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This paper deals with the numerical resolution of a shallow water viscoplastic flow model.
Viscoplastic materials are characterized by the existence of a yield stress: below a certain
critical threshold in the imposed stress, there is no deformation and the material behaves
like a rigid solid, but when that yield value is exceeded, the material flows like a fluid. In
the context of avalanches, it means that after going down a slope, the material can stop and
its free surface has a non-trivial shape, as opposed to the case of water (Newtonian fluid).
The model involves variational inequalities associated with the yield threshold: finite-
volume schemes are used together with duality methods (namely Augmented Lagrangian
and Bermúdez–Moreno) to discretize the problem. To be able to accurately simulate the
stopping behavior of the avalanche, new schemes need to be designed, involving the
classical notion of well-balancing. In the present context, it needs to be extended to take
into account the viscoplastic nature of the material as well as general bottoms with wet/dry
fronts which are encountered in geophysical geometries. We derived such schemes and
numerical experiments are presented to show their performances.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The objective of this paper is to present improved numerical schemes for shallow water models for viscoplastic materials
on variable topography (or bathymetry). The associated difficulties are twofold. First, we will place ourselves in a context
– increasingly in use – where no regularization method is used and thus the variational inequalities reflecting the plastic
nature of the material are handled directly through duality methods. Second, we will describe new well-balanced schemes
in this viscoplastic context to take into account general bottoms and wet/dry fronts.

In recent years, an increasing interest has been developed for shallow water models in the context of simulations for
the flow of viscoplastic materials down inclined planes. Viscoplastic materials are characterized by the existence of a yield
stress: below a certain critical threshold in the imposed stress, there is no deformation and the material behaves like a
rigid solid, but when that yield value is exceeded, the material flows like a fluid. Such flow behavior can be encountered
in many practical situations such as food pastes, heavy oils, lavas and avalanches. As a consequence, the theory of the fluid
mechanics of such materials has applications in a wide variety of fields such as chemical industry, energy industry and
geophysical fluid dynamics.

From the mathematical viewpoint, the non-linearity associated to viscoplastic models (such as the Bingham model, as
we will see below), leads to feasible but very expensive computational times for the full 3D equations (see e.g. [28]).
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Consequently, numerous reduced 2D model using the shallow flow approximation have been derived. In the context of
avalanches, we refer to the article of Ancey [2] and references therein for a detailed review on these developments. Recently,
in [25], an interesting shallow water model based on a Bingham-like constitutive law together with Coulomb frictional
condition on the bottom was derived, in local coordinates for the case of a non-planar topography. But the algorithm,
presented to solve associated equations, does not take into account either well-balanced properties or the treatment of
wet/dry fronts. Another shallow model based on the Herschel–Bulkley constitutive law (which generalizes the Bingham
law) was derived in [1] and a new well-balanced scheme was introduced to take into account both non-linearities of this
constitutive law, leading to a scheme which preserves more accurately stationary states. This point is important when it
comes to determine the stopping time of the flow, when the material enters in its rigid state. And this kind of property is
also linked to the use of duality methods which allow to properly deal with the plasticity.

Indeed, a common point of an increasing part of the recently developed numerical methods for viscoplastic flows (see
e.g. [33,37,36,24,35,25]) is that they use decomposition-coordination methods to solve the variational inequality associated
to constitutive laws with a so-called plastic threshold (the most simple and iconic one being the Bingham model). This kind
of approach takes its roots in the seminal works of Duvaut–Lions [15] and the series of papers of Glowinski and coworkers
(see the recent book [22] for a detailed review), initiated at the end of the seventies and anchored in the Augmented
Lagrangian formalism. One of the crucial advantage of these methods over regularized approaches (see e.g. Papanastasiou’s
[29] or the so-called bi-viscosity methods [14]) is that they rigorously take into account the plastic threshold. Of note, it is
well known that in Augmented Lagrangian (AL) methods, the optimal values of the parameters are not easy to determine in
the general case. These parameters ((r,ρ) in Glowinski’s nomenclature) influence the speed of convergence of the iterative
process towards the saddle-point, solution of the problem. As a consequence, a study of some sort of optimality for such
parameters is of real interest when it comes to improve the computational efficiency.

As an alternative duality method, one can use the so-called Bermúdez–Moreno (BM) algorithm. This method, which is
built upon some properties of the Yosida regularization of maximal monotone operators, has been extensively used for a
wide range of applications (see [19] and the references therein). In order to apply the method, the Yosida regularization
of the subdifferential associated to the non-differentiable operator appearing in the formulation of the considered model
needs to be determined. As for the AL, the performance of the algorithm strongly depends on the choice of two constant
parameters. Fortunately, several ways to overcome this problem have been proposed in the literature [31,30,19], and they
will be considered in this paper.

Another difficulty that appears when it comes to couple shallow-water models and viscoplastic constitutive laws, is the
adequate coupling between the discretization associated to the duality method and the one associated with the spatial
terms, in such a way the global scheme is well-balanced. For shallow water type equations, finite volume methods have proved
their efficiency and we adopt them in the present work. In this context, a careful treatment must be made to design a
well-balanced scheme when coupling the finite volume scheme and the duality method. This idea was first introduced in
[8], in the context of a Bingham fluid treated with an AL method. We extend here this idea for a Shallow-Water–Bingham
model on a general topography and in the presence of wet/dry fronts.

The well-balanced properties are related to the stationary solutions of the system. In our case, we seek numerical
schemes which preserve exactly two types of stationary solutions. For hyperbolic systems with source terms, a discretization
of the source terms compatible with the one of the flux term must be performed. Otherwise, stemming from the numeri-
cal diffusion terms, a first order error in space takes place. This error, after time iteration, may yield large errors in wave
amplitude and speed. The pioneering work by Roe [32] relates the choice of the approximation of the source term with the
property of preserving stationary solutions. Bermúdez and Vázquez Céndón introduced in [5] an extension of Roe’s solver,
in the context of shallow water equations, which preserves exactly the stationary solution of water at rest. This work origi-
nated the so-called well-balanced solvers, in the sense that the discrete source terms balance the discrete flux terms when
computed on some (or all) of the steady solutions of the continuous system. Different extensions have been done: see for
instance Greenberg and Leroux [23], LeVeque [27], Chacón et al. [12].

An additional difficulty in the simulation of free surface flows comes from the appearance of dry areas in the compu-
tational domain, due to the fluid evolution or to the initial conditions. Standard numerical schemes may compute spurious
solutions in the presence of wet/dry fronts, unless appropriate modifications are made. See [7,34] for a review on some
methods appearing in the literature to deal with this problem. Moreover, in the context of shallow water equations, Roe-
type schemes lose their well-balanced properties when wet/dry transitions appear. Indeed, they may produce nonphysical
negative values of the thickness of the water layer near the wet/dry front. Some ways to modify Roe’s method to fix these
problems have been proposed in [10,11].

The contribution of this paper is twofold. First, by adapting the guidelines in [30], we determine, in a theoretical way, an
optimal choice of parameters in the sense that they provide the highest rate of convergence for the BM algorithm. For the
AL, we perform some numerical studies of the optimal choice of parameters and we then compare both methods on various
problems to give insight on their respective behaviors. To our best knowledge this is the first time that BM is applied to
such kind of models and that such a systematic comparative study of the behavior of the number of iteration in duality
methods is done for several very different viscoplastic flows.
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Fig. 1. Domain in 2D (left) and 1D (right).

Second, both for the AL and BM methods which are embodied in a general framework, we design a well-balanced
scheme which takes into account wet/dry fronts on general bottoms, for such viscoplastic free surface flows. Again, this is
the first time that dry area treatment is proposed for flows with plastic behavior. This is crucial when it comes to study real
applications where there are always a flow with wet/dry front and a rigorous treatment is needed to compare qualitatively
numerical simulations and physical experiments.

This work is organized as follows. In Section 2, we introduce a typical model for viscoplastic free-surface flows on general
bottoms and the general resolution approach. Then in Section 3, we present in detail the two duality methods used to treat
the viscoplastic behavior of the material, namely the AL and the BM methods. In Section 4, we describe the design of the
overall well-balanced scheme which takes into account general bottoms and the presence of wet/dry fronts. Numerical tests
are finally presented in Section 5 to illustrate the various properties of the scheme and compare both methods. A duct flow
test and a stationary test allow to make a convergence analysis thanks to the availability of analytic solutions. Then, several
tests of avalanches, academic but very challenging from the numerical viewpoint, are performed to show the robustness of
the scheme. Conclusions are drawn in Section 6.

2. Model and resolution approaches

As a model problem for viscoplastic shallow flows, we use the Bingham shallow-water model derived in [8], but we add
here the fact that the bottom is more general than a plane slope. The derivation being very close, we refer to [8] for more
details and here we directly present the resulting model. Its physical characteristics and relevance are briefly described in
the following.

The geometry is as shown on Fig. 1. We consider a fluid domain of height H over a general bottom b. More precisely,
let Ω ⊂ R

2 be a given domain for the space variable x. The R
2 plane generated by Ω is supposed to be sloping at an angle

α from the horizontal plane. We denote by z ∈ R the variable in the orthogonal direction to Ω . The bottom which bounds
the fluid by below is defined by b(x), x ∈ Ω . We denote by D(t) the fluid domain defined as

D(t) = {
(x, z) ∈ Ω ×R / b(x) < z < b(x) + H(t, x)

}
, (1)

where H is the time-dependent height of the fluid.
As usual for shallow water type models, we denote by V = V (t, x) ∈R

2 the vector of the average of the velocity (orthog-
onal to the z-axis) along the depth of the fluid (i.e. from z = b(x) to z = b(x) + H(t, x)). We take into account the fact that
there may be friction on the bottom through a coefficient β . The fluid undergoes a body force denoted as ( fΩ, f z) ∈R

2 ×R

in the Ω × z frame of reference. Note that fΩ and f z are both assumed to be constant.
Since we are considering a Bingham constitutive law, the material is characterized by a viscosity η and a yield stress τy .

The latter is associated to the plastic behavior of the material and this leads (cf. [15]) to a variational inequality for the
momentum conservation relation (see Eq. 4). On the contrary, the conservation of mass is rather classic for this type of
integrated model (see Eq. 3). Given the space

V(t) = {
Ψ ∈ H1(Ω)2 / Ψ = 0 on ∂Ω

} := H1
0(Ω)2 (2)

and some initial conditions at t = 0, the problem is to find H ∈ L2([0, T ], L∞(Ω)), V ∈ L2([0, T ];V(t)), with ∂t V ∈
L2([0, T ]; L2(Ω)2), such that

∂t H + divx(H V ) = 0, (3)

and
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∀Ψ ∈ V(t),

∫
Ω

H
(
∂t V · (Ψ − V ) + V · ∇x V (Ψ − V )

)
dx +

∫
Ω

βV · (Ψ − V )dx

+
∫
Ω

2ηH D(V ): D(Ψ − V )dx +
∫
Ω

2ηH divx V (divxΨ − divx V )dx

+
∫
Ω

τy H
(√∣∣D(Ψ )

∣∣2 + (divxΨ )2 −
√∣∣D(V )

∣∣2 + (divx V )2
)

dx

�
∫
Ω

H( fΩ + f z∇xb) · (Ψ − V ) −
∫
Ω

(H)2

2
f z(divxΨ − divx V )dx, (4)

where

D(U ) := 1

2

[∇xU + (∇xU )t], (5)

∇xU :=
(

∂Ui

∂x j

)
i, j

, i = 1,2, j = 1,2, (6)

divxU := ∂U1

∂x1
+ ∂U2

∂x2
, ∀U (t, ·) := (U1, U2) ∈ V(t). (7)

Of note, usual Sobolev embeddings and the fact that H is bounded allow aforementioned problem to be well defined. As
said previously, this model is based on a so-called shallow water approximation, i.e. the height of the fluid is assumed to
be much smaller than the characteristic length of the domain. Furthermore, this model was derived through an asymptotic
expansion where the slope is supposed to be small (α � 1) and the norm of the gradient of b(x) is small (‖∇xb‖ � 1).

But it is worth noting that this model is also valid for a slope α = 0 (horizontal bottom), which is not generally the case
for other models proposed in the literature (see for example [3,17]).

Another interesting feature of the model is that in the case of a plane horizontal slope (α = 0) and with a vanishing yield
stress (τy = 0), we recover a viscous shallow water system which has the same structure as the one derived by Gerbeau
and Perthame in [20] (note that the hypothesis of friction at the bottom, instead of a no-slip condition is a key point in this
degeneracy to [20]). The shallow water formulation (4) is in weak form. It can be rewritten in the strong form to have the
expression of the associated (integrated) Bingham constitutive law. Namely, the corresponding formulation is

H(∂t V + V · ∇x V ) + βV − divx(Hσ) = H( fΩ + f z∇xb) − ∇x

(
(H)2

2
f z

)
, (8)

where⎧⎪⎨
⎪⎩

σ = 2η
(

D(V ) + tr
(

D(V )
)

I
)+ τy

D(V ) + tr(D(V ))I√|D(V )|2 + | tr(D(V ))|2 if
∣∣D(V )

∣∣ 
= 0

|σ | � τy if
∣∣D(V )

∣∣= 0,

(9)

the second invariant |σ | of a tensor σ being defined here as

|σ | :=
√∑

i, j

σ 2
i j . (10)

Note that in the following, the body force will be the influence of gravity, denoted by g . To write this force, we must
decide what is the orientation of the plane generated by Ω; by convention we will say that if (x1, x2, z) is the frame of
reference (cf. Fig. 1(a)), then the tilted axis (with respect to the horizontal) is x1, i.e.

fΩ = (−g sinα, 0), f z = −g cosα. (11)

In this paper, we will fulfill our objectives on the 1D version of (2)–(3)–(4). Of note, the ideas presented here can be
extended in 2D. This extension being not trivial, it will be presented in another article. In the 1D case, we naturally take
x ∈ Ω = [0, L] and the associated frame of reference becomes (x, z) (cf. Fig. 1(b)). We have then

V(t) = {
Ψ ∈ H1(Ω) / Ψ = 0 on ∂Ω

} := H1
0

([0, L]), (12)

and the problem (3)–(4) degenerates to: find H ∈ L2([0, T ], L∞([0, L])) and V ∈ L2([0, T ],V(t)), with ∂t V ∈ L2([0, T ],
L2([0, L])), such that

∂t H + ∂x(H V ) = 0, (13)
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and

∀Ψ ∈ V(t),

L∫
0

H

(
∂t V (Ψ − V ) + 1

2
∂x
(

V 2)(Ψ − V )

)
dx +

L∫
0

4ηH∂x V ∂x(Ψ − V )dx

+
L∫

0

τy

√
2H

(|∂xΨ | − |∂x V |)dx +
L∫

0

βV (Ψ − V )dx

�
L∫

0

H( fΩ + f z∂xb)(Ψ − V )dx −
L∫

0

H2

2
f z(∂xΨ − ∂x V )dx. (14)

The gravity becomes (note that, as the velocity, the projection of the force on Ω is now a scalar):

fΩ = −g sinα, f z = −g cosα. (15)

In this paper, as in many schemes used in the literature for this type of models, we will consider a first order backward
semi-discretization in time (explicit Euler’s method). We denote the time step by �t . We have:

Hn+1 − Hn

�t
+ ∂x

(
Hn V n)= 0, (16)

and

L∫
0

Hn
(

V n+1 − V n

�t

(
Ψ − V n+1)+ 1

2
∂x
((

V n)2)(
Ψ − V n+1))dx +

L∫
0

βV n+1(Ψ − V n+1)dx

+
L∫

0

τy

√
2Hn(|∂xΨ | − ∣∣∂x V n+1

∣∣)dx +
L∫

0

4ηHn∂x
(

V n+1)∂x
(
Ψ − V n+1)dx

�
L∫

0

Hn( fΩ + f z∂xb)
(
Ψ − V n+1)dx −

L∫
0

(Hn)2

2
f z
(
∂xΨ − ∂x V n+1)dx, ∀Ψ. (17)

Doing so, we see that problem on the height and problem on the velocity are decoupled. At each time step, supposing
that we know (Hn, V n), we need to solve both problems for (Hn+1, V n+1).

One of the goals of this article is to compare two duality methods to handle the variational inequality of the problem
on the velocity, namely the Augmented Lagrangian method and Bermúdez–Moreno method. It is the subject of the next
section, where we will also see more clearly the underlying shallow water nature of this system. For this kind of equations,
finite volume discretizations are particularly well suited and this is why we want to use them in this context. The other
goal of this paper is to show that a careful design of the scheme is needed to obtain a well-balanced property in the case
of variable bottom and in the presence of wet/dry fronts. This will be treated in Section 4.

3. Treating the velocity inequality with two duality methods

The speed problem of the above shallow Bingham model is a variational inequality and consequently specific methods
to solve it are needed. Various types of methods exist in the literature and, in this paper, we choose two of them which
have proved to be efficient for such problems (see e.g. [26]), namely the Augmented Lagrangian method and the Bermúdez–
Moreno method. Their definitions and derivations are different, but interestingly the obtained structure of the algorithms
is the same. We will thus make the most of this fact in Section 4, to design a unified scheme for the space discretization.
In addition, this common structure in terms of code implementation makes it interesting to compare their efficiency and
computational cost. In particular, both algorithms depend on a parameter which influence the speed of convergence to the
solution. Consequently, it is interesting to determine if optimal parameters can be derived theoretically.

The Augmented Lagrangian algorithm is a method which has been extensively used for a wide range of non-linear opti-
mization problems (see [21]). It appears that (17) can be reformulated as a minimization problem and solving for V n+1 ends
up to find the saddle-point of an Augmented Lagrangian. This approach allows to elegantly deal with the non-differentiable
terms of (17).

For sake of brevity, the full derivation of the Augmented Lagrangian algorithm for (17) is given in Appendix A. Of note,
the final form of the present Augmented Lagrangian algorithm has a structure which is very similar to the one derived the
following subsection and Appendix A is also here for completeness in comparing the two approaches.
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Concerning the so-called augmentation parameter r, it is generally difficult to find a priori an optimal value which leads
to the fastest convergence of this iterative method. Some optimal parameters are derived in [18] for very simple model
problem and, in the context of seismic reflection tomography, a heuristics was proposed to evolve r along the iterations of
the AL to increase the speed of the algorithm [13]. But overall, a general methodology to find theoretically an optimal value
of r seems to remain an open question. This fact was one of the reasons to study in more details another duality method,
namely the Bermúdez–Moreno method.

3.1. Study of the BM approach

For the sake of brevity, the full derivation of the Bermúdez–Moreno method is given in Appendix B and we will directly
give the resulting algorithm in the following. It is important to note that it is as easy to implement as the Augmented
Lagrangian algorithm.

3.1.1. The BM algorithm
Let us summarize the BM algorithm for the speed problem (17).

Bermúdez–Moreno algorithm

• Initialization: suppose that V n , Hn and θn are known. For k = 0, we set V k = V n and θk = θn .
• Define the parameters λ and ω (see Section 3.1.2).
• Iterate:

– Find V k+1 ∈ V solution of the following linear problem:(
Hn

�t
+ β

)
V k+1 − ∂x

((
4ηHn + ω

)
∂x V k+1)− ∂x

(
ω∂x V k+1)

= Hn

�t
V n − Hn

2
∂x
((

V n)2)+ 1

2
∂x
((

Hn)2
f z
)+ Hn( fΩ + f z∂xb) + ∂xθ

k. (18)

– Update the so-called Bermúdez–Moreno multiplier θk+1 via ξk+1 = ∂x V k+1 + λθk and

θk+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ωξk+1 + τy
√

2Hn(x)

1 − λω
if ξk+1 > λτy

√
2Hn(x),

ξk+1

λ
if ξk+1 ∈ [−λτy

√
2Hn(x), λτy

√
2Hn(x)

]
,

−ωξk+1 − τy
√

2Hn(x)

1 − λω
if ξk+1 < −λτy

√
2Hn(x).

(19)

Note that this computation is local in space, i.e., it is done at each discretization point.
– Check convergence (see below) and update: V k = V k+1, θk = θk+1, k �→ k + 1 and go to the next iteration . . .

• . . . until convergence is reached:

‖θk+1 − θk‖
‖θk‖ � tol. (20)

At convergence, we get the value of V n+1 by setting V n+1 = V k+1 (in the numerical tests presented in this paper, we set
tol = 10−5).

Up to now, we did not describe the discretization in space. As we said previously, we want to adopt a finite volume ap-
proach. Consequently, it is worth realizing that the underlying global problem coupling (16) and (17) involves the following
system (we use a slight change of notation which will be useful in the following: Hn+1 is denoted as Hk+1; in spite of this
choice, note again that Hk+1 is not involved in the Bermúdez–Moreno algorithm and, so, does not change in this loop):

( P̃ )n,k

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hk+1 − Hn

�t
+ ∂x

(
Hn V n)= 0,

Hn
(

V k+1 − V n

�t

)
+ βV k+1 − ∂x

(
4ηHn∂x

(
V k+1))− ∂x

(
ω∂x V k+1)

= Hn( fΩ + f z∂xb) − Hn

2
∂x
((

V n)2)+ 1

2
∂x
((

Hn)2
f z
)+ ∂xθ

k.

(21)

Consequently, even if there is a decoupling of both problems in terms of the time discretization and the Bermúdez–Moreno
algorithm, it appears that to obtain a global well-balanced scheme, there must be a coupling between the mass and mo-
mentum equations induced by the source terms (involving topography and the multiplier θ ). For shallow water type systems
with source terms, this has been extensively studied in the literature. In Section 4, we precisely describe the aforementioned
coupling for the present problem.
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3.1.2. Study of the optimal parameter
As it has been documented in the literature, the main drawback of the BM algorithm is that its rate of convergence

strongly depends on the choice of parameters λ and ω. Several efforts have been made to overcome this problem, allowing
the choice of appropriate parameters in different functional frameworks [30,31,19]. We will adapt here the guidelines in
[30] in order to deduce an optimal choice of parameters, the main idea being to look for ω minimizing the contractivity
constant of the sequence θk − θ . The condition

λω = 1

2

will be assumed throughout the rest of the paper, so only one of the parameters has to be chosen, say ω. The interested
reader will find all the details of the derivation in Appendix C. To sum up, a quasi-optimal choice of the parameter ω would
be given by

ωopt
(

Hn
max

)=
(

Hn
max

�t
+ β

)
L2

Nπ2
+ 4ηHn

max, (22)

where Hn
max = ‖Hn‖∞ .

3.1.3. Some remarks on the treatment of wet/dry fronts
Although not explicitly stated, in the preceding sections it has been assumed that Hn(x) � Hn

min for a certain constant
Hn

min > 0, which means that there is no dry area in the computational domain. Following [30,31], one possible way to take
into account the appearance of dry areas is to extend the function Φ (cf. Appendix C) as follows:

Φ(x, z) =
{

τy
√

2Hn(x)|z| if Hn(x) � 0,

+∞ otherwise.

In this case, a simple computation shows that the expression (61) for the Yosida regularization Gω
λ remains valid, including

the case Hn(x) = 0. Therefore, the BM algorithm in Section 3.1.1 can be applied in the presence of wet/dry fronts, after
taking into account the modifications to be proposed in Section 4.

On the other hand, as Hn approaches to zero the coercivity constant (57) also tends to zero, thus degrading the con-
vergence of the BM method. Moreover, when looking for the optimal value of the parameter ω, the contractivity constant
L(ω) appearing in (68) is close to one. It has been verified numerically that, if no modification is made, the convergence
of the BM algorithm is considerably slower in the presence of wet/dry fronts. Fortunately, this problem can be overcome by
taking the parameter ω depending on Hn(x), following the guidelines in [31]. After extensive numerical investigation, we
have found that the best convergence results are obtained for

ωopt
(

Hn(x), Hn
max

)= �opt
(

Hn
max

)
Hn(x), (23)

with

�opt
(

Hn
max

)=
(

1

�t
+ β

Hn
max

)
L2

w

Nπ2
+ 4η,

where Lw is the length of the wet domain. As it is shown in Test 5.2, in this case the speed of convergence of the BM
algorithm is greatly improved.

4. Well-balanced discretization with general bed and wet/dry fronts

As said previously, either for AL and BM methods, we need now to describe how to perform the discretization in space.
This point is essentially inspired by finite volume methods for shallow water type systems. Since the structure of the
resulting systems are very close, we will try to unify the description as much as possible and point out when necessary the
adaptation needed for each case.

The space domain [0, L] is divided in computing cells Ii = [xi−1/2, xi+1/2]. For simplicity, we suppose that these cells
have a constant size �x. Let us define xi+ 1

2
= (i + 1/2)�x and xi = i�x, the center of the cell Ii . We define W k+1 (thanks

to the aforementioned cosmetic harmonization of the notation) as the following vector of the unknowns of problem (P )n,k

(or ( P̃ )n,k),

W k+1(x) = [
Hk+1(x), V k+1(x)

]
.

The two equations (55) of problem (P )n,k , as well as the two equations (21) of problem ( P̃ )n,k can be rewritten under
the form:

D
(
W n)(W k+1 − W n

+ ∂x F
(
W n))− ∂x

((
4ηHn + δn)I ∂xW k+1)= −βI W k+1 + S

(
W n)∂xσ

k, (24)

�t
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where

D
(
W n)=

(
1 0
0 Hn

)
, F

(
W n)=

(
Hn V n

(V n)2

2 − f z Hn

)
, I =

(
0 0
0 1

)
,

S
(
W n)=

(
0 0

Hn 1

)
, σ̄ k =

(
fΩ x + f zb

ζ k

)
.

The definition for δn and ζ k depends on the duality method. Namely,

• for the AL method:

δn = rHn, ζ k = Hn(μk − rqk);
• for the BM method:

δn = ωn, ζ k = θk,

where ωn is defined by the optimal value in terms of Hn (see Sections 3.1.2 and 3.1.3).

We denote by W k+1
i the approximation of the cell average of the exact solution provided by the numerical scheme:

W k+1
i

∼= 1

�x

xi+1/2∫
xi−1/2

W k+1(x)dx. (25)

Furthermore, θ , μ and q are approximated at the center of the dual mesh: θk
i+1/2, μk

i+1/2 and qk
i+1/2 are approximations of

θk(xi+1/2), μk(xi+1/2) and qk(xi+1/2), respectively. Consequently, we define

ζ k
i+1/2 =

{
Hn

i+1/2

(
μk

i+1/2 − rqk
i+1/2

)
in the case of AL (a)

θk
i+1/2 in the case of BM (b)

(26)

and

δn
i+1/2 =

{
rHn

i+1/2 in the case of AL (a)

ωn
i+1/2 in the case of BM (b).

(27)

For the BM algorithm ωn
i+1/2 is defined in terms of ωopt, following (22) or (23). Concretely, we can set

ωn
i+1/2 = ωopt

(
max

i

(
Hn

i

))
,

where ωopt(H) is defined by (22). Following (23) we can also set the following definition:

ωn
i+1/2 = �opt

(
max

i

(
Hn

i

))
Hn

i+1/2,

where �opt(H1, H2) is defined by (23) and

Hn
i+1/2 = Hn

i + Hn
i+1

2
.

We also define λn
i+1/2 in terms of ωn

i+1/2:

λn
i+1/2 ωn

i+1/2 = 1

2
.

As mentioned during the presentation of both duality methods, we can suppose that the values W k
i , W 0

i = [Hn, V n] and
ζ k

i+1/2 are known for all i. Then, we proceed as follows.
System (24) is discretized as

D
(
W n

i

)(W k+1
i − W n

i

�t
+ φ(W n

i , W n
i+1, {ζ k

j+1/2} j=i+1
j=i−1) − φ(W n

i−1, W n
i , {ζ k

j+1/2} j=i
j=i−2)

�x

)

− 1

�x2

((
4ηHn

i+1/2 + δn
i+1/2

)
I
(
W k+1

i+1 − W k+1
i

)− (
4ηHn

i−1/2 + δn
i−1/2

)
I
(
W k+1

i − W k+1
i−1

))

= −βI W k+1
i + S

(
W n

i

) σ̄ k
i+1/2 − σ̄ n,k

i−1/2
. (28)
�x
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The definition of σ̄ k
i+1/2 is

σ̄ k
i+1/2 =

(
fΩ xi+1/2 + f z

bi+bi+1
2

ζ k
i+1/2

)
. (29)

Finally, φ(W n
i , W n

i+1, {ζ k
j+1/2} j=i+1

j=i−1) is a numerical flux function, approximation of F (W n) at xi+1/2.
In order to complete the numerical scheme, we must precise the definition of φ. We consider a family of numerical flux

functions which define a well-balanced finite volume solver. System (24) can be seen as a semi-discretization in time of
a parabolic system, which for η = δ = 0 degenerates into a hyperbolic system with source terms. Following [12], in order
to obtain a well-balanced finite volume method, the numerical flux φ, approaching the flux function F (W ) at xi+1/2, must
depend on the definition of the source terms.

Namely, we consider the following class of numerical flux functions:

φ
(
W n

i , W n
i+1,

{
ζ k

j+1/2

} j=i+1
j=i−1

)= F (W n
i ) + F (W n

i+1)

2
− 1

2
Q n

i+1/2

(
W n

i+1 − W n
i + Gn({ζ k

j+1/2

} j=i+1
j=i−1

))
(30)

where Q n
i+1/2 is the numerical viscosity matrix which particularizes the numerical solver and G({ζ k

j+1/2} j=i+1
j=i−1) is a term

designed to obtain a well-balanced finite volume method.
The numerical viscosity matrix can be defined in terms of the eigenvalues of the Roe matrix associated to the flux F (W ).

Let us denote by An
i+1/2 the Roe matrix verifying,

F
(
W n

i+1

)− F
(
W n

i

)= An
i+1/2

(
W n

i+1 − W n
i

)
.

This matrix can be diagonalized and its eigenvalues are

Λn
1,i+1/2 = Ṽ n

i+1/2 −
√

− f z Hn
i+1/2, Λn

2,i+1/2 = Ṽ n
i+1/2 +

√
− f z Hn

i+1/2,

where Ṽ n
i+1/2 = (

√
Hn

i V n
i +

√
Hn

i+1 V n
i+1)/(

√
Hn

i +
√

Hn
i+1).

In this work we consider Rusanov’s method, defined by Q n
i+1/2 = α0,i+1/2 I with α0,i+1/2 = max(|Λn

1,i+1/2|, |Λn
2,i+1/2|).

As discussed in [1], using a diagonal viscosity matrix allows us to design an algorithm where at a first step we compute
the flux associated to the velocity, at a second step we perform a fixed point algorithm, and finally we compute the flux
associated to the height evolution. As a consequence, in the fixed point process of the duality method it is not necessary
to recompute the numerical fluxes at each step. See [1] for more details on this discussion. Some other numerical solvers
defined in terms of a diagonal viscosity matrix are the Lax–Friedrichs method, corresponding to Q n

i+1/2 = �x
�t I , and the

modified Lax–Friedrichs method, corresponding to Q n
i+1/2 = γ �x

�t I , where γ ∈ (0,1] is the CFL number.
As we are considering explicit finite volume solvers, a CFL condition must be imposed to compute the time step. If we

consider some of these three methods then �t is computed by imposing the following restriction:

�t

�x
max

i

(∣∣Λn
j,i+1/2

∣∣, j = 1,2
)= γ , with γ ∈ (0,1]. (31)

For all numerical tests presented in Section 5, we set γ = 0.9.
In the following points we propose:

(i) the correction term G({ζ k
j+1/2} j=i+1

j=i−1) associated to the well-balancing;
(ii) and a numerical treatment that is applied in the case of wet/dry fronts.

(i) Well-balanced correction

We must describe the term G({ζ k
j+1/2} j=i+1

j=i−1) in order to complete the numerical flux function (30). The definition of G is
related to the well-balanced properties of the numerical scheme. We propose the following definition:

Gn({ζ k
j+1/2

} j=i+1
j=i−1

)= 1

f z

(
fΩ�x + f z(bi+1 − bi) + �(ζ+δn∂x V )k

i+1/2
Hi+1/2

0

)
, (32)

where �(ζ + a ∂x V )k
i+1/2/�x is an approximation of ∂x(ζ + δ ∂x V )k at xi+1/2.

Remark that at convergence of the Augmented Lagrangian loop, (ζ + δn ∂x V ) can be approximated by Hnμ, since at this
point q ≈ ∂x V .

We propose the following definition of �(ζ + δn ∂x V )k
i+1/2, based on a convex combination, by using a flux limiter

function, of a second order approximation and a first order one:

�
(
ζ + δn ∂x V

)k = D(dl,dc,dr, s−1, s0, s1, s2), (33)
i+1/2
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with

dl = ζ k
i−1/2 + δn

i−1/2

V k
i − V k

i−1

�x
, dc = ζ k

i+1/2 + δn
i+1/2

V k
i+1 − V k

i

�x
,

dr = ζ k
i+3/2 + δn

i+3/2

V k
i+2 − V k

i+1

�x
, s j = Hn

i+ j + bi+ j, j = −1,0,1,2.

The function D/�x is defined by a combination of a second order approximation of ∂x(ζ + δn ∂x V ) at x = xi+1/2 with a first
order one, by means of a flux limiter function. We propose the following definition:

D(dl,dc,dr, s−1, s0, s1, s2) = χ
dr − dl

2
+ (1 − χ)�d1,

with

�d1 =
⎧⎨
⎩

dc − dl if s0 < s1,

dr − dc if s0 > s1,

(dr − dl)/2 if s0 = s1.

Remark that one of the difficulties of the 2D problem is the definition of the flux limiter χ and a proper definition of
D(dl,dc,dr, s−1, s0, s1, s2) allowing to recover the second order well-balanced properties. These will be treated in a forth-
coming paper.

The term χ = χ(v(s−1, s0, s1, s2)) is a flux limiter function with v(s−1, s0, s1, s2) ∈ [0,1]. We propose to define

v = max
(
0,min(1, ṽ)

)
, ṽ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3(s0 − s−1)

s2 − s−1
, if s1 > s0,

3(s2 − s1)

s2 − s−1
, if s1 < s0,

1 if s1 = s0 or s2 = s−1,

and the following definition of the flux limiter function:

χ(v) = 1 − (
1 − v1/4)4

.

The definition of this limiter is driven by the fact that we want to put a stronger weight of the second order approximation
( dr−dl

2 ) compared to the first order one (�d1). This comes from the general idea which consists in using, when possible,
second order approximation and activating the first order one, in critical situations.

(ii) Wet/dry fronts

All the previous description need to be adapted under the presence of wet/dry fronts. We will now describe this adaptation
inspired by the work [10] and here extended to the situation where the material can be fluid or plastic.

From the numerical point of view, we said that Hi is null when Hi < Hε . For the numerical tests we set Hε = 5 · 10−3.
In some of the cases described below we impose no numerical diffusion in the discretization of the equation in H and

a local equilibrium of the pressure term. In practice this corresponds to set the following definitions of �(ζ + δn ∂x V )k
i+1/2

and σ̄ k
i+1/2:

• If Hi−1 � Hε , Hi � Hε , Hi+1 � Hε or Hi+2 � Hε and the material is rigid enough in the following sense:
– for the AL algorithm, if |μn

i+1/2 + r vi+1−vi
�x | < τy

√
2;

– for the BM algorithm, if |θn
i+1/2 + 1

λn
i+1/2

vi+1−vi
�x | < Hn

i+1/2τy
√

2;

then we set the following definitions of �(ζ + δn ∂x V )k
i+1/2 and σ̄ k

i+1/2:

�
(
ζ + δn ∂x V

)k
i+1/2 = − f z Hn

i+1/2

(
bi+1 − bi − Hi + fΩ

f z
�x

)
,

σ k
i+1/2 =

(
fΩ xi + f zbi + 1

2 f z Hi

ζ k
i−1/2

)
. (34)

• If Hi � Hε or Hi+1 � Hε and if
– for the AL algorithm, if |μn

i+1/2 + r vi+1−vi
�x | � τy

√
2;

– for the BM algorithm, if |θn
i+1/2 + 1

λn
vi+1−vi

�x | � Hn
i+1/2τy

√
2;
i+1/2



E.D. Fernández-Nieto et al. / Journal of Computational Physics 264 (2014) 55–90 65
we proceed as follows. Let us suppose that Hi > Hε and Hi+1 � Hε . Then, if

bi + Hi < bi+1 (35)

we set the definition (34). Moreover, if V i+1 < 0, then we set V i+1 = 0 in the computation of the numerical flux for the
evolution of the height of the material. If Hi � Hε , Hi+1 > Hε , then we apply the same treatment symmetrically.

Let us remark that in this approach, we test whether the material is fluid or rigid. For example, let us consider the case
τy = 0, i.e. the fluid regime. In this case, it is important to check the relative position of the free surface at x = xi and
x = xi+1, which coincides with the wet/dry numerical treatment proposed in [10] for the shallow water equations. On the
contrary, when the material is rigid enough, it is not important to check the relative position of the free surface. Because in
this case, the rigidity naturally implies that the solution is at rest independently of the relative position of the free surface.

4.1. The global coupled scheme

In this section, we present the global scheme obtained by gathering the aforementioned discretization procedures. It
allows to solve the evolution problem (13)–(14). For sake of brevity, we detail here the scheme in the case of the BM
algorithm. For completeness, the case of the AL is completely described in Appendix D. Of note, from the implementation
viewpoint, both methods share a lot in common and these similarities are embedded in a general framework (see (38)–(42)
in the following).

Global numerical scheme for (13)–(14) – Bermúdez–Moreno method

• Initialization at time t = 0 for n = 0: V n , Hn , θn are given by the initial conditions.
• Time loop: For n = 0, . . . ,nmax.

– Resolution of the problem on V k+1

{V n
i }i , {Hn

i }i and {θn
i+1/2}i are known.

Compute quantities which are invariant in the following loop:
Bermúdez–Moreno loop:

[Step 0] Initialize for k = 0: for all i, V k
i = V n

i and θk
i+1/2 = θn

i+1/2.

[Step 1] Update {V k+1
i }i by solving the linear system defined by the second component of (28). See details

in (38)–(42), with δn
i+1/2 and ζ k

i+1/2 given by (27)(b) and (26)(b).

[Step 2] Compute the auxiliary variable {ξk+1
i+1/2}i :

ξk+1
i+1/2 = V k

i+1 − V k
i

�x
+ λθk

i+1/2. (36)

[Step 3] Update {θk+1
i+1/2}i via

θk+1
i+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ωξk+1
i+1/2 + τy

√
2Hn

i+1/2

1 − λω
if ξk+1

i+1/2 > λτy

√
2Hn

i+1/2,

ξk+1
i+1/2

λ
if ξk+1

i+1/2 ∈ [−λτy

√
2Hn

i+1/2, λτy

√
2Hn

i+1/2

]
,

−ωξk+1
i+1/2 − τy

√
2Hn

i+1/2

1 − λω
if ξk+1

i+1/2 < −λτy

√
2Hn

i+1/2.

(37)

[Step 4] Set: for all i, V k
i = V k+1

i , θk
i+1/2 = θk+1

i+1/2 and return to Step 1.

[Step 5] At convergence, when condition (20) is verified, set V n+1
i = V k+1

i and θn+1
i+1/2 = θk+1

i+1/2 ∀i.

– Resolution of the problem on Hk+1

Compute Hn+1 = Hk+1 with the finite volume method defined by the first component of (28), defined in terms
of the most recent multiplier {θn+1

i+1/2}i and taking into account the wet/dry treatment presented before where
needed.

It is worth giving some more details about [Step 1]. Remark that the second component of (28) defines a linear system
where the unknowns are {V k+1

i }i . If we denote V k+1 the vector whose ith component is V k+1
i , the aforementioned linear

system can be written as

An V k+1 = bn,k, (38)
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Fig. 2. Stationary solution with free surface parallel to the reference plane.

where An is a matrix defined in terms of {Hn
i }i ; consequently, An does not change during the duality loop (in k). As a

matter of fact, An is a tridiagonal matrix, whose line i is defined by the following entries:

An
i,i−1 = −4η

�x2
Hn

i−1/2 − δn
i−1/2

�x2
, An

i,i+1 = −4η

�x2
Hn

i+1/2 − δn
i+1/2

�x2
,

An
i,i = Hn

i

�t
+ 4η

�x2

(
Hn

i−1/2 + Hn
i+1/2

)+ 1

�x2

(
δn

i−1/2 + δn
i+1/2

)+ β.

On the contrary, the right hand side of the linear system (38) changes for each iteration in k. The ith component of bn,k is
decomposed as

bn,k
i = bn,(1)

i + bn,k,(2)
i + bn,k,(3)

i , (39)

where

bn,(1)
i = Hn

i

(
fΩ + f z

bi+1 − bi−1

2�x

)
, (40)

bn,k,(2)
i = ζ k

i+1/2 − ζ k
i−1/2

�x
, (41)

bn,k,(3)
i = Hn

i

[φ(W n
i−1, W n

i , {ζ k
j+1/2} j=i+1

j=i−1)]2 − [φ(W n
i , W n

i+1, {ζ k
j+1/2} j=i+1

j=i−1)]2

�x
. (42)

Note that all of this is applied only where 1
2 (Hn

i−1/2 + Hn
i+1/2) � Hε . Indeed, on the contrary, we set An

i,i−1 = An
i,i+1 = 0,

An
i,i = 1, bn,k

i = 0.

4.2. Well-balanced properties

In this section, we study the well-balanced properties of the proposed numerical scheme. Concretely, we are interested
in studying stationary solutions defined by a constant free surface or by a free surface parallel to the reference slope with
variable bottom, for rigid enough materials (see Fig. 2).

The first type of stationary solution corresponds to a material at rest with zero velocity and a constant free surface.
It is a stationary solution of the system independently of the rigidity of the material. For the second type, we consider a
stationary solution with zero velocity and verifying b(x) + H(x) = C , ∀x ∈ [0, L], where C is a constant value. Let us study
the conditions on such a solution. One should have

L∫
0

τy

√
2H|∂xψ |dx �

L∫
0

(
H( fΩ + f z∂xb)ψ − f z

H2

2
∂xψ

)
dx, ∀ψ.

Taking into account that ∂xb = −∂x H and integrating by parts, this condition is equivalent to

L∫
0

τy

√
2H|∂xψ |dx �

L∫
0

H fΩψ dx =
L∫

0

(
− fΩ

x∫
0

H(s)ds + c

)
∂xψ dx.

We can set c = fΩ
∫ L/2

0 H(x)dx. Then, this condition is verified if∣∣∣∣∣ fΩ

x∫
H(s)ds

∣∣∣∣∣� τy

√
2H(x) ∀x ∈ [0, L]. (43)
L/2
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We can also obtain the analytic value to which (i) μ converges in the case of the Augmented Lagrangian method, and
(ii) θ for the Bermúdez–Moreno method.

For the AL or the BM algorithms, in the case of a stationary solution with zero velocity, we have the following equation:

∂x

(
fΩ
2

H2
)

= H( fΩ + f z∂xb) + ∂xζ,

with

ζ(x) =
{

H(x)μ(x) in the case of AL,
θ(x) in the case of BM.

(44)

Taking into account that the stationary solution that we consider in this test verifies b + H = C , this equation simplifies
to the following one:

−H fΩ = ∂x(ζ ).

Then,

ζ = − fΩ

x∫
L/2

H(x)dx. (45)

We have the following result for the proposed algorithms:

Theorem 1. The AL and the BM algorithms preserve exactly the following two types of stationary solutions:

(i) Material at rest with free surface parallel to the reference slope:

V = 0, b + H = constant,

for any given bottom function b(x), if the material is rigid enough, i.e. if τy is such that the following discrete version of (43) holds:∣∣∣∣∣ fΩ�x

(
i∑

j=1

H0
j −

[M/2]∑
j=1

H0
j

)∣∣∣∣∣� τy

√
2H0

i+1/2 ∀i. (46)

(ii) Material at rest with constant free surface:

V = 0, fΩ x + f z(H + b) = constant,

if {ζi+1/2}N
i=1 is initialized as follows:

ζ 1
i+1/2 = −�x

(
i∑

j=1

H0
j −

[M/2]∑
j=1

H0
j

)(
fΩ + f z

H0
i+1 + bi+1 − (H0

i + bi)

�x

)
, (47)

where [M/2] is the integer part of M/2, being M the number of points of the mesh grid. �
The proof is given in Appendix E.

5. Numerical comparison of both approaches

In this section, we present numerical tests to illustrate the good properties of the schemes presented above.
A first natural test is to check the order of convergence in space on a non-trivial stationary problem, in order to test the

accuracy of the duality methods for variational inequalities (thus in absence of well-balancing and wet/dry front issues). It
appears that the viscoplastic model (16)–(17) degenerates to the well-known Poiseuille–Bingham flow for which an ana-
lytic solution is known. All the details of this test are given in Appendix F. The conclusions are that both the Augmented
Lagrangian and the Bermúdez–Moreno methods are at least of order two (in L2-norm) in space for the velocity of this
non-zero stationary solution. In terms of computational cost, for this specific test and a fixed duality parameter (either r or
ω), it is shown that the Bermúdez–Moreno is approximately 20% cheaper than the Augmented Lagrangian.

We then focus on the main novelty of this paper, i.e. the well-balanced properties of the schemes.
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Fig. 3. Test 5.1.a. Free surface, bottom and Ω-plane.

Fig. 4. Test 5.1.a. Convergence of μ and θ to the analytical values.

5.1. Well-balanced tests

5.1.1. Test 5.1.a: Analytical stationary solution
In this test we study the error and convergence of the numerical results for the stationary solution studied in Section 4.2.

Concretely, we consider a domain of length L = 10 and a solution defined by

V = 0, H(x) = 2 − b(x), b(x) = cos(πx),

as shown in Fig. 3. This is a stationary solution of the system if the material is rigid enough. For this definition of H(x) we
can compute condition (43) exactly; we obtain that it is a stationary solution of the system if τy verifies

τy � max
x∈[0,10]

|g sinα(2(5 − x) − sin(πx)
π )|√

2(2 − cos(πx))
.

For this test we set α = 10◦ , so τy must be approximately greater than 17.03.
We compare the numerical results with the analytical ones corresponding to H(x) and the multipliers μ and θ . By (44)

and (45) we have that

μ(x) = 2(x − 5) − sin(πx)/π

2 − cos(πx)
g sinα, θ(x) =

(
2(x − 5) − sin(πx)

π

)
g sinα.

Following Theorem 1, if we initialize the multipliers with (47) then the stationary solution is exactly preserved, up to
machine precision. Then, we initialize both multipliers to zero in order to study their convergence to the analytical values.

In Fig. 4, we present the convergence of μ and θ to the analytical solution when both quantities are initialized to zero,
for 100 computational cells. In Fig. 5, we study the numerical order of convergence in space, through a mesh refinement.
For μ and θ first order is reached by computing the error in the L∞ norm, and second order for the L2 error. For the BM
algorithm the parameter ω was set to ωopt (Eq. (22)), while for the AL method we have set r = 10.

In Fig. 6, we present a comparison of the number of iterations kend necessary to converge in the fixed point algorithm
of the Augmented Lagrangian and the Bermúdez–Moreno methods, for the first iteration in time. We also picture a vertical
line corresponding to the optimal parameter for the BM method.
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Fig. 5. Test 5.1.a. Order of convergence of θ and μ for the BM and AL algorithms. Black continuous lines show first and second order of convergence; blue
line with + is the computed error.

Fig. 6. Test 5.1.a. Number of iterations in terms of r (for AL), ω and � (for BM).
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Table 1
Test 5.1.a. Errors for V (x) and H(x) for BM.

α Cells V L∞ error V L2 error H L∞ error H L2 error

10◦ 20 2.703E−09 4.271E−10 6.471E−10 8.643E−11
40 1.948E−09 2.196E−10 5.950E−10 5.082E−11
80 9.234E−10 7.323E−11 4.465E−10 2.588E−11

160 1.704E−10 9.552E−12 2.482E−10 1.008E−11
320 3.103E−10 1.222E−11 1.254E−10 3.591E−12
640 5.229E−10 1.456E−11 1.857E−11 3.740E−13

1280 1.974E−10 3.884E−12 2.168E−11 3.106E−13
2560 2.449E−10 3.406E−12 4.742E−12 4.786E−14

45◦ 20 2.917E−09 4.554E−10 7.021E−10 9.259E−11
40 1.898E−09 2.131E−10 6.851E−10 5.823E−11
80 1.175E−09 9.311E−11 4.553E−10 2.637E−11

160 4.501E−10 2.516E−11 3.043E−10 1.236E−11
320 9.862E−11 3.877E−12 1.567E−10 4.487E−12
640 3.981E−10 1.108E−11 5.827E−11 1.178E−12

1280 3.564E−10 7.011E−12 8.732E−12 1.256E−13
2560 6.904E−11 9.600E−13 1.571E−11 1.589E−13

Table 2
Test 5.1.a. Errors for V (x) and H(x) for AL (r = 10).

α Cells V L∞ error V L2 error H L∞ error H L2 error

10◦ 20 3.593E−10 5.038E−11 3.300E−09 4.946E−10
40 4.887E−10 4.150E−11 2.184E−09 2.396E−10
80 4.106E−10 2.401E−11 1.268E−09 9.998E−11

160 2.997E−10 1.218E−11 7.103E−10 3.964E−11
320 1.813E−10 5.172E−12 1.792E−10 7.054E−12
640 8.896E−11 1.789E−12 1.815E−10 5.037E−12

1280 2.219E−11 3.147E−13 3.449E−10 6.764E−12
2560 1.273E−11 1.279E−13 2.105E−10 2.919E−12

45◦ 20 3.226E−10 4.666E−11 3.328E−09 4.975E−10
40 4.637E−10 3.997E−11 2.148E−09 2.352E−10
80 4.064E−10 2.371E−11 1.315E−09 1.032E−10

160 3.047E−10 1.238E−11 7.871E−10 4.389E−11
320 1.946E−10 5.549E−12 2.903E−10 1.142E−11
640 1.038E−10 2.087E−12 8.149E−11 2.259E−12

1280 3.619E−11 5.137E−13 2.924E−10 5.733E−12
2560 6.308E−12 6.349E−14 2.538E−10 3.518E−12

For the BM method we have proposed two different ways to define the parameter ω, as a constant value in space (but
variable in time), or depending on the thickness of the material layer: ω = Hn(x)� , being � a constant value in space.
Then, we denote by BM(ω) the results corresponding to the choice of ω as a constant parameter, and by BM(�) the results
corresponding to ω = Hn(x)� .

For BM(ω), the optimal parameter wopt is defined by (22), equals to 20.5 approximately for this test. While for BM(�)

the optimal parameter �opt is defined by (23), equals to 10.3 approximately for this test. Note that both, ωopt and �opt are
near to the optimal value obtained numerically, which are respectively 26 and 21.

The results presented in Fig. 6 correspond to �x = 0.1 and {ω, r, � } ∈ [1,300], concretely a partition with subintervals
of length equals to 5. Let us remark that for ω = r = � = 1 the BM(�) is the one that need a smaller number of iterations,
after the BM(ω) and the one that needs a greater number of iterations is the AL. This behavior is also observed for the
values of the parameters smaller than the optimal one. When they are greater than the optimal parameter both versions of
the BM algorithm present a similar number of iterations. Nevertheless, for the Augmented Lagrangian method we observe
that the number of iterations decreases when the value of r increases. This is a phenomena that has been yet observed in
the case of Augmented Lagrangian method for other applications. Nevertheless, from a practical point of view, the choice
of bigger values of r, when applied to other numerical tests, can imply some problems of stability and ill-conditioning
problems in the linear system related to the fixed point algorithm (see [18]).

Finally, we study the influence of the angle on the numerical solution. Again we initialize the multipliers to zero and
we compare the errors for V (x) and H(x) corresponding to α = 10◦ and α = 45◦ through a mesh refinement, see Tables 1
and 2. We observe that errors are almost independent of the angle and the grid.

Test 5.1.b: Stationary solution on a random bottom
In this test, we consider a random bottom and wet/dry fronts. We also consider two initial conditions to set the position

of the free surface: horizontal or parallel to tan(α)x (see Fig. 7). Concretely, we set the following two definitions of the
height of the material layer:
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Fig. 7. Test 5.1.b. Free surface, bottom and Ω-plane.

Fig. 8. Test 5.1.b. Initial condition: H(x) = zref ,1 − b(x) with zref ,1 = 5. Convergence of μ and θ to the theoretical value (47).

H(x) = max
(
zref ,1 − b(x),0

)
, or H(x) = max

(
zref ,2

cos(α)
− b(x) − tan(α) x,0

)
,

where the bottom function has been defined as b(x) = r1(x)(1+r2(x))er3(x) , where r j(x) ∈ [0,1], j = 1,2,3, are three random
numbers for each value of x (see Fig. 7). zref ,1 corresponds to the height of the material on the Ω-plane, while zref ,2
corresponds to the level of the horizontal free surface. For example, Fig. 7 is obtained with zref ,1 = 2, zref ,2 = 3. With the
purpose to consider the case with and without wet/dry fronts, we set two different values of zref ,1 and zref ,2, concretely:

zref ,1 = 2, zref ,1 = 5 and zref ,2 = 3, zref ,2 = 5.8.

The numerical results presented in this test correspond to α = 10◦ . Analogously to the previous tests, we obtain similar
results if we increase the angle. For this test we set �x = 0.1.

The multipliers μ and θ are initialized to zero. In Fig. 8 we present the convergence of μ and θ to (47). This theoretical
value has been used in Theorem 1 to prove that, with this initialization of the multipliers, the proposed numerical scheme
preserves exactly both types of stationary solutions. Tables 3 and 4 present the errors for V (x) and H(x), when μ and θ are
initialized to zero.

5.2. Avalanche with obstacle

For this test we consider the case of an avalanche on an inclined plane with an obstacle. Concretely, we set α = 30◦ and

b(x) = 14e−x2/1.2 + 2e−(x−5)4/0.1 + 4e−(x−10)2/0.8.

As initial condition, we set V = 0 and (see Fig. 9),

H(x) =
{

4 − b(x) if x ∈ [7, 9],
0 otherwise.

We study the influence of the rigidity coefficient on the evolution of the avalanche and the final solution at rest. The
length of the domain is L = 10.
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Table 3
Test 5.1.a. Initial condition: H(x) = max(zref ,1 − b(x),0). Errors for V (x) and H(x).

zref ,1 {ζ 1
i+1/2}i V L∞ error V L2 error H L∞ error H L2 error

2 BM(ωopt) 1.164E−11 1.536E−13 1.257E−08 1.772E−10
BM(�opt) 3.672E−09 5.301E−11 1.210E−08 2.780E−10
AL (r = 10) 4.978E−10 1.117E−11 8.800E−10 1.103E−11

5 BM(ωopt) 3.109E−10 2.191E−11 8.731E−10 2.780E−11
BM(�opt) 3.414E−10 2.415E−11 8.733E−10 2.811E−11
AL (r = 10) 8.847E−10 6.203E−11 9.557E−10 2.962E−11

Table 4
Test 5.1.a. Initial condition: H(x) = max(

zref ,2
cos(α)

− b(x) − tan(α) x,0). Errors for V (x) and H(x).

zref ,2 Method V L∞ error V L2 error H L∞ error H L2 error

3 BM(ωopt) 6.316E−17 1.078E−18 1.662E−11 3.325E−13
BM(�opt) 6.848E−17 1.695E−18 3.317E−10 6.634E−12
AL (r = 10) 3.933E−17 1.430E−18 2.220E−16 4.680E−18

5.8 BM(ωopt) 1.951E−16 1.094E−17 1.776E−15 4.721E−17
BM(�opt) 1.700E−16 1.004E−17 1.332E−15 4.569E−17
AL (r = 10) 7.430E−17 3.760E−18 8.882E−16 3.320E−17

Fig. 9. Test 5.2. Free surface: initial condition.

In Figs. 10, 11, 12 the evolution of the avalanche for τy ∈ {1, 4, 8, 12} is presented at times t = 1, t = 1.5, and t = 2. In
Fig. 13, we plot the stationary solution reached for each value of τy . In these figures, we only present the results obtained
with the Bermúdez–Moreno method. Of note, the results are exactly the same with Augmented Lagrangian method, so we
do not present them for sake of brevity. We have considered 200 computational cells. On the left column of these figures,
we present the evolution of the free surface. Right column corresponds to the velocity. We can remark zones with evidence
of rigidity: we can distinguish clearly some zones with constant velocity, that is, zones where the material moves as a
block. We can remark two difficulties of this test related with the wet/dry front. First, in the evolution of the avalanche, the
obstacle in the middle of the domain splits the avalanche in two parts. Second, the part of the avalanche arriving at the far
left of the domain goes up on a high bed which limits its movement. This leads to a back and forth motion that eventually
ends to a stationary state when all the material becomes rigid. This back and forth motion goes faster to stationary state
when τy increases. But the associated free surface has a more complex shape, which is also due to the complex, non-linear,
interaction of the material when it passes over the obstacle inducing the splitting of the material in the two basins.

For τy = 1 we can observe in Fig. 13(a) that the stationary solution is close to the one of a fluid, that is, a horizontal free
surface. The bump in the middle of the domain produces that the solution is divided in two parts and two different levels
of the free surface. In Figs. 13(c)–(g) we can observe the influence of the rigidity of the material on the final stationary
solution. Let us also remark that the computed velocity at the stationary solution are in all cases of order 10−9.

In Fig. 14 a comparison of the free surface at rest with a mesh refinement is presented. The results correspond to 200,
400, 800 and 1600 computational cells. For all cases of τy we can remark that the position and form of both parts in which
is divided the avalanche by the obstacle in the middle of the domain agree with the mesh refinement. When τy increases
we can observe that it is more difficult to capture exactly the shape of the free surface, although the averaged form is well
captured in any case.

In Fig. 15 we present the computational cost until t = 1 (sum of the number of iterations in the duality loops at each time
step) with respect to the duality parameter. We consider the four cases, τy ∈ {1, 4, 8, 12}, and {ω, r, � } ∈ [0.1, 10]. Let us
remark that for each value of {ω, r, � } ∈ [0.1, 10], we set it invariant for all time steps. Nevertheless, the computation of
the theoretical optimal value of ω and � , ωopt and �opt, defined by (22) and (23), respectively, are variable in time. In
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Fig. 10. Test 5.2. Free surface and velocity at t = 1 s for τy ∈ {1, 4, 8, 12}.

order to compare the computational cost of BM algorithms with this optimal choice of the parameters, in Fig. 15 we mark
two horizontal lines at the level of the sum of the number of iterations in the duality loops at each time step obtained with
BM(ωopt) and BM(�opt).

Let us remark that BM(ωopt) is slightly better than BM(�opt) for the case τy = 1, although both are close. Nevertheless,
for τy ∈ {4, 8, 12} there is a great difference of efficiency, being BM(�opt) close to the optimal computational cost in all
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Fig. 11. Test 5.2. Free surface and velocity at t = 1.5 s for τy ∈ {1, 4, 8, 12}.

situations. Finally, we remark that this difference is produced by the effect of the wet/dry fronts. In the case of numerical
tests without wet/dry fronts, the behavior of both versions of BM method are very similar.

6. Conclusions

In this work, we proposed a discretization of a shallow Bingham model by a well-balanced finite volume method which
is combined with duality techniques. Augmented Lagrangian and Bermúdez–Moreno algorithms have been considered to
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Fig. 12. Test 5.2. Free surface and velocity at t = 2 s for τy ∈ {1, 4, 8, 12}.

discretize the momentum equations. For the mass conservation equation we proposed a well-balanced correction which
depends on the definition of the multiplier associated to the duality technique. This correction includes the use of a limiter
that has been specially designed to recover the well-balanced properties of the numerical method. We prove that the
proposed methods are able to preserve exactly two types of stationary solutions. A treatment of wet/dry fronts has also been
proposed. It takes into account the rigidity of the material. For the case of the B.M. algorithm the definition of the optimal
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Fig. 13. Test 5.2. Free surface and velocity at rest at t = 24 s for τy ∈ {1, 4, 8, 12}.
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Fig. 14. Test 5.2. Mesh refinement. Comparison of the free surface at rest (zooms) for 200, 400, 800 and 1600 computational cells.

Fig. 15. Test 5.2. Total number of iterations until t = 1 for τy ∈ {1, 4, 8, 12}, {ω, r, � } ∈ [0.1, 10]. Red dashed line: total number of iterations for BM(�opt).
Blue dashed-dot line: total number of iteration for BM(ω).
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value of the parameter ω has been deduced. We also present two different versions of B.M. algorithm, by considering
that ω can be variable in space. In the numerical tests section, we have first compared the algorithms for an analytical
solution for a simplified model. Second, we have compared with the analytical solution of the multipliers for the case of
a stationary solution. For the case of a random bottom a comparison of the multiplier with the theoretical one, which is
proposed in Theorem 1, is also presented. Finally, we consider a test corresponding to an avalanche with an obstacle. This
is a difficult test from a numerical point of view since it involves a complex geometry and wet/dry fronts together with
strong viscoplasticity effects. In all these tests, we numerically show that computed velocities reach the stationary state. The
proposed B.M.(� ) algorithm, with ω variable in space, is in general the more efficient. The results corresponding to the
proposed optimal choice of its parameter present a good agreement with the optimal computational cost.

As mentioned in the text, we will describe how to extend such schemes for 2D domains in a forthcoming article.
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Appendix A. Derivation of the AL approach

Let us describe an Augmented Lagrangian method designed to solve problem (17) for V n+1, supposing that (Hn, V n) are
known. We refer to Glowinski and coworkers for details on this duality method à la Uzawa: the book [21] and the article
[22] for a recent review in the context of Bingham flows.

The variational inequality (17) can be rewritten as a minimization problem:

J n(V n+1)= min
V ∈V J n(V ), (48)

where J n(V ) = F n(B(V )) + Gn(V ), with V = H1
0([0, L]), H = L2([0, L]),

B : V → H, B(V ) = ∂x V , F n : H →R, F (λ) =
L∫

0

τy

√
2Hn|λ|dx,

and Gn : V → R,

Gn(V ) =
L∫

0

Hn
(

V 2/2 − V n V

�t
+ 1

2
∂x
((

V n)2)
V

)
dx +

L∫
0

β
V 2

2
dx

+
L∫

0

4ηHn 1

2
(∂x V )2 dx −

L∫
0

( fΩ + f z∂xb)Hn V +
L∫

0

f z
(Hn)2

2
∂x V dx.

As J n(V ) is a non-differentiable function, we consider the Lagrangian

Ln : V ×H×H →R,

Ln(V ,q,μ) = F n(q) + Gn(V ) +
L∫

0

Hnμ
(

B(V ) − q
)

dx,

and the Augmented Lagrangian function, for a given positive value r ∈ R:

Ln
r (V ,q,μ) = Ln(V ,q,μ) + r

2

L∫
0

Hn(B(V ) − q
)2

dx. (49)

Then, we search for the saddle point of Ln
r (V ,q,μ) over V ×H×H. Indeed, if we denote by (V ∗,q∗,μ∗) this saddle point,

then V ∗ is the solution of the minimization problem (48) (cf. [21]). To do so, we consider the algorithm proposed in [21],
based on Uzawa’s algorithm, to approximate the saddle point of (49).
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Augmented Lagrangian algorithm

• Initialization: Suppose that V n , Hn and μn are known. For k = 0, we set V k = V n and μk = μn . Initialize r.
• Iterate:

– Find qk+1 ∈H solution of

Ln
r

(
V k,qk+1,μk)� Ln

r

(
V k,q,μk), ∀q ∈ H.

In other words, qk+1 ∈H is the solution of following minimization problem:

min
q∈H

(
Hnr

2
q2 + Hnτy

√
2 |q| − Hn(μk + rB

(
V k))q). (50)

The solution of this problem is (denoting the sign function as “sgn”):

qk+1 =
⎧⎨
⎩

0 if
∣∣μk + rB

(
V k)∣∣< τy,

1

r

((
μk + rB(V k)

)− τy

√
2 sgn

(
μk + rB

(
V k))) otherwise.

(51)

– Find V k+1 ∈ V solution of

Ln
r

(
V k+1,qk+1,μk)� Ln

r

(
V ,qk+1,μk), ∀V ∈ V.

Thus, V k+1 is the solution of a minimization problem, which can be characterized by differentiating Ln
r (V ,q,μ) with

respect to V . From (49), we deduce that V k+1 is the solution of the following linear problem (whose resolution is
detailed in Section 4):

Hn
(

V k+1 − V n

�t

)
+ βV k+1 − ∂x

(
4ηHn∂x

(
V k+1))− ∂x

(
rHn∂x

(
V k+1))

= ( fΩ + f z ∂xb)Hn + ∂x

(
f z

(Hn)2

2

)
− Hn

2
∂x
((

V n)2)+ ∂x
(

Hn(μk − rqk+1)). (52)

– Update the Lagrange multiplier via

μk+1 = μk + r
(
∂x V k+1 − qk+1). (53)

– Check convergence (see below) and update: V k = V k+1, μk = μk+1, k �→ k + 1 and go to the next iteration. . .
• . . . until convergence is reached:

‖μk+1 − μk‖
‖μk‖ � tol. (54)

At convergence, we get the value of V n+1 by setting V n+1 = V k+1 (in the numerical tests presented in this paper, we set
tol = 10−5). It is shown in [21] that this algorithm converges to the saddle point of (49).

Of note, we did not describe the discretization in space yet. As we said previously, we want to adopt a finite volume ap-
proach. Consequently, it is worth realizing that the underlying global problem coupling (16) and (17) involves the following
system (we use a slight change of notation which will be useful in the following: Hn+1 is denoted as Hk+1; in spite of this
choice, note again that Hk+1 is not involved in the Augmented Lagrangian algorithm and, so, does not change in this loop):

(P )n,k

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hk+1 − Hn

�t
+ ∂x

(
Hn V n)= 0,

Hn
(

V k+1 − V n

�t

)
+ βV k+1 − ∂x

(
4ηHn∂x

(
V k+1))− ∂x

(
rHn∂x

(
V k+1))

= ( fΩ + f z ∂xb)Hn + ∂x

(
(Hn)2 f z

2

)
− Hn

2
∂x
((

V n)2)+ ∂x
(

Hn(μk − rqk+1)).
(55)

Consequently, even if there is a decoupling of both problems in terms of the time discretization and the Augmented La-
grangian algorithm, it appears that to obtain a global well-balanced scheme, there must be a coupling between the mass
and momentum equations induced by the source terms (involving topography and the Lagrange multiplier). For shallow wa-
ter type systems with source terms, this has been extensively studied in the literature. In Section 4, we precisely describe
the aforementioned coupling for the present problem.

The natural follow-up of this appendix is Section 3.1.
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Appendix B. Derivation of the BM method

In this section, the solution of the velocity problem (17) is approached by means of the duality algorithm introduced
in [4]. We shall focus on the application of the method to our particular case and refer to [4,30,31] and [19] for further
details.

Define V = H1
0([0, L]) and let 〈·,·〉 be the duality pairing between V and its dual space V ′ = H−1([0, L]). The variational

inequality (17) can be rewritten as: Find V ∈ V such that〈
A(V ),Ψ − V

〉+ j(Ψ ) − j(V ) � 〈L,Ψ − V 〉 (56)

holds for every Ψ ∈ V . Here, A:V → V ′ denotes the linear operator

〈
A(V ),Ψ

〉=
L∫

0

[(
Hn

�t
+ β

)
V − ∂x

(
4ηHn∂x V

)]
Ψ dx, Ψ ∈ V.

Throughout this section it will be assumed that there exists a constant Hn
min such that Hn(x) � Hn

min > 0. Then the operator
A is coercive with constant

γ = min

(
Hn

min

�t
+ β,4ηHn

min

)
> 0. (57)

The functional j :V →R is defined by

j(V ) =
L∫

0

Φ
(
x, B(V )(x)

)
dx,

where Φ : [0, L] ×R → R is given by Φ(x, z) = τy
√

2Hn(x)|z|, and B :V → H is the derivative operator B(V ) = ∂x V , where
H = L2([0, L]) with the usual scalar product (·,·)L2 and norm ‖ · ‖L2 . Finally, L ∈ V ′ represents the functional

L = Hn V n

�t
− Hn

2
∂x
((

V n)2)+ Hn( fΩ + f z∂xb) + 1

2
∂x
((

Hn)2
f z
)
.

Notice that j(V ) = T (B(V )), where T :H →R is given by

T (Z) =
L∫

0

Φ
(
x, Z(x)

)
dx.

Let ω > 0 be an arbitrary parameter and define Gω = ∂T − ωI , where the subdifferential ∂T is the multivalued operator

∂T (Z) = {
W ∈ H: T (Q ) − T (Z) � (W , Q − Z), ∀Q ∈ H

}
, Z ∈ H.

As T is proper, convex and lower semicontinuous, its subdifferential turns out to be a maximal monotone operator. Thus, if
λ > 0 is such that λω < 1, the resolvent Jλ = (I + λGω)−1 is an univalued operator defined on H. Moreover, if λω � 1/2
the Yosida regularization of Gω ,

Gω
λ = I − Jωλ

λ
,

is a Lipschitz function with constant 1/λ (see [9]).
Observe that, due to the continuity of T , the subdifferentials of j and T are related as [16]

∂ j(V ) = B∗(∂T
(

B(V )
))

,

where B∗ denotes the dual operator of B . Thus, problem (56) can be reformulated as follows: Find V ∈ V and θ ∈ H such
that {

A(V ) + B∗(ωB(V )
)+ B∗(θ) = L,

θ = Gω
λ

(
B(V ) + λθ

)
.

(58)

As Gω
λ is a Lipschitz function, it makes then sense to define the fixed-point Bermúdez–Moreno algorithm as follows: For k � 0,

θk being known, compute V k and θk+1 by solving{
A(V k) + B∗(ωB

(
V k))+ B∗(θk) = L,

θk+1 = Gω
(

B
(

V k)+ λθk). (59)

λ
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As it was proved in [4], the sequence V k converges to the solution V due to the coerciveness of the operator A. For
questions regarding the convergence of the multipliers θk we refer the reader to [30].

The key point in the definition of the BM algorithm (59) is the construction of the Yosida regularization Gω
λ , that will be

worked out in what follows. First of all, notice that [16]

∂T (Z) = {
W ∈ H: W (x) ∈ ∂Φ

(
x, Z(x)

)
a.e. x ∈ [0, L]}. (60)

Thus, a simple computation shows that ∂T (Z) is the set of elements W ∈H that verify

W (x) ∈

⎧⎪⎨
⎪⎩
{
τy

√
2Hn(x)

}
if Z(x) > 0,[−τy

√
2Hn(x), τy

√
2Hn(x)

]
if Z(x) = 0,{−τy

√
2Hn(x)

}
if Z(x) < 0,

a.e. x ∈ [0, L]. After some algebra, we deduce the following expression, which is valid a.e. x ∈ [0, L] for each Z ∈H:

Gω
λ (Z)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ωZ(x) + τy
√

2Hn(x)

1 − λω
if Z(x) > λτy

√
2Hn(x),

Z(x)

λ
if Z(x) ∈ [−λτy

√
2Hn(x), λτy

√
2Hn(x)

]
,

−ωZ(x) − τy
√

2Hn(x)

1 − λω
if Z(x) < −λτy

√
2Hn(x).

(61)

The complete algorithm for solving (17) is then given in Section 3.1.1 of the main text.

Appendix C. Study of the BM optimal parameter

Given a uniform partition of [0, L] of size h, let Vh be the finite-dimensional subspace of V of standard conforming P1
finite elements. Consider now the discrete versions of (58) and (59), where the elements V and V k are assumed to belong
to Vh instead of V (for the sake of clarity, the dependence on h will not be explicitly stated). Combining both expressions,
we get〈

A
(

V k − V
)
,Ψ

〉+ ω
(
∂x V k − ∂x V , ∂xΨ

)
L2 + (

θk − θ, ∂xΨ
)

L2 = 0, ∀Ψ ∈ Vh, (62)

and also, using that Gω
λ is Lipschitz with constant 1/λ,∥∥θk+1 − θ

∥∥2
L2 = ∥∥Gω

λ

(
∂x V k + λθk)− Gω

λ (∂x V + λθ)
∥∥2

L2

� 1

λ2

∥∥∂x V k − ∂x V
∥∥2

L2 + ∥∥θk − θ
∥∥2

L2 + 2

λ

(
θk − θ, ∂x V k − ∂x V

)
L2 . (63)

Taking Ψ = V k − V in (62), we deduce〈
A
(

V k − V
)
, V k − V

〉+ ω
∥∥∂x V k − ∂x V

∥∥2
L2 + (

θk − θ, ∂x V k − ∂x V
)

L2 = 0,

so (63) can be written as∥∥θk+1 − θ
∥∥2

L2 �
∥∥θk − θ

∥∥2
L2 − 4ω

〈
A
(

V k − V
)
, V k − V

〉
, (64)

taking into account that λω = 1/2.
Assume that γ1 and γ2 are positive constants (which may depend on h) verifying

γ1‖Ψ ‖L2 � ‖∂xΨ ‖L2 � γ2‖Ψ ‖L2 , ∀Ψ ∈ Vh, (65)

and define Hn
max = ‖Hn‖∞ . Then, from (62) and the definition of A, we have(

θk − θ, ∂xΨ
)

L2 = −〈A(V k − V
)
,Ψ

〉− ω
(
∂x V k − ∂x V , ∂xΨ

)
L2

�
(

Hn
max

�t
+ β

)∥∥V k − V
∥∥

L2‖Ψ ‖L2 + (
4ηHn

max + ω
)∥∥∂x V k − ∂x V

∥∥
L2‖∂xΨ ‖L2

�
[(

Hn
max

�t
+ β

)
γ −1

1 + (
4ηHn

max + ω
)
γ2

]∥∥V k − V
∥∥

L2‖∂xΨ ‖L2 , ∀Ψ ∈ Vh.

Taking now Ψ ∈ Vh such that ∂xΨ = θk − θ , we obtain from the above inequality

∥∥θk − θ
∥∥

L2 �
[(

Hn
max + β

)
γ −1

1 + (
4ηHn

max + ω
)
γ2

]∥∥V k − V
∥∥

L2 . (66)

�t
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On the other hand, using the coerciveness of A, we have that〈
A
(

V k − V
)
, V k − V

〉
� γ

∥∥V k − V
∥∥2
V = γ

(∥∥V k − V
∥∥2

L2 + ∥∥∂x V k − ∂x V
∥∥2

L2

)
� γ

(
1 + γ 2

1

)∥∥V k − V
∥∥2

L2 , (67)

where the coercivity constant γ was given by (57).
Finally, combining (64), (66) and (67), we deduce the following inequality:∥∥θk+1 − θ

∥∥
L2 � L(ω)

∥∥θk − θ
∥∥

L2 , (68)

where

L(ω) =
{

1 − 4ωγ
(
1 + γ 2

1

)[(Hn
max

�t
+ β

)
γ −1

1 + (
4ηHn

max + ω
)
γ2

]−2}1/2

.

The optimal choice of the parameter ωopt will be that minimizing L(ω). An easy computation shows that

ωopt =
(

Hn
max

�t
+ β

)
1

γ1γ2
+ 4ηHn

max.

From a practical point of view, it is necessary to have good estimates of the constants γ1 and γ2 appearing in (65). To
this end, we consider the following spectral problem: Find 0 
= vh ∈ Vh and μh ∈ R such that(

v ′
h,ϕ

′
h

)
L2 = μh(vh,ϕh)L2 , ∀ϕh ∈ Vh.

It is well-known [6] that, for uniform mesh size h, there exists an orthonormal basis of Vh composed by eigenvectors
{ϕ(1)

h , . . . , ϕ
(N)

h } associated to the eigenvalues 0 < μ
(1)

h � · · · � μ
(N)

h of the spectral problem. Indeed, these eigenvalues have
the following form:

μ
( j)
h = 6

h2

1 − cos( jπh/L)

2 + cos( jπh/L)
, j = 1, . . . , N,

where N denotes the number of internal nodes. For arbitrary vh =∑N
j=1 v jϕ

( j)
h we have

‖∂x vh‖2
L2 = (∂x vh, ∂x vh)L2 =

N∑
j=1

v2
j

(
∂xϕ

( j)
h , ∂xϕ

( j)
h

)
L2 =

N∑
j=1

v2
jμ

( j)
h

(
ϕ

( j)
h ,ϕ

( j)
h

)
L2

{
� μ

(1)

h ‖vh‖2
L2 ,

� μ
(N)

h ‖vh‖2
L2 ,

so we deduce the inequalities√
μ

(1)

h ‖vh‖L2 � ‖∂x vh‖L2 �
√

μ
(N)

h ‖vh‖L2 , ∀vh ∈ Vh.

As noticed in [6], the following optimal estimate holds as h → 0:∣∣μ( j) − μ
( j)
h

∣∣= O
(
h2),

where μ( j) = ( jπ/L)2. Therefore, we consider the approximations γ1 =√
μ(1) = π/L and γN =√

μ(N) = Nπ/L.
Summarizing, a quasi-optimal choice of the parameter ω would be given by

ωopt
(

Hn
max

)=
(

Hn
max

�t
+ β

)
L2

Nπ2
+ 4ηHn

max. (69)

In the case of wet/dry fronts further adaptations can be made and are described in Section 3.1.3.

Appendix D. The coupled scheme in the case of the AL

For this duality method the structure of the complete algorithm is very close to the BM one. In particular, the linear
problem verified by the speed in the duality loop ([Step 2] below) is embedded in the general formulation (38)–(42).

Global numerical scheme for (13)–(14) – Augmented Lagrangian method

• Initialization at time t = 0 for n = 0: V n , Hn , μn are given by the initial conditions.
• Time loop: For n = 0, . . . ,nmax.

– Resolution of the problem on V k+1

{V n
i }i , {Hn

i }i and {μn
i+1/2}i are known.

Compute quantities which are invariant in the following loop:
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Augmented Lagrangian loop:
[Step 0] Initialize for k = 0: for all i, V k

i = V n
i and μk

i+1/2 = μn
i+1/2.

[Step 1] Update {qk+1
i+1/2}i by computing

qk+1
i+1/2 = 1

r

(
μk

i+1/2 + r
V k

i+1 − V k
i

�x

)(
1 − τy

√
2

|μk
i+1/2 + r

V k
i+1−V k

i
�x |

)
+
. (70)

In the case of a wet/dry front, if Hi � Hε , Hi+1 < Hε and bi + Hi < bi+1 then we set qk+1
i+1/2 = 0. Or if Hi < Hε ,

Hi+1 � Hε and bi+1 + Hi+1 < bi , we also set qk+1
i+1/2 = 0.

[Step 2] Update {V k+1
i }i by solving the linear system defined by the second component of (28). See details at

(38)–(42), with δn
i+1/2 and ζ k

i+1/2 given by (27)(a) and (26)(a).

[Step 3] Update {μk+1
i+1/2}i via

μk+1
i+1/2 = μk

i+1/2 + r

(
V k+1

i+1 − V k+1
i

�x
− qk+1

i+1/2

)
. (71)

[Step 4] Set: for all i, V k
i = V k+1

i , μk
i+1/2 = μk+1

i+1/2 and return to Step 1.

[Step 5] At convergence, when condition (54) is verified, set V n+1
i = V k+1

i and μn+1
i+1/2 = μk+1

i+1/2 ∀i.

– Resolution of the problem on Hk+1

Compute Hn+1 = Hk+1 with the finite volume method determined by the first component of (28), defined in terms of
the most recent Lagrange multiplier {μn+1

i+1/2}i and taking into account the wet/dry treatment presented before where
needed.

This can be compared to the Bermúdez–Moreno algorithm presented in Section 4.1.

Appendix E. Proof of Theorem 1

Proof. It is enough to prove that if for a time t = tn we have Hn
i = H0

i and V n
i = 0, then Hn+1

i = Hn
i and V n+1

i = 0,
∀i = 1, . . . , M .

(i) First, let us prove that the numerical scheme preserves exactly the stationary solution defined by V n
i = 0, bi + Hn

i =
constant, where {Hn

i }i = {H0
i }i verifies (46).

(i.a) First, let us prove that V n+1
i = 0, where V n+1

i = V kend
i , being kend the number of iterations necessary to converge in

the fixed point algorithm. If we prove that bn,1 = 0 (see Eq. (39)), as {V 1
j } j is the solution of the linear system (38), it

implies that V 1
i = 0. Moreover, if we prove that ζ 2

i+1/2 = ζ 1
i+1/2 then we obtain that kend = 1 and V n+1

i = 0. Thus, let

us prove that bn,1 = 0.

The components of the vector bn,1 = 0 are

bn,1
i = bn,(1)

i + bn,1,(2)
i + bn,1,(3)

i , i = 1, . . . , M,

where bn,(1)
i , bn,1,(2)

i and bn,1,(3)
i are defined by (40), (41) and (42), respectively.

Taking into account that ζ 0
i+1/2 is defined by (47) and bi + H0

i = constant , we have that

bn,1,(2)
i = ζ k

i+1/2 − ζ k
i−1/2

�x
= −H0

i fΩ.

As V 0
i = 0 and bn,1,(3)

i is defined in terms of the second component of numerical flux function (30), we have

bn,1,(3)
i = H0

i f z
H0

i+1 − H0
i−1

2�x
.

Then, taking into account the definition of bn,(1)
i (40) we obtain that

bn,1
i = H0

i f z (
bi+1 + H0

i+1 − (
bi−1 + H0

i−1

))= 0.

2�x
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Thus, bn,1 = 0 and consequently V 1
i = 0, i = 1, . . . , M . Let us now prove that ζ 2

i+1/2 = ζ 1
i+1/2. ζ 1

i+1/2 is defined by (47), and

by (46) we have that |ζ 1
i+1/2| � τy

√
2H0

i+1/2. Then (see Subsection 4.1) for the AL algorithm we have that |μ1
j+1/2| � τy

√
2.

So, by (70) we have that q2
i+1/2 = 0 and consequently, since V 1

j = 0 ∀ j, by (71) we obtain that μ2
i+1/2 = μ1

i+1/2. For the

BM algorithm we have that θ1
i+1/2 � τy

√
2H0

j+1/2; then, by (37) we have that θ2
j+1/2 = θ1

j+1/2. Therefore, we deduce that

ζ 2
i+1/2 = ζ 1

i+1/2.

Consequently, we obtain that V n+1
i = V n

i = 0.

(i.b) Now, let us prove that Hn+1
i = Hn

i . From (28), and taking into account that V n
j = 0 for j = i − 1, i, i + 1, we have that

Hn+1
i = Hn

i + 1

2

�t

�x

(
α0,i+1/2

(
Hn

i+1 − Hn
i + [

Gn{ζ k
j+1/2

} j=i+1
j=i−1

]
1

)− α0,i−1/2
(

Hn
i − Hn

i−1 + [
Gn({ζ k

j+1/2

} j=i+1
j=i−1

)]
1

))
.

Then, it is enough to prove that

Hn
i+1 − Hn

i + [
Gn({ζ k

j+1/2

} j=i+1
j=i−1

)]
1 = 0, ∀i,

where

[
Gn({ζ k

j+1/2

} j=i+1
j=i−1

)]
1 = 1

f z

(
fΩ �x + f z (bi+1 − bi) + �(ζ + δn ∂x V )k

i+1/2

Hi+1/2

)
.

In this case, as bi + Hn
i is constant, the flux limiter used in the definition of �(ζ + δn ∂x V )k

i+1/2 is equal to one. So, we
obtain

�
(
ζ + δn ∂x V

)k
i+1/2 = 1

2

(
ζ

kend
i+3/2 − ζ

kend
i−1/2

)
.

By using that ζ
kend
j+1/2 = ζ 1

j+1/2 (see Section (i.a) of the proof), for j = i − 1 and j = i + 1, and (47), we obtain that

�
(
ζ + δn ∂x V

)k
i+1/2 = −�xHn

i+1/2 fΩ.

As a consequence, [Gn({ζ k
j+1/2} j=i+1

j=i−1)]1 = bi+1 − bi and

Hn
i+1 − Hn

i + [
Gn({ζ k

j+1/2

} j=i+1
j=i−1

)]
1 = Hi+1 + bi+1 − (Hi + bi) = 0.

Then, Hn+1
i = Hn

i , what concludes the proof for case (i).

(ii) For the case of a stationary solution with a constant free surface we suppose that

fΩ xi + f z
(

H0
i + bi

)= constant. (72)

First, note that using (47) and (72) we have

ζ 1
i+1/2 = −

(
i∑

j=1

H0
j −

[M/2]∑
j=1

H0
j

)(
fΩ xi+1 + f z

(
H0

i+1 + bi+1
)− (

fΩ xi + f z
(

H0
i + bi

)))= 0. (73)

As a consequence, we have that

bn,1
i = H0

i

2�x

(
fΩ xi+1 + f z

(
H0

i+1 + bi+1
)− (

fΩ xi + f z
(

H0
i + bi

)))= 0, (74)

and

Hn
i+1 − Hn

i + [
Gn({ζ k

j+1/2

} j=i+1
j=i−1

)]
1 = 1

f z

(
fΩ xi+1 + f z

(
H0

i+1 + bi+1
)− (

fΩ xi + f z
(

H0
i + bi

)))= 0. (75)

By (73), (74), (75) and following the steps of Section (i) of the proof, we obtain that Hn+1
i = Hn

i and V n+1
i = 0. �

Then follows, in the main text, the numerical tests of Section 5.
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Appendix F. A duct flow case

This test is inspired by the classical (Newtonian) Poiseuille flow between two infinite parallel plates (orthogonal to the
x-axis). The flow thus depends only on the transverse variable x and is defined by the velocity V = V (x) in the direc-
tion parallel to the plates. Here, instead of Navier–Stokes, we consider a Bingham constitutive law. To recover the so-called
Bingham–Poiseuille flow from (14), we suppose that the height is constant (H = 1), the flow is stationary (no time depen-
dence) and “laminar” (no “convective” term), and that there is no friction (β = 0). Finally, the force needs to be transformed
to model this pressure driven flow: this is easily achieved by taking α = π/2, which leads to a remaining force which is fΩ
(simply denoted f in the following) and has to be exactly thought as the pressure gradient which drives the flow. We use
a relaxation formulation of the aforementioned model by using the following degenerate version of (14):

∀Ψ,

L∫
0

∂t V (Ψ − V ) + 4η∂x(V )∂x(Ψ − V ) + τy

√
2
(|∂xΨ | − |∂x V |)dx �

L∫
0

f (Ψ − V )dx. (76)

Here t is not a physical time but a relaxation time; the solution of (76) converges, for t → +∞, to the solution of the
aforementioned Bingham–Poiseuille flow which is known analytically:

V BP(χ) = f

8η

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
L

2
− χy

)2

if 0 � χ � χy,(
L

2
− χy

)2

− (χ − χy)
2 if χy < χ � L

2
,

(77)

where χ = |x − L
2 |, χy = τy

f locates the yield zone and the domain is defined for x ∈ [0, L]. Note that, L and τy being given,

if f � 2τy
L , then V BP ≡ 0: if the pressure gradient is too small, the driving force is not sufficient to overcome the yield stress

and the material remains rigid.
The interest of this test is that, though rather simplified, the velocity is not null and the resulting problem contains

all the mathematical difficulties of the Bingham model. We want to check the ability of the numerical methods presented
previously to converge to the stationary solution (77) and proceed as follows. We take a null initial condition:

∀x ∈ [0, L], V (t = 0, x) = 0,

and homogeneous Dirichlet boundary conditions:

∀t � 0, V (t,0) = V (t, L) = 0.

We set a domain of length L = 1, discretized with 200 points. Moreover, η = 0.2, τy = 4/
√

2 and f = 25. We compute
the evolution of the solution and consider that a numerical stationary solution has been reached when the relative error
between two iterations in time (with a time step �t = 0.05) is smaller than 10−8, namely

‖V n+1 − V n‖1

‖V n+1‖1
< 10−8. (78)

The convergence of the velocity (resp. multiplier) to the stationary solution is shown in Fig. 16 (resp. 17) for both Augmented
Lagrangian and Bermúdez–Moreno methods. Indeed, for this test, we can easily compute the multipliers associated to V BP

(they are known up to a constant); for the Augmented Lagrangian method we have

μ(x) = − f x − 4η∂x V BP + cst, (79)

whereas for the Bermúdez–Moreno method it reads

θ(x) = − f x − (4η + ω)∂x V BP + cst. (80)

In both cases, to have an enlightening graphical representation of the numerical multiplier and the analytical one, we
determine the constant in such a way the curves are superimposed at convergence. A good qualitative convergence is
observed on Figs. 16 and 17 and this is confirmed quantitatively in the following.

Indeed, we also determine the numerical order of convergence in space, through a mesh refinement study. This is done
for the velocity and the associated multiplier for both duality methods. The results are given on Figs. 18 and 19. We also
give the associated figures in Tables 5–6 and 7–8, respectively. Note that the figures are the same for V in Tables 5 and 7:
this is normal since the methods are different but the solution that has to be found is unique and it was proven that they
converge to this solution.

Essentially, the conclusions are that both the Augmented Lagrangian and the Bermúdez–Moreno methods are at least of
order two (in L2-norm) in space for the velocity of this non-zero stationary solution. Concerning the multiplier, which is
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Fig. 16. Convergence of the computed velocity (dashed lines) to the analytical stationary solution (continuous line): (a) Augmented Lagrangian and (b)
Bermúdez–Moreno methods. Note that there is a time �t = 0.05 between two successive curves. (See also Fig. 17.)

Fig. 17. Convergence of the computed multiplier (dashed lines) associated to the analytical stationary solution (continuous line): (a) Augmented Lagrangian
and (b) Bermúdez–Moreno methods. Note that there is a time �t = 0.05 between two successive curves. (See also Fig. 16.)

only an auxiliary ingredient to compute the solution, we see more contrasted, but fairly good, results: on the one hand the
Augmented Lagrangian method seems to be barely convergent but the error is very small (10−9–10−10 in L2-norm); on the
other hand, the Bermúdez–Moreno method exhibits a second order convergence but the errors are much bigger than the
Augmented Lagrangian method (10−1–10−7 in L2-norm).

Overall, this test is a first positive step validating the numerical ability of both methods to handle the variational in-
equality on V with at least L2-second order convergence in space.

We also study the computational cost of the two methods. To do so, for a given value of the parameter, we store the sum
of the number of iterations done in the duality loop, for each iteration in time and up to the convergence to the stationary
solution. This can be done, since the computational costs for one iteration in the duality loop are of the same order for both
methods. (Recall also that for both methods, the number of iterations in time to reach the stationary solution is the same
(up to a given precision, see (78))). The results are shown on Fig. 20: with 204 iterations, the Bermúdez–Moreno method is
approximately 20% cheaper than the Augmented Lagrangian method (242 iterations).
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Fig. 18. Order of convergence under mesh refinement: Augmented Lagrangian method. Dotted lines show first and second order of convergence, blue line
with + is the computed error.

Fig. 19. Order of convergence under mesh refinement: Bermúdez–Moreno method. Dotted lines show first and second order of convergence, blue line with
+ is the computed error.
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Table 5
Test 1. Errors and order of convergence for Augmented Lagrangian – V .

Cells L∞ error Order L2 error Order

10 1.869E−01 – 4.561E−02 –
20 4.558E−02 2.036 8.284E−03 2.460
40 1.277E−02 1.835 1.565E−03 2.404
80 2.915E−03 2.131 2.645E−04 2.566

160 8.029E−04 1.860 4.915E−05 2.428
320 1.825E−04 2.137 8.282E−06 2.569
640 5.024E−05 1.861 1.538E−06 2.429

1280 1.144E−05 2.134 2.596E−07 2.567
2560 3.176E−06 1.849 4.861E−08 2.417

Table 6
Test 1. Errors and order of convergence for Augmented Lagrangian – μ.

Cells L∞ error Order L2 error Order

10 3.903E−08 – 5.817E−09 –
20 4.059E−08 −0.056 3.396E−09 0.777
40 4.410E−08 −0.120 2.398E−09 0.502
80 4.761E−08 −0.111 1.822E−09 0.397

160 4.959E−08 −0.059 1.316E−09 0.469
320 5.104E−08 −0.042 9.399E−10 0.486
640 5.129E−08 −0.007 6.645E−10 0.500

1280 5.160E−08 −0.009 4.704E−10 0.498
2560 5.350E−08 −0.052 3.378E−10 0.478

Table 7
Test 1. Errors and order of convergence for Bermúdez–Moreno – V .

Cells L∞ error Order L2 error Order

10 1.869E−01 – 4.561E−02 –
20 4.558E−02 2.036 8.284E−03 2.460
40 1.277E−02 1.835 1.565E−03 2.404
80 2.915E−03 2.131 2.645E−04 2.566

160 8.029E−04 1.860 4.915E−05 2.428
320 1.825E−04 2.137 8.282E−06 2.569
640 5.024E−05 1.861 1.538E−06 2.429

1280 1.144E−05 2.134 2.596E−07 2.567
2560 3.176E−06 1.849 4.860E−08 2.417

Table 8
Test 1. Errors and order of convergence for Bermúdez–Moreno – θ .

Cells L∞ error Order L2 error Order

10 1.400E−00 – 2.530E−01 –
20 4.082E−01 1.779 5.128E−02 2.303
40 1.081E−01 1.917 9.529E−03 2.428
80 2.766E−02 1.966 1.719E−03 2.471
160 6.988E−03 1.985 3.065E−04 2.487
320 1.756E−03 1.993 5.440E−05 2.494
640 4.402E−04 1.996 9.640E−06 2.497
1280 1.104E−04 1.996 1.709E−06 2.496
2560 2.778E−05 1.990 3.042E−07 2.490

In the case of the Bermúdez–Moreno method we can compare this numerical evaluation of ω with the theoretical
estimation which gives ωopt = 1.44; this is in very good agreement with the numerical investigation.

We can then study the well-balanced properties of the scheme in Section 5.1.
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Fig. 20. Computational cost (number of iterations in the duality loops) with respect to the duality parameter: Augmented Lagrangian and Bermúdez–Moreno
methods. Note that the value of the parameter realizing the minimum of the cost is (a) r = 0.85 with nbiter = 242, (b) ω = 1.4 with nbiter = 204.
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