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This paper extends the image charge solvation model (ICSM) [Y. Lin, A. Baumketner, S.
Deng, Z. Xu, D. Jacobs, W. Cai, An image-based reaction field method for electrostatic inter-
actions in molecular dynamics simulations of aqueous solutions, J. Chem. Phys. 131 (2009)
154103], a hybrid explicit/implicit method to treat electrostatic interactions in computer
simulations of biomolecules formulated for spherical cavities, to prolate spheroidal and tri-
axial ellipsoidal cavities, designed to better accommodate non-spherical solutes in molec-
ular dynamics (MD) simulations. In addition to the utilization of a general truncated
octahedron as the MD simulation box, central to the proposed extension is an image
approximation method to compute the reaction field for a point charge placed inside such
a non-spherical cavity by using a single image charge located outside the cavity. The result-
ing generalized image charge solvation model (GICSM) is tested in simulations of liquid
water, and the results are analyzed in comparison with those obtained from the ICSM sim-
ulations as a reference. We find that, for improved computational efficiency due to smaller
simulation cells and consequently a less number of explicit solvent molecules, the general-
ized model can still faithfully reproduce known static and dynamic properties of liquid
water at least for systems considered in the present paper, indicating its great potential
to become an accurate but more efficient alternative to the ICSM when bio-macromole-
cules of irregular shapes are to be simulated.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Electrostatic interactions are well known to play an essential role in the structure, dynamics, and function of biological
macromolecules; as such, fast and accurate evaluation of electrostatic interactions in molecular systems remains a major
research topic in computer simulations of biomolecules. Electrostatic interactions are long-range, and strongly dependent
on the solvent surrounding the biomolecule under study. When modeling biological systems numerically, however, it has
been one of the most challenging tasks to account for such solvent environment in a manner that is not only computationally
efficient but also physically accurate at the same time. Over the past several decades, various solvation models have been
introduced to treat electrostatic interactions in biomolecules the overwhelming majority of which, however, can be broadly
divided into explicit [1-3], implicit [4,5], and hybrid explicit/implicit categories [6-8], respectively.
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Probably still being the most widely-used approach, explicit solvation models adopt a full-atom representation of both
the macromolecule and the surrounding solvent, and thus can offer a detailed and accurate description of the biological sys-
tem under study; see Fig. 1(a). But all-atom simulations are expensive to perform due to the large number of particles asso-
ciated with the solvent; as a result, large explicitly solvated systems typically cannot be simulated for biologically relevant
timescales. Alternatively, implicit solvation models treat the macromolecule still in atomic detail but the entire solvent sur-
rounding the macromolecule is modeled as a dielectric continuum typically with a large dielectric constant (60-85), while
the volume occupied by the macromolecule is modeled as a dissimilar dielectric continuum typically with a low dielectric
constant (1-4); see Fig. 1(b). The neglect of explicit solvent molecules can significantly improve the computational efficiency,
but on the other hand, the physical accuracy could be greatly decreased since the important atomic details of how the sol-
vent molecules interact with the surface of the macromolecule are ignored. Finally, as a promising method designed to com-
bine good elements of both explicit and implicit approaches, hybrid solvation models represent the macromolecule together
with solvent molecules adjacent to the surface of the macromolecule in atomic detail but treat the remaining solvent implic-
itly as a dielectric continuum; see Fig. 1(c). Since they can not only benefit the efficiency of implicit solvents for replacing the
solvent that gives rise to much of the computational cost by a dielectric continuum but also directly model structural effects
of the solvent in the proximity of the macromolecule, the hybrid solvation models have received much recent attention.

The present paper concerns fast and accurate computation of electrostatic interactions in hybrid explicit/implicit solvent
biomolecular dynamics simulations. While they could differ greatly in their complexity and technical details, as pointed out
in Ref. [9], all hybrid solvation models share a common design framework: the central part of a simulated system contains
the explicit solute as well as some explicit solvent while the remaining part is treated as a dielectric continuum, as shown in
Fig. 1(c). Moreover, to reduce the surface artifacts such as the well-known divergence of the so-called self-polarization po-
tential in the proximity of the abrupt dielectric interface between these two parts, they could also be separated by a buffer
layer in which solvent molecules are treated atomically but experience forces different from those present in the central part.
There are two types of electrostatic potentials that apply to the charges in the explicit solvent/solute region. One, denoted by
®@s, is the direct Coulomb potential through which they interact with each another. And the other one, referred to as reaction
field and denoted by ®gg, is an indirect potential that results from the polarization of the continuum solvent region by the
explicit charges. The total potential inside the explicit solvent/solute region is thus expressed as ® = ®s + ®g. Although
numerous hybrid electrostatic solvation models have been developed with complementary strengths and weaknesses, the
major difference among them lies in the way how ®gr is computed. The readers are referred to Ref. [9] for a brief survey
of some existing hybrid models, including their specific advantages and drawbacks.

In Ref. [9], a new hybrid solvation model, termed the image charge solvation model (ICSM) [10], was proposed for sim-
ulations of biomolecules in aqueous solutions. In this model, the central part of the simulated system containing the solute
and some solvent is considered in atomic detail, and for computational efficiency, a regular truncated octahedron is used for
the molecular dynamics (MD) simulation box. Around the simulation box is a spherical buffer layer of low thickness where
periodic boundary conditions (PBCs) are employed for non-electrostatic interactions to minimize surface effects; see Fig. 4.
The solvent outside the buffer layer is then modeled as a dielectric continuum, thus avoiding unphysical interactions be-
tween periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. The effect of the dielec-
tric continuum on the solute is treated through reaction field corrections which are calculated approximately by the
Friedman image method [11], or for improved computational accuracy, by a more general multiple-image charge method
[12]. As a consequence of the image approximation of the reaction field corrections, this model can be combined straight-
forwardly with fast multipole methods (FMMSs) [13,14], giving us an asymptotically optimal O(N) hybrid solvation model
for computation of electrostatic interactions in biomolecular systems.

The present paper intends to explore the feasibility of extending the hybrid ICSM formulated for spherical cavities to
more general cavities so as to simulate non-spherical solutes more efficiently. More specifically, instead of using a regular
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Fig. 1. Three solvation models for electrostatic interactions in computer simulations of biomolecules: (a) explicit, (b) implicit, and (c) hybrid explicit/
implicit.
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truncated octahedron as the MD simulation box and correspondingly a spherical cavity for the explicit solvent/solute, we
utilize a general truncated octahedron simulation box and correspondingly a prolate spheroidal, or more generally a triaxial
ellipsoidal cavity. Accordingly, the resulting model is termed the generalized image charge solvation model (GICSM). It
should be mentioned that such an extension may be desirable since, for non-spherical bio-macromolecules such as certain
globular proteins and other elongated biopolymers like actin and DNA, from the computational point of view using a regular
MD simulation box and a spherical cavity to accommodate them may be inefficient, and rather, it may be more beneficial to
adopt spheroidal or ellipsoidal cavities for the explicit solvent/solute that can conform more closely to the irregular shapes of
the biomolecules under study than a spherical cavity does.

The paper is organized as follows. In Section 2, the ICSM using the regular truncated octahedron as the simulation box and
a spherical cavity for the explicit solvent/solute is briefly reviewed. In Section 3, we introduce the GICSM by considering a
general truncated octahedron as the simulation box and a prolate spheroidal or triaxial ellipsoidal cavity for the explicit sol-
vent/solute. In particular, we focus on how @ is computed in the generalized model by the method of images. Next in Sec-
tion 4, some implementation details pertinent to the use of the general truncated octahedron simulation box are discussed,
including how to locate periodic images in the buffer layer, how to bookkeep the simulated system when explicit particles
cross the boundary of the simulation box, and how to calculate short-range, non-electrostatic interactions. Then for validat-
ing the GICSM, in Section 5 it is applied to study liquid water and like in Ref. [9], several structural and dynamic properties of
the simulated water are investigated in comparison with those obtained from the ICSM simulations. It is concluded that the
GICSM using the same optimal model parameters as those obtained for the original ICSM can also faithfully produce known
static and dynamic properties of the simulated liquid water, at least when spheroidal simulation boxes of relatively small
aspect ratios are used. Finally, our conclusions and outlook are presented in Section 6. In addition, an image approximation
of the reaction field inside a perfectly conducting prolate spheroid influenced by an external point charge is given in
Appendix.

2. The hybrid image charge solvation model

For the sake of completeness, the image charge solvation model (ICSM), whose details can be found in a previous paper
[9], is briefly outlined here.

2.1. Method of images for calculating reaction field in spherical cavities

As indicated earlier, the hybrid ICSM is a reaction field-based approach formulated for simulations of bio-macromolecules
of spherical shape, and how to compute the reaction field inside a spherical cavity is the key theoretical and algorithmic
component of the model. To this end, let us consider a spherical dielectric volume V;, of radius a and dielectric permittivity
€; embedded in an infinite solvent bath V. of dielectric permittivity €,, as shown in Fig. 2. Assume that the spherical cavity
Vin contains a total of N explicit charges of the solute and solvent molecules, say q;, i =1,2,...,N, located respectively at

r;, i=1,2,...,N. Then, mathematically, it is well known that the total electrostatic potential ®;,(r) inside the cavity Vj, sat-
isfies the following Poisson equation:
€AD;, () = —piy (T), (1)

Fig. 2. A spherical dielectric cavity Vi, of radius a and dielectric permittivity ¢; is embedded in the infinite solvent bath V,, of dielectric permittivity €,. A
total of N explicit charges of the solute and solvent molecules, say q;, i = 1,2,..., N, are located respectively atr;, i=1,2,...,N, inside the spherical cavity.
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where the charge distribution p,,(r) = >F,q;6(r — 1;) in which &(-) denotes the Dirac delta function, whereas the potential
®,,(r) outside the cavity satisfies the following Laplace equation:

Ay (1) = 0. (2)

On the interface I between the spherical cavity Vj, and its surrounding infinite dielectric medium V,, the continuity of the
tangential component of the electric field and the normal component of the displacement field requires that
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In MD simulations of biomolecules, only the potential ®;,(r) inside the cavity Vi, need be calculated. For simplicity of pre-
sentation, here we shall focus our discussion on a single point charge q located at position r; inside the spherical cavity Vi, as
the solution to Egs. (1)-(3) for multiple point source charges can be obtained using the principle of linear superposition. In
this case, the total potential inside the cavity Vi, can be written as ®;,(r) = ®s(r) + Ogp(r) where ®s(r) = q/(4ne|r — 14)) is
the primary field that results from the source charge and ®e(r) is the reaction field, respectively. Due to the spherical geom-
etry of the cavity, the reaction field ®gg(r) can be computed analytically by the Kirkwood expansion [15]:
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where P,(-) are the Legendre polynomials, and 0 is the angle between vectors r and r, respectively.

The Kirkwood series expansion (4) converges quickly for small values of r/a < 1 and becomes exact at r = 0. As a matter
of fact, this property has been exploited in some reaction field-based methods of electrostatic interactions [16,17]. On the
other hand, when using (4) to calculate the reaction field at a point r close to the spherical boundary (so r ~ a) generated
by a source charge located at a point rs also close to the spherical boundary (so rs =~ a), the convergence of the Kirkwood
series expansion (4) will be very slow due to the fact that rrs/a? ~ 1, requiring a large number of terms in the series expan-
sion to achieve high accuracy. And this unpleasant situation will occur in MD simulations since ®gg(r) often has to be com-
puted over the entire cavity [18] in such simulations. As a result, slow convergence is a major limitation of the Kirkwood
series expansion in practical computer computations. One way to overcome this problem is the method of images in which
the reaction field ®gg(r) at an arbitrary location r inside the spherical cavity is represented as generated by fictitious point
charges located outside the sphere and referred to as image charges.

In fact, it has been found that such a reaction field can be approximated by the potential generated by one single image
charge of charge magnitude q, = y(a/r;)q located outside the sphere at r, = (a/rs)’r,, namely,

A

e (1) ~ m7 (5)
where y = (6 — €,)/(€ + €) in which ¢ and €, represents the dielectric permittivity of the spherical dielectric cavity and
that of the continuum solvent region outside the spherical cavity, respectively.

Friedman [11] was the first to apply this image approximation of the reaction field in a spherical cavity in the context of
biomolecular solvation problems. Due to its simplicity, the Friedman image method has been widely used previously in im-
plicit and hybrid explicit/implicit solvation models [19-24]. The relative approximation error of this simple image method is
about O(€i/(€i + €)) [25], so in cases when the solvent medium has a high dielectric constant, such as liquid water, the image
approximation of the reaction field given by (5) is sufficiently accurate. For instance, for values of €; = 1 and €, = 80 which
are typical in biomolecular simulations of aqueous solutions, the error of this approximation could be just in a few percent
range. In particular, in the limiting case of €, = oo, the analytical representations for the magnitude and the location of the
Friedman image reduce to those for the magnitude and the location of the classical Kelvin image [26] for a perfectly conduct-
ing sphere in the electrostatic theory, hence the notations.

For better computational accuracy, the ICSM actually employs an image approximation of the reaction field in a spherical
cavity using multiple image charges [12]. In short, the same reaction field can be approximated by the potential produced by
a set of fictitious charges located along a ray outside the sphere that extends from the Kelvin image location ry to infinity, as
shown in Fig. 3, namely,

’ Ni ’
~ qk qm
Pre() ~ Grer —r +m2::24nei\r—r;ﬂ\’ (6)

where g, = q + q; = (1 + w1€/26)q,, and for m = 2,3,...N;,

g = €i(€6 — €) wmrmq ot 2 1+€/€
mT 266 +6) a " KT s, :

Here {s;, wm}z’;l represent the points and the weights of the Gauss-Radau quadrature [12,27]. Note that when N; = 1, we
have s; = —1 and w; = 2. Therefore, the corresponding single image charge at ry, termed as the modified Friedman image,
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Fig. 3. A schematic illustration of how the reaction field in a spherical cavity Vi, of radius a and dielectric permittivity ; is calculated by method of images.
The infinite solvent bath V., exterior to the cavity has dielectric permittivity €,. A point charge q is located on the x-axis at a distance of rs from the center of
the sphere. Then the reaction field inside the cavity generated by this charge can be approximated by the potential created by a set of fictitious charges
Gy, 45,45, - ., referred to as image charges, on the x-axis outside the sphere. The distances from these image charges to the center of the sphere are denoted
by ry,r2,13,..., respectively. In particular, the Friedman image method uses only one image charge of magnitude g, located at ry.

has a slightly different magnitude q; = (1 + €;/€,)q, from that of the Friedman image q,. In general, the greater the number
N; of image charges used, the higher the accuracy of the image approximation of the reaction field.

2.2. Image charge solvation model

In Ref. [9], the image approximation of the reaction field inside a spherical cavity embedded in an infinite solvent bath
discussed above was integrated into a hybrid solvation model, leading to the so-called image charge solvation model (ICSM)
for electrostatic interactions in computer simulation of biomolecules. Being a hybrid solvation model, as illustrated by Fig. 4,
the ICSM contains a central spherical cavity X of radius R. inside which a regular truncated octahedron (TO) simulation box

- /
\]
Reiglorl I

Region II

Fig. 4. A schematic representation of the geometry of the ICSM. Shown here is the x-z cross section of the model’s geometry if the cubic box, from which the
TO simulation box A is created, is centered at the origin. The distance from the origin to each of the six square faces of the TO box is L/2, to each of the eight
hexagonal faces is v/3L/4, and to each of the 24 corners is R, = v/5L/4, respectively. Note that the central octagon in this planar graph is not regular. In fact,
each of its four slanted sides such as Side QT represents an edge of the regular TO box and has a length of v/2L/4, whereas each of its remaining four
horizontal or vertical sides such as Side PQ is the diagonal of a square face of the TO box and has a length of L/2.
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A is embedded. Solute and solvent molecules inside A are treated explicitly. The regular TO simulation box A can be pro-
duced by taking a cube and cutting off the eight corners, while preserving the full symmetry of the cube, until exactly one
half of the cube’s volume is left. In other words, the TO box can be built from a cube of length L by cutting off the eight cor-
ners at a distance v/2L/8 from the center of its faces. For convenience, L is also called the size of such a TO box. The spherical
cavity X, together with a buffer layer of thickness 7, forms a larger spherical cavity I'. The solvent molecules outside A but
inside I', marked as “Region III” in Fig. 4, are periodically imaged from the outer part of the simulation box A, shown as “Re-
gion II” in Fig. 4. The unimaged, inner part of the simulation box, marked as “Region I” in the same figure, forms the produc-
tive or useful region of the simulation cell, namely, if the solute under study is placed in Region I, then there will be no
periodic images of solute molecules, thus excluding any artificial electrostatic solute-solute interactions. It should be
pointed out that a cubic simulation box could also be used in the ICSM but the corresponding productive region would
be much smaller in size. Finally, solvent molecules outside the spherical cavity I are modeled by a dielectric continuum.

It is noted that, in the hybrid ICSM, only those particles in the main simulation box A are real whereas those in Region III
are just periodic images of those real particles inside Region II of the simulation box. During the course of the motion in a MD
simulation, if a particle leaves the primitive simulation cell A on one side, it will then simultaneously enter back into the cell
on the other side under the periodic boundary condition (PBC) convention with the same velocity. Also, it is noted that the
boundary between Regions I and Il is only an imaginary interface inside the simulation cell A. If a particle moves into Region
II, then it may have periodic images in Region IIl. Therefore, in order to avoid artificial electrostatic solute-solute interac-
tions, the bio-macromolecule under study need be placed and kept inside Region I during the course of the simulation, which
may be achieved by introducing some additional constraints on the bio-macromolecule.

In MD simulations, the trajectories of those real particles inside the main simulation box A are to be determined by
numerically solving Newton’s equations of motion for the system of those interacting particles in A, where forces between
the particles and potential energy are defined by various molecular mechanic force fields. In particular, in the ICSM, the elec-
trostatic force acting on a particular charge within the main simulation box A consists of three parts: its direct Coulomb
interaction with all other actual charges inside the simulation box A, its direct Coulomb interaction with all periodic images
inside Region Il including its own periodic images if there are any, and an indirect force conveyed by the reaction field gen-
erated from the polarization of the continuum solvent region by all actual and periodic image charges inside the spherical
cavity I'. The two direct Coulomb interactions are calculated basically in a pairwise manner without using any cut-off dis-
tance. On the other hand, the electrostatic force derived from the reaction field is approximately computed by methods of
images. Other non-bonded, short-range interactions such as the Lennard-Jones interaction are computed using the standard
periodic boundary conditions (PBCs) with the minimum-image convention [28].

The ICSM was then applied to study liquid water, and an optimal set of model parameters was obtained that can faithfully
represent many structural, dielectric, and dynamic properties of the simulated liquid water [9]. In particular, it was found
that the buffer layer should be at least 6 A in thickness and the single Friedman image is necessary as well as sufficient
for the reaction field corrections in actual MD simulations of aqueous solutions. Later in Ref. [10], the ICSM was further
tested through simulations of ions solvated in water, and it was shown that the model again can faithfully reproduce known
solvation properties of sodium and chloride ions solvated in water. Moreover, in Ref. [29], the ICSM was integrated into the
molecular dynamics portion of the TINKER Molecular Modeling package [30], and the integrated package was validated
through simulations of liquid water. The results were compared with those obtained by the particle mesh Ewald (PME)
method that is built into the TINKER package. Timing performance of the TINKER with the integrated ICSM was benchmarked
on bulk water as a function of the size of the simulated system. In particular, timing analysis results showed that the I[CSM
outperformed the PME for sufficiently large systems with the break-even point at around 30,000 particles in the simulated
system.

3. The generalized image charge solvation model

As stated earlier, in general, the greater the number N; of image charges used, the higher the accuracy of the image
approximation of the reaction field in (6). However, it has been demonstrated previously [9,10] that in actual MD simulations
of aqueous solution by the ICSM, the results obtained with using one image charge like the Friedman image or the modified
Friedman image are accurate enough to reproduce many static and dynamic properties of the simulated water or known sol-
vation properties of the simulated ions solvated in water. In other words, using more than one image charges in the ICSM
does not lead to any noticeable difference or improvement in those calculated properties. To the authors, this observation
is significant as it suggests the feasibility of using a spheroidal or ellipsoidal cavity in the ICSM. Even though electrostatic
image theories for dielectric spheroids or ellipsoids have been found to be far more complicated than those for dielectric
spheres, what we really have to do for such kind of applications may be just to develop an accurate enough single-image
approximation for the reaction field generated by a single point charge inside such a non-spherical cavity.

3.1. Motivation

In hybrid solvation models, the shape of the central explicit part of the simulated system determines the amount of sol-
vent to be treated explicitly around the solute, and the spherical geometry has often been used because the reaction field in a
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dielectric sphere can be solved analytically [15,31]. Moreover, when it need be approximated by methods of images, the im-
age charges of the reaction field are easy to find [11,12,25]. However, this treatment may be inefficient in applications
involving non-spherical solutes such as certain globular proteins and other elongated biopolymers like actin and DNA since
it will have to include a large number of unnecessary explicit solvent molecules distant from the surface of the solute; see
Fig. 5(a). For solutes of irregular shapes, using a non-spherical cavity to incorporate only a few layers of solvent molecules
adjacent to the solute would make the size of the simulated system much smaller (see Fig. 5(b)), but how to efficiently obtain
an accurate reaction field in a dielectric cavity of such irregular shapes remains a great challenge. In particular, to employ
solvation shells with irregular shapes, a Poisson equation need be solved either directly by some numerical methods [32]
or by using some approximation theory [7,33] at every simulation time step, which, depending on the system size, may be-
come more computationally intensive than standard explicit all-atom solvent simulations.

Therefore, for studying a bio-macromolecule of irregular shape, it may be more appropriate to adopt a non-spherical but
still regular-shaped cavity that can conform closely to the irregular shape of the bio-macromolecule; see Fig. 5(c). While
avoiding the use of a spherical cavity reduces the total number of explicit solvent molecules and thus the overall size of
the simulated system, employing a regular-shaped cavity (but “less regular” than a sphere) gives us hope that it may be still
possible to find some simple but accurate enough image approximations to the reaction field, thus preventing the solution of
the Poisson equation at every simulation time step. In the present paper, we particularly aim to extend the hybrid ICSM to
use prolate spheroidal or more general triaxial ellipsoidal cavities.

3.2. Electrostatic images of point charges inside a dielectric prolate spheroid

Likely, central to the proposed extension is how to compute the reaction field generated by a single point charge placed
inside such a non-spherical cavity by a method of images. While electrostatic image theories for spherical objects, dielectric
or perfectly conducting, have been investigated quite extensively in the literature, only a few studies, all being relatively re-
cent, have been dedicated to image theories of spheroidal or ellipsoidal objects. Among those relevant to our purpose/endea-
vor include the electrostatic image theory for conducting or dielectric prolate spheroids by Lindell et al. [34-38]. RedZic et al.
also studied some properties of the image charges for a prolate spheroid [39]. For example, for the perfectly conducting case,
it has been found that such an image in general can be represented as a line image charge between the two focal points of the
spheroid in terms of Legendre series, or under some special circumstances it can be represented more favorably by a point
image charge and a similar but different line image charge along the interfocal line. However, these existing works were
mainly limited to the axisymmetric cases in which the external field source is either a point charge on the axis of symmetry
or a uniform field. Very recently, Techaumnat et al. presented image charges for a prolate spheroid under an arbitrary exter-
nal electric field [40]. In order to obtain the equivalent image charges, the so-called cylindrical image charges along the inter-
focal line of the spheroid need be used, but they are very complicated. Moreover, in all these works the source charge or field
is assumed to be external, and to the best of the authors’ knowledge, similar electrostatic image theory for source charges
inside a prolate spheroidal or ellipsoidal dielectric cavity embedded in a dissimilar dielectric medium has never been pub-
lished in the literature, probably because there exist some fundamental difficulties for this kind of problems as indicated by
some researchers already [35,41].

Therefore, in this work it is not our intention to try to find equivalent image charges for such an electrostatic problem.
Rather, we would like to present a simple image approximation and we hope that, when it is integrated into the hybrid ICSM,
this simple image approximation becomes accurate enough and the solvation model can thus still be able to faithfully pro-
duce the properties of simulated biological systems. To this end and by the principle of superposition of electrostatic fields,
theoretically we again shall focus our discussion on a single charge g placed at position rs inside a prolate spheroidal cavity of
dielectric permittivity €; embedded in an infinite aqueous solvent of dielectric permittivity €,, as shown in Fig. 6. Recall that

(b) (c)

Fig. 5. Hybrid solvation models using cavities of different geometric shapes: (a) a spherical cavity, (b) a cavity that incorporates only a few layers of solvent
molecules adjacent to the solute, and (c) a prolate spheroidal or triaxial ellipsoidal cavity. The protein shown here is a Ribonuclease S-peptide.
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Fig. 6. A point charge q is located at rs = (&, 7, 0) inside a dielectric prolate spheroidal cavity Vi,. The spheroid is centered at the origin, its polar axis is
aligned with the z-axis, and the interfocal distance is c. The spheroidal cavity has dielectric permittivity €;, while the infinite solvent bath V,, exterior to the
cavity has dielectric permittivity €,. In terms of the prolate spheroidal coordinates (¢, 1, ¢) defined in the main text, the boundary of the prolate spheroidal
cavity is given by ¢ = &,.

the total electrostatic potential inside the cavity, denoted by ®;,(r), and that outside the cavity, denoted by ®,(r), are given
by the solutions of the following Poisson and Laplace equations, respectively,

V- (VO (r)) = —qé(r —15), (7)

ADgy (1) =0, (8)

coupled with the following interface condition on the interface I" between the dielectric prolate spheroid and its surround-
ing dielectric medium:

a(bout

— € aq)in
on €

— 1
r on |p

Doy = Qin| and €

9)

where n is the outward normal of the interface.

The exact solution to the above electrostatic problem can be found easily and has been well documented in the literature
[35,36,42-44]. Assume that the prolate spheroidal cavity is centered at the origin and its polar axis is aligned with the z-axis.
Assume further that the prolate spheroid is defined by the equation

X2 2
+2y + 3
A B
where B > A. The interfocal distance c is given by c = 2v/5% — A%. Then we adopt the following definition of the prolate
spheroidal coordinates (¢,1, ¢) defined through

=1, (10)

x=5\/(@ = 1)1~ 1) cos g, (11a)
y =gy =1)(1 - n2)sing, (1)
:%@17 (l]C)

where ¢ € [1,00) is the radial variable, 7 € [-1,1] is the angular variable, and ¢ € [0,27] is the azimuthal variable, respec-
tively. Note that the surface of constant ¢ is a prolate spheroid with interfocal distance c; in particular, ¢ = &, with
& = 2B/c = B/vV/B* — A% is the prolate spheroid given by (10), and ¢ =1 corresponds to the line between the two foci,
respectively. Also, the surfaces of constant # are the two sheets of a hyperboloid of revolution with foci z = +c/2, and the
surface of constant ¢ is a plane through the z-axis at an angle ¢ to the x-z plane, respectively.

Without loss of generality, assume that the point charge q is located at the point ry = (x,y, = 0,25) = (&, s, ¢s = 0) on the
x-z plane inside the spheroid defined by the equation ¢ = &, (so 1 < & < &,). Then the reaction field @ inside the spheroidal
cavity (1 < ¢ < &,) is given by the following series expansion [42,43]

oo
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Here, P;(x) and Qj (x) are the associated Legendre functions of the first and the second kind, respectively, and

—mn?
Hu = 2020+ 1)2 ~ 300)(-1)" [T
where d,,, is the Kronecker delta.

The semi-analytical series solution given by (12) converges quickly when the field point r is away from the surface of the
spheroid. On the other hand, when calculating the reaction field at a point close to the surface, it converges very slowly, mak-
ing it inapplicable in practical MD simulations. Recall that in the case of a spherical cavity of radius a, to overcome this lim-
itation, the corresponding reaction field is approximated by the potential generated by a single image charge located outside
the sphere, namely, the Friedman image [11]. The magnitude of this image charge is q, = y(a/rs)q and the location of the
image charge is ry = (a?/r?)r; where y = (€; — €,)/(€ + €). Also recall that the location of the classical Kelvin image [26]
for a perfectly conducting sphere influenced by an external point charge q located at r; is given by the same representation
e = (@?/r})rs and its magnitude is —(a/rs)q, which is exactly the negative of the metallic limit (¢; = o) of the magnitude of
the Friedman image.

Furthermore, we can recall a more general result [12,45]. Suppose that a sphere of radius a and dielectric permittivity ¢; is
embedded in a dissimilar infinite dielectric medium of dielectric permittivity €,. If the source charge q is outside the sphere,
then for the reaction field exterior to the sphere, the position and the magnitude of an image charge are ry = (a?/r?)rs and
—v(a/rs)q, respectively. On the contrary, if the source charge q is inside the sphere, then for the reaction field interior to
the sphere, the position and the magnitude of an image charge are r, = (a?/r2)rs and y(a/rs)q, respectively. As can be seen,
for all these cases, the location of the point image is always given by the same formula as that for the classical Kelvin image
for a perfectly conducting sphere influenced by an external point charge. On the other hand, the magnitude of the point im-
age is obtained from that of the classical Kelvin image by multiplying the factor y when the sphere changes from perfectly
conducting to dielectric, and/or by changing its sign when the source charge moves from outside to inside the sphere. Based
on these observations, we propose that, if we can find an image charge for the reaction field exterior to a perfectly conducting
prolate spheroid influenced by an external point charge, then we can obtain an image charge for the reaction field interior to
a dielectric prolate spheroid generated by a point charge inside the spheroid in the same manner as how the Friedman image
is connected to the classical Kelvin image for a perfectly conducting sphere influenced by an external point charge.

In Appendix, it is shown in detail that the reaction field exterior to a perfectly conducting prolate spheroid influenced by
an external point charge q located at rs = (xs,Ys,2s) = (&, ¥, ¢s) can be approximated by the potential of a charge of
magnitude

_ Qo(és)
Gind =~ Q0 (&) T

located at the point ry,q inside the spheroid, where

Qo) (QIEDPI(E) ., QIEIPI(E) . Qui(E)Pi(S)
Tind = Qo (&) (Q}(éb)P}(fs)xs’ Q}(gb)P}(gs)ys’ Ql(éb)Pl(és)Zs ' (13

The accuracy of this single image approximation depends on the aspect ratio B/.A4 of the prolate spheroidal object. In general,
the closer the shape of the prolate spheroidal object resembles a sphere, the higher the accuracy of the image approximation.
In particular, in the spherical limit (c — 0), namely, when the spheroid approaches a sphere of radius a, the image charge g;.4
and its location ri,q approach —(a/rs)q and ry = (a/rs)zrs, respectively, where r; is the distance between the source charge g
and the center of the sphere.

Finally, by our earlier argument, we thus propose the following single image approximation for @ as defined in (12), the
reaction field interior to a dielectric prolate spheroid generated by a point charge q located at rs = (xs,¥,,2s) = (&, 1, ¢s) in-
side the spheroid:

(14)
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Fig. 7 shows a sample distribution of image charges when source charges are uniformly located on the x-z cross section of
a prolate spheroid with an aspect ratio of 4/3.

Note that this image approximation has two sources of errors. The first one depends on how close the prolate spheroidal
cavity resembles a sphere, and the second one depends on how different the dielectric permittivity of the prolate spheroidal
cavity is from that of the surrounding medium. In the spherical limit, the first error vanishes. On the other hand, the second
error in relative scale should be in the range of a few percent for typical values of ¢ and €, such as ¢, =1 and ¢, = 80,
respectively.

e (1) where q, =7 q. (16)

3.3. Electrostatic images of point charges inside a dielectric triaxial ellipsoid

The ICSM can be further extended to employ ellipsoidal cavities, which may be desired for simulations of non-spherical or
non-spheroidal bio-macromolecules. Similarly, central to this extension is how to approximate the reaction field generated
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Fig. 7. A sample distribution of image charges when source charges are uniformly located on the x-z cross section of a prolate spheroid with an aspect ratio
of 4/3. More precisely, the source charges are located at nodes on a uniform grid.

by a single point charge placed inside a triaxial, namely, scalene, ellipsoidal cavity by image charges. Assume that the triaxial
ellipsoidal cavity is defined by the equation

X2 y2 22

prptet )
where A > B > C > 0 are its semi-axes. Assume further that the Hobson’s formalism [46] of the triaxial ellipsoidal coordi-
nates [47-51] is adopted. Then the ellipsoidal coordinates (¢, i, v) corresponding to the point (x,y,z) in the rectangular coor-
dinates, generated by the reference ellipsoid (17), satisfy

XZ y2 ZZ

VA i 'S
where 2 stands for either ¢, p, or v. The two constants k and h are determined by the semi-focal distances of the reference

ellipsoid, namely, k = VVA® — C* and h = v/A* — B%. Note that every ellipsoidal coordinate has the physical dimension of dis-
tance, each one being defined in the intervals 0 < v < n < W< k? < € < co. The surface of ¢ = constant is a triaxial ellip-

-1, (18)

soid of semi-axes ¢, \/62 —h? and \/éz —K*: in particular, ¢ =A corresponds to the reference ellipsoid (17), and ¢ =k
specifies the so-called “fundamental ellipsoid” [41] (also frequently called “the fundamental elliptic disk” [50] or “the focal
ellipse” [52])

xZ y2

— 4 = ‘17

Kk —h
respectively. In addition, recall that for the spherical coordinates (r, 0, ¢), a constant radius r defines a single sphere. There-

fore, analogously the variable ¢ in the ellipsoidal coordinate system is called radial and assumes only positive values, namely,
& € [k,00). The transformation between the ellipsoidal and the Cartesian coordinates is [46]

z=0, (19)

52 242
X = ~k’2‘h2 : (19a)
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Let us first consider the reaction field exterior to a perfectly conducting and grounded ellipsoidal cavity as illustrated in Fig. 8
that is influenced by an external point charge Q located at rs = (xs,s,2s) = (&, I, Vs). It is suggested [50] that such reaction
field can be approximated first by the potential of a charge of magnitude
Fy(&)
Fo(&)
located inside the ellipsoid at
1,2 1/¢ 1,2 2/ ¢ 2 3/ 3/
R - F28) (F}@s)b}] (&), FEEG) , REE (cvb)zs>, 21
Fo(&) \Fi(&)Ei (&) Fi(&)Ei(&)™ Fi(&)Ei(&)

Qind = Q (20)
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Fig. 8. An ellipsoidal cavity V;, of dielectric permittivity €; is embedded in the infinite solvent bath V,, of dielectric permittivity €,. The ellipsoid is centered
at the origin, and its major principal axis is aligned with the x-axis. In terms of the ellipsoidal coordinates (¢, i, v) defined in the main text, the boundary of
the ellipsoidal cavity is given by ¢ = &, = A. The graph shown represents the x-z cross section of the ellipsoid.

where E? and F%, represent the Lamé functions of the first and the second kind of degree n and order p, respectively, in which
both indices n and p are positive integers satisfying 2n +1 > p > 1. For the determination of the Lamé functions, see e.g.,
[53], for a short list of the Lamé functions of the first kind, see e.g., [50], and for numerical computation of the Lamé func-
tions, see e.g., [54-56]. In particular, the lowest Lamé functions of the first kind involved in the image approximation (20)
and (21) are given below.

E (&) =& -k

The corresponding Lamé functions of the second kind can be calculated by [46]

(22)

e d¢
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Now let us consider the reaction field ®gr interior to a dielectric ellipsoid generated by a point charge g located at
Is = (Xs,Ys.Zs) = (&, U, Vs) inside the ellipsoid. Semi-analytical series solutions in terms of ellipsoidal harmonics can be eas-
ily found [57], but unfortunately, they are too complicated to be used in actual biomolecular dynamics simulations. There-
fore, in the same spirit as what we have done for the prolate spheroidal case, we propose the following single image
approximation for the reaction field ®gr inside the ellipsoid

Fo(&)
Fo(&)
Similarly, this image approximation has two sources of errors. One depends on how close the ellipsoidal cavity resembles a
sphere. In particular, when the ellipsoid approaches a sphere, q. and Ri,q approach the magnitude and the location of the

corresponding Friedman image, respectively. The other one again depends on how different the dielectric permittivity of
the ellipsoidal cavity is from that of the surrounding solvent bath.

o G _
Per(F) ~ ATE | — Rina|’ where g, =7

q- (23)

3.4. The generalized ICSM

For sake of simplifying the discussion, here and in the sequel, we shall focus on the generalized image charge solvation
model (GICSM) with using prolate spheroidal cavities. But if really needed, the following discussion can be easily generalized
to the case of ellipsoidal cavities. Remember that in the ICSM, a regular truncated octahedron (TO) rather than a cube is used
as the main simulation box in order to maximize the size of the productive region. For the same reason, in the GICSM, we use
an elongated TO rather than a square prism as the main simulation box. Geometrically, an elongated TO can be obtained by
stretching a regular TO in one of the three coordinate directions, say the z direction in this paper. For later convenience, the
ratio of its height to its base length, H/L, is called the aspect ratio of the elongated TO and denoted by «. The central octagon
shown in Fig. 9 represents the cross section of the elongated TO in the x-z plane if the square prism, from which the
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Fig. 9. A schematic representation of the geometry of the GICSM. Shown here is the x-z cross section of the model’s geometry if the square prism, from
which the elongated TO simulation box A is created, is centered at the origin. For the central octagon, each of its four slanted sides such as Side QT
represents a longer edge of an elongated hexagonal face and has a length of \/L? + H* /4. Each of the two vertical sides such as Side PQ is the diagonal of a
square face and has a length of L/2. Each of the two horizontal sides such as Side ST is the longer diagonal of a rhombus face and has a length of H/2.

elongated TO is built, is centered at the origin. Note that like a regular TO, an elongated TO remains to be space-filling, a key
property that any primitive cell used in computer molecular simulation must possess.

Among the 14 faces of the simulation box, two are identical squares and they are parallel to the x-y plane. Four are iden-
tical rhombuses, two of which are parallel to the x-z plane, and the other two parallel to the y-z plane. The remaining eight
faces are identical elongated hexagons, two of whose six sides have the same length as that of the square faces and the
remaining four have the same length as that of the rhombus faces. Moreover, the equation of the plane containing such
an elongated hexagonal face is given by

z 3
IFIFET @
imposing + or — depending on which octant the hexagonal face is located in. The distance from the origin to a square face is

H/2, to a rhombus face L/2, and to an elongated hexagonal face v/2L* + H* /4, respectively. On the other hand, the distances
from the origin to the 24 corners are not the same any more. The distance to the eight corners on the x-y plane (not shown in

Fig. 9) is still given by R. = v/5L/4. The distance to the eight corners on the two square faces (such as P and Q in Fig. 9) is given
by Ry = +I?>+4H?*/4. And the distance to the remaining eight corners (such as S and T in Fig. 9) is given by
R. = V4L + H?/4. All these 24 corners are on the surface of the prolate spheroid defined by

(24)

x2 2 72
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where R; = oR. = v/5H/4, namely,

X y* 2 5

> 1* H* 16
Now analogously to the ICSM, the generalized ICSM can be briefly described here. As illustrated by Fig. 9, the main elongated
TO simulation box A is embedded in the central ellipsoidal cavity ¥ defined by (25). Solute and solvent molecules inside A
are treated in atomic detail. The ellipsoidal cavity X together with a buffer layer forms a larger ellipsoidal cavity I". Then
“Region I” (productive region), “Region II”, and “Region III” are defined in the same way as how they are defined in the ICSM.
The solvent molecules in Region III are periodically imaged from those in Region II, and solvent molecules outside the ellip-
soidal cavity I" are modeled by a dielectric continuum. All other details of the GICSM, being the same as those of the ICSM,
can be found in Ref. [9] and thus are omitted here.

Define the thickness of the buffer layer to be the shortest distance between the two ellipsoids X and I'". Note that the two
ellipsoids X and T" are closest along their minor axes. Therefore, in order to have a buffer layer of thickness at least t every-
where between the explicit and the implicit solvents, the semi-minor axis of the ellipsoid I" must be R. + 7. For the semi-
major axis of the ellipsoid I', we can use either oR. + T or o(R. + 7). The corresponding ellipsoidal cavity I" has aspect ratio
either smaller than or the same as that of the ellipsoidal cavity X. The first choice leads to a buffer layer of relatively uniform
thickness, a smaller Region III and thus less computational cost. The second choice, on the other hand, leads to a buffer layer
of non-uniform thickness and slightly more computational cost. Also, for the second case, it can be shown that the productive
region can accommodate an elongated solute molecule of a maximal minor axis d; = (v/3 — v/5/2)L — 27 and a maximal ma-
jor axis dy = ad;.

(25)

3.5. Key steps of force calculation

In summary, during MD simulations of biomolecules by the GICSM, at each simulation time step, the calculation of the
forces acting on all N particles in the main simulation cell A involves the following subsequent key steps:
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I A

Fig. 10. Schematic illustration of how the FMM together with a separate local expansion procedure is utilized in the GICSM. A reference sphere S; of radius
KR is centered at the origin with x > o. The electrostatic force field within the main simulation box A due to the sources inside S, is computed by an
adaptive FMM, whereas the electrostatic force field within A due to all periodic images and/or image charges of the reaction field outside S, is calculated by
a separate local expansion.

(1) Locate the periodic images of all N actual charges in the unit cell A but only keep those inside Region III.

(2) Find the image charges of the reaction field for all charges inside the prolate spheroidal cavity I', including all actual
charges in the simulation box A and all periodic images in Region III.

(3) Evaluate electrostatic interaction forces between all targets (the actual charges in the simulation box A) and all
sources (actual charges in the simulation box A, the periodic images in Region III, and the image charges of the reac-
tion field outside the cavity I').

(4) Calculate other short-range, non-electrostatic potential forces such as the Lennard-Jones force using PBCs with the
minimum-image convention and cut-off concept.

In the above four steps, each of Steps (1), (2) and (4) requires only O(N) operations. The most time-consuming part is Step
(3), namely, calculation of electrostatic forces exerted on all actual charges in the simulation box A by all sources. Direct
evaluation of such electrostatic forces for all N particles in the unit cell obviously requires O(N?) operations, but fortunately
the fast multipole method (FMM) [13,14,58-61] can be used at this step to reduce the cost from O(N?) to O(N).

3.6. Order N complexity

As mentioned earlier, one important feature of the ICSM/GICSM lies in the fact that, in practice, it can be easily combined
with the FMM, yielding an order N algorithm for computation of electrostatic interactions in biomolecular systems, where N
denotes the number of particles in the main simulation cell.

In the simplest implementation, Step (3) can be carried out using one FMM run by including into the FMM level-0 box all
actual charges within the unit cell A, plus their periodic images in Region IIl and all image charges of the reaction fields out-
side the cavity I', with all charges being taken as acting in a homogeneous medium of dielectric permittivity ¢;. Since the
image charges of the reaction field outside the cavity I" are highly nonuniformly distributed, however, such a direct appli-
cation of the FMM in the ICSM/GICSM may have to use a big FMM box and thus become inefficient. Luckily, as only the forces
for those actual charges in the simulation box A need be evaluated, this problem can be efficiently alleviated by a separate
local expansion procedure [9]. More specifically, we introduce a reference sphere S; of radius kR, centered at the origin with
K > o; see Fig. 10. Then the electrostatic force field within the elongated TO box A due to the sources inside this reference
sphere is evaluated by an adaptive FMM, while that due to the periodic images and/or image charges of the reaction field
outside this reference sphere is calculated by the special local expansion procedure whose detail can be found in Ref. [9]
and thus is omitted here.

4. Periodic boundary conditions and practical implementation

Periodic boundary conditions (PBCs) are employed in the hybrid ICSM/GICSM in two ways to minimize surface effects [9].
First, they are used to replicate actual particles in the unit cell throughout Region III to form a buffer layer between the
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explicit and implicit solvents. Second, they are used to compute other short-range, non-electrostatic interactions just like
how these interactions are computed in explicit solvent simulations. For the convenience of potential users of the GICSM,
several key implementation details relevant to the PBCs with an elongated TO unit cell are discussed below, where the origin
of the coordinate system is assumed to be the center of the elongated TO simulation box.

4.1. Locating periodic images for particles in the unit cell

In the GICSM, actual particles inside the central simulation box A are periodically replicated throughout the space be-
tween the elongated TO box A and the prolate spheroidal cavity I'. Note that there are 14 nearest neighbors of the central
simulation box, each resulting merely from a translation through an appropriate face of the elongated TO. Let (x,y,z) be a
point inside the central simulation cell. Then the code to find its periodic image (xi, yi, zi) in each of the 14 surrounding boxes
of the central simulation box is fairly easy. Given (24) and the fact that the distance between two opposite hexagonal faces is
V/2L? + H?/2, the FORTRAN code can be written as

m=0
DOl1i=-1,1
DO1j=-1,1
DOlk=-1,1
IF (ABS(i) + ABS(J) + ABS(k) .NE. 1) GOTO 1
m=m+ 1
xi(m) =x+ 1%L
yi(m)=y +Jj*L
zi(m) =z +kxH
1 CONTINUE
Do2i=-1,1,2
Do2 j=-1,1,2
DO2k=-1,1,2
m=m+ 1
xi(m) =x+1xL/2
yi(m)=y+j*xL/2
zi(m)=z+kxH/2
2 CONTINUE

In fact, the first part of the code is to find the periodic images in six surrounding boxes which share one of the six square
or rhombus faces of the central simulation box, while the second part of the code is to find the periodic images in eight sur-
rounding boxes which share one of the eight hexagonal faces of the central simulation box, respectively. It should be recalled
that among the 14 periodic images, only those that are located inside the buffer zone are used and thus contribute to the
reaction field corrections.

4.2. Bringing particles back into the unit cell

During the course of the MD simulation, only the properties of the unit simulation cell need be recorded and propagated.
When a particle leaves the unit simulation cell through one face of the cell, it simultaneously enters back to and reappears in
the cell through the opposite face of the cell with the same velocity. This step is also simple to program when using the elon-
gated TO simulation box. Given a particle at an arbitrary location (x,y,z) in the space, the FORTRAN code to bring it back to a
location (xi, yi, zi) in the central elongated TO simulation cell is

x =x/L

y=y/L

z=2z/H

x =X — ANINT (x)

y =y — ANINT(y)

z =z — ANINT(z)

IF (ABS(x) + ABS(y) + ABS(z) .LT. 0.75) GOTO 1

x=x— SIGN(0.5, x)

y=y — SIGN(0.5,y)

z =2z — SIGN(0.5, z)
1 xi=xxL

yi=y=*L

zi=zxH
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Note that essentially the first part of the code either brings the particle into the central simulation box or leaves it in one
of eight surrounding elongated TO boxes which share one of the eight hexagonal faces of the central simulation box.

4.3. Calculating distance vectors in the minimum-image convention

As in the ICSM [9], other non-bonded, short-range interactions such as the Lennard-Jones interaction are treated by the
standard PBCs with the minimum-image convention [28], in which each individual particle in the simulation interacts with
the closest image of the remaining particles in the system. The FORTRAN code to calculate the distance vector (dx,dy,dz)
between the true nearest-neighbor images of two particles inside the simulation box, say Particle I at (x;,y;,z;) and Particle

J at (Xja.Yjvzj) is

dx = (x(1) —=x(J))/L

dy = (y(i) = y(3))/L

dz = (z(i) —z(j))/H

dx = dx — ANINT (dx)

dy = dy — ANINT (dy)

dz = dz — ANINT (dz)

IF (ABS(dx) + ABS(dy) + ABS(dz) .LT. 0.75) GOTO 1

dx = dx — SIGN (0.5, dx)

dy = dy — SIGN (0.5, dy)

dz =dz — SIGN (0.5, dz)
1l dx=dxx*L

dy =dy*L

dz =dzxH

5. Numerical examples

As in Ref. [9], in this section we apply the GICSM to study liquid water [62], and the results are to be analyzed in com-
parison with those obtained from the ICSM simulations as a reference. As a matter of fact, all MD simulations and trajectory
analysis presented here were performed by a program that is modified from the in-house software specifically written for
the ICSM project. Therefore, most computational details described in Ref. [9] apply to the present paper. For example, the
velocity Verlet algorithm by Jang and Voth [63], coupled with the Nosé-Hoover thermostat, was used for the time integra-
tion of the positions and velocities, and in particular, the algorithm labeled VV1 in the original paper was employed. The
covalent bond lengths of water molecules were constrained according to the noniterative matrix method [64,65]. The van
der Waals interactions were modeled by the Lennard-Jones potential which was truncated at 10 A. The location of the oxy-
gen atoms was used to measure the distance from one molecule to another. The integration time step was set to 2 fs, the
trajectories were recorded every 0.2 ps, and the total simulation time is 1 ns unless otherwise specified. The simulations
were performed under constant temperature conditions at T=300 K, and the thermostats coupling constant was 0.05 ps.
The dielectric constant of the external field was set to 80.

For FMM implementation, in Ref. [9] the C++ software KIFMM developed by Ying et al. [66] using a kernel-independent
adaptive FMM was used. However, in this work we adopt the Fortran software FMM-Yukawa developed by Huang et al.
[67,68] using the new version of the adaptive FMM that uses exponential expansions to diagonalize the multipole-to-local
translations. The program and its full description are available at http://www.fastmultipole.org/. In all simulations, the max-
imum number of particles in a leaf, childless box of the adaptive oct-tree structure was set to 80 (NBOX = 80). The number of
terms in the multipole and local expansion and that in the exponential expansion were both set to 9 for three-digit accuracy
(NTERMS =9, NLAMBS = 9). For the separate local expansion procedure that is employed to calculate the electrostatic field
within the simulation box A exerted by the periodic/image charges far away from A [9], a sphere of radius 2u(R. + T)
was employed as the reference sphere, and the local expansion order p in Eq. (13) of Ref. [9] was set to 10.

Unlike in Ref. [9], however, we do not intend to conduct a full-blown numerical analysis of the effect of model parameters,
namely, the thickness of the buffer layer and the size of the simulation box. Rather, because it has been demonstrated in Ref.
[9] that, in order to obtain a faithful representation of many structural, dielectric, and dynamic properties of the simulated
water, a buffer layer of thickness at least 6 A is required in the ICSM using spherical cavities, the thickness of the buffer layer
was set to 6 A in this work unless otherwise specified. On the other hand, two elongated TO simulation boxes are tested in
this work. The first one, named Box A, has L =30A and H = 45 A, and the second one, called Box B, has L =45 A and
H =60 A, respectively. The aspect ratios of these two boxes are 1.5 and 4/3, respectively. Here, these particular numbers
of the cell size (30 A, 45 A and 60 A) are chosen simply because they were used in Ref. [9] in testing the ICSM which serves
as the reference for the present study. Note that the volume of the regular TO of size L is L* /2 while that of the elongated TO
of size L x H is L*H/2. Therefore, compared to using the corresponding regular TO boxes of size 45 A and 60 A, using these
two elongated TO simulation boxes can reduce the size of the simulated system by 56% and 44%, respectively. It should also
be mentioned that work is on the way to further test the generalized model for cell geometries of larger aspect ratios as well
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Fig. 11. Relative density along the longer diagonal of the elongated TO boxes with T = 6 and 8 A, respectively. Marked here and in the sequel figures/tables,
“GICSM” and “GICSM + RF” indicate the GICSM without and with reaction field corrections, respectively. “ICSM + RF” indicates the ICSM with reaction field
corrections given by the modified Friedman image charge.

as for other biological systems such as ions solvated in water, and any significant results will be reported in future
publications.

5.1. Homogeneity of the simulated liquid water

To validate the GICSM using non-spherical cavities, we investigate several static and dynamic properties of the simulated
water and compare the results to those obtained by the ICSM using spherical cavities. First, we investigate whether the gen-
eralized model yields the uniform density of the simulated water since the real bulk water is homogeneous. To this end, as in
Ref. [9] we examine the local particle density across the simulation box as a measure of the homogeneity of the simulated
system. More specifically, we compute the relative density of oxygen atoms along the longer diagonal in the aforementioned
two simulation boxes with T = 6 and 8 A and the results are displayed in Fig. 11. Also, a summary of density deviations along
the diagonal is presented in Table 1. As can be seen, using the GICSM with a buffer layer of at least 6 A in thickness does yield
uniform density of the simulated homogeneous water. Using a thicker buffer layer does not lead to significant improvement
in the uniformity of the computed density. In addition, the results seem to indicate that, while reaction field corrections ap-
pear to be not critical to yield uniform density as long as the buffer layer of at least 6 A is used [9], they do improve the re-
sults for smaller simulation boxes.

5.2. Oxygen-oxygen radial distribution function of the simulated liquid water

Next, we want to see whether the GICSM can reproduce the structure of the simulated water. To this end, we evaluate the
structure using g, (r), the oxygen-oxygen radial distribution function (RDF) computed over the entire simulation box and
the results are displayed in Fig. 12. The most important features of g,,(r) are the locations and magnitudes of the first three
density peaks and the first two minima. First and most important of all, the results obtained by the ICSM and by the GICSM
for the same simulation box with T = 6 A, using or not using reaction field corrections, are almost indistinguishable. Second,
as it has been demonstrated already in Ref. [9], our work also show that the effect of the reaction field to the RDF is small and
is almost negligible when the thickness of the buffer layer is 6 A, indicating that the presence of the reaction field is not crit-
ical for the proper description of the static structure. Note that the structure of water is not very sensitive to the reaction field
corrections has been noted previously [69]. As far as the RDF's dependence on the geometric parameters of the simulation
box, recall that when using the ICSM with spherical cavities, it has been shown that such structural property is not strongly
affected by the size L of the simulation box as well as the thickness 7 of the buffer layer. More precisely, on the one hand,

:?abl:ga]rd deviations of relative densities along the longer diagonal of elongated TO boxes.
ICSM + RF GICSM + RF GICSM
T=6A T=8A T=6A T=8A T=6A T=8A
Box A 0.003 0.003 0.003 0.003 0.011 0.009

Box B 0.003 0.002 0.003 0.004 0.003 0.016
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Fig. 12. Oxygen-oxygen RDFs computed in this work. (a)-(c) RDFs obtained by the ICSM and the GICSM, using or not using reaction field corrections, for
different simulation boxes with t = 6 A. (d) Comparison between RDFs obtained by the GICSM using reaction field corrections for Box B with 7 = 6 and 8 A,
respectively.

regarding the RDF's dependence on the thickness 7 of the buffer layer, it has been shown that increasing t leads to conver-
gence for all sizes of the simulation box considered there, and in particular, the changes in the RDFs become almost unno-
ticeable for T > 4 A. The conclusion was that, in order to reproduce the structure of liquid water correctly, the thickness of
the buffer layer need be at least 4 A. As shown in Fig. 12(d), RDFs obtained by the GICSM using reaction field corrections for
Box B with T = 6 and 8 A, respectively, are indeed almost unnoticeable. On the other hand, regarding the RDF’s dependence
on the size of the simulation box, the results presented here also confirm the previous finding by the ICSM that the RDFs are
more sensitive to the size of the simulation box than to the thickness of the buffer layer. For example, Fig. 12(c) compares
RDFs obtained by the GICSM using reaction field corrections for both Box A and Box B with t = 6 A, respectively. As can be
seen, there are noticeable variations in g,,(r) although only the magnitudes of the first two density peaks and the first min-
imum are slightly different. A closer look at data reveals that the first peaks lie at 2.8 A; the magnitude is 2.75 for Box A and
2.70 for Box B, respectively. For the first density minimum, the position is around 3.6 A and the magnitude is 0.87 for Box A
and 0.90 for Box B, respectively. The second peaks lie at around 4.7 A; the magnitude is 1.03 for Box A and 1.02 for Box B,
respectively. Importantly, the RDFs computed for Box B are in excellent agreement with those results obtained in the particle
mesh Ewald (PME) [70] calculations that were reported in Ref. [9].

5.3. Self-diffusion coefficient of the simulated liquid water

Finally, we test whether the GICSM can still give us the proper description of diffusion of the simulated water. To this end,
we choose to evaluate the self-diffusion coefficient D, a transport coefficient characterizing how quickly equilibrium is estab-
lished in particle density following a small perturbation. Here the diffusion coefficient is calculated by least squares fitting a
straight line (y = Dt). The results of these studies are summarized in Table 2.

Recall that when using the ICSM with spherical cavities, it has been shown that the thickness of the buffer layer t has no
noticeable effect on D except for the smallest simulation box L = 30 A. For larger systems, L = 45 and 60 A, the diffusion coef-
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Table 2
Diffusion coefficients D with error estimates (unit of D: 107° m?s~1).
ICSM + RF GICSM + RF GICSM
T=6A T=8A T=6A T=8A T=6A T=8A
Box A 6.26 +0.01 6.25+0.01 6.28 +0.01 6.26 +0.01 9.63+£0.17 16.87 +0.58
Box B 6.08 +0.01 6.11+0.01 6.08 +0.01 6.07 +0.01 6.92 £0.03 7.99 +0.08

ficient remains within a statistical error for varying 7. Also, like the structural function, the diffusion coefficient strongly de-
pends on the size of the simulation box. Generally speaking, small simulation boxes overestimate the mobility of water mol-
ecules, and increasing the simulation box size can progressively improve the diffusion constant with the convergence
typically seen at L = 60 A for the ICSM. The same conclusion can be drawn from the results obtained by the GICSM with reac-
tion field corrections. For example, the diffusion coefficient changes from 6.28 x 10°m?s~! for t=6A to only
6.26 x 107 m? s~ for T = 8 A if using Box A, and from 6.08 x 10~° m? s~ to only 6.07 x 10~ m? s~! if using Box B, respec-
tively, reaffirming that the dependence of the diffusion on the thickness of the buffer layer is not strong especially when lar-
ger simulation boxes are utilized. But on the contrary, when using the same thickness for the buffer layer, the diffusion
coefficient drops from 6.28 x 10~ m? s~ for Box A to 6.08 x 10~ m? s~ ! for Box B if T = 6 A, and from 6.26 x 107 m?s~!
t0 6.07 x 10 ° m?s ' if t = 8 A.

Most importantly, however, it has been shown in Ref. [9] that reaction field correction is essential for the proper descrip-
tion of the diffusion and on the other hand, using only the reaction field correction from the Friedman image charge or the
modified Friedman image charge is enough for the ICSM to achieve such a proper description of the diffusion. Again, the
same conclusion can be drawn from the results presented in the present paper. First, it clearly shows that, without reaction
field correction, the GICSM substantially overestimates the mobility of water molecules, for both simulation boxes as well as
both thicknesses of the buffer layer considered. Second, although the single image charge approximation proposed in the
present paper for the reaction field inside a dielectric prolate spheroidal cavity is very raw, the corresponding reaction field
correction seems to be still sufficient for the GICSM to reproduce the dynamic diffusion of the simulated water properly. Note
that for either box or either thickness of the buffer layer, the results obtained by the ICSM using only the modified Friedman
image charge correction and the GICSM using the proposed single image charge correction agree each other within a statis-
tical error. In summary, we come to the same conclusion that reaction field correction and sufficiently large simulation box
are required to properly describe self-diffusion processes.

6. Conclusions

We extended in this paper the hybrid image charge solvation model (ICSM) using spherical cavities to prolate spheroidal
and triaxial ellipsoidal cavities in order to more efficiently simulate bio-macromolecules of non-spherical shapes. The gen-
eralized model, termed as the generalized image charge solvation model (GICSM), was validated using liquid water as a test
system, and the results were analyzed and compared with those obtained from the ICSM simulations. We found that the
results obtained by the generalized model were in excellent agreement with those obtained by the ICSM using corresponding
larger spherical cavities, indicating its potential to become an accurate but more efficient alternative to the ICSM when bio-
macromolecules of irregular shapes are to be simulated.

In addition to the utilization of a general truncated octahedron as the MD simulation box, central to the GICSM is an im-
age approximation method to compute the reaction field for a point charge placed inside a prolate spheroidal or triaxial ellip-
soidal cavity by using a single image charge located outside the cavity. The results presented in this paper showed that,
although the single image charge approximation is very raw, the corresponding reaction field correction seems to be still
sufficient for the GICSM to reproduce the dynamic diffusion property of the simulated water. Therefore, it is the authors’ be-
lief that the single image approximation presented in this paper for the GICSM could be used in other reaction field-based
solvation models too.

Generally speaking, the GICSM shares the same advantages and disadvantages as the ICSM. Over lattice-sum explicit sol-
vent methods such as the Ewald method and the particle mesh Ewald (PME) method, a major advantage of the ICSM/GICSM
lies in the fact that they are designed for inhomogeneous systems and they are free of periodic artifacts in electrostatic inter-
actions. Therefore, they can be applied in areas where the PME is not suitable, including tests on the effects of periodicity
artifacts, simulations of highly charged solutes, and pKa determinations of proteins. On the other hand, while the ICSM/
GICSM has a better asymptotic computational complexity O(N) than the O(Nlog N) complexity of the PME, when used to
simulate homogeneous systems of relatively small sizes, the PME was found significantly more efficient. However, in a sep-
arate project [29], we also found that, when integrated into TINKER [30], the ICSM becomes computationally more efficient
than the PME built into TINKER when 30,000 or more explicit atoms are included in the simulated system.

Finally, it should be admitted that for the GICSM to be used as a general tool, it needs to be further investigated, not only
by considering simulation cells of larger aspect ratios to see how far the physical properties of the liquid water can hold up as
the aspect ratio is changed, but also by testing it through simulations of other biological systems such as ions solvated in
water and systems that contain peptides to see whether known properties of these systems can also be faithfully reproduced
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by the generalized model. Systematic study in both directions is in progress, and significant findings will be reported in fu-
ture publications.
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Appendix A. Conducting prolate ellipsoid influenced by a point charge

Let us consider a perfectly conducting prolate spheroid centered at the origin and embedded in a homogeneous medium
of dielectric permittivity €,. The interfocal distance of the spheroid is assumed to be c; see Fig. 6. Without loss of generality,
let a point charge q be located at the point rs = (&, 4, ¢,=0) in the x-z plane outside the spheroid defined by the equation
&=¢& (so & > & = 1). The electric potential outside the spheroid can be expressed as

Doue (1) = + ZZAan (17) cosmg, (26)

47t€0|r—l‘5| sy o

where A, are the undetermined expansion coefficients. Moreover, note that the general expansion of 1/|r — r;| in the prolate
spheroidal coordinates is given by [46,53,71]

:_ZZHum noP( )cosm¢{ PREIQI). &> &

n=0m=0 n()Qnm( ) Cj<és~

Therefore, the electric potential in the range &, < & < & can be alternatively expressed as

Ir— l‘s\

Dua(0) = 35 [Am Q1) + g Hun Q3 P01, P2(6) P21 cos . 27)

n=0m=0
Furthermore, when the spheroid is conducting and grounded, it can be found

HinmnQy (&)Py (1) Py (Sb)
41e,cQy (&)

by requiring that ®(r) = 0 at the surface of the spheroid ¢ = ¢&,.

Recall that in the spherical limit (¢ — 0), one has (c/2)¢ — r, where r stands for the radial variable of the spherical coor-
dinates. Also note that as ¢ — oo, Qg(g’“) — 1/¢&. Therefore, for large &, the n = 0 term is proportional to r~! and thus corre-
sponds to the total charge induced on the spheroid:

Q)
Qing = —9q Q (éb) (29)

The same result could also be found by integrating the charge density

Am =—q (28)

1 00y,
pind(”v d’) = —€n- (vq)out)lgng = <h Gl t) (30)

=&

over the surface of the spheroid, namely,

27 1
Qind :/o /71 Pina(M, $)hyhydn dep, (31)

where h;, h,, and h, are the scale factors for the prolate spheroidal coordinates (&,17, ¢)

£2 0

2V -1
by =S [
}]72 -1_1127

N

In fact, substituting (30) into (31) yields



S. Deng et al./Journal of Computational Physics 245 (2013) 84-106

m 2n
Qind = ZZHan )(fb—l)‘gm(;:J / / Py (17) cos mgdn de,

n 0m=0
where W' (x) represents the Wronskian relation between Py (x) and Q}'(x) given by

N;  (n+m)!
1-x2(n—m)’

Wi (x) = P (x)Qy" (x) — PRl (x)Qy (x) =

with Ny = 1 for |x| < 1 and Ns = (—1)™ otherwise. So we have
2n 1
Gt = ok 3 Mo (4. ) [ [ Propcosmodnds,
n 0m=0 0 -1
where
Qy (&5)Py (1) (n +m)!
Qr (&%) (n—m)
By the orthogonality of cos m¢ and that of P;'(---), we get
o 4, f m=n=0
/ / P (n) cos m¢dndep = { Tonme=n=
0o Ja

0, otherwise.

Hmn(‘fw ﬁb) = (71)m+]Hmn

And note that Hyo = 2, and P3(x) = Po(x) = 1, we finally have

Qo(fs)
Qo(&)

Qina = —9q

103

(32)

(33)

The centroid ring = (Xing,Yind, Zina) Of the induced charge distribution, which undoubtedly is located inside the prolate spher-

oid, is obtained as

1 27 -1
Tind :7/ / g (N, #)hyhydndo,
Qina Jo  J-1

namely,
. Qo fb n ! m
Find = 87TQ0 Qs ;mZOHmn ésv fb)/o '[1 l'Pn (’7) Cos md)d'? d¢

First, note that z = (c/2)&,n on the surface of the spheroid. So we have

2n 1 c o 1
Py ¢ o |
[ e cosmoanas =5, [ [ Py cosmoandg

Again, by the orthogonality of cos m¢ and that of P"(- - ) (note 7 = P2(1)), we get

2n 1 . ) _ _
/ / ﬂpﬁ"(n)cosm(pdnd(p:{ 3, ifm=0,n=1,
JO J-1

0, otherwise.

Consequently, we obtain

2y~ Q&) Q1(és)P1( n) €.
MTQE) Q&) 2

which, by noting that P;(x) = x, can be rewritten as

Qo(&) Q1(55)P1(5b) c.
= Q0(E) Qi (En)Pr(E) <’CS’7S>'

Then finally, by invoking (11c), we have

2= QolG) QPG
T Qe(E) Qi(G)Pi(E)

Now let us consider the x coordinate of the centroid. By (11a), we have

2n 1 2n 1
/0 /]XPZ'(r/)cosmqbdnd(b:%\/éﬁ—1/0 /] V1 =12 cos P! (17) cos mpdi dep.

Recall that

(34)

(35)

(36)

(38)
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Plx) = =t (39)
-v1-x2, x| <1.

Therefore, we get

2 1 _4n =n=
/ / V1 —n2cos ¢Py (1) cosmepdndeg = {0 5, ifm n 1,
0 -1

, otherwise.

Consequently, we have

Qo(&) Qi(&)Pi(y) < N )
ind = =0/ (=28 -1, 40
T = Q&) Ql(&) 2V (40)
which, by noting (39) and that ¢, = 0, can be rewritten as
: 7Q0(5)Q1§5P]Cb ( /¢ 1-p2 ) 41
Xind = Qo(é ) Q] gb P] (:S s Cos ¢5 . ( )

Then finally, by invoking (11a), we have

_ Q&) Q(E)PI(&)
Qo(&) Q}(&)P] (&)

Finally, by using the fact that for any integer m,

ind

Xs. (42)

2n
/ sin¢cosm¢pdep =0,
Jo

we immediately obtain y;,4 = O for the case that rs = (x,,y,=0, ) = (&, 7, ¢s=0), namely, when the source charge is on the x-
z plane, so is the centroid of the induced charge distribution. For the general case that r; = (x, Y, z;), by the underlying sym-
metry of the x and the y coordinates in our setting, we immediately have

_ Qo(&) Qi(&)Pi(&)
Q&) Ql(&)Pi(ey)

So in conclusion, the centroid of the charge distribution induced on the surface of a conducting prolate spheroid influenced
by an external point charge q located at rs = (xs,y,,2s) is given by

g = 280) (UEPIE)  Q(EPLG) |, QuE)Pi(&)
" Qo(&) \QI(E)P(E) T QI (E)PI(E)TY Qun)Pi(E) )

The significance of the centroid of the induced charge distribution lies in the fact that it gives us the first approximation for
the location of the induced charge. In other words, we can approximate the reaction field exterior to the spheroid by the
potential of an image charge of magnitude g;,4 located at r;,q. Assume that a point charge of magnitude g;,4 is placed at
ring. Then we write the reaction field as

Yind =

s

(43)

Dre(r) = Tmd 5~ ZAan'“ () cos me, (44)

AT0E,|F — Fing| o ford

where
qa y Qr (&)PY (1P () Qo(&s)
4me,c ™ Q' (&) " Qol&)

Note that obviously Ay, = 0, namely, the residual series represents the potential due to a neutral charge distribution. More-
over, as a consequence of the location of the image charge g;,4 at the center of charge of the prolate spheroid, the coefficients
for n=1 (namely, the dipole terms) in the residual series are also zero, namely, Ay, =A}; = 0. Indeed, note that
2 = (¢/2)&1, = (c/2)Pi(&)Pi () and

2Zind QO(Eb) . Q (QS)PI(Cb)FH (’75)
c Qo(fs) Q1(é)

Then it is easy to see that Ay, = 0. On the other hand, note that ¢;,q = 0 when rs = (&, s, ¢, = 0). We have

[ P 2
(éll‘ld P] nmd C1nd -1y/1- ”md €os d’md - md

which, by plugging x,q given by (42), can be written as

A)/nn = Amn - 4ggzichnP21(éind)an(nind) =

Py (&ind) Py (Ming) |- (45)

P, (éind)P1 (nind) glnd’/’md
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Qo(%) Qi(&9)P1(&0)Pi (1)
QO(&S) Q] (gb)

Then it is also easy to see that A}, = 0. Therefore, we actually have

P} (&ina)P} (1ing) =

Dpe(r) = ——dind | ZZA P™(17) cos mo. (46)

4706, |F — Fing| o

The closer the shape of the prolate spheroidal body resembles a sphere, the faster the modified coefficients A;,, in the resid-
ual series for n > 2 converge. In particular, in the spherical limit (c — 0), A;,, approaches zero for all n and m, while the in-
duced charge and its center approach —(a/rs)q and ry = (a/rs)°rs, respectlvely, where a is the radius of the limiting sphere
and r, the distance of the source charge and the center of the sphere.
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