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Abstract 7

A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. 8

The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented 9

open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, 10

electron-phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and 11

models electron-electron collisions using Monte-Carlo techniques. This combination of deterministic and 12

stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials 13

exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demon- 14

strate how electron-electron scattering relaxes the non-equilibrium electron distribution on the femtosecond 15

time scale. 16

Keywords: 17
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1. Introduction 20

Ultrafast laser-material interactions play a critical role for many modern laser applications. In particular, 21

a detailed understanding of laser-induced ionization and many-body effects in dielectrics is necessary for 22

progress in laser machining and ablation [1], laser surgery [2], and laser-induced breakdown spectroscopy 23

[3]. The physics of these applications is strongly nonlinear, and there are few, if any, analytical solutions 24

to problems of general interest [4]. Simulations therefore provide the primary method of theoretical testing 25

for new models for ultrafast laser-material dynamics, as well as for closely related experimental research 26

involving high intensity ultrashort pulse propagation [5–7]. 27

The research areas of laser-material dynamics and pulse propagation are rich in nonlinear physics and 28

can require considerable computational effort to perform comprehensive simulations [6, 8]. This issue is 29

compounded when modeling pulse propagation at high intensities, since the laser field is sufficiently high to 30

ionize the medium through which it propagates. This fact should necessitate a simultaneous and detailed 31

modeling of pulse propagation and free-carrier dynamics, but this is rarely done because of computational 32

constraints. What is typically done instead are calculations of reduced dimensionality [9], or fully 3D models 33

using a highly detailed model of pulse propagation coupled with a greatly simplified model of laser-material 34

dynamics [10], or vice versa [11]. To couple these research areas frequently requires the collaboration of 35

theorists with differing expertise and who program their calculations using different code languages. The 36

occasional need to interface two programming languages for a research collaboration can also have additional 37
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computational benefits when one language is particularly well suited to certain calculations or uses scientific38

libraries unavailable in the language of another collaborator.39

In this paper we provide such an interface between code written in C++11 and FORTRAN 2003 code.40

The simulations performed provide an efficient yet detailed approach to calculate laser-material interactions41

that are efficient enough to be coupled with pulse propagation simulations in the future. This necessarily42

involves calculating the free electron distribution as a function of time. Our calculations address this issue43

by using a split-step method to solve an extended multi-rate equation [12, 13] (EMRE), modeling the free44

electron distribution as a function of time and electron energy. This method uses the EMRE to model the45

conduction electron interactions with other particles (photons, phonons, and bound electrons) with simple46

rate equations coded in FORTRAN 2003, while using Monte-Carlo methods to model the computationally47

intensive electron-electron collisions coded in C++11 and utilizing freely available C++11 scientific libraries.48

The EMRE has been coupled previously to pulse propagation simulations [14], but this did not include direct49

calculation of the electron-electron scattering, which is typically the dominant influence on the relaxation50

of the electron distribution on the femtosecond time scale [15].51

Using a Monte-Carlo approach to model the dominating influence of electron-electron collisions ensures52

a representative thermalization of the electron plasma. Our results show how one can efficiently model53

the evolution of the free-electron energy distribution shape from non-equlibrium to a quasi-equilbrium, i.e.54

a slowly evolving Maxwellian distribution. The results qualitatively capture the evolution occuring on the55

time-scale of tens of femtoseconds as demonstrated by previous calculations solving the Boltzmann scattering56

equation for all electron interactions [16].57

2. The Extended Multi-Rate Equation58

In this section we describe the deterministic step of the calculation. For all simulations in this work59

the free-electron plasma dynamics are simulated by solving an extended multi-rate equation (EMRE) [13],60

based on the multiple rate equation (MRE) [12, 18], developed to calculate the electron distribution ρe in the61

conduction band. The EMRE discretizes the energy range of the considered part of the conduction band.62

As such, ni describes the electron density in the energy interval [εi, εi + Δε], i.e., ni = ρe(εi)Δε, where εi63

is the ith represented conduction-band energy and Δε is the bin width of the energy discretization. Let64

us stress that Δε is chosen to be the smallest energy transition the model must account for. Finally, the65

extended multi-rate equation (EMRE) is expressed as66

d

dt
ni = ṅpi

i + ṅimp
i + ṅe−pn

i + ṅ1pht
i + ṅe−e

i . (1)

The terms on the right hand side (RHS) of Eq. (1) describe contributions from photo-ionization, impact67

ionization, electron-phonon collisions, 1-photon absorption by free-carriers, and electron-electron collisions,68

respectively. The total electron density ne as well as the total energy εtot in the conduction-band are69

determined according to70

ne =
εmax∫
0

ρe(ε) dε and εtot =
εmax∫
0

ρe(ε) εdε . (2)

Here, εmax is the highest modeled conduction band energy. Below we specify models for these terms. The71

various energy indices used in these models are summarized in Tab. (1).72

Equation (1) is typically solved with standard ODE methods. In this paper we take a combined approach:73

The last term on the RHS accounting for electron-electron collisions plays a major role in bringing the74

distribution ρe(ε) from a strongly non-equilibrium configuration to a quasi-equilibrium. It is computationally75

impractical to simulate this term deterministically. We therefore solve this term with a stochastic method76

coded in C++11 and described in Sec. 3. The other processes are coded in FORTRAN and are solved with77

efficient deterministic calculations as described below. The algorithm for these two independent calculations78

is described in detail in Section 4.79
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Table 1: Summary of the EMRE indices. The notation [x] denotes the integer part of x.

Index Definition Description
i [εi/Δε] Energy index
j [�ω/Δε] Photon energy index
m [εmax/Δε] Maximum EMRE energy index
s [εpn/Δε] Mean phonon energy index
c [εcrit/Δε] Critical energy index
g [εgap/Δε] Band gap energy index
p [εpi/Δε] Post photo-ionization energy index
kl [εimp

l /Δε] Post impact-ionization energy index

2.1. Photo-ionization 80

The photo-ionization term in Eq. (1) is given by [16] 81

ṅpi
i = W pi (|E| , ω

)
δip , (3)

where we use the Keldysh photo-ionization formula [19] for solids to calculate the photo-ionization probability 82

W pi
(∣∣E(t)

∣∣ , ω
)
, which includes both multi-photon ionization and tunneling contributions. Here, |E| is the 83

electric field amplitude and ω is the optical frequency. The energy at which photo-ionized electrons enter 84

the conduction band is given by 85

εpi =
[
Δ̃/�ω + 1

]
�ω − Δ̃ ,

where Δ̃ = εgap + q2 |E|2 /4mrω
2 is the effective band gap [19] comprising the material band gap εgap and 86

the ponderomotive energy. The reduced-effective mass of the created electron-hole pair is mr and the charge 87

of the electron is q. 88

2.2. Impact Ionization 89

The contribution of impact ionization is given by 90

ṅimp
i = −αini + 2

m∑
l=c

δikl
αlnl , (4)

where α(εi) = Pimp
(
(εi − εcrit)/εcrit)2

θic, is the average energy-dependent impact-ionization rate, where 91

Pimp is the impact rate coefficient [16] and θic ={1 for i ≥ c, 0 otherwise} is the step function, εcrit = Δ̃(1+ 92

2μ∗
r )/(1+μ∗

r ) is the critical energy for impact ionization, and μ∗
r is the reduced-effective mass of the conduc- 93

tion and valence electrons. By using a contribution of this form we are following the approach of Ref. [20], 94

albeit extended to an EMRE framework. The approach is designed to conserve both momentum and energy 95

during the impact process. Upon successive absorption events in the conduction band, electrons with energy 96

exceeding the critical energy εi > εcrit participate in impact ionization. It collides with a valence electron 97

having a statistical average energy of -Δ̃/6 below the top of the valence band [20] (the conduction electrons 98

have an energy of εi + Δ̃ relative to the point in energy space). The resulting pair of conduction electrons 99

are assumed to split their energy evenly between them, resulting in an energy of εimp
i = (1/2)εi − (7/12)Δ̃ 100

when entering the conduction band. 101

2.3. Electron-Phonon Collisions 102

The electron-phonon collision term can be approximated by a net plasma energy relaxation into the 103

phonon gas and is given by [13]: 104
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ṅe−pn
i = ni+s

τpn
i+s

− ni

τpn
i

. (5)

Here, τpn
i is the average energy-dependent electron-phonon scattering time. The scattering time is imple-105

mented in terms of the scattering rate νpn
i and the limits of the energy discretization: (1/τpn

i ) = νpn
i θisθm,i+s.106

In short, the electrons at the energy εi are assumed to lose an average phonon energy of εpn during a char-107

acteristic time τpn
i .108

2.4. Free-Carrier Absorption109

The one-photon absorption term on the right hand side of Eq. (1) is given by [20]:110

ṅ1pht
i = βi−jI(t)ni−j − βiI(t)ni . (6)

These terms represent the carriers per volume per time entering and leaving the εi−j and εi energy bins by111

one-photon absorption, respectively. The optical intensity is I(t) and the formula for the energy dependent112

coefficient of inverse Bremsstralung absorption βi is [7]113

βi =
e2τ c

i

mrn0cε0(1 + (ωτ c
i )2) ,

where n0 is the linear index of refraction, ω is the optical frequency, and τ c
i is the energy-dependent114

momentum relaxation time.115

3. Electron-electron collisions116

In this section we describe how to simulate electron-electron scattering, i.e., the term ṅe−e
i in Eq. (1),117

with the Monte Carlo (MC) method.118

In this approach we follow classical kinetic theory and describe the electron electron interaction as119

collision of two neutral, hard spheres each with radius r. To account for the charge of the electrons, and120

thus Coulomb interaction, we set the radii of our considered hard spheres equal to the screening length.121

In the following sections, we describe the assumptions and involved physics in more detail, i.e., the122

average interaction time τ , the total cross section σtot as well as the energy transfer.123

3.1. Average interaction time124

According to kinetic theory [21], the average interaction time τ between two successive interactions is125

computed via126

τ = λ

〈g〉 = 1
〈g〉 neσtot

with λ = 1
neσtot

, (7)

with λ being the mean free path, ne the total electron density and σtot the total cross section, corresponding127

to electron-electron interactions. As we assume all electrons to be moving, we apply the average velocity128

difference 〈g〉, with g = |
v1 − 
v2|, where 
v1 and 
v2 denote pre-collisional velocities of two different electrons.129

3.2. Total cross section130

In classical kinetic theory, the total cross section for the collision of two hard spheres, each with radius131

r, is given by σtot = 4πr2 [21]. Usually, the cross section for the collision of two charged particles is infinite132

due to the infinite range of the Coulomb potential. To tame this problem, screening is taken into account,133

which leads to a finite interaction range and thus a finite total cross section [22]. In our case, we apply as134

screening length the inverse of the so-called screening parameter κ [23]135
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κ2 = e2me
π2ε0�2

∞∫
0

f(k) dk . (8)

In Equation (8) f denotes the distribution of the average occupancy of state k, usually called distribution 136

function in statistical physics. 137

To bridge the gap to the electron energy distribution ρe(ε) in the framework of the EMRE, we take into 138

account a dispersion relation ε(k) and density of states D(ε) of a three dimensional free electron gas [24] 139

ε(k) = �
2k2

2me
and D(ε) = m

3/2
e

π2�3

√
2ε .

As a consequence, we can rewrite κ2 from Equation (8) as

κ2 = e2

2ε0

∞∫
0

ρe(ε)
ε

dε . (9)

The total cross section is then calculated as σtot = 4π/κ2. 140

3.2.1. Energy Transfer 141

In the case of a collision the transferred energy Δεtr is computed according to

Δεtr = ε ′
1 − ε1 = 1

2me
v
2
1 − 1

2me
v
′
1

2 , (10)

where 
v1 and 
v ′
1 denote the pre- and post-collisional velocities. Moreover, the post-collisional velocities of

both colliding electrons are determined according to


v ′
1 = 1

2 (
v1 + 
v2 + g n̂)


v ′
2 = 1

2 (
v1 + 
v2 − g n̂) ,

(11)

where n̂ is a point on the unit sphere S2. As such, Eq. 11 determines the set of all allowed post-collisional 142

velocities 
v ′
1 and 
v ′

2 regarding energy and momentum conservation. Finally, in accordance with a MC 143

simulation, the post- collisional velocities are chosen randomly, which will be explained in Sec. 4.2. 144

4. Algorithm 145

The method we use to solve Eq. (1) is based on the concept of operator splitting. As such, neglecting
the term of electron-electron collisions ṅe−e

i on the RHS of Eq. (1), we solve

d

dt
ni = ṅpi

i + ṅimp
i + ṅe−pn

i + ṅ1pht
i

deterministically via a traditional ODE time-step. Then the electron-electron collisions are solved stochas- 146

tically in a separate time-step. These two different steps represent the different contributions from the 147

collaborating authors. The deterministic step was programmed in FORTRAN while the stochastic step was 148

programmed in C++11. The two steps passed information during each run via a wrapper (see Fig. 1) as 149

described in Sec. 5. To obtain an extra order of accuracy, initial and final times steps of Δt/2 are taken 150

with the deterministic method before taking the alternating stochastic and deterministic steps of Δt. 151
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Fortran

C++11

EMRE

MC

EMRE

MC

EMRE

MC

Δt Δt Δt

Figure 1: Sketch of the computational interface between the EMRE and MC part programmed in FORTRAN and C++11, respec-
tively.

4.1. The Deterministic Step152

For the deterministic step we use an adaptive step-size Runge-Kutta method to integrate the EMRE153

over each time step Δt. This returns the distribution ρe(t, ε) at distinct time steps t, evolved by ioniza-154

tion, electron-phonon collisions, and single photon absorption events. The ionization processes increase the155

number of conduction electrons while the single-photon absorption events drive the system into a strongly156

non-equilibrium configuration. The alternating Monte-Carlo step, consisting only of electron-electron colli-157

sions which change neither the total number of electrons nor the energy of the plasma, plays the major role158

of driving the system into a quasi-equilibrium state.159

4.2. The Stochastic Step160

According to the previously described MC method we present the way in which these schemes are161

combined with the EMRE. The basic idea is that after each time step Δt the EMRE algorithm sends the162

density distribution ρe(E) to the MC algorithm, which performs the electron electron collisions during Δt163

and sends the changed distribution back to the deterministic EMRE algorithm.164

Initially, the MC algorithm computes the average interaction time τ via the equations (7) and (9). Since165

the EMRE part provides the electron distribution ρe, the total density ne can be computed according to166

Eq. (2). Furthermore, the average velocity difference 〈g〉 is approximated by neglecting the distinction167

between root mean square (rms) and mean values [25]168

〈g〉 ≈ grms =
√

〈g2〉 =
√

〈(
v1 − 
v2)2〉
=

√
〈
v 2

1 〉 − 2〈
v1 · 
v2〉 + 〈
v 2
2 〉 ,

where we assume the direction to be isotropic and identically distributed. Thus 〈
v1 · 
v2〉 = 0 and 〈
v 2
1 〉 = 〈
v 2

2 〉 = 〈v2〉.169

As a consequence, we proceed with170

〈g〉 ≈
√
2〈v2〉 = 2

√
〈ε〉
me

, (12)

where 〈ε〉 = εtot/ne is the average kinetic energy.171

The MC algorithm repetitively generates random energies ε1 and ε2 weighted according to the electron172

distribution ρe(ε) provided by the EMRE part. This is achieved due to inverse transform sampling [26,173

Chap. 4]. Based on a random energy ε, we assume the direction of an electron to be isotropic and thus174

determine the pre-collisional velocity 
v according to175


v =
√

2ε

me

⎛
⎝cosϕ sinϑ
sinϕ sinϑ

cosϑ

⎞
⎠ with

ϕ = u1 · 2π

ϑ = cos−1(2u2 − 1)
(13)
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Algorithm 1 Overview of the combined EMRE and MC methods.
1: while t ≤ tmax do
2: � start EMRE step
3: advance (1) by Δt/2 via standard ODE integrator
4: calculate contributions to (1) by (3), (4), (5), (6)
5: ODE integrator provides new ρe(ε)
6: � stop EMRE step
7: � start MC step
8: advance ρe(ε) by Δt via electron-electron collisions
9: apply inverse transform sampling to ρe(ε)

10: compute ne, σtot and 〈g〉 with (2), (9) and (12)
11: compute τ with (7)
12: for number of runs N do
13: sample tint, 
v1 and 
v2 according to (13)
14: if tint ≤ τ then
15: compute 
v ′

1, 
v ′
2 and E ′

1 and E ′
2 via (11)

16: compute energy transfer according to (10)
17: else
18: E ′

1 ← E1 and E ′
2 ← E2

19: 
v ′
1 ← 
v1 and 
v ′

2 ← 
v2
20: end if
21: end for
22: � end MC step
23: � continue EMRE step
24: advance (1) by Δt/2 via standard ODE integrator
25: calculate contributions to (1) by (3), (4), (5), (6)
26: ODE integrator provides new ρe(ε)
27: � end EMRE step
28: t ← t +Δt
29: end while

where u1, u2 ∈ (0, 1) are uniformly distributed random numbers. Summarized, we sample the direction as 176

points from the unit sphere S2 [27]. 177

Furthermore, the interaction time tint is assumed to be exponentially distributed. As a consequence, 178

we sample according to tint = − τ ln u, where u ∈ (0, 1) is a uniformly distributed random number [26, 179

Chap. 4]. Thus, if the sampled interaction time tint is smaller or equal than the provided time step Δt, the 180

two randomly determined electrons collide with each other. In this case, the energy transfer is computed 181

according with Eq. (10) and Eq. (11). Again, in Eq. (11) the point n̂ on the unit sphere is uniformly 182

sampled. This describes the fact that, in the case of a collision of hard spheres, the scattering angle is 183

uniformly distributed in (0, π) [28]. 184

Let us stress again that we consider a simplified model computing the collision of two neutral hard 185

spheres and account for Coulomb interaction via the screening number κ. As such, the scattering angle is 186

not governed by the differential cross section of Coulomb scattering, i.e., the Rutherford formula. 187

4.3. The combined steps 188

To obtain an extra order of accuracy, initial and final time steps of Δt/2 are taken with the deterministic 189

method before taking the first stochastic step of Δt. After that the steps are taken alternately each over 190

Δt, until the ending deterministic step of Δt/2. Algorithm 1 provides an overview of the combined EMRE 191

and MC methods presented as a pseudo code. 192
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5. Interface193

In this section, the interface between the two programing languages C++11 and FORTRAN 2003 is described.194

Here the main program to be executed is written in FORTRAN 2003 and calls code from C++11 via a wrapper195

interface. As has been pointed out above, the Monte Carlo part is written in C++11. A major constituent of196

a Monte Carlo simulation is a random number generator (RNG), which provides random numbers according197

to a required distribution. Note that the C++11 standard provides several random number generators as198

well as distributions. In our case, we choose the Meresenne Twister random number generator [17].199

Moreover, the sequence of random numbers is initialized by a seed, which determines the initial state of200

the RNG engine. This state is updated after each call of a random number. For the sake of good programming201

style, the RNG shall be initialized once with a fixed seed. This allows reproducing the results corresponding202

to the Monte Carlo part. As a consequence, we avoid initializing the RNG each time the FORTRAN 2003 part203

calls the MC part by initializing the RNG only once at the beginning of the first calculation. Thus the same204

random number generator is available throughout the simulation.205

In the following, the intrinsic ISO C BINDING module serves as communication between FORTRAN and206

C/C++ by binding each FORTRAN subroutine to an external C function. In our FORTRAN 2003 module, a207

derived data type is initialized, which contains a pointer, able to store the address of a C/C++ object. In the208

next step, an external C function is called, which initializes a C++ class, comprising the RNG. The address209

of this object is stored in the previously denoted pointer. As a consequence, the RNG is initialized with a210

fixed seed.211

From now on, FORTRAN 2003 can repeatedly invoke the electron-electron collisions by calling the corre-212

sponding C++ member function via an external C function and the stored pointer address. Example code for213

this interface is provided in the supplementary material.214

6. Simulations215

We solve Eq. (1) using the algorithm described in Sec. 4. These calculations are performed for ultrashort216

pulses of three different pulse durations of 15 fs, 30 fs, and 60 fs, as measured by the full width at half the217

maximum intensity, τw. The central wavelength of each pulse is taken to be 400 nm with a peak intensity of218

I0 = 4 × 1017 Wm−2. The pulse shape is assumed to be Gaussian and the intensity in each case is given by219

I(t) = I0 exp(−4 ln(2) t2/τ2
w). Note that by keeping the same peak intensity for each pulse while changing220

the pulse width for each, we are changing the total pulse energy for each simulation.221

The material is assumed to have a band gap of 9 eV and a linear refractive index of n0 = 1.47, like fused222

silica glass. The electron and hole masses are approximated as equal to the free electron mass. The electron-223

phonon collision time τpn
i and free-carrier momentum scattering time τ c

i are calculated from the energy and224

momentum scattering rates as functions of electron energy from Ref. [29]. The average phonon energy225

is assumed to be εpn = 33meV [30]. In our calculations we set the energy discretization Δε equal to εpn,226

yielding a value of j = 93 for the photon energy index in Table. 1, and set the maximum EMRE energy index227

to m = 1500. The value for the impact ionization parameter rate is estimated to be Pimp = 21.2 fs−1 which228

was calculated from a Boltzmann collision integral for energies near the critical energy εc in Ref. [16]. During229

the simulation, the conduction electron distribution as a function of energy, ρe(ε), and the total ionization230

yield, ne, are recorded at each time step. Each simulation was performed once with the electron-electron231

collisions included and then performed again without this contribution.232

7. Results233

The laser pulse intensity and resulting ionization yields for each simulation are shown in Fig. 2 as functions234

of time. Note that although the pulse shape is the same for each plot, the time axes are normalized to the235

respective pulse width τw. Note also that the maximum yields (measured on the left axes) increase with236

increasing pulse width. Comparison between the curves including (solid blue lines) and excluding (dotted237

red lines) electron-electron collisions show that for each pulse width the evolution of ne(t) prior to the pulse238

peak is not significantly changed by these collisions. At those earlier times the influence of photo-ionization239
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Figure 2: The normalized laser intensity (dashed black line) and total ionization yield, ne, with (solid blue line) and without
(dotted red line) electron-electron collisions, shown as functions time for pulses with durations of (a) 15 fs, (b) 30 fs, and (c) 60 fs.
The peak intensity of each run was I0 = 4 × 1017 W m−2. Note that the time axis is normalized to the pulse width τw, while
the density axes are rescaled for each panel.

is dominant. Thus one finds a characteristic feature in ne(t) occurring approximately at t = −τw/2 for each 240

simulation. This feature comprises a sudden shift in dne/dt resulting from an increase of the number of 241

photons required to overcome the effective band gap during photo-ionization,f as described by the Keldysh 242

model. The opposite of this feature occurs in Fig. 2a at time t = +τw/2 when one less photon is required 243

for photo-ionization. Such behavior is also present in Fig. 2b and Fig. 2c, but it is hidden in the data due 244

to the dominating influence of impact ionization over longer times. 245

Another feature in each plot of Fig. 2 is a continued increase of the conduction band population after the 246

pulse has gone that only occurs when electron-electron collisions are included. This post-pulse increase of 247

the ionization yield stabilizes on the order of a picosecond and increased the total yield between 10 % - 20 %. 248

For times t > +τw the pulse intensity becomes small. Therefore photo-ionization plays a negligible role 249

at these later times and any significant increase of the ionization yield comes from impact ionization. A 250

more detailed explanation of this behavior is provided by the data in Fig. 3 and Fig. 4. These figures show 251

the corresponding numerical solutions to Eq. (1) (divided by the discretization energy Δε) as functions of 252

electron energy and time including (Fig. 3) and excluding (Fig. 4) electron-electron collisions. During these 253

electron-electron collisions the total electron density and energy are conserved. However, the thermalization 254
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Figure 3: Conduction band electron distributions as functions of energy and time for pulses with durations of (a) 15 fs, (b) 30 fs,
and (c) 60 fs. These results include electron-electron collisions.

does cause a small fraction of initially lower-energy electrons to suddenly gain energies high enough for255

impact ionization (εcrit ≥ 13.5 eV in our case) without the need of absorbing additional photons from the256

laser field. This effect keeps increasing the ionization yield after the pulse has passed.257

Figure 3a and 3b, as well as all of Fig. 4 show how the sharp-peaked distribution, prior to the pulse peak258

for the shortest pulses, thermalizes. These early peaks in the distribution arise from photo-ionization into low259

energies followed by single photon absorption events to higher energies as described by the MRE. However,260

the peaks are thermalized rapidly (on the order of 10 fs or less) by the electron-electron collision contributions.261

Therefore, if one includes electron-electron collisions in the EMRE for the pulses under consideration, only262

for the 15 fs pulse do these initial distribution peaks remain throughout the pulse duration and thermalize263

after the pulse is gone (see Fig. 3).264

In the results without electron-electron collisions shown in Fig. 4 the distribution maintains a non-265

equilibrium shape throughout the simulations. Even so, some spreading of the sharp distribution peaks over266

time still occurs. This thermalization is primarily due to energy loss of electrons into the phonon gas and our267

EMRE’s largely artificial placement of post-impact ionization electrons. If more realistic models of electron-268

phonon collisions or impact ionization were used, the thermalization in Fig. 4 would likely be greater.269
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Figure 4: Conduction band electron distributions as functions of energy and time for pulses with durations of (a) 15 fs, (b) 30 fs,
and (c) 60 fs. These results neglect electron-electron collisions.

Regardless, comparison of Fig. 3 and Fig. 4 demonstrate that the role of electron-electron collisions in 270

determining the distribution shape is decisive, at least for time scales greater than a few tens of femtoseconds. 271

In comparing the distribution shapes on the leading and trailing pulse edges, it is helpful to look at 1D 272

plots of the distribution at specific times prior to and after the pulse peak. Numerical solutions to Eq. (1) 273

(again divided by the discretization energy Δε) are shown in Figs. 5 and Fig. 6 as functions of electron energy 274

for times surrounding the peak of the laser intensity. Note here, as in the earlier figures, that the maximum 275

distribution values change with changing pulse widths so as to better contrast the respective distribution 276

shapes at the various times. These specific times are also given in units of the pulse width, τw. 277

The important conclusion to draw from these results is that at the peak of the 60 fs pulse, see the t = 0 fs 278

plot in Fig. 5 (c), the distribution is already thermalized by electron-electron collisions. This is not the 279

case for the 15 fs and 30 fs pulses in Fig. 5a and Fig. 5b. In many calculations of laser-induced ionization, 280

particularly those used in pulse propagation simulations, the ionization yield is used in combination with 281

a Drude model to simulate the entire response of free charges [6, 7]. Although the peak ionization yields 282

shown in Fig. 2 are of the same order of magnitude whether or not electron-electron collisions are included, 283

comparison of Fig. 5 and Fig. 6 demonstrates the significance of electron-electron collisions to the electron 284
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Figure 5: Conduction band electron distributions as functions of energy at various times for pulses with durations of (a) 15 fs,
(b) 30 fs, and (c) 60 fs. These results include electron-electron collisions.

distribution shape even for the shortest pulses under consideration. The distinction is not a trivial one285

for those wishing to interface the laser-material response to pulse propagation simulations. The shape of286

the electron distribution has a definite effect on the optical properties of the carriers due to the energy287

dependence of quantities such as momentum and energy relaxation times. This consequence has been288

demonstrated by theoretical works [14, 29] as well as experimental validation of theoretical treatments using289

time-dependent reflectivity and absorption measurements [31]. The primary driver of this effect in each case290

was the non-equilibrium state of the free carriers. Therefore, since many ubiquitous models of free-carrier291

optical properties assume a thermalized distribution in quasi-equilibrium, they are highly questionable for292

pulse durations under 50 fs. The presented approach addresses this issue by separating the fast calculations293

of the EMRE from the more cumbersome thermalizing calculations required for classical electron-electron294

collision modeling. By doing so, each calculation may be optimized separately from the other.295
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Figure 6: Conduction band electron distributions as functions of energy at various times for pulses with durations of (a) 15 fs,
(b) 30 fs, and (c) 60 fs. These results neglect electron-electron collisions.

8. Conclusion 296

A C++11 / FORTRAN 2003 interface is presented and used to combine deterministic and stochastic methods 297

of modeling electron collisions in solids exposed to ultrashort laser pulses. The presented simulations using 298

this interface evolve the conduction band energy-dependent electron distribution in a dielectric solid exposed 299

to an ultrashort high-intensity laser pulse. The simulations take a split-step approach comprising a stochastic 300

Monte-Carlo step to simulate electron-electron collisions, and a deterministic step solving an extended multi- 301

rate equation with standard ODE solvers for all other collisions. The results show that the model of 302

electron-electron scattering plays a dominant role in the evolution of the electron energy distribution. This 303

has, for instance, consequences on the free-carrier dependence of optical properties. 304

This approach is advantageous because it separates the fast calculations of the EMRE (typically coupled 305

to the field evolution) from the more demanding calculations required for proper electron-electron collision 306

modeling. Therefore, each calculation may be optimized separately from the other. This technique is ideal 307

for simulations of high-intensity, long distance pulse propagation in solids, which requires simultaneous 308

modeling of the field and material evolution. 309
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