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The need for multiple interactive, real-time simulations using different parameter values 
has driven the design of fast numerical algorithms with certifiable accuracies. The reduced 
basis method (RBM) presents itself as such an option. RBM features a mathematically 
rigorous error estimator which drives the construction of a low-dimensional subspace. 
A surrogate solution is then sought in this low-dimensional space approximating the 
parameter-induced high fidelity solution manifold. However when the system is nonlinear 
or its parameter dependence nonaffine, this efficiency gain degrades tremendously, an 
inherent drawback of the application of the empirical interpolation method (EIM).
In this paper, we augment and extend the EIM approach as a direct solver, as opposed to 
an assistant, for solving nonlinear partial differential equations on the reduced level. The 
resulting method, called Reduced Over-Collocation method (ROC), is stable and capable of 
avoiding the efficiency degradation. Two critical ingredients of the scheme are collocation 
at about twice as many locations as the number of basis elements for the reduced 
approximation space, and an efficient error indicator for the strategic building of the 
reduced solution space. The latter, the main contribution of this paper, results from 
an adaptive hyper reduction of the residuals for the reduced solution. Together, these 
two ingredients render the proposed R2-ROC scheme both offline- and online-efficient. 
A distinctive feature is that the efficiency degradation appearing in traditional RBM 
approaches that utilize EIM for nonlinear and nonaffine problems is circumvented, both 
in the offline and online stages. Numerical tests on different families of time-dependent 
and steady-state nonlinear problems demonstrate the high efficiency and accuracy of our 
R2-ROC and its superior stability performance.
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1. Introduction

The need for highly efficient simulations of parametrized systems, often governed by parametric Partial Differential 
Equations (pPDEs), is increasing in many areas of scientific and engineering applications. In particular, the need for multiple 
interactive, real-time simulations using different parameter values has driven the design of fast numerical algorithms with 
certifiable accuracies. The parameters involved may have a wide variety of physical meanings, including boundary conditions, 
material properties, geometric settings, source properties etc. Moreover, the parameter dimensionality of the system may be 
high, the dependence of the system on the parameters may be complicated, the underlying systems may be nonlinear and 
their dependence on the parameters may be nonaffine.

To satisfy the need for fast numerical algorithms with certifiable accuracies that can be used to efficiently compute multi-
parametric systems, the reduced basis method (RBM) [46,32] was developed and proven effective. The RBM was introduced 
in the 1970s in the context of a nonlinear structure problem [1,43]. It has since been used in a wide variety of problems, 
including linear evolution equations [30], viscous Burgers equation [51], the Navier-Stokes equations [19], and harmonic 
Maxwell’s equation [15,16], among many others. The success of RB methods depends on an offline-online decomposition 
process, where the costly process of basis selection and surrogate space construction are performed offline by a greedy 
algorithm, and an efficient online reconstruction using the reduced basis then provides orders-of-magnitude efficiency gain. 
The RBM is constructed so that the computational complexity of the online reduced solver is independent of the number of 
degrees of freedom of the high-fidelity approximation of the basis functions, and so can provide efficient real-time solutions. 
Detailed reviews of the RBM approach can be found in [47,29] and [46,32].

For mildly nonaffine terms and/or nonlinear equations, the Empirical Interpolation Method (EIM) or its discrete version 
(DEIM) [4,27,12,45] is typically used to remove the online dependence on the cost of the high-fidelity approximation and 
achieve the efficiency goals of RBM. However, when the problem has a strong nonlinearity or nonaffinity, the EIM is often 
not feasible. Furthermore, even in cases where performing a (D)EIM is feasible, it may not be efficient. For example, in cases 
when the parameter dependence or the nonlinearity is complicated, the EIM decomposition may require many terms, in-
creasing the online complexity and potentially severely degrading the reduced solver’s online efficiency. To see this, consider 
a simple heat conduction problem with a nonaffine parameter dependence:

−∇ · (a(x;μ)∇u) = f .

To handle the nonaffine parameter dependence, we first apply EIM to approximate the function a(x; μ) using a linear 
combination of μ-independent functions,

a(x;μ) ≈
Q a∑

q=1

θq(μ)a(x;μq).

Here {μq}Q a
q=1 is an ensemble, typically chosen through a greedy procedure. The equation of interest is written in its 

weak form a(u, v; μ) := (a(x;μ)∇u,∇v) = ( f , v), and the reduced-order solution space spanned by the full order solu-
tions {ξ1, . . . , ξ N } is identified during the offline learning stage. Finally, the online reduced solver is assembled for each μ
with the corresponding stiffness matrix created via

(
a(ξi, ξ j;μ)

)N
i, j=1 := (

a(x;μ)∇ξi,∇ξ j
)N

i, j=1 =
Q a∑

q=1

θq(μ)
(
a(x;μq)∇ξi,∇ξ j

)N
i, j=1 ,

where 
(
a(x;μq)∇ξi,∇ξ j

)N
i, j=1 is computed offline. Notice that although the online solver is not dependent on the cost of 

the high fidelity approximations, its complexity is linearly dependent on the number of EIM terms Q a . If Q a is large, this 
may lead to substantial reductions in efficiency. When the model involves geometric parametrization (such as in [16,5,50]), 
it has been observed that Q a can be prohibitively large (i.e. much larger than the reduced space dimension N) even if the 
more efficient matrix version of EIM [40] is adopted. In this work, we present an approach to mitigate this drawback of EIM. 
The proposed reduced residual (R2) based reduced over-collocation (ROC) method circumvents the efficiency degradation 
(in both the offline and online stages) that plagues RBM approaches that utilize EIM for nonlinear and nonaffine problems.

1.1. Overview of the reduced-residual reduced over-collocation approach

To overcome the limitations of the EIM framework, we adopt a collocation approach as we did in [13,14] rather than 
variational approaches such as Galerkin or Petrov-Galerkin [6,9,8]. The reduced collocation method was developed in [13], 
which works well to circumvent the EIM efficiency degradation for the reduced solver but suffers from stability problems 
[14]. To mitigate the stability issue, we adopt an over-collocation approach where we collocate at approximately twice 
as many points as the dimension of the reduced order space. Half of these collocation points interpolate the reduced 
solution, which is given by a linear combination of the basis elements. We choose the other collocation points based on a 
computational analysis of the reduced order residuals when these basis functions are identified during the offline procedure. 
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These additional collocation points ensure a good interpolation of the residual corresponding to an arbitrary parameter value 
when the reduced order space is used to solve the pPDE. However, over-collocation alone does not provide online and offline 
efficiency, because the error estimators (which are critical for the construction of the reduced solution space), still require 
the application of EIM decomposition.

The challenge of computing error estimators without requiring a costly EIM decomposition is resolved by the second 
ingredient of our method. We propose an efficient alternative for guiding the strategic selection of parameter values to build 
the reduced solution space, an error indicator that is based on a reduced residual. The key is a systematic and hierarchical 
reduction of the judiciously selected residuals. In comparison, our previously proposed L1-based over collocation approach 
[17] follows the guidance of the L1-norm of the coefficients, under a set of a Lagrangian basis, of the reduced basis solution. 
The proposed R2-based scheme sits on a more mathematically rigorous foundation.

Together, these two ingredients produce a reduced residual reduced over-collocation method, which we will refer to 
as the R2-ROC method. This R2-ROC scheme is online efficient in the sense that the online cost is independent of the 
number of degrees of freedom of the high-fidelity truth approximation, and also avoids the efficiency degradation of a 
direct EIM approach for nonlinear and nonaffine problems. The R2-ROC method is also highly efficient offline: it requires 
minimal computation beyond the standard RBM cost of acquiring solution snapshots used to construct the reduced order 
space. Consequently, minimum number of simulations of the pPDE that make the offline preparation stage worthwhile (the 
“break-even” number of simulations) is significantly smaller than traditional RBM, as we show in our numerical examples 
for the steady-state and time-dependent cases of the diffusion with cubic reaction and the viscous Burgers’ equation.

The paper is organized as follows. In Section 2, we introduce and analyze our R2-ROC method. We also discuss the 
difference between our approach and several others. In Section 3 we present numerical results for two test problems, the 
viscous Burgers’ equation [51] and various nonlinear convection diffusion reaction equations. For all our test problems, the 
R2-ROC is shown to have accuracy on par with the full-residual ROC, while demonstrating significantly improved efficiency 
due to the independence of the number of expansion terms resulting from the EIM decomposition. Finally, concluding 
remarks are drawn in Section 4.

2. The Reduced over-collocation (ROC) method

Let � ⊂Rd (for d = 1, 2, or 3) be a bounded physical domain on which we define the problem

P(u(x;μ);μ) − f (x) = 0, x ∈ �, (1)

with appropriate boundary conditions. The term P is a parametric second order partial differential operator that may 
include linear and nonlinear functions of the solution u(x; μ), and its derivatives ∇u(x; μ), and �u(x; μ). The p-dimensional 
parameter μ lives in the space D ⊂Rp . The solution u(μ) := u(x; μ) lives in a Hilbert space H ; for example, for a stationary 
Laplace problem, the space H is typically the Sobolev space H1(�). The R2-ROC method is designed to work for both steady 
state and time dependent problems, so we also consider the transient problem

ut +P(u(t, x;μ);μ) − f (x) = 0, x ∈ �, (2)

with appropriate boundary (and initial) conditions. We first focus on developing the algorithm for steady state problems (1)
and will then extend the algorithm to time dependent case (2) in Section 2.3.

We proceed by discretizing the equation (1) by a high-fidelity scheme (known as a “truth solver” in the RB literature). 
We define the discrete solution uN (XN ; μ) such that the equation

PN (uN (XN ;μ);μ) − f (XN ) = 0, (3)

is satisfied on a set of N collocation points XN ∈ �. With a slight abuse of notation, we let N denote the number of the 
degrees of freedom in the solver, even though the N points in XN might include, e.g. points on a Dirichlet boundary that 
are not free.

The truth approximation uN (XN ; μ) is thus a discretization of the solution u(μ) on the grid XN so that the equation 
(1) is enforced on a very refined discrete level. In (3), the terms ∇u(XN ; μ), and �u(XN ; μ) are approximated by the 
numerical discretizations ∇hu(XN ; μ), and �hu(XN ; μ), where generally h ∝ 1

d√N
. In this paper, we use a finite difference 

method (FDM) to obtain this discretized equation. However, the extension to point-wise schemes such as spectral collocation 
is obvious, and to finite element methods is possible.

We are now ready to describe the R2-ROC algorithm. We split the description into the online (in Section 2.1) and offline 
(in Section 2.2) components. However, specification of part of the online algorithm is postponed until the introduction of the 
ROC offline algorithm in Section 2.2, which repeatedly calls the online solver to construct a surrogate solution space. Analysis 
of the method is provided in Section 2.2.4. In Section 2.3 we present the extension to the time-dependent problems of the 
form (2). The algorithms contain a great many terms with associated superscripts and subscripts. To help avoid confusion, 
we list the frequently used terms and their meaning in Table 1 for the readers’ reference.
3



Y. Chen, S. Gottlieb, L. Ji et al. Journal of Computational Physics 444 (2021) 110545
Table 1
Notation and terminology used throughout this article.

μ := (μ1, . . . ,μp) Parameter in p-dimensional parameter domain D ⊆Rp

�train Parameter training set, a finite subset of D
u(μ) Function-valued solution of a parameterized PDE on � ⊂Rd

P(u(μ);μ) A (nonlinear) PDE operator
N Degrees of freedom (DoF) of a high-fidelity PDE discretization, the “truth” solver
XN A size-N (full) collocation grid
uN (μ) Finite-dimensional truth solution
N Number of reduced basis snapshots, N 
 N
μ j “Snapshot” parameter values, j = 1, . . . , N
ûn(μ) Reduced basis solution in the n-dimensional RB space spanned by 

{uN (μ1), . . . , uN (μn)}
en(μ) Reduced basis solution error, equals uN (μ) − ûn(μ)

�N (μ) A residual-based error estimate (upper bound) for ‖eN (μ)‖ or an error/importance 
indicator

X N−1
r := {x1∗∗, . . . , xN−1∗∗ } A size-(N − 1) reduced collocation grid, a subset of XN determined based on 

residuals
X N

s := {x1∗, . . . , xN∗ } An additional size-N reduced collocation grid, a subset of XN determined based on 
the solutions

X M A reduced collocation grid of size M that is X N−1
r ∪ X N

s
T Final time for the time-dependent problems
�t Time stepsize for the time dependent problems
Nt Total number of time levels, i.e. Nt := T

�t
t j Time level j, j = 1, . . . , Nt

εtol Error estimate stopping tolerance in greedy sweep

Offline component The pre-computation phase, where the reduced solver is trained using a greedy 
selection of snapshots from the solution space

Online component The process of solving the offline-trained reduced problem, yielding the reduced 
order solution.

2.1. Online algorithm

The online component of the R2-ROC is similar to the online component of the reduced collocation method described in 
our prior work [13], with one critical difference: in the R2-ROC method we use a larger number of collocation points than 
the number of reduced basis snapshots. Moreover, the selection of these points now takes a closer account of the PDE we 
are solving. This over-collocation feature is an innovative approach that provides additional stabilization of the online solver, 
as we will observe in the numerical results.

We begin with N selected parameters {μ1, . . . , μN }, and the corresponding high fidelity truth approximations {un :=
uN (XN ; μn), 1 ≤ n ≤ N}. We also have a set of collocation points X M (M ≥ N) formed from a subset of XN ,

X M := {x1∗, . . . , xM∗ }, with x j∗ having index i j in XN .

These three ingredients: the chosen parameters, the truth approximations, and the set of collocation points are all identified 
and computed in the offline phase and will be described in Section 2.2.

Note that we adopt the same notation for a function un and its discrete representation as a vector of its values at the 
grid points. These vectors {un, 1 ≤ n ≤ N} constitute the columns of basis matrix Wn ∈RN×n for n ∈ {1, . . . , N}.1

Furthermore, we let Wn,M denote the matrix of the corresponding reduced basis space on the set X M ,

Wn,M := [u1(X M), . . . , un(X M)] ∈RM×n, for n = 1, . . . , N.

= P∗Wn,

where the operator P∗ ∈RM×N is defined as,

P∗ := [
ei1 , · · · , eiM

]T
,

with ei ∈RN×1 the i th canonical unit vector.
We are now ready to describe the online algorithm. For any given parameter μ we seek a reduced approximation of the 

solution u(μ), denoted by ûn(μ) and computed as a linear combination of the truth approximation “snapshots” contained 
in the reduced basis space Wn . This reduced basis solution satisfies

ûn(μ) = Wncn(μ),

1 In practical calculations, columns of Wn are orthonormalized via EIM for numerical robustness. For notational simplicity, we still denote them by {ui}.
4
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where the coefficients cn(μ) must satisfy a reduced version of equation (3):

PN (Wncn(μ);μ) ≈ f (XN ). (4)

Recall that the number of “snapshots” n is (hopefully significantly) smaller than the degrees of freedom of the truth ap-
proximation N , so we have an over-determined system. In [13] we dealt with this system by a Petrov Galerkin approach 
or collocation on n points (which produced a square system). In this paper we propose something different, which is one 
of the distinctive features of our method. Indeed, the R2-ROC method proposes to solve the unknown coefficients cn(μ) by 
minimizing the residual of (4) on the set of nodes X M :

P∗
(
PN (Wnω;μ) − f (XN )

)
.

The problem is formulated as an optimization problem:

cn(μ) = argmin
ω∈Rn

‖ P∗
(
PN (Wnω;μ) − f (XN )

)
‖RM . (5)

Note that this is a nonlinear system of equations for cn(μ). It can be solved using an iterative methods such as Newton’s 
method or Picard iteration.

The calculation of

P∗
(
PN (Wnω;μ) − f (XN )

)
relies on the computation of

∇hûn(μ) = P∗ [(∇hu1) , . . . , (∇hun)] cn(μ),

�hûn(μ) = P∗ [(�hu1) , . . . , (�hun)] cn(μ).

Notice that the differentiations ∇hu j and �hu j are computed accurately, at a cost proportional of N and then projected to 
the reduced grid X M . However, this step (of computing P∗ [(∇hu1) , . . . , (∇hun)] and P∗ [(�hu1) , . . . , (�hun)]) is performed 
offline leading to matrices of dimension M × n which we denote by ∇h(Wn,M) and �h(Wn,M) respectively. They are mul-
tiplied by ω ∈ Rn online to compute ∇hûn(μ) and �hûn(μ) independent of N thanks to linearity of ∇h· and �h·. To 
see in more detail that the evaluation of the operator PN is also independent of N , we consider the nonaffine operator 
introduced in Introduction with a nonlinear term added. For simplicity, we consider the one-dimensional case,

− (
a(x;μ1)u′)′ + u(u − μ2)

2.

Given a discretized reduced basis representation of u, Wnω, P∗ (PN (Wnω;μ)) can be evaluated as

−a(X M;μ1) �
(
�h(Wn,M)ω

)
− a′(X M;μ1) �

(
∇h(Wn,M)ω

)
+ Wn,Mω �

(
Wn,Mω − μ2

)2
.

Here, the terms with underlines, of dimension M ×n, are precomputed (and expanded as n and consequentially M increase) 
offline. a(X M; μ1) and a′(X M; μ1) are evaluations at the M chosen collocation points. � and the square at the end should 
be understood as Hadamard products. It is therefore clear that the cost is O (Mn). In particular, neither is it dependent on 
N nor the (potentially large) number of EIM expansion terms Q a of a(x; μ). This independence will translate to the full 
online solver, and is due to the collocation approach’s point-wise evaluation nature.

In summary, the online procedure of the nonlinear solve for obtaining cn(μ) from equation (5) involves:

1) realizing/updating Wn,M cn , ∇h(Wn,M)cn , and �h(Wn,M)cn at each iteration, at a cost of O (Mn) operations;
2) calculating the forcing term f (X M), at a cost of O (M) operations; and
3) solving the reduced linear systems at each iteration of the nonlinear solve, at a cost of O (n3) operations per iteration.

The next section describes the offline procedure in which we select the N reduced basis parameters {μ1, . . . , μN } se-
quentially through a greedy algorithm. Once a selected parameter μ j is determined, we precompute as many quantities as 
possible so that minimal update is performed at each iteration of the online iterative method. We also describe the choice 
of the over-collocation points X M and analyze the resulting scheme in the next section.

2.2. Offline algorithm

In this section, we describe the offline procedure of the algorithm. There are three components here, and we describe 
each separately.
5
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2.2.1. A greedy algorithm
Reduced basis methods typically utilize a greedy scheme to iteratively construct the reduced basis space. The R2-ROC 

is no exception. In this section we describe the procedure for selecting the representative parameters μ1, . . . , μN which 
comprise the reduced parameter space, and the corresponding reduced basis space W N . We utilize a greedy scheme to 
iteratively construct W N as follows:

We begin by selecting the first parameter μ1 randomly from �train (a discretization of the parameter domain D) and we 
obtain its corresponding high-fidelity truth approximation uN (μ1) to form a (one-dimensional) RB space given by the range 
of W1 := [

uN (μ1)
]
. Now assume that we begin each iteration with a n-dimensional reduced parameter space and reduced 

basis space Wn comprised of the corresponding truth approximations. Next, we use the online procedure described above 
to obtain an RB approximation ûn(μ) for each parameter in �train and compute its error estimator �n(μ). The (n + 1)th 
parameter μn+1 is now selected using a greedy approach and the RB space augmented by

μn+1 = argmax
μ∈�train

�n(μ), Wn+1 :=
[

Wn uN (μn+1)
]
. (6)

For this procedure to be efficient and accurate, the greedy algorithm requires an efficiently-computable error estimate 
that quantifies the discrepancy between the n-dimensional surrogate solution ̂un(μ) and the truth solution uN (μ). We de-
note this error estimator �n(μ), it traditionally satisfies �n(μ) ≥ ∥∥̂un(μ) − uN (μ)

∥∥. The error bound �n is usually defined 
based on a residual-type a posteriori error estimate from the truth discretization. Mathematical rigor and implementational 
efficiency of this error estimate are crucial for the accuracy of the reduced basis solution and its efficiency gain over the 
truth approximation. When P(u; μ) is a linear operator, the Riesz representation theorem and a variational inequality imply 
that �n can be taken as

�R
n (μ) := ‖ f −PN (̂un;μ)‖2√

βLB(μ)
, (7)

which is a rigorous bound (with the R -superscript denoting that it is based on the full residual). Here βLB (μ) is a lower 
bound for the smallest eigenvalue of PN (μ)T PN (μ) where PN (μ) is the matrix corresponding to the discretized linear 
operator PN (·; μ).

2.2.2. An error indicator based on Reduced Residual
For the general nonlinear equation, deriving the counterpart of this estimation is far from trivial. Moreover, even for 

linear equations, the robust evaluation of the residual norm in the numerator is delicate [11,18]. Furthermore, we would also 
have to resort to an offline-online decomposition to retain efficiency which usually means application of EIM for nonlinear or 
nonaffine terms. This complication degrades, sometimes significantly [5,40], the online efficiency due to the large number of 
resulting EIM terms. What exacerbates the situation further is that the (parameter-dependent) stability factor βLB (μ) must 
be calculated by a computationally efficient procedure such as the successive constraint method [34,33]. In this section we 
present our novel reduced-residual error indicator as an alternative that does not suffer from any of these challenges.

This alternative error indicator must be as efficient and effective for the nonlinear and nonaffine problems as for the 
linear affine ones. We present here our novel reduced residual based error indicator:

�R R
n (μ) := ‖ f −PN (̂un;μ)‖L∞(X M ) = ‖P∗ ( f −PN (̂un;μ))‖L∞ . (8)

Note that this residual is not being evaluated over the entire discrete mesh of the truth approximation, only a judiciously 
reduced portion of it. It is therefore based on the reduced residual, giving the name of the method - R2-based reduced over 
collocation. We further note that it is not certified, thus called “indicator”.

The effectiveness of this error indicator is wholly dependent on the choice of the over-collocation set X M , the topic of the 
next sub-section. Our analysis in Section 2.2.4 will show that first set of points of X M , denoted by X N

s , ensures that, when 
the differential operator is linear, our reduced collocation solution recovers a specifically designed generalized empirical 
interpolant [39,38] of the truth approximation. The remaining part of X M , denoted by X N−1

r , is critical in maintaining the 
online-efficiency of �R R

n in (8) while providing a stable interpolating procedure for f − PN (̂un; μ) of any μ ∈ D in the 
space of those at the greedy-selected μn ’s, thus a mechanism to control ‖ f − PN (̂un; μ)‖L∞(XN ) which is stronger than 
�R R

n , but not online-efficient.
In the numerical examples we demonstrate that this reduced residual error indicator is a reliable quantity to monitor 

when deciding which representative parameters μ1, . . . , μN will form the surrogate space. In addition, a further advantage 
of this error indicator over our previously proposed L1-ROC [17] is that �R R

n does decrease as n increases. In fact, the 
numerical results seem to indicate the effective index is rather constant and small. Moreover, the calculation of �R R

n is 
independent of N while the traditional �R

n is dependent on N . This difference leads to the dramatic efficiency gain of the 
R2-ROC, as we will numerically confirm in Section 3.
6
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Algorithm 1 R2-ROC: construction of W N and the collocation set X2N−1 = X N
s ∪ X N−1

r .

1: Choose μ1 randomly from �train , compute u1 := uN (XN ; μ1).

2: Compute x1∗ := argmaxx |PN (u1; μ1)(x)|, σ1(·) := σ
μ1

x1∗
(·), define q1 := u1/σ1(u1). Let i1 be the index of x1∗ and P∗ = [ei1 ]T .

3: Initialize m = n = 1, Xm = Xn
s = [x1∗], W1 = {q1} , W1,m = P∗W1, and X0

r = ∅.
4: For n = 2, . . . , N
5: Solve cn−1(μ) with Wn−1, P∗ and calculate �n−1(μ) for all μ ∈ �train .
6: Find μn := argmaxμ∈�train\{μi ,i=1,··· ,n−1

} �R R
n−1(μ) and solve for qn := uN (XN ; μn).

7: Compute a generalized interpolatory residual for qn : find {α j} and let qn := qn − ∑n−1
j=1 α jq j so that σi(qn) = 0, ∀i ∈ {1, · · · , n − 1}.

8: Find xn∗ := argmaxx |PN (qn; μn)(x)|, σn(·) := σ
μn

xn∗ (·), qn := qn/σn(qn), and let Xn
s := Xn−1

s ∪ {xn∗}, and i1 be the index of xn∗ .

9: Form the full residual vector rn−1 := PN (̂un−1(μn); μn) − f (XN ) and compute its interpolatory residual: find {α j} and let rn−1 := rn−1 −∑n−2
j=1 α j r j

so that rn−1(Xn−2
r ) = 0. Find xn−1∗∗ := argmaxx∈XN /

{
Xm ,xn∗

} |rn−1(x)|. Let rn−1 := rn−1/rn−1(xn−1∗∗ ), and Xn−1
r := Xn−2

r ∪{xn−1∗∗ } and i2 is the index of xn−1∗∗ .

10: Update Wn := {Wn−1, qn}, m = 2n − 1, Xm = Xn
s ∪ Xn−1

r , P∗ := P∗ ∪ [ei1 , ei2 ]T .
11: End For

2.2.3. Construction of the reduced over-collocation set X M

There is one piece that we have left until all the other ingredients are in place: we are now ready to describe how to 
determine the reduced collocation set X M that are needed in both the online and offline algorithms. The reduced collocation 
set X M is comprised of collocation points that are selected using two different approaches. We will describe these as two 
different sets. The first set of point, denoted by X N

s , consists of the maximizers from a Generalized EIM (GEIM) procedure 
[39,38] that is tailored to our setting.

Indeed, the differentiating feature is the GEIM interpolating functional which we define as follows for any admissible 
function v(x), any x ∈ �, and μ ∈D

σ
μ
x (v) := PN (v;μ)(x). (9)

When u1 = uN (·; μ1) is calculated, we identify the first collocation point and the corresponding functional as

x1∗ := argmax
x

|PN (u1;μ1)(x)|, σ1(·) := σ
μ1

x1∗
(·) (10)

and our first collocation basis q1 := u1
σ1(u1)

and B11 = σ1(q1).

We then proceeds as follows. For n = 1, 2, · · · · · · , when μn+1 is identified by the greedy algorithm and un+1 obtained, 
we solve 

{
αn+1,i

}n
i=1 such that

σi

(
un+1 −

n∑
i=1

αn+1,iqi

)
= 0, ∀ i ∈ {1, · · · ,n}.

With these values {αn+1,i }, we define the n + 1th collocation basis qn+1 := un+1 − ∑n
i=1 αn+1,i qi . We then augment the 

collocation points and functionals

xn+1∗ := argmax
x

|PN (qn+1;μn+1)(x)|, σn+1(·) := σ
μn+1

xn+1∗
(·), (11)

and define qn+1 := qn+1
σn+1(qn+1)

. Lastly, we expand the matrix B by a column and a row via Bij = σi(q j) when i or j equals 
n + 1. We finally define the first collocation set X N

s := {x1∗, · · · , xN∗ }.
The second set of points is chosen due to a recognition of the importance of controlling the residuals of the PDE when 

solving the equations. In order to control the PDE residuals, we must represent them well on the reduced grid. For that 
purpose, we introduce a second set of points, called X N−1

r , which are chosen using a greedy algorithm aiming to control 
the residual. To examine the residual of the RB solution at the chosen μn when only n − 1 basis elements are used, we 
compute the residual vectors

rμn

n−1 := PN (̂un−1(μ
n);μn) − f (XN ), n ∈ {2, . . . , N}. (12)

These residuals are a basis that can be used to interpolate the residual at any other point μ in the domain, and so we need 
to identify the collocation (or interpolation) points on which this residual basis {rn} best represents all possible residuals. 
For this reason, we take these N − 1 residual vectors and perform an EIM procedure on them. The N − 1 maximizers from 
this procedure form the second set which is denoted X N−1

r .
The choice of the set of over-collocation points X M includes the points in X N

s and X N−1
r , and so we use M = 2N − 1

collocation points. Note that the first basis function has no accompanying residual vector (12), so that from the second 
onward there are two collocation points selected whenever a new parameter is identified by the greedy algorithm. We are 
now ready to outline the entire R2-ROC method in Algorithm 1.
7
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Remark 2.1. The reduced collocation approach in [13] is a specialization that takes σi(·) to be identities, M = N , X M = X N
s . 

The resulting M = N reduced scheme can be unstable particularly when high accuracy (i.e. large N) of the reduced solution 
is desired. It can be resolved in special cases by an analytical preconditioning approach [14]. The second obvious choice of 
X M is to append X N−1

r with one more point such as the maximizer of the first basis. Numerical tests (not reported in this 
paper) also reveal instability of this scheme.

2.2.4. Analysis of the R2-ROC method
With the basis W N = {q1, · · · , qN}, the collocation points and the functionals as built in (10) and (11), we are ready to 

define a Generalized Empirical Interpolation [39,38] operator for any admissible function v(x)

IRC
N [v(x)] =

N∑
i=1

βN
i qi(x) such that σi(IRC

N [v]) = σi(v) ∀ i ∈ {1, · · · , N}. (13)

Lemma 2.1. When the differential operator P(u(x; μ); μ) is linear (with respect to u), the matrix B is lower triangular with unitary 
diagonal and we have that IRC

N [v] = v for v ∈ span{q1, · · · , qN}. If, in addition, the collocation points are taken as X M = {x1∗, · · · , xN∗ }, 
our reduced collocation solution coincides with the GEIM approximation IRC

N [uN (μ)] of the truth approximation uN (μ) when μ = μi

for i ∈ {1, · · · , N}.

Proof. When P is linear, we have σi(qi) = 1 and σi(q j) = 0 when j > i by construction. Therefore, matrix B is lower 
triangular with unitary diagonal.

When v ∈ span{q1, · · · , qN}, there exist {di}N
i=1 such that

v =
N∑

i=1

diqi .

Since P is linear, we have σi(v) = ∑N
j=1 d jσi(q j) which means �σ v = B�d where �σ v = (σ1(v) · · ·σN (v))T and �d =

{d1, · · · , dN }T . On the other hand, from (13) we know that, if we assume IRC
N [v] = ∑N

i=1 ciqi , we have that⎛⎜⎝ c1
...

cN

⎞⎟⎠ = B−1

⎛⎜⎝ σ1(v)
...

σN(v)

⎞⎟⎠ = B−1 �σ v (14)

Plugging �σ v = B�d completes the first half of the proof.
To prove the second half, we note that the reduced collocation procedure amounts to requiring that

σ
μ
xi∗

(̂un(μ)) = σ
μ
xi∗

(uN (μ))

When μ = μi , this is identical to the system determining the GEIM approximation (13). Given the fact that B is invertible, 
we conclude that the reduced collocation solution is identical to the GEIM approximation. �

Regarding the error of the reduced solution, we can prove a standard result of interpolation-type. Toward that end, we 
define the Lebesgue constant

�N = sup
x∈�

N∑
i=1

∣∣∣hN
i (x)

∣∣∣
where 

{
hN

i (x) : i = 1, · · · , N
}∈ W N is the traditional Lagrangian basis of W N satisfying σi(hN

j ) = δi j . Indeed, if we define 
hN

j (x) = ∑N
i=1(B−1)i jqi(x) which in discretized form is equivalent to the following matrix-matrix equation,

(hN
1 hN

2 · · · hN
N)B = (q1 q2 · · · qN), (15)

we can then confirm that σi(hN
j ) = δi j by the following derivation.

σi(h
N
j ) = σi((q1, q2 · · · ,qN) B−1(:, j))

=
N∑

k=1

σi(qk)(B−1)kj =
N∑

k=1

(B)ik(B−1)kj

with the last equality due to the definition of matrix B . It then follows that

σi(h
N) = (

B · B−1) = δi j.
j i j

8
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Theorem 2.1. When the differential operator P is linear and the collocation points are taken as X M = {x1∗, · · · , xN∗ }, our reduced 
collocation solution satisfies the following estimate.

‖̂u(μ) − IRC
N [̂u(μ)]‖L∞ ≤ (1 + �N) inf

v∈W N
‖̂u(μ) − v‖L∞ (16)

Proof. For any v ∈ W N , we have

‖̂u(μ) − IRC
N [̂u(μ)]‖L∞ ≤‖̂u(μ) − v‖L∞ + ‖v − IRC

N [̂u(μ)]‖L∞

=‖̂u(μ) − v‖L∞ + ‖IRC
N [v − û(μ)]‖L∞

≤
(

1 + sup
w∈W N

‖I RC
N [w]‖L∞

‖w‖L∞

)
‖̂u(μ) − v‖L∞

To complete the proof, we just need to show that supw∈W N

‖I RC
N [w]‖L∞
‖w‖L∞ = �N which can be verified by recalling equations 

(14) and (15). �
We note again that, for notational simplicity, we commit a slight abuse of notation by adopting W N for both the reduced 

space and the matrix whose columns are the discrete representations of the basis of W N . These results show that our 
first set of points X N

s ensures that, when the differential operator is linear, our reduced collocation solution recovers a 
specifically designed generalized empirical interpolant of the truth approximation. We finish our analysis by the following 
remark which indicates the significance of the second set of points X N−1

r .

Remark 2.2. Functionality of the second set of points X N−1
r : We recall that the residual (12) of RB solution at μ with n

bases is defined as

rμ
n := PN (̂un(μ);μ) − f (XN ) = PN (̂un(μ);μ) −PN (uN (μ);μ).

Assuming we have the error-residual relation, we need to control ‖rμ
n ‖L∞(XN ) for any μ. The greedy algorithm with error 

indicator �R R
n in (8) means that we have, for any μ,

‖rμ
n ‖L∞(X M ) ≤ ‖rμn+1

n ‖L∞(X M ), a weak version of ‖rμ
n ‖L∞(XN ) ≤ ‖rμn+1

n ‖L∞(XN ).

The latter can be achieved by adopting a stronger �R R
n (i.e. = ‖rμ

n ‖L∞(XN )) which would make the online complexity lin-
early dependent on N (thus the algorithm not online efficient). The choice of the second set of points X N−1

r is critical in 
maintaining the online-efficiency of �R R

n in (8) while providing a stable procedure for the linear procedure of interpolating 
rμ

n in the space span{rμi+1

i }n
i=1.

Indeed, if we denote the EIM interpolation procedure of {rμi+1

i }n
i=1 in Algorithm 1 by Jn , we have that

‖rμ
n ‖L∞(XN ) ≤ ‖ Jn[rμ

n ]‖L∞(XN ) + ‖rμ
n − Jn[rμ

n ]‖L∞(XN )

≤ ‖ Jn[rμ
n ]‖L∞(XN ) + (1 + �r

n) inf
v

‖rμ
n − v‖L∞(XN ),

where �r
n is the Lebesgue constant of {rμi+1

i }n
i=1. Consider that the (classical) greedy algorithm adopted by EIM/GEIM has the 

tendency of minimizing the Lebesgue constant �r
n [37]. We therefore conclude that the EIM procedure of rμ

n by {rμi+1

i }n
i=1

via their EIM points in X M is effective in generating the RB space and the online solver.

2.3. Extension of R2-ROC for time dependent problems

Given the reduced space Wn and the collocation set X M , the semi-discretized R2-ROC solver remains identical to the 
steady-state case for the time-dependent problem (2). That is, we seek the reduced approximation of the solution for any 
given parameter μ in the form of

ûn(μ, t) = Wncn(μ, t).

The unknown coefficients cn(μ, t) ∈Rn×1 is obtained by solving the following optimization problem:

cn(μ, t) = argmin
ω

‖ P∗
(

Wnωt +PN (Wnω;μ) − f (XN )
)

‖RM . (17)
9
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For full discretization, our R2-ROC aligns with the parameter-time greedy framework [27,28], as opposed to POD [35,41] or 
POD-greedy [26]. We first denote the (full) set of temporal nodes as T f := {ti : i = 0, · · · , Nt} with t0 being the initial time 
and Nt = T /�t where �t is the temporal step-size. We also denote a reduced set of temporal nodes by Tr that starts from 
the empty set and is gradually enriched in the greedy algorithm.

We next describe the R2-based error indicator needed by the greedy algorithm for the time-dependent case as follows. 
It is extended from the steady-state version (8). Indeed, for each μ ∈ �train, after its corresponding (reduced) solver of (17)
with n bases is performed and the reduced solution ̂un(μ, t) obtained, we define

�
R Rt
n (μ) :=

∑
t∈T f

εR R(t;μ) with εR R(t;μ) := ‖P∗rn(t;μ)‖∞. (18)

Here, rn(t; μ) ∈RN×1 denotes the full residual for ̂un(μ, t), and P∗rn(t; μ) ∈RM×1 its reduced version.

Remark 2.3. We emphasize that: 1) The distinctive feature of our scheme, in comparison to e.g. [28], is that we only 
consider the reduced residuals, i.e. the residual sampled at our over collocation points; And 2) We automatically have online 
efficiency, without EIM, when evaluating the error indicator. This is made possible thanks to the collocation framework.

We are now ready to describe our greedy algorithm. To initiate the reduced solver construction we start with a deter-
ministically or randomly chosen μ1 (similar to the steady-state case) and invoke the truth solver to obtain the snapshots 
{uN (ti, x; μ1)}Nt

i=0. Tr is initiated by the time instant when the corresponding snapshot has the largest variation. That is,

Tr := {t1
μ1} where t1

μ1 = argmax
t∈T f

(
max
x∈XN

uN (t, x;μ1) − min
x∈XN

uN (t, x;μ1)

)
.

The RB space W1 is initiated with uN (t1
μ1 , x; μ1). The (first) collocation point is set to be the special GEIM point of this 

first basis,

x1∗ := argmax
x∈XN

∣∣uN
t (t1

μ1 , x;μ1) +PN (uN (t1
μ1 , x;μ1);μ1)(x)

∣∣.
We note that the corresponding collocation functional σμ

x , defined in (9) for the steady-state case, should be understood as 
its extension to the time-dependent version

σ
μ
t,x(v) := vt +P(v(t, x;μ);μ)(t, x).

However, for brevity of notation, we still write it as σμ
x whenever the accompanying t is clear.

Algorithm 2 R2-ROC algorithm for time dependent problems.

1: Choose μ1, and set kμ1 = 1 the first temporal node to be tkμ1

μ1 := argmaxt∈T f

(
maxx uN (t, x;μ1) − minx uN (t, x;μ1)

)
. Define q1 := uN (t

kμ1

μ1 , XN ; μ1).

2: Find x1∗ := argmaxx∈XN |q1t +PN (q1; μ1)|, σ1(·) := σ
μ1

x1∗
(·), and let P∗ := [ei1 ]T , where i1 is the index of x1∗ .

3: Initialize m = n = 1, Xm = Xn
s = {x1∗}, W1 = {q1} , W1,m = P∗W1, and X0

r = ∅.
4: For n = 2, . . . , N
5: Solve the reduced problem for cn−1(μ, tk).

6: Find μn := argmaxμ∈qtrain
�

R Rt
n−1(μ), and a new temporal node tkμn

μn := arg maxt∈T f εR R (t;μn).

7: Solve qn := uN (t
kμn

μn , XN ; μn).

8: Compute a generalized interpolatory residual for qn : find {α j} and let qn := qn − ∑n−1
j=1 α jq j so that σi(qn) = 0 for i ∈ {1, · · · , n − 1}. Find xn∗ :=

argmaxx∈XN /Xm

∣∣qnt +PN (qn; μn)(x)
∣∣, σn(·) := σ

μn

xn∗ (·), qn := qn/σn(qn). Let Xn
s := Xn−1

s ∪ {xn∗}, and i1 be the index of xn∗ .

9: Form the full residual vector rn−1 := (̂un−1)t (t
kμn

μn ; μn) + PN (XN , ̂un−1(t
kμn

μn ; μn); μn) − f (XN , tkμn

μn ). Compute an interpolatory residual rn−1 :
find {α j} and let rn−1 := rn−1 − ∑n−2

j=1 α j r j so that rn−1(Xn−2
r ) = 0. Find xn∗∗ := argmaxx∈XN /

{
Xm ,xn∗

} |rn−1|.Let rn−1 := rn−1/rn−1(xn∗∗), and Xn−1
r :=

Xn−2
r ∪ {xn∗∗}. i2 is the index of xn∗∗ .

10: Update Wn := {Wn−1, qn}, m = 2n − 1, Xm = Xn
s ∪ Xn−1

r , P∗ := [P∗; (ei1 )T ; (ei2 )T ].
11: End For

Once these ingredients are in place with the first pair (μ1, t1
μ1 ) determined, we can solve the reduced problem (17)

for every μ ∈ �train (with a one-dimensional RB space W1). Similar to the traditional greedy algorithm, the next step is to 
determine the subsequent (μ, t) pairs. Our greedy algorithm, as seen in Algorithm 2, manifests itself in the following three 
aspects:
10
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• Greedy in μ: Our greedy choice for the μ-component of the (μ, t) pair is through maximizing �R Rt
n (μ) over the training 

set �train:

μn+1 := argmax
μ∈�train

�
R Rt
n (μ).

• Greedy in t: Given the greedy choice μn+1 and the reduced solution ûn(μn+1, t) = Wncn(μn+1, t) for all time levels 
t ∈ T f , the greedy t-choice is given by

t
kμn+1

μn+1 := argmax
t∈T f

{
εR R(t;μ) := ‖P∗rn(t;μn+1)‖∞

}
, and Tr := Tr

⋃
{tkμn+1

μn+1 }. (19)

• X M expansion: With the greedy choice (μn+1, t
kμn+1

μn+1 ), we solve for the truth approximations u(t, XN ; μn+1) for 

t ≤ t
kμn+1

μn+1 . The expansion of X M by two more colocation points, with one from the GEIM procedure of the solution 

u(t
kμn+1

μn+1 , XN ; μn+1) with the particular functionals {σμi

xi∗
(·)}n

i=1, and the other from that of the residual rn(t
kμn+1

μn+1 ; μn+1), 
is identical to the steady state case.

Remark 2.4. Here, kμn+1 ≥ 1 is introduced to accommodate the possibility that multiple temporal nodes might be selected 
for the same μ (at different rounds of the greedy algorithm). We note in particular that, consistent with typical greedy 
scheme, we choose one (as opposed to multiple) maximizer in (19). However, as we proceed with building up the reduced 
solution space, the same μ (and a different temporal node) may be chosen by the greedy algorithm at a later step due to 
the lack of resolution of its corresponding temporal history.

2.4. Other related techniques

There are other model reduction techniques for both steady and transient problems such as Proper Orthogonal De-
composition (POD) [35], system-theoretic approaches including balanced truncation, moment matching or Hankel norm 
approximation [6]. RBM differentiates itself, particularly for parametric problems, by featuring rigorous a posteriori error 
estimations, the resulting greedy algorithm, and the ability to compute the theoretically smallest number of full order so-
lutions dictated by the Kolmogorov n-width of the solution manifold. Nonlinear problems bring some additional challenges, 
mainly in that a high dimensional reconstruction of the surrogate quantities is often needed each time the nonlinearity 
is evaluated. Sampling-based approximation techniques were developed to mitigate the resulting loss of efficiency. They 
include the Empirical Interpolation Method and its discrete variants [4,27,12,45] and Hyper-Reduction [48,49,10] which are 
known to be equivalent to DEIM under certain conditions [23,20]. Other approaches include POD coupled with “the best 
interpolation points” approach [41,25], Gappy-POD [21], Missing Point Estimation (MPE) [3] or Gauss–Newton with approx-
imated Tensors (GNAT) [9,10]. Most of these methods work by first identifying a subset of the important features of the 
nonlinear function, and then constructing an approximation of the full solution based solely on an evaluation of these few 
components.

The R2-ROC method presented in this paper can be viewed as adopting hyper reduction for reduced residual minimiza-
tion. Indeed, instead of enforcing that the full residual is small in either a weak or strong formulation, we identify its 
selected entries and ensure that an accurate evaluation of the residual on that subset is small. This is not the first time this 
type of idea is explored. For example, [3,2] uses a collocation of the original equations based on missing point interpolation 
and is followed by a Galerkin projection. The authors in [48] obtain the solution snapshots and collocation points through 
an adaptive algorithm in the finite element framework. It was also applied to nonlinear dynamical systems with randomly 
chosen collocation points [7]. Other existing works that can be used for accelerating residual norm calculation in the finite 
element setting include the Energy Conserving Sampling and Weighting (ECSW, see [22]), Empirical Cubature Method (ECM, 
see [31]), and LP Empirical Quadrature Procedure (LP EQP, see [53]). However, the proposed R2-ROC differs from these 
existing works. The first distinctive feature is that the basis functions and collocation points are determined hierarchically 
via a greedy algorithm guided by reduced residual minimization problems that gradually increase in size. It tailors the 
Generalized EIM procedure [39,38] to our setting via a set of carefully designed interpolating functionals. In comparison, 
the existing approaches obtain basis functions through POD-type techniques and then compute the whole set of collocation 
points all at once. The second distinctive feature is that the only step during the offline process that depends on the full 
order model is when we calculate a new high fidelity basis.

3. Numerical results

We test the R2-ROC method on nonlinear steady-state and time-dependent problems, respectively in Sections 3.1 and 
3.2. The particular equations include the classical viscous Burgers’ equation and nonlinear convection diffusion reaction 
equations. We test and compare R2-ROC with two other schemes. For the sake of clarity, we list them in one place, Ta-
ble 2.
11
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Table 2
Description of the schemes compared in our numerical results.

Name Description

Full-residual ROC Reduced scheme with online solver as described in Section 2.1 and by 
following the full-residual based error estimator �R (7)

R2-ROC Reduced scheme with online solver as described in Section 2.1 and by 
following the reduced-residual based error indicator �R R (8)

L1-ROC Reduced over collocation approach introduced in [17] whose greedy 
algorithm is based on the L1-norm of the coefficients, under a set of a 
Lagrangian basis, of the reduced basis solution.

3.1. R2-ROC for steady-state nonlinear problems

In this Section, we report the test results of R2-ROC on steady-state problems while comparing it with benchmark 
algorithms.

3.1.1. Viscous Burgers’ equation
First, we test it on the one-dimensional (viscous) Burgers’ equation,

uux = μuxx,

u(x = −1) = 1, u(x = 1) = −1.
(20)

Here the viscosity parameter μ varies on the interval D = [0.05, 1]. The computational domain [−1, 1] is divided uniformly 
into N + 1 intervals with grid points denoted by

{x0, x1, . . . , xN+1}.
With h = 2

N+1 , the following finite difference discretization based on the conservative form of equation (20), 
(

u2

2

)
x
−μuxx =

0, is then used

u2
i+1 − u2

i−1

4h
− μ

ui−1 − 2ui + ui+1

h2
= 0, i ∈ {1, . . . ,N }. (21)

This leads to a nonlinear truth solver of size N . The parameter domain D is sampled 50 times logarithmically spaced to 
form the training set for the Offline procedure. We test our method on a subset of �test of D that does not intersect with 
the training set �train. We compute the relative errors E(n) over all μ in �test of the RB solution ûn(μ) in comparison to 
the high fidelity truth approximation. That is,

E(n) := max
μ∈�test

{‖u(μ) − ûn(μ)‖∞
‖u‖L∞(�test,L∞(�))

}
(22)

where

||u||L∞(�test,L∞(�)) = max
μ∈�test

‖u(μ)‖∞.

Error curves and the distribution of the first N = 10 selected parameters with N = 100 are showed in Fig. 1. It shows 
a clear exponential convergence as n increases and a concentration of the selected μ values toward the lower end of the 
parameter domain. We note that the distributions of chosen parameters between the full-residual ROC and the new R2-ROC 
are very much similar which underscores the reliability of our proposed approach.

3.1.2. Nonlinear reaction diffusion equations
Here we consider the following cubic reaction diffusion,

−μ2�u + u(u − μ1)
2 = f (x) in � := [−1,1] × [−1,1],
u = 0 on ∂�.

(23)

We take f (x) = 100 sin(2πx1) cos(2πx2), and D is set to be [0.2, 5] × [0.2, 2], and discretized by a 128 × 64 uniform 
tensorial grid. Denoting the step size along the μ1 direction by h1, and the other by h2, the training set and test set are 
given by

�train := (0.2 : 4h1 : 5) × (0.2 : 4h2 : 2),

�test := ((0.2 + 2h1) : 4h1 : (5 − 2h1)) × ((0.2 + 2h2) : 4h2 : (2 − 2h2)),
12
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Fig. 1. Steady viscous Burgers’ result. (Left) Histories of convergence for the error and error estimator/indicator for the full-residual ROC and proposed 
R2-ROC. Here, E R and E R R refer to the E(n) in (22) with the reduced solution ̂un constructed by following the residual-based error estimator �R and R2-
based error indicator �R R , respectively. (Middle) Distribution of selected parameters μn , using estimator �R and �R R , as a function of n. (Right) Sample 
RB solutions at three parameter values.

where (a : h : b) denotes an equidistant mesh over [a, b] with stepsize h. The nonlinear solver, based on the 5-point stencil 
with 

√
N interior points at each direction of �, for the high fidelity truth approximation linearizes, at the (� +1)th iteration, 

the equation according to

−μ2�u(�+1) + g′(u(�))u(�+1) = g′(u(�))u(�) − g(u(�),μ1) + f (x) (24)

where g(u; μ1) = u(u − μ1)
2.

Relative errors of the RB solution E(n) with 
√
N = 400 are displayed in Fig. 2 top left showing steady exponential 

convergence for R2-ROC that is on par with the full-residual ROC. The accuracy test shown in Table 3 Right demonstrates 
that the ROC schemes reach the accuracy of the full order model with N = 40 when 

√
N = 400. The set of selected 

parameters are shown in Fig. 2 top middle, while the collocation points are shown on the bottom row. We note again that 
the distributions of chosen parameters between the full-residual ROC and the more nascent R2-based scheme are quite 
similar for this example underscoring the reliability of R2-ROC.

Next, we showcase the vast saving of the offline time for the R2-ROC approach. Toward that end, the comparison in 
cumulative computation time for the full-residual ROC, R2-ROC, and the high fidelity truth approximations is shown in 
Fig. 2 top right. The initial nonzero start of the R2-ROC is the amount of its offline time. We observe that the “break-even” 
number of runs for R2-ROC is much smaller. The vast difference in this “break-even” point is the manifestation of the 
enormous disparity in computational complexity for calculating �R R

n (for R2-ROC, requiring obtaining an N × 1 vector and 
evaluating the residual at numbers of points proportional to N), and that for �R

n (for full-residual ROC, involving an offline-
online decomposition of the calculation of the full residual norm). The latter, implemented without EIM in this paper, will 
be less if EIM is incorporated in the residual calculation. However, it will still be dependent on the number of EIM terms 
Q a while the former does not involve EIM thus is independent of Q a .

Lastly, though R2-ROC has a much more efficient offline procedure than the full-residual ROC, their online time for any 
new parameter is comparable, see Table 3. The results also confirm that time consumption of the online ROC methods 
is independent of 

√
N , that is the method is online efficient. Here in the table, we present the online calculation time 

for the different algorithms in two different parameter regimes. The first regime is when μ1 is large and μ2 small, in 
particular we choose μ1 = 4.55, μ2 = 0.42. The second regime has the relative sizes reversed. The reduced solver requires 
27 iterations for the nonlinear system in the first regime, while only requiring 8 iterations in the second regime leading to 
the noticeable difference in the full-order time consumption. It also means that the speedup factor of R2-ROC varies. But 
they range between 3000 ∼ 12000 when 

√
N = 400, 800. This speedup factor is dependent on N , the complexity of the 

full order model. For this example, 
√
N = 400 is a reasonable choice since, as shown by the accuracy test in Table 3 Right, 

the ROC accuracy with N = 40 matches that of the full model with 
√
N = 400.

3.1.3. Numerical comparison with POD and random generation
To further establish numerically the reliability of the R2-ROC algorithm, we compare it with two alternative methods 

of building the reduced basis space. On one end, POD [24,35,52,36] based on an exhaustive selection of snapshots (i.e. we 
include all solutions uN (μ) for μ ∈ �train) produces the best reduced solution space and thus the most accurate, albeit 
costly, surrogate solution. We note that this version of POD only serves as reference and is in general not feasible as the 
full solution ensemble must be generated. On the other end, a random selection of N parameters as our RB snapshots is a 
fast but crude method. Comparison results of two steady-state test problems above are shown in Fig. 3. Not surprisingly, 
the exhaustive POD is the most accurate. Our R2-ROC is one order of magnitude worse than POD, but in fact slightly better 
or comparable to the best of the 20 random generations. It is roughly one order of magnitude better than the median 
performance of the 20 random generations.
13
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Fig. 2. Top row:(Left) comparison of the histories of convergence with 
√
N = 400 for the errors and the error estimator/indicator for the ROC method. Here, 

E R and E R R refer to the E(n) in (22) with the reduced solution ̂un constructed by following the residual-based error estimator �R and R2-based error 
indicator �R R , respectively. (Middle) Selected N(= 40) parameters of the ROC method for full-residual based and R2-based approaches. (Right) cumulative 
runtime of the FDM, the full-residual ROC, and R2-ROC. Bottom row: selected 40 collocation points X M

s from solutions (Left) and 39 collocation points X M
r

from residuals (Right).

Table 3
Left: Online computational time (seconds) with different grid sizes 

√
N , when N = 40. Right: Full model accuracy test. L∞

norm of the error in the x1-direction for different grid size 
√
N with (μ1, μ2) = (2.6, 1.1).

(μ1,μ2)
√
N Full-Resid. ROC R2-ROC FDM

(4.55,0.42)

200 3.1e-3 4.8e-3 2.31
400 3.1e-3 3.9e-3 11.78
800 3.3e-3 4.2e-3 53.73

(1,1.82)

200 1.1e-3 1.4e-3 0.66
400 1.1e-3 1.3e-3 3.34
800 1.2e-3 1.7e-3 15.17

3.2. Time dependent nonlinear problems

In this section, we test the time-dependent equations corresponding to stationary problems in the last section, namely 
viscous Burgers’ and cubic reaction diffusion equations.

3.2.1. Viscous Burgers’ equation
We test the viscous Burgers’ equation adopting settings similar to [44,42]

ut + uux = μuxx + f (x), (x, t,μ) ∈ (0,1) × (0,1] ×D,

u(x, t = 0;μ) = 0,

u(0, t;μ) = α, u(1, t;μ) = β.

(25)
14
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Fig. 3. Convergence comparison for the R2-ROC, exhaustive POD and (best, median, and worst cases of) random generation approaches. On the left is for 
cubic reaction diffusion (23) with 

√
N = 400, with the right being for steady viscous Burgers’ equation (20) with N = 100.

Fig. 4. Transient viscous Burgers’ result. On the top row are the error curves of R2-ROC with N = 15 basis elements for the setup in [44] (left) and [42]
(right). Plotted at the bottom row are the actual L2 error, ||uN (:, tk; μ) − uN (:, tk; μ)|| and error indicator �R Rt

n (tk; μ) as a function of discrete time tk . The 
left, center and right plots show N = 5, 10, 15, respectively, with parameter values bring μ = 0.005, 0.01, 0.1 and the setup as in [42].

The authors of [44] takes D = [0.1, 1], f = 0, T = 1, �t = 10−4, (α, β) = (−1, 1) and monitor the average error in a Frobe-
nius norm-based metric,

Error = 1

mtest

mtest∑
i=1

||u(·, ·;μ) − û(·, ·;μ)||F

||u(·, ·;μ)||F
, ‖v(·, ·)‖2

F :=
∑

x∈XN ,ti∈T f

v(x, ti)
2

while the authors in [42] set D = [0.005, 1], f = 1, T = 2, �t = 2 · 10−6, (α, β) = (0, 0) and observe the error in L2. We 
investigate R2-ROC results from both of these setups. The results are showed in Fig. 4. These results are similar to those of 
[44,42]. When N = 10, R2-ROC attains an accuracy around 10−1 which gets much better when N = 15.

3.2.2. Nonlinear reaction diffusion problems
Next, we consider accordingly the following time dependent nonlinear reaction diffusion equation,

ut − μ2�u + u(u − μ1)
2 = f (x), in � := [−1,1] × [−1,1],
u = 0 on ∂�,

u(x, t = 0) = u (x).

(26)
0

15
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Fig. 5. Transient cubic reaction diffusion result. Top Left: Error curves of R2-ROC algorithm. Top Middle: Selected parameters when Nmax = 40. The number 
means corresponding parameter is selected at many different time nodes. Top Right: Cumulative run time comparison. Collocation points from solutions 
and residuals are shown at the bottom row from left to right respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Here f (x) = 100 sin(2πx1) cos(2πx2), and [μ1, μ2] ∈D := [1, 5] × [0.2, 1]. The parameter space D is discretized by a 128 ×
32 uniform tensorial grid. Denoting the step size along the μ1 direction by h1, and the other by h2, we specify the training 
and test sets as follows,

�train := (1 : 8h1 : 5) × (0.2 : 2h2 : 1),

�test := ((1 + 2h1) : 4h1 : (5 − 2h1)) × ((0.2 + h2) : 4h2 : (1 − h2)).

For the truth approximation, we use backward Euler for time marching and the same nonlinear spatial solver as the steady-
state case (24).

Exponential convergence is evidenced in Fig. 5 top left. We also report the μ-component of the parameter values selected 
by R2-ROC in the top middle. Note that the RB space is built from the snapshots{

u(t1
μn , ·;μn), . . . , u(t

kμn

μn , ·;μn)
}N

n=1
.

That is, for each distinct parameter value μn chosen by R2-ROC, there are kμn ≥ 1 time level snapshots {t1
μn , . . . , t

kμn

μn } ⊂
{t0, t1, . . . , tNt }. The red number by each μ values in the middle pane denotes this kμn . It is interesting to note that, 
consistent with the tendency of RBM selecting boundary values of the parameter domain, our R2-ROC tends to select 
multiple snapshots along time for the selected parameters when they are at the boundary of the parameter domain.

To show the vast saving of the offline time for the R2-ROC approach, we present the comparison in cumulative com-
putation time for the L1-ROC, R2-ROC, and the high fidelity truth approximations in Fig. 5 top right. We observe that the 
“break-even” number of runs for R2-ROC is smaller than that of the L1-ROC which is much smaller than that of the full 
simulation [17]. The fact that they are even less than the dimension of the RB space underscores their efficiency. The bottom 
row of Fig. 5 shows the collocation points in the physical domain.

4. Conclusion

This paper proposes a novel reduced over-collocation method, dubbed R2-ROC, for efficiently solving parametrized non-
linear and nonaffine PDEs. By integrating EIM/GEIM techniques on the solution snapshots and well-chosen residuals, the 
collocation philosophy, and the simplicity of evaluating the hyper-reduced well-chosen residuals, R2-ROC has online com-
putational complexity independent of the degrees of freedom of the underlying FDM, and more interestingly, the number of 
16
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EIM/GEIM expansion terms. This expansion would have otherwise significantly degraded the efficiency of a traditional RBM 
when applied to the nonaffine and nonlinear terms in the equation. The lack of such precomputations of nonlinear and 
nonaffine terms makes the method dramatically faster offline and online, and significantly simpler to implement than any 
existing RBM. For future directions, we plan to extend R2-ROC from scalar to systems of nonlinear equations with nonaffine 
parameter dependence.
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