order process of nonlocal interaction between hot spots
The interaction between hot spots become important if the ratio size of a hot spot/distance between hot spots is large en-

ough, at a given temperature perturbation. The signature of this interaction is the magnetic field generation, due to the
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Fig. 14. Dimensionless magnetic field and cross gradients of high order moments (third and fifth) at tme;i ¼ 8.
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non-azimuthal symmetry, even if the density gradient is zero. This source of magnetic field cannot be described by hydro-
dynamic models. It is identified in [8] using a nonlocal kinetic description. A nonlocal Ohm’s law that is proposed in [8] de-
scribes the magnetic field generation in plasma, at a constant density, with an isotropic pressure. A nonlocal source of
magnetic field is proportional to the angle between the gradients of the third and fifth moments of the electron distribution
function (see Fig. 14(b)):
@B
@t
/ rx

Z
R3

fekvk3 dv
� �

�rx

Z
R3

fekvk5 dv
� �

:

Here the lower order term rxne �rxTe, standing as a classical source of magnetic field generation, is discarded because of
the constant density.

The magnetic field and the cross gradients of high order moments are shown in Fig. 14, demonstrating a clear similarity.
This test case demonstrates that our numerical method provides sufficiently high accuracy and low noise, allowing to re-
cover the second order effects at the level better than 0.01%.

Having in view the scaling law for this mechanism with respect to the temperature perturbation [8]: xc=mei / ðdT=TÞ2, we
conclude that this magnetic field can influence the energy transport, if the temperature perturbation dT is large enough.
Therefore, the accurate capture of high order moments by the numerical scheme is crucial for the energy transport.
7. Conclusions

In the present paper, we have developed high order numerical methods dedicated to plasma simulation at a microscopic
level.

A fourth order scheme issued from VFRoe schemes has been introduced in our kinetic context. It brings accuracy improve-
ment on the velocity transport term. The second order scheme remains interesting for the linear spatial transport term
(which is faced to less robustness and accuracy constraints) in a 2D, distributed memory context without overlapping be-
tween processors (each processor communicating with its neighbours only). It involves indeed a reduced stencil, with a low-
er limit for the number of spatial grid points per processor.

The Maxwell equations have been discretized with a second order, implicit scheme allowing large time steps. We did not
find any dependance on the Larmor radius and show that resolving the cyclotron frequency is sufficient. The couplings be-
tween the equations of the system have introduced a number of constraints (robustness, accuracy, symmetry) both on the
transport scheme and the collision operators. The extension of the methods to non-uniform, cartesian grids, can be consid-
ered without affecting the conservation properties (positivity, energy, mass and momentum conservation, entropy decaying
behavior). Some numerical and physical test cases have validated our approach in different regimes of interest for ICF appli-
cations, and showed that it is computationally affordable. We also proposed a validation strategy in the linear regime based
on [33], using Green kernels.

Compared to other methods, the method presented here do not make any assumption on the anisotropy degree of the
distribution function, neither perform simplifications on the collision operators. A distinctive feature of the present model
is its flexibility. Indeed, as pointed out along this presentation, a wide range of regimes can be treated accurately with
the method, from collective to collisional. Potentially, realistic, reference simulations for ICF are realizable up to hundreds
of collisional times at undercritical and critical density (where collective effects are important), and at high densities (where
collisional effects are dominant). The objective is to present accurate calculations, on which reduced, but faster models can
rely. The counterpart of this accuracy is the computational cost of the method, despite the use of fast algorithms.

Various fundamental studies can be planned on the basis of the actual version of the solver. Collisional Weibel instability
[44], forward and backward collisional Stimulated Brillouin Scattering, studies on the nonlocal interaction between speckles
related to plasma-induced smoothing of laser beams [45]. Also several axis of development are under consideration to bring
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more physics to the model: the ion motion, the extension to regimes relevant to higher laser intensities, including the rel-
ativistic regime and large angle collision terms of Boltzmann type.
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Appendix A. Electrostatic case in the linear regime

The non-relativistic 1Dx � 3Dv Vlasov–Poisson system extracted from Eqs. (1)–(3) reads
@f
@t
þ v1

@f
@x1
þ qe

me
E1

@f
@v1
¼ 0; ð59Þ

@E1

@x1
¼ � qe

�0
n0 �

Z
R3

f ðt; x1;vÞdv
� �

: ð60Þ
The distribution function f is assumed to be a perturbation around an equilibrium state
f ð0ÞðkvkÞ; Eð0Þ1 ¼ 0; n0 ¼

R
R3 f ð0ÞðkvkÞdv. The system (59) and (60) is linearized around this equilibrium state
f ðt; x1;vÞ ¼ f ð0ÞðkvkÞ þ f ð1Þðt; x1;vÞ; ð61Þ
Eð1Þ1 ðt; x1Þ ¼ Eð0Þ1 þ Eð1Þ1 ðt; x1Þ; ð62Þ
under the hypothesis:
kf ð1Þk � kf ð0Þk; ð63Þ
kEð1Þ1 k � 1: ð64Þ
The Vlasov–Poisson can then be set under the following form (transport equation along the space directions supplemented
by a source term along the v1 direction), after linearization
@f ð1Þ

@t þ v1
@f ð1Þ

@x1
¼ � qe

me
Eð1Þ1

@f ð0Þ

@v1
;

@Eð1Þ
1

@x1
¼ qe
�0

R
R3 f ð1Þðt; x1;vÞdv:

8<: ð65Þ
If f ð1Þ and Eð1Þ1 are periodic and integrable, then their respective normalized Fourier coefficient are well-defined. A Fourier ser-
ies expansion gives 8t > 0
f ð1Þðt; x1;vÞ ¼ f̂ ð1Þðt; k1;vÞ cosðk1x1Þ;
f̂ ð1Þðt; k1;vÞ ¼ 1

L

R L
0 f ð1Þðt; x1;vÞe�ik1x1 dx1;

(
ð66Þ
where L is the size of the domain. The same reconstruction using Fourier series is used for Eð1Þ1 .
These coefficients verify the following equations,obtained by Fourier transformation performed on the equations of the

system (65), for all real k1
@ f̂ ð1Þ

@t
þ ik1v1 f̂ ð1Þ ¼ � qe

me

bEð1Þ1
@f ð0Þ

@v1
; ð67Þ

ik1
bE1 ¼

qe

�0
n̂1: ð68Þ
Then introducing the notation f̂ ð1Þðt ¼ 0; k1;vÞ ¼ f̂ ð10Þðk1;vÞ, Eq. (67) can be written in the integral form
f̂ ð1Þðt; k1;vÞ ¼ f̂ ð10Þðk1;vÞe�ik1v1t � qe

me

Z t

0

bEð1Þ1 ðt0; k1Þ
@f ð0Þ

@v1
e�ik1v1ðt�t0 Þ dt0: ð69Þ
Integrating Eq. (69) over v and injecting in it the relation (68), one obtains the following integral equation for the density
n̂ð1Þðt; k1Þ ¼ Mðt; k1Þ þ
Z t

0
Kðt � t0; k1Þn̂ð1Þðt0; k1Þdt0; ð70Þ
where
Kðt; k1Þ ¼
iq2

e

k1me�0

Z
R3

@f ð0Þ

@v1
e�ik1v1t dv; ð71Þ

Mðt; k1Þ ¼
Z

R3
f̂ ð10Þðk1;vÞe�ik1v1t dv: ð72Þ
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These kernels can be computed with the desired accuracy, following [33]. The numerical resolution of (70) finally reduces to
the inversion of a triangular linear system.

Macroscopic quantities such as the density or the heat flux can then be reconstructed using these latter equations.

Appendix B. Initialization for the generation of a single X-mode plasma wave

This test case stands as a validation for the couplings of Vlasov and Maxwell equations. We determine initial conditions
that trigger a plasma wave at a given wavelength. To do so, Vlasov–Maxwell equations are linearized, setting
f ¼ f ð0Þ þ ~f ; E ¼ eE; B ¼ Bð0Þ þ eB around the equilibrium state f ¼ f ð0Þ; E ¼ 0; B ¼ Bð0Þ. In this appendix, we use the normali-
zation (26)–(28). We assume periodic boundary conditions. The fluctuations of the total pressure tensor are neglected with
respect to those of the magnetic field.

Using the conservation law @n
@t þ

@j1
@x1
¼ 0, the former hypothesis lead us to solve the system of six equations with six un-

known ~j1, ~j2; eE1; eE2; eB3 and ~n
@~j1
@t þ eE1 þ Bð0Þ~j2 ¼ 0;
@~j2
@t þ eE2 � Bð0Þ~j1 ¼ 0;
@~n
@t þ @x1

~j1 ¼ 0;
@eE1
@x1
¼ �~n;

@eE2
@t ¼ � 1

b2
@eB3
@x1
þ~j2;

@eB3
@t ¼ �

@eE2
@x1
:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð73Þ
Applying time and space Fourier transform to this system, and identifying Fourier components ð~n ¼ n̂ expð�ixt þ ik1x1ÞÞ, the
following system is obtain
�ixĵ1 þ bE1 þ Bð0Þ̂j2 ¼ 0;
�ixĵ2 þ bE2 � Bð0Þ̂j1 ¼ 0;
�ixn̂þ ik1 ĵ1 ¼ 0;
ik1
bE1 ¼ �n̂;

�ixbE2 ¼ � 1
b2 ik1

bB3 þ ĵ2;

�ixbB3 ¼ �ik1
bE2:

8>>>>>>>>><>>>>>>>>>:

The dispersion equation of this system reads
N2 ¼ k2
1

b2x2
¼ 1� x2 � 1

x2ðx2 � 1� kBð0Þk2Þ
: ð74Þ
In this equation, the plasma frequency is xpe ¼ 1 and the cyclotron frequency is xc ¼ qekB
ð0Þk=m, that is kB0k in this dimen-

sionless case. The perturbation term of the distribution function at initial time can be determined for a particular solution x
of this relation dispersion. The Fourier transform is applied on the linearized Vlasov equation
ð�ixþ ik1v1Þf̂ � bE1
@f ð0Þ

@v1
� bE2

@f ð0Þ

@v2
� Bð0Þv2

@ f̂
@v1
þ Bð0Þv1

@ f̂
@v2
¼ 0: ð75Þ
This equation is expressed in cylindrical coordinates
v1 ¼ v? cosðwÞ;
v2 ¼ v? sinðwÞ;
v3 ¼ vk;

8<:

where(
v? ¼ ðkv1k2 þ kv2k2Þ1=2
;

tanðwÞ ¼ v2
v1
:

Recalling that:
rvf ¼ @f
@v?
rvv? þ

@f
@w
rvwþ @f

@vk
rvvk;

@v?
@v1
¼ cosðwÞ;

@v?
@v2
¼ sinðwÞ;

@w
@v1
¼ � 1

v? sinðwÞ;
@w
@v2
¼ 1

v? cosðwÞ;

8>>><>>>:
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with rvv? ¼~e?; rvvw ¼~ew and rvvk ¼~ek, where~e are vectors in the local basis. Setting f ð0Þðkvk2Þ ¼ ð2pÞ
3
2 exp � kvk

2

2


 �
, and

writing
ðv ^ BÞ � rv f̂ ¼ ðrv f̂ ^ vÞ � B ¼ �Bð0Þ
@f
@w

; with B ¼ ð0; 0;Bð0ÞÞ;
the kinetic equation (75) becomes
ð�ixþ ik1v? cosðwÞÞf̂ þ Bð0Þ
@ f̂
@w
þ f ð0Þðkvk2Þv?ðbE1 cosðwÞ þ bE2 sinðwÞÞ ¼ 0: ð76Þ
In order to solve this equation, we decompose the distribution function as a Fourier series
f̂ ¼
Xþ1

n¼�1
f̂ nðv?Þeinw:
Then from (76),
Xþ1
n¼�1

ð�ixþ ik1v? cosðwÞ þ inBð0ÞÞf̂ neinw ¼ �f ð0Þðkvk2Þv?ðbE1 cosðwÞ þ bE2 sinðwÞÞ:
Multiplying this equation by eimw, integrating from 0 to 2p, we obtain
Xþ1
n¼�1

Z 2p

0
eimwð�ixþ ik1v? cosðwÞ þ inBð0ÞÞf̂ neinw dw ¼ �f ð0Þðkvk2Þv?

Z 2p

0
eimwðbE1 cosðwÞ þ bE2 sinðwÞÞdw: ð77Þ
For m ¼ 0, terms are different from zero only for n ¼ �1, 0, 1. From (77) comes
k1v? f̂�1 � 2xf̂ 0 þ k1v? f̂ 1 ¼ 0: ð78Þ
For m ¼ �1,
ik1v? f̂ 0 � 2iðx� Bð0ÞÞf̂ 1 þ ik1v? f̂ 2 ¼ �f0ðv2Þv?ðbE1 � ibE2Þ: ð79Þ
For m ¼ 1,
ik1v? f̂�2 � 2iðxþ Bð0ÞÞf̂�1 þ ik1v? f̂ 0 ¼ �f ð0Þðkvk2Þv?ðbE1 þ ibE2Þ: ð80Þ
The case m ¼ �2 involves f̂ 3,
ik1v? f̂ 1 � 2ðx� 2Bð0ÞÞf̂ 2 þ ik1v? f̂ 3 ¼ 0: ð81Þ
In the same manner the case m ¼ 2 involves f̂�3,
ik1v? f̂�3 � 2ðxþ 2Bð0ÞÞf̂�2 þ ik1v? f̂�1 ¼ 0: ð82Þ
In order to close the system, the components f�3 and f3 are neglected, and we deduce from (78)–(82),
�2ðxþ 2Bð0ÞÞf̂�2 þ ik1v? f̂�1 ¼ 0;

ikv? f̂�2 � 2iðxþ Bð0ÞÞf̂�1 þ ik1v? f̂ 0 ¼ �f ð0Þðkvk2Þv?ðbE1 þ ibE2Þ;
kv? f̂�1 � 2xf̂ 0 þ k1v? f̂ 1 ¼ 0;

ik1v? f̂ 0 � 2iðx� Bð0ÞÞf̂ 1 þ ik1v? f̂ 2 ¼ �f ð0Þðkvk2Þv?ðbE1 � ibE2Þ;
ik1v? f̂ 1 � 2ðx� 2Bð0ÞÞf̂ 2 ¼ 0:

8>>>>>>><>>>>>>>:

The solution of linearized Vlasov equation can be calculated
f ðt; x;vÞ ¼ f ð0Þðkvk2Þ þ
Pþ1

n¼�1
f̂ nðv?Þe�ixtþik1x1þinw;

E1ðt; xÞ ¼ bE1e�ixtþik1x1 ;

E2ðt; xÞ ¼ bE2e�ixtþik1x1 ;

Bðt; xÞ ¼ Bð0Þ þ bB3e�ixtþik1x1 :

8>>>>>><>>>>>>:

The dispersion relation (74) provides with a particular x. Then we obtain the following results for the construction of the
initial solution,
f ð0; x;vÞ ¼ f ð0Þðkvk2Þ þ
X2

n¼�2

f̂ nðv?Þeik1xþinw:
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With the expressions
f̂�2

f ð0Þðkvk2ÞbD ¼ i �4x3bE1 � 4ix3bE2 þ 12ix2Bð0ÞbE2 þ 12x2Bð0ÞbE1 � 8kBð0Þk2xbE1 þ k2
1v

2
?xbE1 þ 3ik2

1v
2
?xbE2



�8ikBð0Þk2xbE2 � 4ik2

1v
2
?Bð0ÞbE2

�
v2
?k1;

f̂�1

f ð0Þðkvk2ÞbD ¼ 2iv? bE1k2
1v

2
?x

2 þ 4iBð0Þx3bE2 � 16kBð0Þk3xbE1 � 16ikBð0Þk3xbE2 þ 3ibE2k2
1v

2
?x

2 � 4bE1x4



�8ibE2k2
1v

2
?kB

ð0Þk2 þ 2k2
1v

2
?Bð0ÞxbE1 þ 2ik2

1v
2
?Bð0ÞxbE2 þ 16bE1kBð0Þk2x2 þ 16ibE2kBð0Þk2x2

þ4Bð0Þx3bE1 � 4ibE2x4
�
;

f̂ 0

f ð0Þðkvk2ÞbD ¼ 2iv2
?k1 16kBð0Þk2xbE1 þ k2

1v
2
?xbE1 � 4x3bE1 þ 4ix2Bð0ÞbE2 � 16ikBð0Þk3bE2 þ 2ik2

1v
2
?Bð0ÞbE2


 �
;

f̂ 1

f ð0Þðkvk2ÞbD ¼ 2ið�2Bð0Þ þxÞv? �4ik2
1v

2
?Bð0ÞbE2 þ k2

1v
2
?xbE1 � 3ik2

1v
2
?xbE2 � 12x2Bð0ÞbE1 þ 12ix2Bð0ÞbE2 � 4x3bE1



þ4ix3bE2 � 8kBð0Þk2xbE1 þ 8ikBð0Þk2xbE2

�
;

f̂ 2

f ð0Þðkvk2ÞbD ¼ ik1v2
? �4ik2

1v
2
?Bð0ÞbE2 þ k2

1v
2
?xbE1 � 3ik2

1v
2
?xbE2 � 12x2Bð0ÞbE1 þ 12ix2Bð0ÞbE2 � 4x3bE1 þ 4ix3bE2



�8kBð0Þk2xbE1 þ 8ikBð0Þk2xbE2

�
;

where
bD ¼ x 64kBð0Þk4 � 16k2
1v

2
?x

2 þ 16x4 þ 16k2
1v

2
?kB

ð0Þk2 þ 3k4
1v

4
? � 80kBð0Þk2x2


 �
:

k1v? being small with respect to Bð0Þ and x, for this particular application (v? must be considered in the range where the

equilibrium distribution function f ð0Þðkvk2Þ ¼ ð2pÞ
3
2 exp � kvk

2

2


 �
does not vanish. If Bð0Þ ¼ 2; x ’ 5 and k ¼ 2p=25, then

kv? � Bð0Þ; x), the numerical powers of k1v? can be neglected compared to these terms. The solution can be written
f̂�2

f ð0Þðkvk2ÞbD ¼ iv2
?k1 �4x3bE1 � 4ix3bE2 þ 12ix2Bð0ÞbE2 þ 12x2Bð0ÞbE1 � 8kBð0Þk2xbE1 � 8ikBð0Þk2xbE2


 �
;

f̂�1

f ð0Þðkvk2ÞbD ¼ 2iv? 4iBð0Þx3bE2 � 16kBð0Þk3xbE1 � 16ikBð0Þk3xbE2 � 4bE1x4 þ 16bE1kBð0Þk2x2 þ 16ibE2kBð0Þk2x2



þ4Bð0Þx3bE1 � 4ibE2x4
�
;

f̂ 0

f ð0Þðkvk2ÞbD ¼ 2iv2
?k1 16kBð0Þk2xbE1 þ k2

1v
2
?xbE1 � 4x3bE1 þ 4ix2Bð0ÞbE2 � 16ikBð0Þk3bE2


 �
;

f̂ 1

f ð0Þðkvk2ÞbD ¼ 2iv?ðx� 2Bð0ÞÞ �12x2Bð0ÞbE1 þ 12ix2Bð0ÞbE2 � 4x3bE1 þ 4ix3bE2 � 8kBð0Þk2xbE1 þ 8ikBð0Þk2xbE2


 �
;

f̂ 2

f ð0Þðkvk2ÞbD ¼ ik1v2
? �12x2Bð0ÞbE1 þ 12ix2Bð0ÞbE2 � 4x3bE1 þ 4ix3bE2 � 8kBð0Þk2xbE1 þ 8ikBð0Þk2xbE2


 �
;

where
bD ¼ xð64kBð0Þk4 þ 16x4 � 80kBð0Þk2x2Þ:
We choose to initialize the perturbation from the amplitude of the magnetic field:
bB3 ¼ A where A 2 ½0;1�:
Then from the system (73) and the dispersion relation (74), we deduce the values of bE1; bE2 and thus reconstruct the f̂ i,
bE1 ¼
�ibB3 x4b2 �x2k2

1 �x2b2 � kBð0Þk2x2b2 þ kBð0Þk2k2
1


 �
k1b

2Bð0Þ
; bE2 ¼

xbB3

k1
:
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