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Abstract

In this paper, we present a stable hybrid scheme for viscous problems. The hybrid method combines the unstructured
finite volume method with high-order finite difference methods on complex geometries. The coupling procedure between
the two numerical methods is based on energy estimates and stable interface conditions are constructed. Numerical calcu-
lations show that the hybrid method is efficient and accurate.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

High-order finite difference methods (HOFDM) provide an efficient approach when high resolution is
essential in a calculation. It is also clear that the node-centered unstructured finite volume method (UFVM)
is widely used for problems with complex geometries and non-linear phenomena. In computational physics,
the computational domain is often for efficiency and mesh generation reasons divided into multiple blocks,
where either HOFDM or UFVM can be used. If a stable and accurate coupling at the block interfaces is
achieved we can construct a very flexible and efficient computational method.

Attempts to combine structured and unstructured mesh types have been considered before. For instance, in
[13] a method which uses both the finite difference method and the finite element method is developed. The
finite difference domain and the finite element domain are patched together using overlapping meshes. In
[5], the calculation of unsteady flow in Turbo-machinery was done using a mixture of quadrilateral and trian-
gular cells for added flexibility. In [9], a two-dimensional zonal interactive scheme for Euler equations was
developed for computing flows around complex geometries. Although many type of hybrid methods have been
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developed to improve the accuracy and efficiency of calculations around complex geometries, very few deal
with the essential stability issue.

In [3,15,16,18,6], stable interface treatment between multiple domains for HOFDM were presented. The
technique is based on the so-called summation-by-parts (SBP) operators and impose the boundary and inter-
face conditions weakly, see [2]. The weak imposition of boundary and interface conditions is necessary for sta-
bility since it preserves the SBP character of the difference operators. In [3], the authors developed stable and
conservative interface and boundary conditions treatments of arbitrary spatial accuracy for the linear advec-
tion—diffusion equation. In [15], boundary and interface conditions for the constant coefficient Euler and
Navier—Stokes equations were developed. The interface conditions are stable and conservative even if the finite
difference operators and mesh sizes vary from domain to domain. The method is applied to multidimensional
linear problems in curvilinear coordinates in [16]. In [18], it was shown that the method is suitable for aeroa-
coustic sound generation and propagation while various versions of interface procedures for viscous problems
in one dimension were investigated in [6].

In a parallel development it was shown in [17,22,21] that the UFVM approximation of the first derivative
[17] and the Laplacian [22,21] is an SBP formulation. In a similar manner as for the HOFDM, it was also
shown that a correct weak imposition of boundary conditions lead to stability.

In [19], it was shown how to couple the UFVM and HOFDM in a stable way for hyperbolic problems. The
energy method and a modification of the dual mesh in the UFVM lead to stability. The present paper contin-
ues the study of stable interface treatment by considering hybrid schemes for viscous problems. We also add
the additional complexity of a curvilinear mesh in the HOFDM region. The technique derived in this paper
makes it straight forward to apply the hybrid technique to the full Navier-Stokes equation.

The rest of the paper is organized as follows. In the next section, we derive stable boundary conditions for
the continuous problem. Section 3 presents the two numerical methods on a single domain. In Section 4, we
derive the stable coupling procedure. In Section 5, numerical experiments are performed. Conclusions are
drawn in Section 6.

2. The continuous problem

Consider the model problem

u, + au, + bu, = e(uy +uy), x,y€Q, t>0, (1a)

u(x,y,0) = f(x,y), X,y €&, (1b)
)

ocu—i—ﬁa—u:g(x,y,t)7 x,y €00, t>0. (Ic)
n

The coefficients a, b and ¢ are constants. In general, the coefficients « and f§ depend on x, y and .
Let the inner product for real valued functions u,v € Q be defined by (u,v) = [ fQ uvdxdy and the corre-
sponding norm |[ul|* = (u,u). Applying the energy method to (la) yields,

0
all? + 2e(flue]* + [Ju||7) = —f (cu2 - 23u—u> ds. 2)
00 on
where
I’l:(dy7d—dx)7 ds:,/de_’_d)ﬂ7 E:((Lb).n’ 2_1/!:(“)””‘7),”.
s " :

Substituting the boundary conditions (1c) into (2) we obtain

ﬁg [—(c—i—z—;s)uz—i—%ug] ds
_ 2u g 1 ? e\’ 1 )
—fég(c+Fa>(u—E—c+%8g> ds+£g(ﬁ> (—c+%8>g ds. (3)

2 2 2
aally + 26((fell” + lluey][7)
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This leads to immediately to:

Proposition 2.1. The continuous problem (1) is strongly well posed if

E+2—;a>0 on 09. (4)

Remark. When the solution can be estimated in terms of all types of data, the problem (1a) is called strongly
well posed, see [7] for more details.

3. The discrete single domain problem
3.1. The finite volume method

The so-called edge-based finite volume method is used in this paper (see [4,8,11,12,17,24] for more details).
The computational domain consists of non-overlapping elements and the variables are stored at the nodes of
the mesh. For each node, the control volume that constitutes the dual grid is defined as a polygon with its
vertices at the centers of gravity of the surrounding triangles (or quadrilaterals) and at the midpoints of the
sides, see Fig. 1.

In the finite volume method the unknown variable u in Eq. (la) is discretized by the vector
u = [ug,u,...,uy]. Uy, Uy, U, and u, denote the approximations of u,, u, u, and u,,, respectively. We define

u, ~Du= (P)_lell, u, = D.Du= D)Zc = (P)_IQx(P)_leu7
u,~Du=(P)'Qu, u,~DDu= D} = (P)'0,(P)"' O,

where P is a positive diagonal matrix with the control volumes ; on the diagonal. In [17,19], it was shown by
using the Green-Gauss theorem (see also [1]) that the matrices O, and O, have the components,

dy. dy,
(0)y =5 =03 (Qiea =0, (Qicca =" (5)
dx; dx;
(Qy);;/ = _7/ = _(Qy)ji7 (Qy)iigag = 07 (Qy)iieaﬂ = _7' (6)
For the definition of dx; and dy;, see Fig. 1. Moreover, Egs. (5) and (6) imply that O, and Q, satisfy
0. +(0) =Y, 0,+(9) =X, (7

where the non-zero elements in Y and X are Ay,, —Ax; and correspond to the boundary points. Formulas 5 and
6 show that D, and D, are summation-by-parts (SBP) operators, see [17,19] for more details.

Fig. 1. The grid (solid lines) and the dual grid (dashed lines): (a) in the interior and (b) on the boundary.
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On a grid point i at the boundary 0%, let (D,u), denote an approximation of 0u/0n, i.e.,
Ou - -
o), [(ux, uy) - m]; = [(uy, ) - 7], = ((Dxw),, (Dyuw),) - it; = (Dyu),, (8)

where 7; is the outward pointing normal defined by,

~ (dyia *dxi) _ 2 >
ni_d—sl-’ dSi—\/dxi+dyfa 9)

when proceeding counter-clockwise around the domain, see Fig. 1.
A semi-discrete approximation of Egs. (1b) and (1¢) can be written,

u, + aDu + bDyu = e(D2u+ D2u) + P~ (E) ' T'[ang + B(Dyu), — g] (10)

where up represents u on the boundary 0Q. Ej is a projection matrix which maps the values on the computa-
tional domain Q to the outer boundary 0%, that is, uz = Egu and (D,u), = Ez(D,u). & and f are diagonal
matrices where the discrete value of the coefficients « and f are injected on the diagonal, respectively. I is
a penalty matrix that will be determined below by stability requirements (see [17,19]).

By multiplying (10) with u"P and using,

au"Qu+ buTQyu = %ug/lgug,

u'0.Du+u'Q,Du = —(Du) P(Du) — (D,u) P(Dyu) + uySz(D,u),, (11)
we obtain,

d o ) 2 2 _ T T T 5

@ llull> + 2¢||Dyull» + 2¢|| Dyu||, = —uzAgug + 2euzSpD,ug + 2u[aug + f(D,u), — g]

= —ul(Ap — 2I'&)up + ul (2685 + 2I'B)(D,u), —2ul I'g. (12)

(IL)

In (11) and (12), we have introduced (see Egs. (8) and (9))
C; = <a7b) . ﬁh AB = diag(Z‘,—ds,-), SB = diag(dsi)7 i€ 0Q.
To cancel the term (IL) in (12), we require I' = —&SzB~". Applying the condition to (12) yields

d - N
& a7 + 2&/|D.ull; + 26| Dyl = —uj(As + 26SsB " 2)ug + 26u;S5B g

23, 2
— Z',‘ + fxl’lg ulz +~—814,*gi dSl‘
Bi; ﬁi,i
2

_ 25‘1:1' & 1
= — Ci =& Uy — =— ﬁgi dSl'
i€0Q Bi Bii ¢+ B

2
€ 1 )
—+ = T gi dSi. (13)
,-ezag:z <ﬁ11> ¢+ %F

We have proved the following proposition.
Proposition 3.1. If I' = —&Spp~" and
25 .
G+ i >0, iecoQ, (14)

ii

are satisfied. The problem (10) is strongly stable.
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Remark. When the solution can be estimated in terms of all types of data, the problem is called strongly sta-
ble, see [7] for more details.

Remark. The estimate (13) is completely similar to the continuous estimate (3). Condition (14) is completely
similar to (4).

3.2. The finite difference method

For the finite difference approximations, the physical domain must be possible to smoothly transform to a
rectangular computational domain (see Fig. 2). We start by transforming Eq. (1a) to curvilinear form. Note
that u, = ¢u; +nu, and u, = u; + n,u,, where we have introduced the transformation x = x(¢,n) and
v =y(& n) and the metric relations,

-1
fo:yna Jéy: —Xys J'/Ir: —Ves J’/Iy = X¢, ‘]:xcfyn_xﬂyé = (éxny_iynx) #0
For simplicity we also introduce the notations,

a=alJi +bJE, Z):aJnx—i—any, f:J(Cxux—s—éyuy):J(Vu-Vé), §:J(nxux+11yuy)=J(Vu-V11).

It follows that J(au, + bu,) = (au). + (bu), and J (uy + u,) = f:+ &, since a: + b, = 0. Eq. (1a) transforms
into

Ju + (au), + (bu), = &(f < + &)- (15)
For reasons that will become obvious later, we split the terms (au). and (Bu)n in (15) as (see [14])

- | - . ~ 1. - - -

(au). = 3 [(au). + au; + azul, (bu), = 3 [(bu), + buy + byul.
The difference operators in the ¢ and # directions on the right subdomain are denoted by D: = (Pg)71Q5 ®1,
and D, =1I: ® (P,,)le,,, respectively. Note that the operators (PC;)”QCf and (P,7)71Q,1 are SBP operators since
the matrices P; and P, are symmetric and positive definite and,

0: +(0:)" = B; = diag([~1,0,...0,1]),

0,+(0,)" =B, = diag([-1,0,...0,1]).
In matrix formulation we have

%x = diag((éx)i)’ Ey = diag((éy)i)v e = diag(('/lx)i)v ﬁy = diag((ny)l.), Z = diag(&,—),

B = diag(h), F =diag(f,), G =diag(z), J =diag(/)).

(16)

In the curvilinear coordinate system, the finite difference approximation of u at the grid point (&;, ;) is a vector
denoted u;;. We organize the solution in the global vector u = [uyy, ..., Uy, W, ..., Wy ooy Uypy .- oy u,,,]T. u:, u,
are approximations of u;, u, and are approximated using the high-order accurate SBP operators for the first

North
a b n=1 1;7 Interface

Interface /

East

Y

E=-1 n=0 £E=0 &=
South

Fig. 2. (a) The physical domain and (b) the computational domain.
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derivative that were constructed in [3,10]. Moreover, on the boundary we define D,u to be the approximation
of

Ou
<6n> = [(u,uy) - n]; = [(Euae + nuy, Eue +nyuy) - nl;

~ ((&Du+ D), (& Du+i,Dyu),) -y = (Dyw),, i € 0%, (17)
with

P (dy;, —dx;) _ ((J’¢ dé +y dn);, —(xed& +x,dn),)

dSl' dsi (18)
ds; = \/dd? + dy? = /(e dE +x,dn)? + (v:dE +7,d,)2

By using the notation above, a semi-discrete approximation of (la) can be written,

~ 1 ~ ~ ~ 1 ~ ~ ~
Ju, + 3 [D:(Au) + ADsu+ (I: @ 1,)Au) + 3 [D,(Bu) + BDu+ (I: ®1,)B,u

= &(D:F + D,G) + [(P2) ™' @ (P,)"(Ep) " I'[aus + B(Dyu), — g]. (19)
Here Ejp is a projection matrix which maps the values on the computational domain to the outer boundary,
that is, uz = Epu and (D,u), = Ez(D,u). The boundary conditions have been introduced by using the penalty

technique SAT, see [2,17,19].
The energy method leads to

~ 1 ~ ~ - 1 _
u' (P @ Py)Ju +5 [u'(Q; @ Py)du +u'A(Q; @ Py)utu' (P @ Py)dcu] + 50" (P @ 0,) Bu
+u'B(P;® Q,)u+u"(P;® P,)B,ul

=eu'(Q, ® P,)F +eu"(P; © 0,)G + uy Iy + B(D,u), — gl. (20)

Remark. Notice that (P; ® P,1)j is a norm if P¢ and P, are diagonal, see Lemma 1 in [16].

Now we can make use of the splitting technique to obtain,

1 1 - -
[“T(Pi ®PU)A5“+“T(P5 ® Py)Byu] = iuT(Pé ® P,)(4: + By)u=0,

2

since A; + B, = diag((a: + b,);) = 0. We also need,
L = T L =
ST(0: @ P Au + A (Q; ® Py)u] = su"(B: © P,) A
lor = h 1T =
F W (Pe® Q) Butu B(P; ®Q))u] = su (P ® B,)Bu.

The viscous terms becomes,
u'(Q. ®P,))F +u'(P:®0,)G = — (D) (P: ® P,)F + (Dyu)' (P: ® P,)G] +u" (B: ® P,)F
(Diss)

+u'(P:®B,)G. (21)

As was shown above we have,
F= diag(]) = diag([‘](uxéx + uyiy)]i) = j[(%ﬁ + %)Diu + (ﬁx%x + ﬁygy)Dﬂu]a
G = diag(g) = diag([J (ua, +uyn,)),) = J (& + Eiy)Deu + (7 + i77) Dyu).
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This implies that (Diss) in (21) becomes,
(Diss) = (Daw)" (P: @ P,)J[(& + &)Deu + (7, + 7,E,)Dyu] + (D) (Pe @ P,)J [(Edly + &,y)Deu

7+ D] = [Déu}T P:@P)J(E+E)  (P:®P)T (i + &,y {Diu] o)
X X n¥l T o~ % o~ ¥~ ~ .
Dyl | (P:@Py)J (&t + Eyity) (P ® Py)J (72 +172) Dyu
wl H w
The following Lemma is proved in the Appendix.
Lemma 3.2. The term (Diss) in Egs. (21) and (23) is positive semi-definite.
Via the previous analysis, Eq. (20) is rewritten as
4 lul>  ~+2¢(Dau)" (P: @ P,)F + 2e(Dyu)’ (P: ® P,)G
de"p.ep,s ¢ ¢ n n ¢ 1
=—u'(B:® P,,)Zu —u'(P:® Bn)lAS;u +2eu" (B ® P,,)1‘~7 +2eu" (P ® B,,)é + 2up Mo + B(D,,u)B —g].

(23)

Note that & = const. at the West and East boundaries and that # = const. at the South and North boundaries
(see Fig. 2). We have

L —(x,),)d
ﬁ[:W7 ds; = \/(x,); + (v,)7dn, i€ West,

o ()i —(xe),)d€

= SIS ds = \f ()] + ()] dE, i € South,
s, ¢
’ (24)
(x,).)d
g = e 2O g G e Bas
Si
L —(x:))d
iy = M ds; = 1/ (x2) + (y:);d¢, i € North.
Si B
Consequently, the right-hand-side of (23) can be rewritten as
u'(B: ® P,)Au+u"(P; ® B,)Bu = u} Aguz, u"(B;®P,)F +u"(P:®B,)G = uLSs(D,u),, (25)
where Ap = diag(¢;dl;), Sp = diag(dl;), ¢; = (a,b) - i;, and
—pVds;, dnpV¥ = diag(P,),, i€ West,
— —pids;, d&pd = diag(P:),, i€ South
T I R (20
prds;, dnpF = diag(P,),, i< East,
pNds;,  dépl = diag(P:),, i€ North.
The relations (24)—(26) inserted in (23) yields
d ~ -
@ ||u|\ii®Pn7 + 2¢(Dau)" (P: ® P,)F + 2e(Dyu)" (P: © P,)G
= u} Agug + 26eulSp(D,u), + 2ull'[aug + f(D,u), — g
= u} (A — 2T'&)ug + ul (2685 + 2I'B)(D,yu), —2uil'g. (27)

IR
To cancel the term (IR) in Eq. (27), we require I' = —&Sz5~!. By employing the same technique as in Section
3.1, we prove the following proposition.
Proposition 3.3. If I' = —&Spp~" and

2[!' .
G+ >0, iecoQ, (28)

ii

are satisfied. The problem (19) is strongly stable.
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Remark. By inserting I' = —&Spp~! and (28) into (27), we obtain an estimate that is completely similar to (3)
and (13). Note also that (28) is completely similar to (4).

4. Multiple domains and interface conditions

Without loss of generality, we consider a computational domain which consists of two subdomains. The
unknown on the left subdomain is denoted by u and on the right subdomain by v, respectively. The same tech-
nique described in the previous section is used here to discretize both u and v. The superscripts © and ® are
added in order to identify the left and right subdomains.

Since the outer boundary treatment has been already discussed, we will only focus on the interface treat-
ment. The coupling of u and v as well as the first derivatives Diu and DRv at the interface will be treated
by using the various forms of the SAT technique.

4.1. The finite volume method

A semi-discrete approximation of (1) on the left part of the computational domain can be written,

u, +abtu+ bDfw = ¢(DDbu + DEDrw) + (P1) ™ (EF) Fr(u —wi) + (P1) ™ (EF) FE[(Dhu),
+(DRV),] + (PY) (DY) (EY) ' Fy (w, — v,) + Pent, (29)

where Pen; is the penalty term that imposes the outer boundary conditions weakly. The other three penalty
terms on the right-hand-side will be used to couple the left subdomain calculation to the right subdomain
calculation. Note that (Dyu), 4 (Dyv), is small and proportional to the truncation error. u; and v, are vec-
tors which represent u and v (v is the discrete finite difference solution that will be presented below) on the
interface, respectively. E} is a projection matrix which maps the values on the left computational domain to
the interface, that is, w; = Eyu and (D.u), = E;(Dyu). Fy, Fy and F} are penalty matrices that will be
determined below by stability requirements. DXv is an approximation of dv/dn which will be derived in
the next section.
By multiplying (29) with u"P" we obtain,

d, 2 2
Il + 26 (IDkullh + 1Dkulh ) = —uf Afu, + 2a]S} (Drw), + 20 Fh(uy = v1)
+ 20T F5[(Dhu), + (DRv),] +2(DYu), Fy(u, —v,) + BTE.  (30)
where BT" collects the outer boundary terms (see Section 3.1) and
Ay = diag[(a,b) - i-dsk], Sy = diag(ds"), i € Interface.
4.2. The finite difference method
A semi-discrete approximation of (1) on the right subdomain can be written,
- 1 - - - 1 _ _ _
Tvi+3 [D?(Av) +ADRv+ (I ® In)Aév] +5 {D?(Bv) +BDMv+ (I: ® I”)an}

— :DVF 4 eDRG + [(p};)‘ ® (p};)‘l] (EX)FR (v — w) + [(Pg)‘ ® (pg)‘l} (EX)TFR[(DRY),

(ot + | (P2 ()| (00 () P =) + P o
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Here Pen® is the penalty term for the outer boundary conditions on the right part of the computational do-
main. E} is a projection matrix which maps the values on the right computational domain to the interface, that
is, v, = E;v and (DRv), = E} (DRv).
The energy method leads to
~ T ~
R R o pR R R o pR
5 +2:(DE) (PR PR)F+20(DRV) (PR2PR)G

L

=V} PR (Av) +2ev] PRSF (DRV), +2v] F} (v —w;) + 2v] FY [ (DRV), + (DFu), ] +2F% (D,‘fv)IT(v, —u;)+BTX,

(32)
where BT® collects the outer boundary terms (for details see Section 3.2) and
AR = diag[(pRdn)a], S} = diag(pRdsY), pldny = diag (P”R) , i € Interface.
4.3. Stable interface treatment
Combining (30) and (32) we have
|| I+ || ||PR®PRJ +2¢]|D a3, + 2¢]|Dlul2, + 26(D%V) (P? ® Pg)F + zs(D;‘v) (PR ®PR) G
u Ayu; + 2eu] Sy (Dyw), + 2u/ Fy(u — v;) + 2uf Fy [(Dhu), + (D), ] + 2(D,I;u)1TF]3“(u1 — V)
+ BTL + V] ARV + 2ev] ST (DRY), + 2] FR (v — ;) + 2v/ FR[(DRV), + (D}u), ]
+2(DRv), FR(v; — w)) + BT® = x/M,x, + BT" + BT®, (33)
where M; = M, + M/ and
u —Ap +2Fy —Fy—F} 0 0
Vi , —Fy —F} A} +2F} 0 0
X; = DL 9 M] = )
(Dyu), 0 0 0 0
(DRv), 0 0 00
0 0 FY + F5 + &Sy FL - FR
0 0 0 ~FY 4+ FY  FR 4 FR 4 eS}
DO FY Py pest —FL 4 FR 0 0
FY—FY  FR 4 FR 4R 0 0

A sufficient condition for M; to be a negative semi-definite matrix is that M/ is a negative semi-definite matrix
and M} = 0. If the conditions

A= A%, PR AN FR—FL AR, (34)
are satisfied, M) is a negative semi-definite matrix. Moreover, the relations

Sy =88 Fy+FY+eSy =0, Fy=F% Fy=F%, (35)
lead to M} = 0.

We have now proved the main proposition of this paper.
Proposition 4.1. The hybrid method (29) and (31) have a stable interface treatment if the conditions (34) and (35)
hold.
Remark. It can be shown that the interface treatment is conservative if the conditions

A= A%, PR =P AR, (36)
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Sy =S8y, Fy+Fy+eSp=0, (37)
F]§ = Fl;7 (38)
holds. Note that conditions (36) and (37) are a subset of the stability conditions (34) and (35) while (38) is a
new condition. If (38) is used, we get Ft = F- = FR = FR = —¢SF/2 = &S} /2.

4.4. Realizing the stability conditions

The specific SBP operators that are based on diagonal norms are given in [10,20]. The standard second-,
fourth- and sixth-order diagonal norm are

dn-diage,m,...,), (39)
. 17 59 43 49

dr]-d1ag<@,&,ﬁ,ﬁ,l,l,...,), (40)
. 13,649 12,013 2711 5359 7877 43,801

d’7'dla“=”<43,2oo’ 8640 ’4320’4320’8640’43,200’1’1""’>’ (41)

respectively.
Recall that for i € Interface we have,
A} - diag[(ﬂh b) : (dy,'; —dx,-)}, A;{ = dlagLUIR dr](a, b) ! ((yn)i? _(xﬂ)i)]a (42)

st = diag\Jaxz + 7). ST = diag(pfan/ )+ 0,7 @3)

A sufficient condition for obtaining A} = AN and SF = S¥ at the interface is
dy; = pidn(x,),, dy,=pidn(y,), i€ Interface. (44)

Denote the discretization points at the interface by 0, 1, ..., N, where 0 is the start point and N is the end point.
Since the vertices of each old dual grid close to the interface consist of the center of the triangles and the mid-
point of the edge at the interface, we have

X1 —Xo P 1= R
TR — non o,

dy =20 =N, dy, =W N, (45)
=5l otherwise, Ll diel otherwise,

When we use the second-order accurate finite difference method to compute the metric coefficients on the right
subdomain we get,

X1 —XQ . Y1= Vo ] —
—d)1 1= O, dn i 07
XN XN — _ YNTIN-1 g
(xﬂ)f = dn i=N, (yﬂ)i = dn i=N, (46>
Xip] —Xi—] : Yig1 Vi1 1
S otherwise, 7 otherwise.

By multiplying (46) with the standard second order diagonal norm we exactly obtain (45) and consequently
(44) is satisfied automatically.

However, the relations A7 = AN and S} = S} are not automatically satisfied when curvilinear interfaces or
high-order SBP operators are used. We need to modify the control volume for the UFVM to guarantee the
conditions (34) and (35). To do this, we must move the position of the vertex i € interface at the interface,
which is determined by (44). Relation (44) should be understood as follows: adjust the left-hand-side (that pro-
duces the dual grid) to the given value of the right-hand-side.

We take the following example and show how to deal with the interface for high-order SBP operators. Let
us choose a curved interface (see Fig. 3) of the form
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Fig. 4. The control volume connected to point 3 at the interface: (a) the original control volume and (b) the modified control volume.

x =x(0,n) =0.3sin(2my), y=p0,7)=1n, 0<n<1

The interface is discretized using 11 points and each line segment has equal length. If we use a fourth-order
accurate SBP operator to approximate the first derivative in Eq. (44), the new modified dual grid points will
be located as in Fig. 3. Instead of the original control volumes (see Fig. 4), the new control volumes (see Fig. 4)
should be used in order to guarantee the stability of the hybrid scheme.

5. Numerical calculations

The model problem tested below is written
u + au, + bu, = e(uy + u,) + F, (47)

with suitable initial data and boundary data. F is the forcing function. In the test we use a =1, 5 =1 and
¢ = 0.1. In order to estimate the accuracy of the schemes, an exact solution u = sin(2n(x + y — 2¢)) has been
chosen. The initial data, boundary data and the forcing function F are adjusted to fit the exact solution.

To test the efficiency and accuracy of these schemes, we define the rate of convergence, ¢, on the compu-
tational domain as

_ logyg([lu — vV, /llu — v]|,)

- log,, (\/W/W) 7
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Fig. 5. (a) Unstructured mesh, 704 nodes and (b) convergence rate.

Table 1
Convergence rates of approximations to u, + u, + u, = 0.1(u,, + u,,) on a single domain [0, 0] x [1, 1] by using the UFVM and HOFDMs
Points UFVM HOFDM (2nd) HOFDM (3rd) HOFDM (4th)
logyo-Err q logyo-Err q logyo-Err q logyo-Err q
9x9 —-0.99 - —0.99 - —1.48 - - -
17x 17 —1.57 2.10 —1.57 2.10 —2.30 2.97 —2.25 -
33%x33 -2.17 2.06 -2.17 2.06 -3.16 2.98 —3.34 3.78
65 % 65 —2.76 2.03 —2.76 2.03 —4.04 3.01 —4.47 3.86
129 x 129 -3.36 2.02 -3.36 2.02 —4.94 3.01 —5.64 3.93
257 x 257 -3.97 2.00 -3.97 2.00 —5.83 2.99 —6.83 3.96

Cartesian meshes are used.

where u is the exact solution. v(!) and v/ are the corresponding numerical solutions on meshes with NV and N
nodes (including boundary nodes), respectively. We use the classical fourth-order Runge-Kutta method for the
time integration. A small time-step is used to minimize the temporal error. We measure the error at ¢ = 1.0.

5.1. Single domains and basic accuracy

We start by studying the accuracy of the UFVM on unstructured triangulated meshes (see Fig. 5). The con-
vergence rates are presented in Fig. 5. Due to symmetry of the triangle meshes, second order accuracy is
obtained.

Table 1 shows the convergence rates for both UFVM and HOFDM on a Cartesian meshes. The nodes of
the Cartesian meshes (see Fig. 5) are refined from 81 to 66,049. The convergence rates for the schemes with
interior accuracy of order 2, 4, 6 and boundary accuracy of order 1, 2, 3 are 2, 3, 4th order as shown in
[23]. Note that the same error are obtained by using the UFVM and the second order HOFDM. This shows
that the UFVM and the second order HOFDM are identical schemes on Cartesian meshes. Other test, not
shown here, confirm that the correct convergence rate for the HOFDM on stretched and curvilinear meshes
is obtained.

5.2. Multiple domains

In this section, we will illustrate the stability and efficiency of the hybrid scheme on multiple domains. The
testing is processed as follows:

(1) Applying the UFVM on an unstructured mesh in all subdomains.
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(2) Using the UFVM on the same mesh in a subdomain and the HOFDM on structured mesh(es) in the
other subdomain(s).

(3) Adjusting the number of grid points in the subdomain until we obtain a similar L,-error in all
subdomains.

First we calculate on two subdomains with a linear interface at x = 0 (see Fig. 6). Table 2 shows the con-
vergence rate of UFVM and second and fourth order accurate HOFDM. The convergence rate for the UFVM
is 2 on unstructured symmetrical meshes. The log;oL,-error is —3.30 for the UFVM on the finest mesh with
50,138 points. We only need a mesh with 28,852 points for the hybrid method (UFVM + HOFDM (4th)) to
obtain the same error level.

Next, we test the hybrid method on two subdomains with a smooth curved interface (see Fig. 6). In the
result shown in Table 3, we see that in the fourth order case the hybrid scheme is efficient since only one fifth
of the nodes are required for the HOFDM. The error levels are almost same as with a linear interface. The
solution and the error are presented in Fig. 7. The wave propagates from left to the right via the curved inter-
face without reflection. We conclude that the curved interface does not introduce more error and reflections
compared with the linear interface.

Next we will test the hybrid schemes on a computational domain [—1, 1] x [—1, 1] with four subdomains
(see Fig. 8). On the subdomain [—1,0] x [—1,0] excluding an ellipse, the UFVM was used. On the three other
subdomains, the HOFDM was used. The finite difference and the finite volume solutions are co-located at the
interfaces y = 0 and x = 0. Table 4 shows the convergence rate by using the hybrid scheme. The solution and
error are shown in Fig. 9. The efficiency of the hybrid scheme with the fourth order HOFDM is clearly seen.

a b
1 1 ok HHHHH T
0 0o HH
NEARRRNAREREAAN
N i ANLASERLENRAREN
o8 ook NRERRRERNEREE]
o ok NNRRRRRRRRRRREE]

A
" " TR
e
2 2 EEEAREANNNNNAREE
B o HHHT
. . KRR M
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 6. Hybrid mesh with two subdomains: (a) with a linear interface and (b) with a curved interface.

Table 2

Convergence rates of approximations to u, + u, + u, = 0.1(u, + u,,) on two subdomains with a linear interface

UFVM (whole domain) Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (4th))

Points logo-Err q Points logo-Err q Points logo-Err q
360 —1.09 - 292 (182 +110) -1.09 - - - -
1425 -1.70 2.06 1124 (704 + 420) —1.69 2.05 977 (704 + 273) —1.73 -
3133 -2.07 2.07 2537 (1607 + 930) -2.07 2.16 2072 (1607 + 465) -2.07 2.06
5588 -2.32 2.06 4447 (2807 + 1640) -2.32 2.05 3545 (1807 + 738) -2.32 2.13
8779 -2.52 2.09 6907 (4357 + 2550) -2.52 2.08 5428 (4357 + 1071) —2.53 2.26
22,389 —-2.94 2.07 17,619 (11,139 + 6480) -2.94 2.06 13,164 (11,139 + 1863) -2.93 2.09
50,138 -3.30 2.03 39,621 (25,101 + 14,520) -3.30 2.03 28,852 (25,101 + 3751) -3.30 2.15

UFVM is used on the left domain and HOFDM is used on the right domain.
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Convergence rates of approximations to u, + u, + u, = 0.1(u, + u,,) on two subdomains with a curvilinear interface

UFVM Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (4th))
Points logjo-Err q Points logyo-Err q Points logjo-Err q
360 —1.09 - 271 (160 + 110) —1.00 - - - -
1425 —1.70 2.06 1017 (597 + 420) —1.62 2.16 870 (597 + 273) —1.64 -
3133 -2.07 2.07 2236 (1306 + 930) —1.98 2.14 1771 (1306 + 465) —1.99 2.26
5588 -2.32 2.06 3942 (2302 + 1640) —2.24 2.10 3040 (2302 + 738) -2.26 2.26
8779 -2.52 2.09 6217 (3667 + 2550) -2.43 1.87 4738 (3667 + 1071) —2.44 1.95
22,380 -2.94 2.07 15,709 (9229 + 6480) —2.86 2.13 11,092 (9229 + 1863) -2.85 2.18
50,138 -3.30 2.03 35,226 (20,706 + 14,520) -3.21 2.03 24,457 (20,706 + 3751) -3.22 2.19
UFVM is used on the left domain and HOFDM is used on the right domain.
b
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0.9
0.02
0.8
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-1 -08 -06 -04 02 0 0.2 0.4 0.6 0.8 1 =1 -08 -06 -0.2 0 0.2 0.4 0.6 0.8 1
Fig. 7. log,(Ly-error) = —2.22 on the left subdomain with 2302 nodes and log,(L,-error) = —2.39 with 738 nodes for

u; +uy +u, = 0.1(uy, + u,,). A curved interface is used: (a) solution at 7 = 1.0 and (b) error at 7 = 1.0.
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Fig. 8. (a) A hybrid mesh with four subdomains and (b) initial condition.
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Table 4
Convergence rates of approximations to u, + u, + u, = 0.1(u, + u,,) on four subdomains
UFVM (whole domain) Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (4th))
Points  logjo- q Points logio- q Points logjo- q
Err Err Err
733 —1.09 - 550 (187 + 121 + 121 + 121) —1.11 - - - -
2809 -1.70 2.09 2020 (697 + 441 + 441 + 441) —-1.71 2.14 1412 (697 + 273 + 273 + 169) —1.75 -
6389 -2.07 2.07 4451 (1568 + 961 + 961 + 961) -2.08 2.15 2723 (1568 + 465 + 465 + 225) -2.09 243
11,205 -2.32 2.05 7826 (2783 + 1681 + 1681 + 1681) -2.34 2.07 4538 (2738 + 738 + 738 + 324) -2.35 2.22
17,424 -2.52 2.08 12,156 (4353 + 2601 + 2601 + 2601) —2.54 2.16 6936 (4353 + 1071 + 1071 +441) —2.56 243
44,447 -2.94 2.06 30,721 (11,038 + 6561 + 6561 + 6561) -2.96 2.07 15,285 -2.96 2.21
(11,030 + 1863 + 1863 + 529)
99,923 —3.30 2.04 68,405 —3.32 2.07 32,945 -3.32 2.27
(24,482 + 14,641 + 14,641 + 14,641) (24,482 + 3751 + 3751 +961)
b
! [T i
0.8 il ] 0.04
06 ]]I]] [T
i 0.03
0.4
0.02
0.2
> 0 4:';! =i = 0.01
oy =
= 0
-0.4 = =
-0.01
-0.6
038 -0.02
-1 -0.8 -0.6 —0 -0.2 0 0.2 0.4 0.6 0.8 1 711 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

X

Fig. 9. A four subdomain case: (a) solution at 7 = 1.0 and (b) error at 7 = 1.0.

Another example illustrate the reflexion of error from the interfaces between multi-domains. The vortex is
introduced into the computational domain [—1,1] x [-1,1] with four subdomains by using the analytic
solution

u(x,y,1) = kexp(—0((x — et + b)) + (v — ot + b)),

as boundary and initial data (see Fig. 8). In the test we used ¥ = 0.5, 0 =50, ¢, =1, by =0.5, c; =1 and
¢, = 0.5. Between ¢ = 0.3 and 0.7 the vortex propagates close to the interfaces y = 0 and x = 0. No problems

could be detected at the interfaces and the error/reflexion is very small (see Fig. 10).

5.3. An application to a non-linear problem

As an example of a non-linear problem we consider the two-dimensional viscous Burgers’ equation

u
ul+<2

2

) + Uy = Ellyy, ngaygla
X

u(x,y,0) = 1.5 — 2x,

u(0,y,t) = 1.5,

”(17)’: t) = —05,

u(x,0,¢) = 1.5 — 2x.

(48)
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Error/Reflexion
Error/Reflexion

. -1 -0.5 0 0.5 1
X(y=0) X(y=0)

Fig. 10. The error on the interface between four subdomains. Subdomain 1: FVM on 2807 points; subdomain 2: 4th FDM on 41 x 41
points; subdomain 3: 4th FDM on 41 x 41 points; subdomain 4: 4th FDM on 41 x 41 points. (a) Interface y = 0 and (b) interface x = 0.

We have used ¢ = 0.01, 5647 grid points on the left unstructured domain and 81 x 41 grid points on the right
structured domain. The result is shown in Fig. 11. We find that the interface does not destroy the shape of
shock. The shock smoothly propagates through the interface.

5.4. Application to heat distribution around rods

Finally, we will exemplify our technique by computing the steady heat distribution around a set of rods.
Consider the problem,

T,+al,+bT,=¢eT+1T,), —-1<xy<l1, t>0, (49)
with a initial condition 7 = T, and the boundary conditions
oT
on
at the far-field boundary. 7 is the unit outward pointing normal. At the ith rod we specify the temperature
T = T;. For the temperatures we used 7, =T, =1, T, =2.0, T, = 0.1, T3 = 1.5 and T4 = 0.5. In our test,

T=T, (ab) i<0, 0, (a,b)-it >0,

a b
1 1
0.9 o 0.9
9
0.8 08 N
07 07
06 06
4
> 05 Lo 05 y
S
04 04
03 03 J
X ® b
0.2 02
K
0.1 / 0.1 / T
0 0

0O 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X

Fig. 11. The contour levels of the solution. The interface is located at x = 0.5. UFVM is used in the left domain and the third order
HOFDM is used in the right domain: (a) # = 0.5 and (b) t = 0.9.
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Fig. 12. The temperature distribution at 7 = 3.0 around four rods: (a) 2D and (b) 3D.

weused @ = 1, b = 1 and ¢ = 0.1. The mesh topology is similar to the one in Fig. 8. An unstructured mesh with
10,300 nodes is used on the left-bottom subdomain. Structured meshes with 81 x 41, 41 x 81, 41 x 41 nodes
are used on the left-top, right-bottom, right-top subdomains, respectively. The steady state solution is pre-
sented in Fig. 12. One can clearly see the advantage with this technique. The near-field around the rods is cap-
tured and the far-field part is efficiently handled.

6. Conclusions and future work

A conservative stable and efficient hybrid method for viscous problems that combines the unstructured
finite volume method with the high-order finite difference method has been developed. The hybrid method
can be applied to complex geometries with any type of interfaces. The calculations verify that the hybrid
method is efficient, accurate, conservative and truly stable.

The technique developed in this paper makes it straight forward to apply the hybrid technique to the full
Navier—Stokes equations. It also makes it possible to use two existing separate Navier—Stokes solver (one
based on UFVM and one on HOFDM) and construct a significantly more efficient hybrid code suitable
for aerodynamic and aeroacoustic source to signal type problems.

Appendix
Proof. The matrix H in Eq. (22) can be written in component form,

a1 by

by &
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where
a=[(PRer)i(E+8)] >0,
b= |(ProP)T(En+&n)| o =1, (1)
= [(P? ®P§)7(ﬁ§ + ﬁﬁ)}u > 0.

For an arbitrary vector X = [x,...,X,,;,. .. ,yn]T, we have

w1 [a; b x 1 Ta; b1[x x, 1 [a, b X
o O P ) R O R P S
nl Lbr ey yil Lbi ally Yol Lbw cally,

The eigenvalues of an arbitrary 2 x 2 matrix on the right-hand-side of (52) is

X . . . N2
z;‘zalgcli\/(“l;cj — (e = b2), Li=1,...,n, (53)

Since a;, ¢; are positive and

ae—t=[(Prer)]] [(2+8) (7 +7), - (Bn+8a)

()], (e 20)

)fil is non-negative, which imply that H is a positive semi-definite matrix. We have proved the lemma. [

2

>0, (54)

i
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