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1. Introduction

Understanding microinstabilities and turbulence in toroidal geometries is of crucial importance for present day fusion
devices. For their physical modelling the gyrokinetic equation is a widespread first principles theory [1]. Gyrokinetic simu-
lations are often carried out using particle-in-cell (PIC) methods because they are relatively easy to parallelise. In such PIC
methods the trajectories of the particles (e.g. ions and electrons) is described by the equations of motion in a five-dimen-
sional phase space. At each time step a density is calculated from the particle positions by projection onto a space grid.
The electrostatic potential, which follows from this density by solving a field equation, then affects the trajectories of the
particles again.

A common simplification is to only simulate the ions and use so-called adiabatic electrons. In this case the field equation
consists of a Helmholtz operator and an additional term representing the flux-surface average of the potential. In various
cases (e.g. linear simulations of high mode number perturbations) this averaging part can be neglected. For nonlinear sim-
ulations it becomes crucial since it determines the behaviour of the zonal flow, which strongly influences the transport level.

Discretisation of the field equation leads to a system of linear equations. While the matrix resulting from the Helmholtz
part, a differential operator, is sparse and can be stored easily, the flux surface averaging part needs attention since it is a
non-local integral operation. For axisymmetric domains (like tokamaks) the average term can be simplified considerably
by using a Fourier ansatz [2] or an approach where the field equation is replaced by two decoupled equations for the poten-
tial and its flux surface average, respectively [3]. In non-axisymmetric cases (stellarators) this does not give any advantage.
Discretisation of the equation leads to a non-sparse matrix, which for realistic grid sizes is too large to be stored in computer
memory. In spite of being sparse the Helmholtz matrix alone is still so large that a direct solution (like LU-decomposition) is
not practical. Therefore the solution needs to be calculated employing an iterative Krylov subspace method. In this paper one
possible way to overcome the problems connected with the flux surface averaging term for non-axisymmetric domains is
presented for the EUTERPE code [4].
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EUTERPE is a global (full radius, full flux surface) gyrokinetic f [5] PIC code especially designed to treat three-dimen-
sional geometry. It uses a B-spline discretisation for the charge assignment and the field equation. The equations of motion
are integrated by a fourth order Runge-Kutta method. Thus the field equation, where the left hand side stays constant but
the density is changing with time, needs to be solved four times during each time step and its fast solution is mandatory.

For reasonable grid sizes the whole procedure rapidly becomes time and memory consuming. Therefore two different
parallelisation concepts are implemented in EUTERPE: Firstly, domain decomposition in the toroidal direction where at least
one poloidal cut is stored on a single core, and secondly, domain cloning where all particles are partitioned to multiple copies
of the whole domain. This cloning mechanism needs communication only for updating the density during each Runge-Kutta
step while all other parts of the algorithm work without communication between the clones.

2. Theory

A generalised toroidal coordinate system is used in this derivation, which is the same as in the EUTERPE code. There are
one radial components € [0, 1] and two angle-like components ¥, ¢ € [0, 27]. These are widely used coordinates to represent
toroidal magnetic domains [6]. The metric tensor is given by (8Y)xye(swpy With a Jacobian /g and volume element
dV = /gdsddyde.

The field equation for the electrostatic potential ¢(s,9, @) is given by

-V (P*Vig) +d—(¢)=n. O

This equation is solved with a Dirichlet boundary condition for the potential on the outer boundary (s = 1). The variable n
denotes the density distribution for the whole domain and p(s, 9, @) is a non-zero spatial variable of the order of 102 for a
typical toroidal device. The perpendicular Laplace operator defined in the (s,9)-plane can be computed by

oo R ar—l
V-p VL—Xayg{;m\/gm p*VEg a); (2)

The averaging operator (-) in Eq. (1) is the so-called flux average on an s = const surface

(B)() = o / ¢dl' with P(s) = / dr,
P(s) J s=const J s=const
where dI"' = ,/gddd¢, i.e. actually a volume average over the region between two neighbouring s-surfaces.

In EUTERPE the potential is represented by a B-spline discretisation ¢ = _,_;¢,4,. Here v = (i,j, k) is a multi index and
Ay = Ai(s)Aj(9) Ax(@) is a tensor product of three one-dimensional B-spline functions [7] with the order o. The size of the
underlying regular mesh is Ny x Ny x N,,. The index set 7 is given by {1,2,...,Ns} x {1,2,... Ny} x {1,2,... N, }.

With the use of Eq. (2), introducing the spline approximation, multiplying by A, and integrating over the whole domain
transforms the field Eq. (1) into a system of equations

oA, 04y
2 v v
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v — / Ay (p)dV = /Awndv — by

This equation can be written in matrix form,
(H-M)¢ =b, 3)
where H is the Helmholtz matrix with its elements

' oA, 04y
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and M is the averaging operator with the following matrix representation

My, = /// Ay (A,)/Zdsdvdo. 4)

To solve the system of Egs. (3) one has to compute the matrix (H — M). The number of non-zeros of the Helmholtz matrix H
depends on the size of the overlap of two B-spline functions. The term A, A, creates multiple bands in the matrix. The overall
width of the bands is about (20 + 1)°. Therefore H, which has about (20 + 1)>N;N,N,, non-zero elements, can be stored easily
because the B-spline order o is small (typical two). If one calculates the matrix elements of the averaging operator (4), one
gets

My, = /// Ay (% // AV\/Edﬁd(p) vEgdsdido = / P (5) Ai(5) G (5) Ay (8)Gyy (s)ds, (5)

with
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/ / 0)vEdddo.

The matrix M has (20 + 1)Ns(NyN,, ) non-zeros. Since this number already becomes very large for small cases, M can nor-
mally not be stored.

The first ansatz to solve the discretised field Eq. (3) was to use a standard linear iterative solver and provide a function
which calculates the needed matrix-by-vector product (H — M)v. This was done with a matrix-free representation of M [8]. It
works well, but the number of iterations for the iterative solver increases strongly compared to the simplified problem with-
out the average operator, making this method relatively slow.

The new ansatz approximates the integral in (5) in the same manner as other integrals in the EUTERPE code, i.e. Gaussian
integration. The matrix elements M, are computed with

ns
My & Y (5P~ (57) Ai(5r) () A¢ (51) Gy (57) Z%k 5:)7(50)P ™ ()t (51,
r=1

where i (sr) = Ai(sr)Gj(sr) and y(sr) are the weight factors for the approximation of the integral at the n;, (i.e. Ns x number
of Gauss points) radial integration points s,. With this simplification one can write the matrix representation of the averaging
operator as a matrix product

M = —ADAT

with the following matrix elements
A= (av(sr))veI,r:I ..... ns
D= - diag (7(s)P”'(s,))-

Now everything is given to compute the matrix inverse of (H — M). With the help of the Sherman-Morrison-Woodbury for-
mula [9]

W+uvhH ' =w'-wlug+v'w o)y viw!
the inverse of (H — M) is given by
H-M)"'=H+ADA"Y ' =H ' —H'AD ' +ATH'A)'ATH". (6)

This means that one only needs to provide a solver for Eq. (3) without the average part M, and then the solution to the full
problem can be computed easily. The inverse of the dense matrix S = (D' + A"TH'A) can be calculated directly because its
size ns x ny depends only on the number of integration points in radial direction, which is 0(100).

None of the terms in (6) change their value during a single run, and the matrlx can thus calculated in an initialisation step.
Therefore, one has to calculate and store some supplementary matrices (A s7',A") in addition to the Helmholtz matrix H
before the actual run:

e solve the systems of equations (taking into account the Dirichlet boundary condition)

Zva&\/’ (sr) = au(sr) ()

Vel

for all Gaussian integrations points s, and construct the matrix

A=H"A= (8y(S)yers 1.

e compute S = (D! + A"A) and store its inverse.
With these precalculated matrices solving the field Eq. (1) during a normal time step is simplified to:

1. solving the discretised field equation without the average operator

Hp=b 8)
2. computing the correction to the solution to get the result for the complete field equation

dp=¢p—ASTAT).
Thus, in contrast to the old method, the number of iterations for the solution of (3) stays the same with or without the aver-
aging operator M. The only overhead to the problem without the averaging is the triple matrix-by-vector product. Contrary

to the older method one has to store three extra matrices A, S™'and A”. The number of non-zero elements of them can easily
be calculated. A is a matrix with maximal n;N, NyN,, entries (depending on the solutions of (7)), S7'is a small n, x n, matrix
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and AT has about ns(20 + 1)NyN,, non-zeros. This extra storage is required in the new method, whereas the matrix-free solu-
tion does not need any extra memory.

3. Results

All test cases from this section were done on the HPC-FF machine at the Jiilich Supercomputing Centre. It is a parallel sys-
tem with a total of 8640 cores (clock rate of 2.93 GHz, 8 cores per computing node). Every node has altogether 24 gigabytes
memory available. The realisation in the EUTERPE code is based on the PETSc framework [10] and uses a conjugate gradient
method with block Jacobi preconditioner (see e.g. [11]), where on every block an ILU (0) is performed. The block size depends
on the number of domains.

To check the correctness and the run time behaviour of the new solver, several different applications of the code were
tried. Here we present only results for a standard Wendelstein 7-X configuration [12] with 8 = 4.8%. An important problem
is the Rosenbluth-Hinton test [13], where the time evolution of an initial electrostatic field is calculated. The average part of
the field Eq. (1) is substantial: Only if this term is present does one obtain a non-zero asymptote at late time for the radial

electric field, otherwise the radial electric field will go down to zero. The behaviour of the solution with its zonal flow oscil-
lations is reproduced very well for both solvers as one can see from Fig. 1: The results are nearly identical. In this case a
64 x 64 x 64 grid was used and both runs were done on 256 cores with four clones and eight million particles.
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Fig. 1. Rosenbluth-Hinton test: time evolution of the normalised radial electric field at radial position s = 0.5 for Wendelstein 7-X, comparison between old
matrix-free and new method.
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Fig. 2. Solver time for different number of processor cores and for different solution methods with a fixed mesh size of 64 x 512 x 512 (strong scaling).
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Fig. 3. Solver time for different number of processor cores and increasing mesh size, comparison between solution with and without surface average term
(weak scaling).

Using the matrix-free ansatz about 49 iterations are necessary to get the solution of Eq. (3), whereas only 7 iterations (for
solving (8)) were required with the new method. This difference in the number of iterations one can see in the behaviour of
the run time of a solver step. Fig. 2 shows a comparison of a series of runs on different numbers of cores, where this time the
grid size was fixed at 64 x 512 x 512 (strong scaling). With an increasing number of cores the solver run time falls nearly
linearly for all three cases. One can also see that the new method is significantly faster than the older matrix-free version.
In particular, there is no overhead due to the averaging term. The solver run times are sometimes even faster than without
the averaging. This can happen because the problem to be solved is time dependent: During each time step, which uses a
Runge-Kutta of fourth order, the field equation is solved four times. Therefore the solutions in each step are not equal
and the number of iterations is slightly different in each call.

If the number of cores and the grid size in ¥ and ¢ are increased the scaling is again nearly linear. This is shown in Fig. 3
where the solver run time is plotted versus the number of cores for this case. Again it can be seen that there is no overhead
caused by including the averaging term. The time scaling behaviour showed in this picture depends only on the speed of
solving the system of Egs. (8), i.e., on the parallel iterative solver with its preconditioner.

4. Conclusion

For simulating turbulence and microinstabilities in three-dimensional toroidal devices a gyrokinetic model with adiabatic
electrons is often used. The electrostatic field equation then consists of a differential Helmholtz part and an integral flux-sur-
face averaging part. The discretisation of this equation produces a sum of a sparse matrix for the first term and a memory-
consuming matrix for the second term. Since already the sparse matrix is very large the use of a preconditioned iterative
solver is necessary.

The first method to solve this problem was a method where the matrix-by-vector product needed by the iterative solver is
calculated with a matrix-free approach for the second term. This method had the drawback of being very time consuming.
With the new ansatz described here it is only necessary to solve the Helmholtz part of the equation and then to obtain the
final solution by adding a correction. Thus the number of iterations and the amount of time needed for the problem with the
averaging part is the same as without it. Global three dimensional turbulence simulations are only likely to be possible with
a fast solver like the one described here.

It was shown that the algorithm scales nearly linearly with the number of cores both for a fixed problem size (strong scal-
ing) and where the number of mesh points together with the number of cores is increased. In contrast to the matrix-free
method the new procedure needs extra storage space for some supplementary matrices. If these matrices need too much
memory the current strategy to distribute them only over the cores of one clone can be extended by using also the different
clones to hold the supplementary matrices in memory. In this way it would be possible to overcome storage bottlenecks.
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