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The multi-fluid plasma model represents electrons, multiple ion species, and multiple 
neutral species as separate fluids that interact through short-range collisions and long-
range electromagnetic fields. The model spans a large range of temporal and spatial scales, 
which renders the model stiff and presents numerical challenges. To address the large 
range of timescales, a blended continuous and discontinuous Galerkin method is proposed, 
where the massive ion and neutral species are modeled using an explicit discontinuous 
Galerkin method while the electrons and electromagnetic fields are modeled using an 
implicit continuous Galerkin method. This approach is able to capture large-gradient ion 
and neutral physics like shock formation, while resolving high-frequency electron dynamics 
in a computationally efficient manner. The details of the Blended Finite Element Method 
(BFEM) are presented. The numerical method is benchmarked for accuracy and tested using 
two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results 
are compared to conventional finite volume and finite element methods, and demonstrate 
that the BFEM is particularly effective in resolving physics in stiff problems involving 
realistic physical parameters, including realistic electron mass and speed of light. The 
benefit is illustrated by computing a three-fluid plasma application that demonstrates 
species separation in multi-component plasmas.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Plasmas can be represented by a hierarchy of models; the more general the model, the higher the computational cost. 
In plasma simulations it is therefore important to devise methods that maximize computational efficiency, while capturing 
the desired physics.

In kinetic theory, each constituent plasma species is represented by a probability distribution function f (x, v, t) that 
depends on position, velocity, and time. The evolution of the distribution function is governed by the Boltzmann–Maxwell 
equation system. Solving the Boltzmann equation is computationally expensive due to the fact that the distribution functions 
occupy a six-dimensional phase space.

The two-fluid plasma model can be derived from the kinetic model by taking velocity moments [1], which reduces 
the six-dimensional space to three dimensions. Inherent in the derivation of the two-fluid model is the assumption of 
local thermodynamic equilibrium within each species, but not between different species. The governing equations for the 
two-fluid model are derived by taking the first three velocity moments of the Boltzmann equation for the electrons and for 
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the ions. The zeroth moment describes the conservation of mass, the first moment describes the conservation of momentum, 
and the third moment describes the conservation of energy. The moments of the Boltzmann equation describe the evolution 
of the bulk properties of the plasma: density, momentum, and energy. In the simplest two-fluid description, the pressure is 
assumed to be isotropic and the heat flux is assumed to be negligible [1].

The magnetohydrodynamics (MHD) model, the most widely used plasma model, is derived from the two-fluid plasma 
model by neglecting the electron inertia (zero electron mass) and assuming the speed of light is much larger than any other 
speed in the system (infinite speed of light) [2]. As a consequence of neglecting the electron inertia, the electron momentum 
equation reduces to the generalized Ohm’s law and the kinetic energy of the electrons is zero. By making these asymptotic 
assumptions, the physics of high frequency electromagnetic waves is ignored and the vacuum permittivity is effectively 
set to zero. This means that the displacement current term of Ampere’s law is zero, and from Poisson’s equation a zero 
permittivity implies that the electron and ion number density must always be equal, thereby enforcing charge neutrality. 
The MHD model is often further simplified to an ideal MHD model, which limits its applicability to high collisionality, small 
Larmor radius, and low resistivity regimes [3].

The two-fluid plasma model can be generalized to a multi-fluid plasma model that includes multiple ions and neutral 
species, where the mass, momentum, and energy of each species is evolved separately, and the species interact with each 
other through collisions and electromagnetic fields [4,5]. By separately evolving the constituent species, the multi-fluid 
plasma model is able to capture more generalized physics than MHD, but at a higher computational cost. The mass of the 
constituent species and their plasma parameters set the range of spatial and temporal scales. Since the multi-fluid plasma 
model does not make asymptotic assumptions about the speed of light, it captures more waves than MHD, including waves 
that propagate faster than the magnetosonic speed. This has been demonstrated for the two-fluid plasma model [1].

The characteristic speeds of the multi-fluid plasma model are the species’ acoustic speeds and the speed of light, both 
of which can severely limit the time step size for the numerical time integration. In addition, the characteristic frequencies 
(plasma and cyclotron) need to be resolved to capture the full physics of the multi-fluid model.

For a given model, the partial differential equation (PDE) type informs the choice of numerical methods used to solve it. 
The multi-fluid plasma model is an inhomogeneous hyperbolic equation system and can be described by balance laws. Such 
equation systems can be solved using a variety of methods, including finite volume methods [6–8], continuous Galerkin 
finite element methods [9,10], and discontinuous Galerkin finite element methods [11–14].

Finite volume methods have been used extensively and differ depending on the technique used to evaluate fluxes. One 
type of finite volume method is the wave propagation method, which is second-order accurate and provides good resolution 
of shocks and discontinuities even when the initial conditions are smooth [6]. Other types of finite volume methods have 
been successfully applied to the MHD plasma model [15–17] and to the two-fluid plasma model [1,18]. Since the source 
terms in the PDEs cannot be directly incorporated into the calculation of the fluxes in the wave propagation method, the 
approach requires source splitting. As a result phase errors can be produced when the characteristic frequency is high 
compared to the frequency of information propagation [14].

Continuous Galerkin (CG) finite element methods have also been used for solving MHD [9] and extended MHD equations 
[10]. The CG method represents the solution variables within each element using polynomial basis functions. The order of 
the polynomial determines the spatial order of accuracy. The CG method enforces continuity of the solution across element 
boundaries, i.e. C0 continuity. Some CG methods enforce C1 continuity of the solution across element boundaries [9]. The 
CG method is particularly well suited for smooth solutions and offers the ability to compute solutions at high-order spatial 
accuracy on regular and unstructured grids [19–22]. With no dissipation, CG methods can be prone to dispersive errors and 
often require adding an artificial dissipation to damp high frequency oscillations [23]. The ideal multi-fluid plasma model 
has no physical source of dissipation, and thus using a CG method necessitates the introduction of artificial dissipation.

CG methods require the simultaneous solution of the global system of equations, which involves a matrix inversion. This 
feature allows CG to be coupled with an implicit time integration method with only minor modification. Plasma dynamics 
encompass a large range of timescales, which makes implicit time integration desirable. With implicit time integration, the 
solver is not subject to CFL (Courant–Friedrichs–Lewy) restrictions that limit time step size based on the fastest speed in the 
system. As two relevant plasma examples, in Ref. [24] an implicit method is applied together with a CG spatial discretization, 
and in Ref. [25] the hyperbolic MHD model is converted into parabolic equations in order to make them more amenable to 
multigrid and physics-based preconditioning that allow for fast Jacobian-free implicit time integration.

A numerical method that combines the shock capturing and conservation properties of finite volume methods with 
high-order accuracy and flux/source coupling of CG methods is the discontinuous Galerkin (DG) finite element method. 
The DG method was introduced in Ref. [26] for the study of two-dimensional neutron transport. Like the CG methods, DG 
methods represent the solution by a set of polynomial basis functions in each element; however, continuity of the solution 
is not enforced across the element boundaries. The DG method was expanded to solve non-linear equations in Ref. [11] who 
used it with total variation diminishing (TVD) Runge–Kutta time integration. Likewise the DG method has been applied to 
solve Navier–Stokes equations [27] on unstructured grids with linear, quadratic, and cubic elements [28–30].

In plasma simulations the DG method has been applied to the ideal MHD model [12,13,31], and to the Vlasov–Poisson 
equation system [32]. In Ref. [14] an extensive study of the DG method is applied to the two-fluid plasma model and ex-
plores the challenges associated with capturing the physical dispersion of the model. It is shown that the DG method is able 
to accurately capture physically expected high frequency oscillations using higher order discretizations without producing 
phase errors. A major benefit of the DG method is that it is remarkably robust in the presence of rapid oscillations while 
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simultaneously capturing discontinuity fronts. A drawback of the DG method is that with a polynomial basis function of 
degree p, the explicit time step size is limited by the CFL condition for the fastest wave to be less than 1/(2p − 1) [33]. This 
can be extremely restrictive for problems that require high spatial accuracy. Using DG with implicit time integration can 
be challenging [34], this is because defining the Jacobian for a limited flux leads to a stiff matrix since small variations in 
the conserved variables can produce large changes in the flux. Reference [35] presents a complete two-fluid plasma model 
discretized using the DG method with an implicit time integrator; however, the non-linear Newton solver required for time 
advance does not always converge. This is due to the fact that regions that exhibit sharp gradients require limiters, which 
make the Jacobian for the non-linear solver ill-conditioned.

An ideal numerical method for the multi-fluid plasma model would have high-order accuracy, would be capable of 
capturing shocks, would provide good resolution of fast oscillations, and would not impose restrictive time step limitations. 
To that end, this paper presents a one-dimensional blended finite element method (BFEM) in which the electron fluid and 
the electromagnetic fields are represented using an implicit CG method, while all ions and neutral fluids are represented 
using an explicit DG method. This choice of blended discretization is informed by the physical properties of electrons, ions, 
neutrals, and fields.

Implicit–explicit (IMEX) methods have been used in the past for advection–diffusion problems where the implicit dis-
cretization is applied to parabolic diffusive source term and the explicit discretization is applied to the hyperbolic convective 
term [36]. IMEX methods have also been applied to geometry-induced stiffness [37], when a problem has complex geome-
try and consequently a broad range on mesh sizes. In our cases the stiffness comes from the electrons and electromagnetic 
fields that need to be solved everywhere in the domain and though the convective term. In the implicit–explicit scheme 
presented here is as if two separate problems exist, one advanced implicitly and the other explicitly and them both are 
coupled through the source term.

In many plasma configurations of interest, e.g. Z-pinches [38], tokamaks [39], stellarators [40], inertial confinement fusion 
capsules [41], the electron fluid and the electromagnetic fields may not have sharp gradients or discontinuities, which makes 
them suitable to being modeled with the CG method. Smooth solutions in the electron fluid and electromagnetic fields 
alleviate the need for limiters and enable the use of implicit time integration. Using the BFEM for the multi-fluid plasma 
model thus removes the strictest time step limitations associated with the speed of light, the electron acoustic speed, and 
the electron plasma and cyclotron frequencies. Shocks, which require limiters, only occur in ion and neutral fluids, and are 
efficiently captured with the DG method.

By coupling CG for the electrons and fields with DG for the ions and neutrals, the BFEM maintains high-order spatial 
accuracy, is able to resolve fast oscillations, efficiently captures shocks, and the implicit electron evolution relaxes the time 
step restrictions considerably by removing the most stringent limitations. This makes the BFEM for the multi-fluid plasma 
model more computationally efficient and robust than using a single type of finite element discretization.

This paper presents the development of a blended continuous–discontinuous finite element method, investigates its 
application to the multi-fluid plasma model. This method is particularly helpful in multiscale problems with disparate 
time-scales and where the fast dynamics does not play a vital role, nor is of much interest. Therefore, the fast dynamics 
is integrated using an implicit time integration to avoid very restrictive time-steps while the slow physics is integrated 
explicitly to capture the relevant aspects of the problem. The fast physics, which is unlikely to shock, is discretized us-
ing a continuous Galerkin finite element method and requires no limiters or flux calculations reducing the complexity of 
the numerical method. The slow dynamics is spatially discretized using a discontinuous Galerkin finite element method to 
capture shocks that may form in the solution. In summary the BFEM is designed to capture shocks for slow fluids while 
time-stepping over the fast dynamics fluids in problems where these two fluids are coupled throughout the computational 
domain. The paper is organized as follows: Section 2 describes the multi-fluid plasma model and the associated partial 
differential equation system. Section 3 introduces the BFEM implementation details and presents the continuous and dis-
continuous Galerkin portions of the method and their coupling. Section 4 presents numerical results for the two-fluid soliton 
problem and the electromagnetic shock tube problem. It also includes the application of the BFEM to a three-fluid plasma 
simulation of species separation [42] during the implosion of inertial confinement fusion capsules. Section 5 presents con-
cluding remarks and opportunities for future work.

2. Multi-fluid plasma model

The multi-fluid plasma model [4] represents each species, e.g. electrons, ions, neutrals, as a separate fluid. The model 
allows for multiple ion and neutral species. Each fluid is described by its local mass density, momentum density, and total 
energy density. The evolution of these properties obeys underlying conservation laws. The motion of the electrically charged 
fluids generates and responds to electromagnetic fields, which are described by Maxwell’s equations.

The equations that govern the evolution of the fluid properties of species α are derived by taking velocity moments of 
the Vlasov equation, where the nth moment is given by

mα

∫
vn ∂ fα

∂t
dv + mα

∫
vn+1 · ∂ fα

∂x
dv + qα

∫
vn (E + v × B) · ∂ fα

∂v
dv = 0, (1)

where fα(x, v) denotes the distribution function, mα is the particle mass, and qα is the charge. The electric and magnetic 
fields are E and B.
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Expressions for the conservation of mass, momentum, and total energy for each species are obtained from the first 
three moments, n = {0, 1, 2}, where a tensor contraction is performed for the second moment to give a scalar energy. The 
resulting equation system is the multi-fluid plasma model. Each fluid species α has a set of five moment equations,

∂ρα

∂t
+ ∇ · (ραuα) = 0 (2)

∂ραuα

∂t
+ ∇ · (ραuαuα + pαI) = ραqα

mα
(E + uα × B) (3)

∂εα

∂t
+ ∇ · ((εα + pα)uα) = ραqα

mα
uα · E, (4)

where ρα is the mass density, which is the product of the particle number density and particle mass, ρα = nαmα , uα is the 
fluid velocity vector, pα is the pressure, which is the product of the particle number density and temperature, pα = nα Tα , 
I is the identity matrix, and εα is the total energy given by

εα = pα

� − 1
+ 1

2
ραu2

α, (5)

where � is the ratio of specific heats. Maxwell’s equations govern the evolution of the electric and magnetic fields.

1

c2

∂E

∂t
− ∇ × B = −μ0

∑
α

qα

mα
ραuα (6)

∂B

∂t
+ ∇ × E = 0 (7)

ε0∇ · E =
∑
α

qα

mα
ρα (8)

∇ · B = 0 (9)

where μ0 and ε0 are the vacuum permeability and permittivity, respectively, and c = (μ0ε0)
−1/2 is the speed of light. 

Maxwell’s equations are overdetermined with six scalar unknowns and eight equations. The two divergence expressions 
are analytically satisfied over time if they are initially satisfied, but computational round-off errors can produce fields that 
violate the divergence expressions. To clean the divergence errors, Maxwell’s equations are cast in a purely hyperbolic form 
as described in Ref. [43].

∂B

∂t
+ ∇ × E + γ ∇	 = 0 (10)

1

c2

∂E

∂t
− ∇ × B + χ∇� = −μ0

∑
α

qα

mα
ραuα (11)

1

χ

∂�

∂t
+ ∇ · E =

∑
α

qα

mα
ρα (12)

1

γ c2

∂	

∂t
+ ∇ · B = 0 (13)

Error correction potentials � and 	 are introduced to propagate the divergence errors out of the computational domain. 
The divergence error propagation speeds are set by the dimensionless positive parameters χ and γ , which are set to values 
greater than one. Larger values better preserve the divergence constraints on the fields, and zero effectively eliminates any 
divergence corrections. The characteristic wave speeds for the purely hyperbolic Maxwell’s equations are {±c, ±χc, ±γ c}.

The governing equations of the multi-fluid plasma model can be cast in balance law form as

∂Q

∂t
+ ∇ ·F(Q) = S(Q), (14)

where Q is the solution vector, F is the flux tensor and S is the source vector. The solution vector in Eq. (14) represents 
the union of the solution vector for electromagnetic field equations and the vector of the conserved variables for each fluid, 
e.g. electron fluid, ion fluid,..., such that Q = [QEM, Qe, Qi, . . .]. The homogeneous version of Eq. (14) with S = 0 is hyperbolic, 
meaning that the flux Jacobian, ∂F/∂Q, is diagonalizable with real eigenvalues and has a complete set of eigenvectors. The 
source term in Eq. (14) depends only on Q and not on derivatives of Q, such that S can be evaluated locally.

The eigenvalues of the flux Jacobian (∂F/∂Q) are the characteristic speeds of the multi-fluid equation system, and are 
combinations of the species’ flow speeds, acoustic speeds, light speed, and divergence error propagation speeds. The eigen-
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values of the source Jacobian (∂S/∂Q) are all purely imaginary [18,14] and the first three are 0, ±iωp , where ω2
p = ∑

α ω2
pα

and

ωpα =
√

ραq2
α

ε0m2
α

, (15)

which is the plasma frequency of the species α.
The imaginary eigenvalues of the source Jacobian indicate that dispersive behavior is physically expected and not nec-

essarily a numerical artifact. This dispersion is due to the presence of a wide variety of plasma waves that result from the 
interaction of the charged fluids with the electromagnetic fields.

The characteristic timescales for the multi-fluid plasma model span a large range from extremely fast electromagnetic 
waves and electron response to much slower ion and neutral responses. The multi-fluid plasma model is mathematically 
stiff, which presents a challenge for numerical methods; explicit methods must resolve the shortest timescale, and implicit 
methods must invert a poorly conditioned matrix.

3. Blended finite element method

The stiffness introduced by the disparate timescales can be addressed by decomposing the multi-fluid plasma model 
according to physically expected temporal and spatial characteristics. The BFEM accomplishes this physics-based decompo-
sition by modeling the ion and neutral fluids using a DG method with explicit Runge–Kutta time integration and modeling 
the electron fluid and the electromagnetic fields using a CG method with implicit time integration [44]. Since the fast mov-
ing electrons and the fields do not form spatial discontinuities, such as shocks, limiters are not needed and the Jacobian for 
a Newton solver is well-conditioned. This allows for larger time steps compared to an explicit method. The CFL constraint 
for explicit treatment of only the massive fluid species is less restrictive in this BFEM than in the case where all variables 
are evolved explicitly. Furthermore, the evolution of the ions and neutrals is often the goal of the simulation, so the tempo-
ral resolution provided by the explicit time steps is appropriate for these species. Source terms in the governing equations 
of the multi-fluid plasma model couple the fluids and fields, as described in Sec. 2. The BFEM computes the source terms 
in a manner that is consistent with both the CG and DG methods.

3.1. Continuous Galerkin finite element method

The finite element method discretizes the computational domain into elements and the solution is expanded within each 
element, 
, in a series of polynomial basis functions. The order of the polynomials defines the spatial order of accuracy 
of the numerical method. The CG method enforces the solution to be continuous across element boundaries providing C0

continuity. Continuity of derivatives across the element boundaries is not enforced [45].
The governing equations for the electron fluid and the electromagnetic fields of the multi-fluid plasma model are ex-

pressed by Eq. (14) where the solution vector is limited to Q f = [QEM, Qe]. This subset of the governing equations accounts 
for the fast dynamics, denoted by the f superscript on the solution vector. The equation is then written as

∂Q f

∂t
+ ∂F

∂Q f
· ∂Q f

∂x
= S f , (16)

where ∂F/∂Q f is the flux Jacobian. Since the flux F is a tensor of rank-2, Fi j in index notation, the flux Jacobian is a 
tensor of rank-3, Ai jk = ∂Fki/∂ Q f

j . Equation (16) can be expressed as

∂ Q f
i

∂t
+Ai jk

∂ Q f
j

∂xk
= Si, (17)

where repeated indices in a term are summed, as usual in Einstein notation. The solution vector is expanded within each 
element using polynomial functions

Q f (t, x) =
m∑

j=1

q j(t)ψ j(x), (18)

where ψ j are the spatial basis functions and q j are the time-dependent coefficients. The f superscript is omitted from 
the temporal coefficients to simplify the notation. If Lagrange interpolation polynomials are used as the basis functions, q j

represent the values of the solution vector Q f at each nodal location x j . The Lagrange polynomials are defined as

ψ j(x) =
m∏ x − xk

x j − xk
, (19)
k=1,k �= j



E.M. Sousa, U. Shumlak / Journal of Computational Physics 326 (2016) 56–75 61
where x j and xk are nodal coordinates. The polynomials have the property that ψ j(xi) = δi j , where δi j is the Kronecker delta 
and xi is the nodal location. An m − 1 order polynomial basis function is represented by m nodes.

The finite element method proceeds by multiplying the governing equation, Eq. (16), by test functions and integrating 
over each element volume∫




dxvi
∂Q f

∂t
+

∫



dxvi
∂F
∂Q f

· ∂Q f

∂x
=

∫



dxviS
f . (20)

This integral equation is the weak form of the governing equation. The Galerkin method chooses the test functions to be 
the same as the basis functions, vi = ψi , so the weak form of the governing equation with the solution expansion becomes

∫



dxψi
∂

∂t

⎛
⎝ m∑

j=1

q jψ j

⎞
⎠ +

∫



dxψi
∂F
∂Q f

· ∂

∂x

⎛
⎝ m∑

j=0

q jψ j

⎞
⎠ =

∫



dxψiS
f , (21)

which is the element equation. Since the nodal values q j are independent of x, the element equation can be rewritten as

m∑
j=1

⎡
⎣∫




dxψiψ j

⎤
⎦ ∂q j

∂t
+

m∑
j=1

⎡
⎣∫




dxψi
∂F
∂Q f

· ∂ψ j

∂x

⎤
⎦q j =

∫



dxψiS
f . (22)

The first integral is the element mass matrix for element e,

Me
i j =

∫



dxψiψ j. (23)

The element equation is integrated from time t to t + �t , i.e. time level n to n + 1, to give

m∑
j=1

Me
i j

t+�t∫
t

dt
∂q j

∂t
=

m∑
j=1

Me
i j

(
qn+1

j − qn
j

)
. (24)

Moving the spatially dependent terms of Eq. (22) to the right-hand side of the equation, integrating over �t , and combining 
with the previous result yields

m∑
j=1

Me
i j

qn+1
j − qn

j

�t
= −

m∑
j=1

⎡
⎣∫




dxψi
∂F
∂Q f

· ∂ψ j

∂x

⎤
⎦q j +

∫



dxψiS
f , (25)

where the right-hand side is computed using values appropriately averaged over the time interval [t, t + �t].
The CG method as described by Eq. (25) introduces no dissipation, and in regions of sharp gradients high frequency 

oscillations (Gibbs phenomenon) can develop. These oscillations indicate numerical dispersion and can be dampened by 
adding an artificial dissipation. This is achieved by introducing a term to Eq. (14) that consists of a second derivative of the 
conserved variables,

∂Q f

∂t
+ ∇ ·F = S f + ∇ · (κ∇Q∗) , (26)

where κ is the artificial diffusivity coefficient and is chosen to minimize the impact on the physical solution while mini-
mizing numerical dispersion. The vector Q∗ indicates that the variables being dissipated may be a subset of Q f .

Multiplying the dissipation term by the test functions, integrating over the element volume, and expanding Q∗ with basis 
functions yields

∫



dxψi
∂

∂x
· κ ∂Q∗

∂x
= −

m∑
j=1

⎡
⎣∫




dxκ
∂ψi

∂x
· ∂ψ j

∂x

⎤
⎦q∗

j +
m∑

j=1

⎡
⎣ ∮

∂


A · ∂ψ j

∂x
κψi

⎤
⎦q∗

j , (27)

where the last term accounts for boundary conditions and is assumed to be equal across element boundaries since the 
solution for the electron species and the electromagnetic fields has C0 continuity. Enforcing C0 continuity is simplified by 
using the nodal representation given by Eq. (18) and placing nodes at the element boundaries. Nodes from neighboring 
elements overlap and the values at the overlapping nodes are set equal.
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The CG method applied to the electron fluid and the electromagnetic fields of the two-fluid plasma model can be 
expressed in a simpler form by defining the element dissipation matrix

De
i j = −

∫



dxκ
∂ψi

∂x
· ∂ψ j

∂x
, (28)

and the element source vector

fe
i =

∫



dxψiS
f . (29)

The element evolution equation can be written as

Me
i j

qn+1
j − qn

j

�t
= −

⎡
⎣∫




dxψi
∂F
∂Q f

· ∂ψ j

∂x

⎤
⎦q j + fe

i +De
i jq

∗
j +

⎡
⎣ ∮

∂


A · ∂ψ j

∂x
κψi

⎤
⎦q∗

j , (30)

where the summation over index j is assumed. Let Re(q j) be the right-hand side of Eq. (30). Re(q j) is computed using 
solution values that approximate the appropriately averaged values over the time interval [t, t + �t]. Nodal values qn+1

j are 
solved simultaneously for all elements. The element equations are assembled into a global system with global mass M and 
dissipation D matrices. The integral terms and the source vector fi in Eq. (30) are evaluated by Gauss–Legendre quadra-
ture rules and are also assembled into a global vectors. The correspondence between the element and global matrices 
is expressed through a connectivity matrix whose coefficient bij is the global node number corresponding to node j of 
element i. The element matrix coefficients Me

kl are combined to give the global matrix according to

Mmn =
E∑

e=1

N∑
k=1

N∑
l=1

Me
kl, (31)

where global node numbers are defined using the connectivity matrix, m = bek , n = bel . The mass matrix and dissipation 
matrices are assembled independently of each other. The total number of elements is E and the number of nodes per 
element is N . The resulting global matrix equation

M
qn+1 − qn

�t
= R(q) (32)

can be solved to yield the solution for the electron fluid and electromagnetic field at the time level n + 1.
Time integration for the CG method requires a matrix inversion to solve the global matrix equation even if the RHS 

is explicitly defined as R(qn
j ), while an implicit formulation only slightly complicates the solution method. However, an 

implicit solution method permits time steps larger than the short timescales dictated by the fast response of the elec-
tron fluid and electromagnetic field. Avoiding this limitation is a primary motivation for the BFEM and the physics-based 
decomposition.

The implicit formulation of the BFEM uses the θ -method [46] to solve the global evolution equation, which is written as

M
qn+1 − qn

�t
= (1 − θ)R(qn) + θR(qn+1). (33)

Choosing θ = 1 gives the implicit backward Euler method, and θ = 0 gives the explicit forward Euler method. Setting 
θ = 1/2 gives the Crank–Nicolson method [47]. Because of its higher temporal accuracy, θ = 1/2 is chosen for the BFEM 
implementation.

A Newton–Raphson method [48] is used to solve for qn+1. The Newton method yields an iterative process to find suc-
cessively better approximations to the roots of a real-valued residual function, which for Eq. (33) is given by

G(qn+1) = M
�t

(qn+1 − qn) − (1 − θ)R(qn) − θR(qn+1). (34)

The Jacobian is

J (qn+1) = ∂G(qn+1)

∂qn+1
= M

�t
− θ

∂R(qn+1)

∂qn+1
. (35)

The Newton method is formulated as

J (qm)�q = −G(qm), (36)
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where �q = qm − qn and m is an iteration index. When the iteration equation, Eq. (36), converges, the solution at the next 
time level is given by

qn+1 = qn + �q, (37)

using the value from the previous time level and the solution for �q from the Newton method.

3.2. Discontinuous Galerkin finite element method

Similar to the CG method, the DG method discretizes the computational domain into elements and expands the solution 
in a series of polynomial basis functions. However, the DG method does not enforce continuity of the solution across 
element boundaries. Unique solutions to the weak form of the governing equations are determined within each element 
by specifying element boundary fluxes that are defined in a consistent manner – the flux leaving an element equals the 
flux entering the adjacent element, e.g. Ref. [11]. The DG method that is incorporated into the BFEM is similar to the 
implementations of Refs. [49,35,50].

The DG method evolves the ion and neutral fluids of the multi-fluid plasma model. The governing equations are ex-
pressed by Eq. (14) where the vector of conserved variables excludes the electron fluid and electromagnetic fields. Namely,

Qs = [Qi1,Qi2, . . . ,Qn1,Qn2, . . .],
where multiple ion and neutral species are possible. This subset of the governing equations accounts for the slower dynam-
ics. The vector of conserved variables is expanded within each element using polynomial functions as

Qs(t, x) =
m∑

j=1

q j(t)φ j(x), (38)

where φ j are the spatial basis functions and q j are the temporal coefficients. The s superscript, denoting slow dynamics, is 
omitted from the temporal coefficients to simplify the notation. The DG method uses a modal representation of the solution 
within an element, unlike the nodal representation of the CG method; therefore, the temporal coefficients in Eq. (38) do not 
directly represent values of the solution vector Qs . A modal representation simplifies the application of flux limiters [49,50].
Legendre polynomials of order m − 1 are used as basis functions because they form an orthogonal basis,

1∫
0

dxφiφ j = 1

2 j + 1
δi j, (39)

which can be normalized to the element volume.
The governing equations of Eq. (14) that evolve Qs are multiplied by the test functions, which are the same as the basis 

functions, and integrated over each element volume,∫



dxφi
∂Qs

∂t
+

∫



dxφi∇ ·F =
∫



dxφiS
s. (40)

Integration by parts is applied to the second term and the above equation becomes∫



dxφi
∂Qs

∂t
+

∮
∂


dA ·Fφi −
∫



dx∇φi ·F =
∫



dxφiS
s. (41)

When the solution vector is expanded using Eq. (38) and the orthogonality of the basis functions are taken into account the 
first term of Eq. (41) simplifies to

∫



dxφi
∂Qs

∂t
=

m∑
j=1

∂q j

∂t

∫



dxφiφ j = ∂qi

∂t

V 


2i + 1
, (42)

where V 
 is the volume of the finite element. The surface integral in Eq. (41) accounts for the fluxes across element bound-
aries, which are computed using a numerical flux, such as an approximate Riemann flux [1,51] or a Lax–Friedrichs flux [52]. 
The surface integral is evaluated using Gauss–Legendre quadrature over the element’s surface. Simpler Lax–Friedrichs fluxes 
are typically adequate and are given at any point along the surface by

F = 1 [
F(Q+

e ) −F(Q−
e+1)

] − 1 |λ|(Q+
e − Q−

e+1), (43)

2 2
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where |λ| is the maximum characteristic speed (eigenvalue of the flux Jacobian) using surface values averaged from elements 
e and e + 1, and superscripts + and − represent the values at the upper and lower boundaries of the elements. The volume 
integrals in Eq. (41) are also evaluated using Gauss–Legendre quadrature rules.

Using the relation given by Eq. (42) and rearranging the temporally and spatially dependent terms, Eq. (41) can be 
written as

∂qi

∂t
= 2i + 1

V 


⎛
⎝∫




dxφiS
s −

∮
∂


dA ·Fφi +
∫



dx∇φi ·F
⎞
⎠ ≡ Li(Qs), (44)

where Li(Qs) is an operator containing all the spatially dependent term. An attractive feature of the DG method is the data 
locality of the spatial operator, which has a spatial dependency that is limited to nearest neighbor elements. The equation 
∂qi/∂t = Li(Qs) can be integrated in time to advance the solution from time level n to n + 1.

The time integration for the DG method uses the second order total variation bounded (TVB) Runge–Kutta time integra-
tion scheme [11], which is given as

q∗
i = qn

i + �tLi(Qsn) (45)

qn+1
i = 1

2
q∗

i + 1

2
qn

i + 1

2
�tLi(Qs∗), (46)

where Qs∗ is evaluated by Eq. (38) using the temporal coefficients q∗
i .

The CFL stability condition of the DG method limits the CFL number as

λs
max�t

�x
≤ 1

2p − 1
, (47)

where �x is the size of the element, p is the order of the basis function, and λs
max is the largest characteristic speed. The 

system of equations being solved by the explicit RKDG method only includes the slower responding ion and neutral species 
and excludes the fast dynamics of the electron fluid and electromagnetic field. Therefore, the fastest characteristic speed 
for this subset of the governing equations is an ion or neutral acoustic speed and is typically much slower than the fastest 
characteristic speed for the complete system discussed in Sec. 2. With the explicit treatment of the ions and neutrals, the 
maximum time step size that satisfies Eq. (47) can be significantly larger than the time step size for an explicit treatment 
of the full multi-fluid plasma model.

3.3. Source treatment for the continuous and discontinuous Galerkin methods

The fluids and fields couple through the source terms of the governing equations. Source terms couple the solution 
variables Q f that represent the fast dynamics of the system to the solution variables Qs that represent the slow dynamics 
of the system. Therefore, the CG and DG methods must provide an accurate source treatment that is consistent between the 
two methods. Although the CG method uses a nodal representation and the DG uses a modal representation, converting the 
variables between the representations to compute the source terms is unnecessary.

Both the CG and DG methods solve weak formulations of the governing equations, so the source terms appear as integrals 
over the element volume in Eqs. (29) and (41). The source term integrals are computed numerically using quadrature rules, 
which require evaluating the integrand and hence the solution vector at specified spatial locations. The solution expansions 
given by Eqs. (18) and (38) allow the evaluation of Q f and Qs at any spatial position within an element. The source term 
integrands are thereby evaluated at the quadrature locations using the nodal and modal representations directly to compute 
the integrals.

4. Benchmarks and performance of the BFEM

The BFEM is applied to a set of problems with known analytic solutions. Spatial and temporal convergence tests are 
first performed to verify that the order of accuracy of the solution is in agreement with analytical results. The BFEM is 
benchmarked against the one-dimensional two-fluid plasma soliton problem [53] and the two-fluid electromagnetic shock 
tube problem [1,50]. These tests compare the computational time and accuracy of the BFEM with that of conventional 
finite volume and pure DG methods. The tests also evaluate the effects of the artificial dissipation in the CG portion of the 
method, and investigate the consequences of the implicit time integration on the solution. In addition, a three-fluid species 
separation problem is solved, which demonstrates the computational savings potential of the BFEM in a realistic application.

4.1. Linear advection: convergence study

The linear advection equation is a simple homogeneous hyperbolic equation that provides a test case to study the 
spatial and temporal convergence of the solution as the polynomial order for the solution is increased [35]. The DG and 
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Fig. 1. Log–log plot of the L2-norm of the error as a function of element size, �x, for the linear advection problem using a fixed time step of �t = 1/800
and spatial orders 3, 4, and 5 for the CG and the DG methods. The artificial dissipation coefficient used with the CG method is κ = 10−7. The linear portion 
of each line has a slope that corresponds to the order of accuracy of the numerical method. Both methods converge as expected. Higher order CG methods 
saturate at larger values of �x because the dissipation is applied at each node, and higher order methods have more nodes and therefore more dissipation.

CG components of the BFEM are separately used to solve the linear advection equation. The accuracy of the solution is 
determined by the order of accuracy of the numerical method. The one-dimensional linear advection equation is given by

∂ Q

∂t
+ ∂ Q

∂x
= 0, (48)

where Q is a scalar variable and the advection speed is set to one. A Gaussian pulse is initialized with Q (x) = e−10(x−2)2

on a domain [0, 10]. The pulse’s peak starts at x = 2 and propagates x = 8 over a total time interval of t ∈ [0, 6] and 
is compared to the analytical solution given as Q̂ (x) = e−10(x−8)2

. The error in the numerical solution is calculated by 
evaluating the L2-norm as

||�Q ||2 =
√√√√1

n

n∑
i=1

(
Q̂ (xi) − Q (xi)

)2
. (49)

where Q̂ is the analytical solution and Q is the numerical solution. The positions xi represents the quadrature locations for 
both the DG and CG methods, and n is the total number of quadrature points [35].

Fig. 1 shows the L2-norm of the error for the advected pulse using a fixed �t = 1/800 with different order polyno-
mial spatial basis functions for the DG and the CG methods. Using a fixed time step size isolates the spatial convergence. 
The plot shows that for basis functions of the same order the CG and DG methods converge at the same rate as the 
grid is refined. The slope of the curves for similar order DG and CG should be the same even though the DG method is 
slightly more accurate than then CG one. The L2-norm of the CG method plateaus around 10−5 due to the artificial nu-
merical dissipation, which damps the solution and decreases the peak of the original Gaussian shape. The required value 
of κ for stability decreases as the polynomial order is increased. The fixed value of κ = 10−7 is the minimum value re-
quired for the coarsest grid for spatial order three and used for all simulations for consistency, allowing only on variable to 
change.

To test the temporal convergence rate, a fixed time step size is chosen. The time step size is set as �t = �x for all 
polynomial orders of the spatial basis functions, which isolates the temporal convergence. For the CG method, a value of 
θ = 0.5 is selected to give the second-order accurate Crank–Nicolson method. The DG method uses a second-order TVB 
Runge–Kutta time integration. Fig. 2 shows the calculated L2-norm for the advection problem using a fixed CFL number. The 
slope of the lines for both methods is two for all polynomial orders of the spatial basis functions. The convergence rates of 
the error for a fixed CFL verify that the temporal integration is second-order accurate for the implicit CG method as well as 
the explicit DG method.

4.2. Plasma soliton: accuracy and computational cost

The propagation of a one-dimensional plasma soliton [53] is modeled using the multi-fluid plasma model. This problem 
is used to study the accuracy and computational cost of the BFEM as compared with an explicit DG method. The soli-
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Fig. 2. Log–log plot of the L2-norm of the error as a function of element size, �x, for the linear advection problem using a fixed CFL of one and spatial 
orders 3, 4, and 5 for the CG and the DG methods. The artificial diffusivity coefficient used with the CG method is κ = 10−7. The linear portions of all lines 
have a slope of two corresponding to the temporal order of accuracy of both the implicit CG and explicit DG portions of the BFEM method.

Table 1
Total computational time and time savings for plasma soliton simulations using the BFEM as 
compared to an explicit DG method for different values of electron to ion mass ratio and of 
the ratio of the speed of light to the ion sound speed.

Case mi/me c/csi DG time (s) BFEM time (s) BFEM cost over DG

1 25 10/
√

2 0.32 37.7 +11681%
2 100 10/

√
2 1.28 37.7 +2845%

3 500 10/
√

2 6.82 37.7 +452.8%
4 1000 10/

√
2 12.4 38.2 +208.1%

5 1836 10/
√

2 23.5 40.4 +71.91%
6 3672 10/

√
2 47.2 39.2 −16.95%

7 3672 100/
√

2 520 265 −49.04%
8 3672 1000/

√
2 5274 2735 −48.14%

ton consists of a two-fluid plasma composed of an electron fluid and an ion fluid, and offers a simple test case for the 
BFEM. The expected solution is smooth, which requires minimal artificial dissipation for achieving stable solutions with the 
BFEM, eliminating the detrimental effect on convergence that is described in the previous section. The artificial diffusivity 
coefficient κ , used in Eq. (26), is set to a value of 10−10.

The normalized variables of the two-fluid plasma model are initialized with a uniform transverse magnetic field Bz = 1.0, 
uniform ion and electron temperatures Ti = Te = 0.01, no fluid velocity ui = ue = 0, and unitary charges qi = −qe = 1. The 
initial particle number densities produce a Gaussian pulse on top of a background value ni = ne = 1 +e−10(x−6)2

on a domain 
x ∈ [0, 12]. The ratio of specific heats as used in Eq. (5) is set to � = 2. The simulation uses 512 second-order elements both 
for the BFEM and for the comparison case using the DG method. Periodic boundary conditions are used.

It is common practice in plasma simulations to artificially decrease the ion to electron mass ratio as well as the ratio of 
speed of light to ion sound speed [54]. This is done to relax the numerical time step restriction imposed by electron plasma 
frequency and the speed of light. Using an artificial mass ratio and/or an artificial speed of light can, however, affect the 
physics of the problem. To evaluate the effect of using physical and unphysical parameters, the computational cost of the 
BFEM versus the DG method is compared for artificial and realistic mass and speed ratios.

Since the implicit CG component of the BFEM allows time steps that are unconstrained by the electromagnetic fields or 
electron fluid, computational savings of the BFEM over the explicit DG method are achieved when using physical values for 
the ion to electron mass ratio and the speed of light to ion sound speed ratio. Table 1 shows the computational time needed 
to advance the solution from normalized time t = 0 to t = √

2/120L/csi for different mass ratios and normalized speeds 
of light. The ion sound speed is defined as csi = √

�pi/ρi . For a mass ratio of 25, the DG method is considerably faster 
than the BFEM; however, as the mass ratio is increased by decreasing the electron mass, the computational time of the DG 
method increases while that of the BFEM remains about the same. This is due to the fact that the decreasing electron mass 
increases the electron plasma frequency, which needs to be resolved when explicit time integration is used. The speed of 
light to ion sound speed ratio has a bigger impact on the computational time than the mass ratio. The explicit DG method 
requires that the time step size be decreased as the speed of light increases to satisfy the CFL stability condition given by 
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Fig. 3. Ion density profiles for the plasma soliton problem at t = √
2/30L/csi are shown for the explicit DG solution and the BFEM solution using 512 

second-order elements. The simulations use a realistic mass ratio and normalized speed of light. The solutions are compared to a converged FV solution of 
5000 cells. Ion density fluctuations propagate from the center of the domain towards the boundaries. Both methods resolve the oscillations of the problem, 
but the BFEM exhibits phase error since it does not resolve the electron plasma frequency. Second-order BFEM is used.

Fig. 4. L2-norm of the relative error, see Eq. (50), in the ion density solutions for the plasma soliton problem from the DG method and the BFEM as a 
function of time. Realistic values for the ion to electron mass ratio and the speed of light to ion sound speed ratio are used. The DG method produces 
a more accurate solution than the BFEM. The BFEM error relative to the converged solution – as measured by the L2-norm – is only about 1.5%, this 
corresponds to case 8 from Table 1.

Eq. (47). Therefore, as the ratio of speed of light to ion sound speed approaches realistic values, the BFEM computational 
time becomes considerably less than that of the DG method.

The ion density solutions at t = √
2/30L/csi from the DG method and the BFEM using 512 second-order elements are 

shown in Fig. 3 and compared to a converged solution with 5000 cells using a finite-volume high-resolution wave propa-
gation method [18]. In this case the plasma soliton is initialized with mi/me = 1836 and c/csi = 1000/

√
2. The DG solution 

exhibits a large amount of dispersion, which appears when a realistic mass ratio is used. The reason for the dispersion on 
the DG method is not well understood at this point, further studies are need. The BFEM has a higher peak value than the 
other methods because both the DG method and the FV method can be more dissipative even for smooth solutions. This 
is due to the fact that both the FV and DG method use flux limiters that tend to decrease value on those cases. Fig. 3
also shows that the BFEM solution has phase errors due to the fact that the electron plasma frequency is not resolved. The 
phase error is evidenced by the BFEM solution being spatially shifted relative to the converged FV solution. Phase error 
is expected whenever high-frequency dynamics are not resolved by implicit time integrators. The dissipation in the BFEM 
method comes from the artificial dissipation term, Eq. (26), but for smooth solutions the value of κ can be small as in this 
case where κ = 10−10.

Fig. 4 plots the evolution over time of the L2-norm of the relative error for the DG method and the BFEM when using 
physical values for the ion to electron mass ratio and the speed of light to ion sound speed ratio. The relative error is 
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Fig. 5. L2-norm of the relative error for the plasma soliton solution from the DG method and the BFEM as a function of time for a case where mi/me = 1. 
The L2-norms for the DG method and the BFEM are comparable since both methods use the same time step size and resolve the electron plasma frequency.

defined as

ρk
i − ρc

i

ρc
i

, (50)

where ρc
i is the mass density for the converged solution and ρk

i represents the solution given by the DG method or BFEM. 
The error is evaluated at each quadrature point (DG) or the nodal values (BFEM), and compared to the corresponding cell 
average (FV) at the same physical location. The L2-norm of the DG error is lower than that of the BFEM error, and the 
BFEM error relative to the converged solution is approximately 1.5%. It is important to note that the BFEM resolution is only 
10% of the converged solution resolution. The BFEM solution has a larger error because the DG and converged solutions 
are obtained using explicit time integration, which resolves the electron plasma frequency, whereas the BFEM does not 
resolve the electron plasma frequency. A fully explicit treatment is expected to be more accurate, but it is not always 
feasible or desired for stiff problems. The oscillatory behavior of the L2-norm for the BFEM continues even for longer time 
intervals.

Fig. 5 compares the L2-norm of the relative error for the DG method and the BFEM for a plasma soliton simulation in 
which the ion to electron mass ratio is one. The errors for the DG method and BFEM are comparable since the time step 
sizes are the same, and both methods resolve the electron and ion plasma frequencies.

The soliton problem demonstrates that the BFEM is less computationally costly than the DG method for problems where 
realistic ion to electron mass ratio and speed of light to ion sound speed ratio are used. In an hydrogen plasma, a realistic 
ion to electron mass ratio is 1836 (Table 1, case 5), which is at the lowest limit of mass ratios. For realistic fusion plasmas, 
the explicit time step limitation is even more restrictive because the ion to electron mass ratio is two or three times larger 
(see Table 1, case 8). Thus for fusion-relevant plasmas the BFEM offers considerable computational cost savings over the DG 
method, and it offers an even bigger advantage in plasma applications that use non-hydrogen plasmas where mass ratios 
would be even larger.

4.3. Electromagnetic plasma shock problem

The BFEM is applied to the two-fluid version of the electromagnetic plasma shock problem [55] as presented in Refs. [1,
35,50]. The electromagnetic plasma shock problem offers a comprehensive physics test for the BFEM because it exhibits the 
different limits of MHD behavior and of multi-fluid plasma effects by changing the ion Larmor radius, rL . Note that MHD 
assumes the limit of rL → 0, and multi-fluid plasma model allows for arbitrary values of rL .

The electromagnetic plasma shock is initialized with a discontinuity in the variables such that half of the domain is at 
one state and the other half is at another state. For the test case presented here, the mass ratio mi/me = 1836. The problem 
is described in detail in Ref. [1]. The solution features are shown in Fig. 6 for the case with rL = 0.73. From left to right 
the structures are: a fast rarefaction wave (FR), a slow compound wave (SC), a contact discontinuity (CD), a slow shock (SS), 
and another fast rarefaction wave (FR). For ion Larmor radii comparable to or smaller than the domain size, the ion fluid is 
tightly bound to the magnetic field and the solution contains wave-like structures. These structures are fast electromagnetic 
waves, which propagate faster than MHD waves and can be seen at the left of the first FR in Fig. 6. The fast waves, which 
include the whistler wave, correspond to the right-hand and left-hand circularly polarized plasma waves that propagate 
parallel to the magnetic field.
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Fig. 6. The solution features of the electromagnetic plasma shock for rL = 0.73 are a fast rarefaction wave (FR), a slow compound wave (SC), a contact 
discontinuity (CD), a slow shock (SS), and another fast rarefaction wave (FR). The solution also shows fast electromagnetic waves (including the whistler 
wave) that propagate faster than MHD waves [1].

The electromagnetic plasma shock is initialized by setting the two-fluid plasma variables to
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, (51)

for the left and right halves of the domain. The parameters used for the problem are obtained from Ref. [1], and are 
c/csi = 110, rL = 0.73, �e = �i = 5

3 and the ion to electron mass ratio is mi/me = 1836. A grid resolution of 512 second-order 
elements is used. Time is normalized to the ion cyclotron time τc = 1/ωci .

The solution from the BFEM is compared to a solution from the DG method [50] and to the finite-volume wave prop-
agation method [18]. Fig. 7(a) shows the mass density profile at time t = 0.05τc for all three methods. The BFEM solution 
smooths the physical oscillations in the solution due to the artificial dissipation and is discussed in more detail in Sec. 4.3.2. 
The BFEM also does not resolve the fast electromagnetic waves, which are driven by electron dynamics. Fig. 7(b) shows B y

which is smooth and represented by the CG portion of the BFEM, showing that there is good agreement between all the 
methods where the electron dynamics is not very relevant.

4.3.1. Implicit and explicit time integration comparison
As evident in Eq. (47), the CFL condition depends on the characteristic speeds of the system, the species speeds of sound, 

csα , and the speed of light, c. Moreover, the temporal discretization must also resolve the species cyclotron frequencies 
ωcα = qα B/mα , and the species plasma frequencies ωpα = √

nαq2
α/ε0mα , as described in Sec. 2. The initialization parameters 

for the electromagnetic plasma shocks studied are shown in Table 2.
The maximum explicit time step size is determined from these parameters by the following expression,
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Fig. 7. The total mass density, mini + mene , and y-component of magnetic field are plotted for the electromagnetic plasma shock problem at t = 0.05τc , 
when c/csi = 110 and mi/me = 1836. Second-order BFEM is used. The main features of the problem are captured by all three methods, but the BFEM does 
not properly resolve the fast electromagnetic waves, which require accurately resolving the electron dynamics by using a fully explicit treatment.

Table 2
Characteristic speeds and frequencies for 
the electromagnetic shock problem.

Electron Ion

c 1.0 1.0
csα 3.9 × 10−1 9.1 × 10−3

ωcα 1.8 × 102 1.0 × 10−1

ωpα 4.3 × 102 1.0 × 101

Fig. 8. The total mass density, mini + mene , is plotted for the electromagnetic plasma shock problem at t = 0.05τc using different time step size �t . 
Second-order BFEM is used. The time step size is expressed relative to �tmax , which corresponds to the maximum value allowed for explicit methods based 
on the CFL condition. Note that �t = 42.9�tmax is the maximum time step allowed by the BFEM, where the ion dynamics restrict the time step size.

where β is the number of time points required to resolve an oscillation, typically, β = 1/10. The electron plasma frequency 
imposes the most stringent restriction on the time step size, �tmax = 2.33 × 10−4. This restriction is particularly severe 
for methods that use fully explicit time integration. Since in the BFEM the electron fluid and the electromagnetic fields 
are advanced implicitly, the time step restrictions only depend on the slower ion and neutral fluids. Therefore, the BFEM 
permits larger time steps.

Fig. 8 compares the total mass density solution for BFEM using a time step equal to the explicit time step limit, �t =
�tmax , with a solution using a larger implicit time step, �t = √

mi/me�tmax = 42.9�tmax . The implicit time step is limited 
by the ion plasma frequency. The solution attained using the implicit �t resolves all the main features of the problem 
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Fig. 9. The total mass density, mini + mene , is plotted for the electromagnetic plasma shock problem to demonstrate the effect of varying the artificial dis-
sipation on the electron fluid, κe , for fixed electromagnetic artificial dissipation κEM = 10−4. The solution for κe = 10−7 captures the wave-like behavior of 
the electromagnetic plasma shock problem. The amplitude of the compound wave increases, and the right fast rarefaction wave is not visible. Second-order 
BFEM is used.

Fig. 10. The total mass density, mini +mene , is plotted for the electromagnetic plasma shock problem where the artificial dissipation on the electromagnetic 
fields is decreased from κEM = 10−4 to 10−5, and second-order BFEM is used. The electron fluid artificial dissipation is fixed at κe = 10−6. The reduced 
dissipation solution agrees better with the solution from the DG method, reinforcing the point that the wave-like behavior arises from the interaction of 
the electron fluid with the electromagnetic fields. Second-order BFEM is used.

except the fast rarefaction wave, which should be ahead of the slow shock, but instead there are small oscillation ahead 
of the SS. The slow compound wave (SC) is better resolved with the larger time step of the BFEM because this wave is a 
feature of the ion dynamics.

4.3.2. Effects of artificial dissipation
As described in Sec. 3.1, an artificial dissipation term is added to the governing equations for the electron fluid and 

electromagnetic fields to damp numerical oscillations that are produced by the CG method in regions of sharp gradients in 
the solution. The artificial diffusivity coefficient κ scales the amount of artificial dissipation applied to the electron fluid and 
electromagnetic fields. If κ is too small the solution develops high amplitude node-to-node oscillations that grow over time, 
making the solution of the nonlinear Newton solver more stiff and requiring more iterations to converge [35]. On the other 
hand, if κ is too big the solution smooths relevant features of the solution producing an inaccurate result.

It is possible to apply different values of κ for the electron equations and electromagnetic field equations, e.g. κe and 
κEM . Reducing the artificial dissipation coefficient in the electron fluid (κe) from 10−6 to 10−7 while keeping κEM fixed 
makes the compound wave more distinct as shown in Fig. 9. The oscillations due to Langmuir and whistler waves are 
also more visible. However, the second fast rarefaction wave (right-most FR) is not resolved, and small oscillations are 
present instead. Decreasing the artificial dissipation applied to Maxwell’s equations while keeping κe fixed allows the BFEM 
solution to better resolve the oscillations due to the fast electromagnetic waves. Fig. 10 shows the total mass density for 
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the electromagnetic plasma shock problem when the electron fluid dissipation is κe = 10−6 and the electromagnetic field 
artificial dissipation is varied from κEM = 10−4 to κEM = 10−5. In addition, the fast rarefaction wave is better resolved with 
the smaller value of κEM .

Overall there is remarkable agreement between the BFEM solution and the computationally more expensive DG method 
solution. It is evident from the electromagnetic plasma shock results presented in Figs. 9 and 10 that artificial dissipation 
plays an important role in the accuracy of the BFEM solution. Thus the BFEM can be further improved by devising a 
systematic means of calculating the parameter κ or using a different form of artificial dissipation.

4.4. Species separation in fusion capsule implosions

The multi-fluid plasma model is applicable to problems where the plasma is composed of multiple species that exhibit 
dynamics at different scales. A motivating problem is the species separation [42] that can occur during the implosion phase 
of inertial confinement fusion (ICF) capsules, where deuterium and tritium are heated and compressed to fusion condi-
tions. The compression process uses laser-driven shocks that produce electric fields [56], which can cause the deuterium to 
accelerate faster than the tritium. The phenomenon is not captured by single-fluid plasma models. Low neutron yield mea-
surements [57] point to the possibility of fuel stratification caused by baro-diffusion [56] (pressure gradient-driven diffusion) 
that causes the separation of the ion species during the implosion.

The multi-fluid plasma for this problem is composed of two ion fluids, deuterium and tritium, and an electron fluid. The 
dynamics of the ions, electrons, and electromagnetic fields occur at a vastly different timescales, which introduces numerical 
stiffness making this problem ideally suited for the BFEM. The different timescales in the ICF fuel species separation problem 
result from the characteristic speeds and frequencies for the constituent species. The differences are particularly large when 
realistic speed of light and species masses are used.

Following the problem setup in Ref. [42], a Cartesian geometry is used and the plasma is initialized with a discontinuity 
in the parameters. The left half of the domain (x < 0) has a total ion density given by 

∑
α nα = 4 × 1019 cm−3, where the 

sum is only over the ion species, with all species having a temperature of Tα = 100 eV. The right half of the domain (x ≥ 0) 
has a total ion density given by 

∑
α nα = 1 × 1019 cm−3 with all species having a temperature of Tα = 10 eV. The plasma 

is initialized to be charge neutral everywhere, ne = ∑
α Zαnα , where the sum is again only over the ion species. Heat flux 

and viscous effects are neglected. The computational domain is x ∈ [−30 μm, 30 μm], and zero normal gradient boundary 
condition are applied at the boundaries. The speed of light to proton sound speed ratio (c/csp ) is 3065 and the proton to 
electron mass ratio is 1836. The ion species are characterized by ion mass ratio in relation to a proton mass, μ = mα/mp

and by the ionization state, Z = qα/e. The species separation from the deuterium is magnified by using a heavier second 
ion species with μ = 10, instead of μ = 3 corresponding to tritium.

Fig. 11 compares the ion number densities at t = 150 ps for simulations with an electron CFL number of 1 and an 
electron CFL number of 20. An electron CFL number of 1 restricts the time step size to resolve all electron characteristic 
timescales. The ion species separation is the same for both cases but the oscillations behind the shock front differ. This 
may be due to the fact that the electron dynamics are not fully resolved with an electron CFL number of 20. The effect of 
electron CFL number on the required computational time (defined as the total elapsed time) and solution accuracy is shown 
in Fig. 11(c). There it can be seen that there are considerable CPU cost saving as the CFL number is increased, although the 
gains are minimal after CFL = 10. The L2-norm (Eq. (49)) increases after an electron CFL number of 10 but remains small.

5. Conclusion

A blended finite element method (BFEM) is presented for the multi-fluid plasma model. The method uses a DG spatial 
discretization combined with explicit Runge–Kutta time integration to describe the ion and neutral fluids and a CG spatial 
discretization combined with implicit Crank–Nicolson time integration for the electron fluid and electromagnetic fields. The 
DG method accurately captures shocks and discontinuities that can occur in the ion and neutral fluids, and the CG method 
efficiently and robustly computes smooth solutions for the electron fluid and electromagnetic fields. The physics-based 
decomposition of the algorithm into implicit CG and explicit DG portions yields numerical solutions that resolve the desired 
timescales and match the expected solution structure.

Each component of the numerical method is independently verified to converge at the expected order of accuracy. 
The two-fluid soliton problem is used to compare the computational cost of the BFEM to an explicit DG method. For 
unphysical values of the ion to electron mass ratio and speed of light to ion thermal speed ratio, the DG method is more 
computationally efficient than the BFEM. However, for realistic values of the mass ratio and normalized speed of light, the 
BFEM is less costly than the DG method. It is worth noting that for non-hydrogen plasmas, the mass ratio for the ion 
species relative to electrons can be many times greater than 1836, and even for fusion hydrogen plasmas the ion fluids are 
deuterium and tritium, so the mass ratio is 3672. In these cases the computational cost savings offered by the BFEM over 
the DG method are considerable.

The BFEM and DG method are further compared using the electromagnetic plasma shock problem. The total mass density 
from DG and BFEM solutions are compared to solutions given by a finite-volume high-resolution wave propagation method. 
The electron fluid and the electromagnetic field equations are advanced implicitly using a time step 42.9 times larger 
than the time step required for an explicit method. The fast electromagnetic waves and the fast rarefaction wave are not 
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Fig. 11. Depicted are the ion densities from a multi-fluid plasma simulation of the species separation problem composed of two ion fluids (μ = 2 and 
μ = 10) and an electron fluid using (a) an electron CFL number of 1, a time step size that resolves all electron characteristic timescales, and (b) an electron 
CFL number of 20. The ion species separation in both cases is the same although the solution behind the shock fronts differ. (c) The L2-norm of the 
densities and the computational time for different electron CFL numbers are shown. The CPU time is calculated as a fraction of the computational time 
used for the case with electron CFL number of 1. The solution error increases as the computational time decreases.

resolved, but the location of the shock, contact discontinuity, and compound wave are accurately computed. The artificial 
dissipation added to the CG portion of the BFEM is adjusted for each equation system independently to produce more 
physically accurate results. When the artificial dissipation for Maxwell’s equations is reduced by a factor of ten, there is 
remarkable agreement between the DG and BFEM results. This shows that artificial dissipation plays an important role in 
BFEM solutions.

Application of the BFEM to the multi-fluid plasma problem of species separation in ICF capsules demonstrates the ability 
of the method to take time step sizes that are much larger than the electron timescales. The method generates stable 
solutions that capture the overall ion structures but at a significantly lower computational cost.

The BFEM has large potential to be useful in problems where the slow dynamics are of primary interest, but the fast 
dynamics still play an important role, i.e. problems that span a multitude of temporal and spatial scales. The method offers a 
computationally efficient means of modeling plasma dynamics using realistic parameters. The BFEM can be further improved 
by dynamically adjusting the artificial dissipation. While the results presented are for one-dimensional applications, the 
extension to multiple dimensions is straightforward. The reduction in computational cost achieved by the BFEM is due to 
fast dynamics being treated implicitly. This means that the cost savings are expected to hold for higher dimensions. The DG 
method takes less computational time to advance the solution by one time step, however �t is much smaller than that of 
the BFEM. Thereby a fully explicit DG solution takes many more time steps, independent of the dimensionality, which also 
means that the computational cost savings using the BFEM only occur for relatively large implicit time-steps compared to 
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explicit time-steps. The physics-informed blending of the CG and DG representations offers a way to reduce computational 
cost while retaining the generalized physics of the multi-fluid plasma model.
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