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In this paper, we propose a general approach called Generalized Multiscale Finite Element
Method (GMsFEM) for performing multiscale simulations for problems without scale sep-
aration over a complex input space. As in multiscale finite element methods (MsFEMs), the
main idea of the proposed approach is to construct a small dimensional local solution space
that can be used to generate an efficient and accurate approximation to the multiscale
solution with a potentially high dimensional input parameter space. In the proposed
approach, we present a general procedure to construct the offline space that is used for
a systematic enrichment of the coarse solution space in the online stage. The enrichment
in the online stage is performed based on a spectral decomposition of the offline space.
In the online stage, for any input parameter, a multiscale space is constructed to solve
the global problem on a coarse grid. The online space is constructed via a spectral decom-
position of the offline space and by choosing the eigenvectors corresponding to the largest
eigenvalues. The computational saving is due to the fact that the construction of the online
multiscale space for any input parameter is fast and this space can be re-used for solving
the forward problem with any forcing and boundary condition. Compared with the other
approaches where global snapshots are used, the local approach that we present in this
paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We
present various examples in the paper and some numerical results to demonstrate the
effectiveness of our method.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Multiscale problems, the input–output relation and the need for model reduction

Many problems arising from various physical and engineering applications are multiscale in nature. Because of the pres-
ence of small scales and uncertainties in these problems, the direct simulations are prohibitively expensive. Moreover, these
problems are typically solved for many source terms with input parameter coming from a high dimensional parameter
space. For example, the flow in heterogeneous porous media described by Darcy’s equation is typically solved for multiple
source terms. Moreover, the permeability usually has uncertainties which are parametrized in some sophisticated manner.
In this case, one needs to solve many forward problems with different source terms and a wide range of permeabilities to
make accurate predictions. These problems can be cast using an input–output relation (see Fig. 1) which is typically done
l 23955-
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Fig. 1. Flow chart.
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in reduced-order modeling. For the example of flow problems, the input space consists of source terms and the permeability
that takes a value from a large parameter space. The output space depends on the quantities of interest and may consist of
coarse-grid solutions or some other integrated quantities with respect to the solution. In many applications, the output space
is typically smaller than the input space. The design of a general multiscale finite element framework that takes advantage of
the effective low dimensional solution space for multiscale problems with high dimensional input space is the main objec-
tive of this paper.

Due to a large number of forward simulations, the computational effort can be tremendous to learn and process the out-
put space given the high dimensionality of the input parameter space. In many of these problems, the solution space can be
approximated by a low dimensional manifold via some model reduction tools. The main objective of reduced-order models is
to represent the solution space with a small dimensional space. However, many existing reduced-order methods fail to give a
small dimensional output solution space when the physical solution has multiscale structures. Another major limitation of
the current reduced-order methods is that the reduced solution space needs to be regenerated for different forcing or bound-
ary conditions. The general multiscale finite element framework proposed in this paper is designed to overcome these two
limitations by dividing the construction of reduced basis into the offline and online steps, and constructing our online mul-
tiscale bases from a reduced localized offline solution space.

1.2. Local and global model reduction concepts

Many local, global, and local–global model reduction techniques have been developed. The main idea of these methods is
to find a small dimensional space that can represent the solution space given the input space.

Global model reduction techniques (see e.g., [37,17,18,22,6,50]) construct a space of global fields that can approximate
the solution space. One can, for example, consider a space of exhaustive global snapshots obtained by solving the global
problem for many input parameters. This space can be further reduced using a spectral decomposition. In practice, the
resulting space is constructed by solving global problems for some selected input parameters, right hand sides, and boundary
conditions. These methods have been used with some success in practice. However, when the right hand sides or boundary
conditions are changed, the resulting reduced space must be recomputed.

Local approaches (e.g., see [38,41,1–5,7,8,19,20,32,40,33,34,44,45,51] for upscaling and multiscale methods) attempt to
approximate the solution in local (coarse-grid) regions for all input parameters without computing global snapshots of solu-
tions. Local approaches first compute an offline space (possibly small dimensional) which is used to compute multiscale ba-
sis functions at the online stage. The local approximation space at the online stage is computed by finding a subspace of
offline space for a given input parameter (see Fig. 2).

Local approaches can be effective as they avoid the computation of global snapshots. Local approaches become more
effective if the restriction of the solution space onto a local region has a small dimension. This is the case if the dimension
of the space of solutions restricted to a coarse region is smaller than the dimension of the fine-grid space within this coarse
region. For example, if the parameter is a coarse-grid scalar function, then at the coarse-grid level, this parameter is a scalar.
While if we consider this problem from the point of view of a global model reduction, then the parameter belongs to a large
dimensional space and this may not be amenable to computations.

One of the advantages of local approaches is that they eliminate the unnecessary degrees of freedom in the parameter
space at the coarse-grid level. In global methods, one first needs to compute many expensive global snapshots and many
snapshots may not contribute to the solution at the online stage. In local approaches, these values of the parameter are iden-
tified at the coarse level inexpensively. Moreover, local approaches can easily handle large-scale parameter space when the
parameter is a coarse-grid function and local approximation spaces are usually independent of the source terms or boundary
conditions. We will further elaborate these issues in the paper.
1.3. This paper

In this paper, we introduce a general multiscale framework, which we call the Generalized Multiscale Finite Element
Method (GMsFEM). This method incorporates complex input space information and the input–output relation. It
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systematically enriches the coarse space through our local construction. Our approach, as in many multiscale and model
reduction techniques, divides the computation into two stages: offline; and online. In the offline stage, we construct a small
dimensional space that can be efficiently used in the online stage to construct multiscale basis functions. These multiscale
basis functions can be re-used for any input parameter to solve the problem on a coarse-grid. Thus, this provides a substan-
tial computational saving at the online stage. Below, we present an outline of the algorithm and a chart that depicts our algo-
rithm in Fig. 2.
1.Offline computation:
– 1.0. Coarse grid generation;
– 1.1. Construction of snapshot space that will be used to compute an offline space;
– 1.2. Construction of a small dimensional offline space by performing dimension reduction in the space of global
snapshots.

2. Online computations:
– 2.1. For each input parameter, compute multiscale basis functions;
– 2.2. Solution of a coarse-grid problem for any force term and boundary condition;
– 2.3. Iterative solvers, if needed.
In the offline computation, we first set up a coarse grid where each coarse-grid block consists of a connected union of fine-
grid blocks. The construction of snapshot space in Step 1.1 involves solving local problems for various choices of input
parameters. This space is used to construct the offline space in Step 1.2 via a spectral decomposition of the snapshot space.
The snapshot space in a coarse region can be replaced by the fine-grid space associated with this coarse space; however, in
many applications, one can judiciously choose the space of snapshots to avoid expensive offline space construction. The off-
line space in Step 1.2 is constructed by spectrally decomposing the space of snapshots. This spectral decomposition is typ-
ically based on the offline eigenvalue problem. The spectral decomposition enables us to select the high-energy elements
from the offline space by choosing those eigenvectors corresponding to the largest eigenvalues. More precisely, we seek a
subspace of the snapshot space such that it can approximate any element of the snapshot space in the appropriate sense
defined via auxiliary bilinear forms.

In the online step 2.1 for a given input parameter, we compute the required online coarse space. In general, we want this
to be a small dimensional subspace of the offline space. This space is computed by performing a spectral decomposition in
the offline space via an eigenvalue problem. Furthermore, the eigenvectors corresponding to the largest eigenvalues are
identified and used to form the online coarse space. The online coarse space is used within the finite element framework
to solve the original global problem. Here, we propose several options such as the Galerkin coupling of multiscale basis func-
tions, the Petrov–Galerkin coupling of multiscale basis functions, etc. In some of these coupling approaches, the choice of the
initial partition of unity (that can be computed in the offline or online stage) is important and it will be discussed in the
paper.

Our techniques differ from many previous approaches that are based on the homogenization theory. In the homogeniza-
tion based methods, one usually constructs local approximation based on local solves and these approaches do not provide a
systematic procedure to complement the local spaces. It is important to note that one needs to systematically complement
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the local spaces in order to converge to the fine-grid solution. How to develop an online systematic enrichment procedure
and how to construct the initial partition of unity functions play a crucial role in obtaining a low dimensional offline space.
These issues are central points of our proposed method.

We also discuss iterative solvers that use the coarse spaces and iterate on the residual to converge to the fine-scale solu-
tion. These iterative solvers serve as an online correction of the coarse-grid solution. We consider two-level domain decom-
position preconditioners and some other methods where the importance of appropriately chosen multiscale coarse spaces
has been demonstrated in the literature [49,43]. We will discuss how the choice of coarse spaces yields optimal iterative
solvers where the number of iterations is independent of the high contrast in the media properties.

2. A generalized multiscale finite element method

To describe the GMsFEM for linear problems, we consider
LlðuÞ ¼ f ; ð1Þ
subject to some boundary conditions, where l is the parameter. For example,
LlðuÞ ¼ �divðjðx;lÞruÞ: ð2Þ
Here, the operator L may depend on various spatial fields, e.g., heterogeneous conductivity fields, convection fields, reac-
tion fields, and so on. The dependence of the solution from these fields is nonlinear, while the solution linearly depends on
external source terms f and boundary conditions. We assume there is a bilinear form associated with the operator L that al-
lows us to write the variational form of (1) in the form
jðu;v ;lÞ ¼ hLlðuÞ;vi; ð3Þ
for all test function v and where jð�; �;lÞ is bilinear, coercive, and continuous for each l, and h�; �i is an inner product. We
assume that jð�; �;lÞ is sufficiently smooth with respect to l.

The proposed algorithms have advantages when LlðuÞ has an affine representation defined as follows:
LlðuÞ :¼
XQ

q¼1

HqðlÞLqðxÞ: ð4Þ
Here, LqðuÞ are heterogeneous operators with multiple scales and high-contrast coefficients, the parameter
l 2 K � Rp is possibly a coarse-grid function and the functions Hq : K! R. In terms of the corresponding bilinear form,
we have
jðu;v ;lÞ ¼
XQ

q¼1

HqðlÞjqðu; vÞ:
This affine representation allows pre-computing coarse-scale projections of LqðxÞ in the offline stage and using them in the
online stage. This reduces the computational cost considerably.

Before discussing the GMsFEM, we introduce the notion of a coarse grid. Let T H be a usual conforming partition of D into
finite elements (triangles, quadrilaterals, tetrahedrahals, . . .). We call this partition the coarse grid and assume that this
coarse grid is partitioned into fine-grid blocks. Each coarse-grid block is a connected union of fine-grid blocks. We denote
by Nv the number of coarse nodes, by fxigNv

i¼1 the vertices of the coarse mesh T H and define the neighborhood of the node
xi by
xi ¼
[
fKj 2 T H; xi 2 Kjg ð5Þ
(see Fig. 4).
The GMsFEM has a structure similar to that of MsFEM. The main difference between the two approaches is that we sys-

tematically enrich coarse spaces in GMsFEM and generalize it by considering an input space consisting of parameters and
source terms. In the first step of GMsFEM (offline stage), we construct the space of ‘snapshots’, Vxi

snapshots, a large dimensional
space of local solutions. In the next step of the offline computation, we reduce the space Vxi

snapshots via some spectral procedure
to Vxi

off . In the second stage (online stage), for each input parameter, we construct a corresponding local space, Vxi
on that is used

to solve the problem at the online stage for the given input parameter. Our systematic approach allows us to increase the
dimension of the coarse space and achieve a convergence.

2.1. An illustrative example

Before presenting details of GMsFEM, we will present a simple example demonstrating the main concept of GMsFEM. We
consider
�divðjðx; uÞruÞ ¼ f in D;
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u ¼ 0 on @D and assume u0 6 uðxÞ 6 uN , where u0 and uN are pre-defined constants. We assume the interval ½u0;uN� is divided
into N equal regions u0 < u1 < � � � < uN�1 < uN .

As for the space of snapshots, Vxi
snapshots, we can consider
�divðjðx; ujÞrwsnap
l;j Þ ¼ 0 in xi;
wsnap
l;j ¼ dlðxÞ on @xi. Here, dlðxÞ are some set of functions defined on @xi, e.g., unit source terms. We can also consider the

space of fine-grid functions within xi as the space of snapshots.
As for offline space, Vxi

off , we perform a spectral decomposition of the space of snapshots. We re-numerate the snapshot
functions in xi by wsnap

l . We consider
ðSoff :¼Þsmn ¼
Z

xi

X
l

tljðx; ulÞrwsnap
m � rwsnap

n ; ðAoff :¼Þamn ¼
Z

xi

X
l

tljðx; ulÞwsnap
m wsnap

n ;
where tl are some weights. Here, Soff ¼ ðsmnÞ, and Aoff :¼ ðamnÞ. The choices for the matrix Aoff will be discussed later. To gen-
erate the offline space, Vxi

off , we choose the largest Moff eigenvalues (see later discussions on Moff ) of
AoffWoff
m ¼ koff

m SoffWoff
m

and find the corresponding eigenvectors in the space of Vxi
snapshots by multiplication,

P
jW

off
ij wsnap

j , where Woff
ij are coordinates of

the vector Woff
i . Note that the offline space is computed across all u0; . . . ;uN . More precisely, if we reorder the snapshot func-

tions using a single index based on the decay of eigenvalues to create the matrices
Rsnap ¼ wsnap
1 ; . . . ;wsnap

Msnap

h i
;

then
Soff ¼ ½soff
mn� ¼

Z
xi

jðxÞrwsnap
m � rwsnap

n ¼ RT
snapSRsnap;
Aoff ¼ ½aoff
mn� ¼

Z
xi

jðxÞwsnap
m wsnap

n ¼ RT
snapARsnap;
where S and A denote fine-scale matrices corresponding to the stiffness and mass matrices with the permeability
jðxÞ ¼

P
ltljðx; ulÞ. One can use modified j in the computation of the mass matrix (see [29]). Note that one can have an

eigenvalue which is infinity. In this case, one can reverse the orders of the operators in the eigenvalue problem if necessary.
To compute the online space for a given uq (the value around which the global problem is linearized), we consider an

eigenvalue problem in Vxi
off . Let us denote the basis of Vxi

off by woff
m . We consider a spectral decomposition of Vxi

off via
Son ¼ ðsmnÞ ¼
Z

xi

jðx; uqÞrwoff
m � rwoff

n ; Aon ¼ ðamnÞ ¼
Z

xi

jðx; uqÞwoff
m woff

n :
To generate the online space, Vxi
on, we choose the largest Mon eigenvalues of
AonWon
m ¼ kon

m SonWon
m

and find the corresponding eigenvectors in the space of Vxi
off by multiplication,

P
jW

on
ij woff

j , where Won
ij are coordinates of the

vector Won
i , denote these basis functions by won

m . More precisely, if we reorder the offline functions using a single index based
on the decay of eigenvalues to create the matrices
Roff ¼ woff
1 ; . . . ;woff

Moff

h i

that are defined on the fine grid, then
Son ¼ ½son
mn� ¼

Z
xi

jðx; uqÞrwoff
m � rwoff

n ¼ RT
off SRoff ;
Aon ¼ ½aon
mn� ¼

Z
xi

jðx; uqÞwoff
m woff

n ¼ RT
off ARoff ;
where S and A denote fine scale matrices corresponding to the stiffness and mass matrices.
At the final stage, these basis functions Won

m in each xi will be coupled via a global formulation, e.g., Galerkin formulation.
In this case, the eigenfunctions are multiplied by the partition of unity functions to obtain a conforming basis. In this non-
linear example, one can use an iterative Picard iteration at the previous value of the solution unðxÞ, and in each iteration, a
global problem is solved with Von for the value of unðxÞ averaged over a coarse block.
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2.2. Step 1. Local multiscale basis functions (offline stage)

2.2.1. Generating snapshots
We call the local spatial fields (or local solutions) as ‘‘local snapshots’’. These local spatial fields are used to construct the

offline space. This space consists of spatial fields defined on a fine grid, i.e., they are vectors of the dimension of fine-grid
resolution of the coarse region. A common option for local snapshots is to use a fine-grid space (e.g., fine-grid linear func-
tions) that resolves the coarse-grid block. However, in some cases, one can consider smaller and more appropriate spaces
to construct the local snapshot space. This will be discussed next.

In the first step, a local reduced-order approximation is constructed based on the input space. Here, we will discuss two
approaches and emphasize only the first approach where we will construct local approximate solutions by assuming that
source term f is a smooth function. In this construction, the source term will not enter in the space of local solutions and
its effect will be captured at the coarse-grid level via a global coupling.

Remark 1. One can often ignore lower order terms in the operator L and use an operator different from the original one on a
coarse grid to construct snapshots. To formalize this step, we assume that there exists eLl such that if
eLlðeuÞ ¼ 0 and eu ¼ u on @K
then
keu � uk � dH;
where dH ! 0 as H! 0. In this case, we have a corresponding bilinear form eaðu;v ;lÞ. For example, if
LðuÞ ¼ �divðjðx=�;lÞruÞ þ qðx;lÞ � ru, one can use eLðuÞ ¼ �divðjðx=�;lÞruÞ (see e.g., [14]), provided, e.g., q is a bounded
function. To avoid a cumbersome notation, we do not use eL in the rest of the presentation.

We construct local snapshots of the solutions that approximate the space of solutions generated by
LlðvÞ ¼ 0 ð6Þ
in each subdomain xi (see Fig. 4). We will consider two choices, though one can consider other options.
First choice. We consider snapshots generated by
Llj
ðwxi

l;j Þ ¼ 0 in xi ð7Þ
with boundary conditions
wxi
l;j ¼ bl in @xi; ð8Þ
with bl being selected shape or basis functions along the boundary @xi.
One can also use Neumann boundary conditions or boundary conditions bl defined on larger domains for generating

snapshots.
Second choice. We can use local fine-scale spaces consisting of fine-grid basis functions within a coarse region. In this case,

the offline spaces will be computed on a fine grid directly. The local fine-grid space has an advantage if the dimension of the
local fine spaces is comparable to the dimension of Vxi

snapshots computed by solving local problems as in the first choice. We use
local fine-grid basis functions as a snapshot space in [29,24–28,30,35,36] and our earlier works [23] which can be difficult to
extend, in general.

One can also construct local snapshots by solving the local spectral problem
eAlj
ðwxi

l;j Þ ¼ kl
eSlj
ðwxi

l;j Þ in xi
with homogeneous Neumann boundary conditions and for some operators eAlj
and eSlj

and selecting the dominant
eigenvectors.

Remark 2 (On generating snapshots via the approximation of source term f). The snapshot spaces generated above can be
larger than the space corresponding to local snapshots obtained from
Llðv f Þ ¼ f
where f runs over the input space corresponding to the source term. Here, we take the restriction of v f in xi to generate the
space of local snapshots. This space can be taken as a span of /u

i , where /u
i are restrictions of the solutions of
Llð/u
i Þ ¼ /f

i

onto a coarse region xi. Here /f
i are local basis functions that represent
f ¼
X

i

fi/
f
i :
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These basis functions are global; however, they can be localized at a coarse-grid level (see e.g., Owhadi and Zhang, 2011,
[46]) and we need a further dimension reduction of the space following Step 1.2. One can use the restriction of these global
snapshots on the boundary of the coarse-grid block to compute the space of snapshots. This space of snapshots is an appro-
priate space of functions for which spectral decomposition needs to be performed.
2.2.2. Generating the offline space
Once the space of snapshots, Vxi

snapshots ¼ Spanðwxi
l;j Þ, is constructed for each xi, spectral approaches are needed to orthog-

onalize and possibly reduce the dimension of this space. As a result, we will obtain the offline space, Vxi
off that will be used to

construct multiscale basis functions in the online stage.
To perform a dimension reduction, we consider an auxiliary spectral decomposition of the space Vxi

snapshots ¼ Spanðwxi
l;j Þ for

each xi. Our objective is to construct a possibly small dimensional space Vxi
off and use it for constructing multiscale basis

functions for each l in the online stage. In general, we will seek the subspace Vxi
off such that for any l and w 2 Vxi

snapshotsðlÞ
(Vxi

snapshotsðlÞ is the space of snapshots which are computed for a given l), there exists w0 2 Vxi
off , such that, for all l,
aoff
xi
ðw� w0;w� w0;lÞ � dsoff

xi
ðw� w0;w� w0; lÞ; ð9Þ
where aoff
xi
ð/;/;lÞ and soff

xi
ð/;/;lÞ are auxiliary bilinear forms. In computations, this involves solving an eigenvalue problem

with a mass matrix and the basis functions are selected based on dominant eigenvalues. Note that this eigenvalue problem is
formed in the snapshot space. We will discuss two procedures for constructing Vxi

off .

Remark 3. In general, aoff
xi

and soff
xi

contain partition of unity functions, penalty terms, and other discretization factors that
appear in coarse-grid finite element formulations. The norm corresponding to soff

xi
needs to be stronger, in general, to allow

the decay of eigenvalues.
We consider two other options.
Option 1. We consider aoff

xi
ð/;/;lÞ and soff

xi
ð/;/;lÞ to be independent of l, i.e.,
aoff
xi
ð/;/;lÞ ¼ aoff

xi
ð/;/Þ and soff

xi
ð/;/;lÞ ¼ soff

xi
ð/;/Þ:
In this case, finding Vxi
off reduces to performing spectral decomposition of Vxi

snapshots with corresponding inner products. A sub-
space Vxi

off of Vxi
snapshots such that for each w 2 Vxi

snapshots, there exists w0 2 Vxi
off such that
aoff
xi
ðw� w0;w� w0Þ � dsoff

xi
ðw� w0;w� w0Þ ð10Þ
for some prescribed error tolerance d. We give some examples for the elliptic equation (2).

Example. In this example, we average the parameter l to obtain aoff and soff .
soff
xi
ðw;wÞ ¼

X
j

tjaxi
ðw;w;ljÞ ¼

X
j

tj

Z
xi

jðx;ljÞjrwj2

aoff
xi
ðw;wÞ ¼

X
j

tj

Z
xi

jðx;ljÞjrðviwÞj
2
; or aoff

xi
ðw;wÞ ¼

X
j

tj

Z
xi

jðx;ljÞjwj
2
;

ð11Þ
where tj are non-negative weights (a case with a fixed value of l is a special case) and vi is a partition of unity function sup-
ported in xi.

To formulate the eigenvalue problem corresponding to (10), we will re-numerate the basis, Vxi
snapshots ¼ Spanðwxi

J Þ. Then
(10) will yield an algebraic eigenvalue problem
AoffWoff
l ¼ koff

l SoffWoff
l :
Here, Aoff ¼ ðAoff
IJ Þ and Soff ¼ ðSoff

IJ Þ are corresponding local matrices that are given by
Aoff
IJ ¼ aoff

xi
ðwxi

I ;w
xi
J Þ; Soff

IJ ¼ soff
xi
ðwxi

I ;w
xi
J Þ;
wxi
I ;w

xi
J 2 Vxi

snapshots. Here, we assume that Soff
ij is a non-degenerate positive definite matrix. Note that the matrices Aoff and Soff

are computed in the snapshot space. The space Vxi
off is constructed by selecting Li eigenvectors corresponding to largest eigen-

values. If we assume that
koff
1 P � � �P koff

N ;
then we choose the first Li eigenvectors in each xi corresponding to the largest Li eigenvalues to form the offline space. In
particular, the corresponding eigenvectors are computed by multiplication,

P
jW

off
ij wxl

j in each xl, where Woff
ij are coordinates

of the vector Woff
i .

More precisely, if we reorder the snapshot functions using a single index based on the decay of eigenvalues to create the
matrices
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Rsnap ¼ wsnap
1 ; . . . ;wsnap

Msnap

h i
;

then
Soff ¼ ½soff
mn� ¼

Z
xi

jðxÞrwsnap
m � rwsnap

n ¼ RT
snapSRsnap;

Aoff ¼ ½aoff
mn� ¼

Z
xi

jðxÞwsnap
m wsnap

n ¼ RT
snapARsnap;
where S and A denote fine-scale matrices corresponding to the stiffness and mass matrices with the permeability
jðxÞ ¼

P
jtjjðx;ljÞ, which is selected independent of l.

Option 2. The second option for a numerical setup of (9) is the following (see [29]). First, we will compute the local spaces
for each l (from a pre-selected exhaustive set), Vxi

off ;lðlÞ such that for any l in this set and w 2 Vxi
snapshotsðlÞ (i.e., snapshots are

computed for a given l), there exists w0 2 Vxi
off ;lðlÞ, such that
aoff
xi
ðw� w0;w� w0; lÞ � dsoff

xi
ðw� w0;w� w0;lÞ: ð12Þ
This involves finding the dominant eigenvectors for selected set of l’s. Secondly, we seek a small dimensional space Vxi
off

(across all l’s) such that any w0 2 Vxi
off;lðlÞ can be approximated by an element of Vxi

off . One can do it by defining a distance
function between two spaces Vxi

off ;lðl1Þ and Vxi
off ;lðl2Þ and identifying a small number of l’s such that the spaces Vxi

off ;lðlÞ cor-
responding to these l’s approximate the space spanned by Vxi

off ;lðlÞ for all l’s (see [29]). Then, the elements of these
Vxi

off;lðlÞ’s will form the space Vxi
off .

Note that it is important to have a small dimensional space of snapshots to reduce the computational cost that arises in
the calculations of multiscale basis functions. The result of Step 2 is the local space Vxi

off foe each subdomain xi.

Remark 4 (On S norm). In this remark, we show eigenvalues decay for several choices of aoff and soff . We consider a target
domain xt ¼ ½0:4;0:6� � ½0:4;0:6� within D ¼ ½0;1� � ½0;1�. Our space V snapshots is generated by solving problems with force
terms located outside xt . We consider several choices for aoff and soff . First, we choose
a1;off
xt
¼
X4

i¼1

Z
xt

jðxÞjrðv0
i uÞj2; s1;off

xt
¼
Z

xt

jðxÞjruj2;
where v0
i are bilinear basis functions. We also consider
a2;off
xt
¼
Z

xt

jðxÞjuj2; s2;off
xt
¼
Z

xt

jðxÞjruj2:
We also consider
a3;off
xt
¼
Z

xt

jðxÞjruj2; s3;off
xext
¼
Z

xext

jðxÞjruj2;
where xext ¼ ½0:3;0:7� � ½0:3;0:7�. The last choice is motivated by Babuska and Lipton [10]), where a larger domain xþi ,
xi � xþi (see Fig. 4), is used for eigenvalue computations.

We take jðxÞ to be 102 in ½0:45;0:55� � ½0:45;0:55� and 1 elsewhere. In Fig. 3, we plot the eigenvalues corresponding to the
above choices of aoff and soff . The snapshot space is generated using unit force terms in the locations shown in Fig. 3, top left.
As we see in all the cases the eigenvalues decay fast. The decay of eigenvalues depends on the choices of aoff and soff , and also
on the choice of v0

i . We refer to our subsequent paper where oversampling is studied.
2.3. Step 2. Computing online multiscale basis functions and their coupling

At the online stage, for each parameter value, multiscale basis functions are computed based on each local coarse region.
In particular, for each xi and for each input parameter, we will formulate a quotient for finding a subspace of Vxi

onðlÞ where
the space will be constructed for each l (independent of source terms). We seek a subspace Vxi

onðlÞ of Vxi
off such that for each

w 2 Vxi
off , there exists w0 2 Vxi

onðlÞ such that
aon
xi
ðw� w0;w� w0;lÞ � dson

xi
ðw� w0;w� w0;lÞ ð13Þ
for some prescribed error tolerance d (different from the one in the offline stage), and the choices of aon
xi

and son
xi

. The corre-
sponding eigenvalue problem is formed in the space of offline basis functions. We note that, in general, aon

xi
and son

xi
contain

partition of unity functions, penalty terms, and other discretization factors that appear in finite element formulations. In par-
ticular, we assume that jKðviw;viw; lÞ � aon

xi
ðw;w;lÞ (where aK corresponds to (3) in K).
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We note that a choice of partition of unity is important to achieve smaller dimensional coarse spaces and one can look for
a choice of optimal partition of unity function. Because Vxi

off is a finite dimensional space, the following local eigenvalue
problem
Aonwon
l ¼ kon

l Sonwon
l ð14Þ
can be used to find the basis functions, where Aon and Son are local matrices corresponding to að�; �;lÞ and sð�; �;lÞ, Aon ¼ ðAon
IJ Þ

and Son ¼ ðSon
IJ Þ are corresponding local matrices that are given by
Aon
IJ ¼ aon

xi
ðwxi

I ;w
xi
J Þ; Son

IJ ¼ son
xi
ðwxi

I ;w
xi
J Þ; wxi

I ;w
xi
J 2 Vxi

off :
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Here, we assume that Son
ij is a positive definite matrix. Note that the matrices Aon and Son are computed in the space of offline

basis functions. Vxi
onðlÞ is constructed by selecting Li eigenvectors corresponding to the largest eigenvalues. In particular, the

corresponding eigenvectors are computed by multiplication,
P

jW
on
ij wxl

j in each xl, where Won
ij are coordinates of the vector

Won
i .

More precisely, if we reorder the offline functions using a single index based on the decay of eigenvalues to create the
matrices
Roff ¼ woff
1 ; . . . ;woff

Moff

h i

that are defined on the fine grid, then
Son ¼ ½son
mn� ¼

Z
xi

jðx; lÞrwoff
m � rwoff

n ¼ RT
off SRoff ;

Aon ¼ ½aon
mn� ¼

Z
xi

jðx;lÞwoff
m woff

n ¼ RT
off ARoff ;
where S and A denote fine scale matrices corresponding to the stiffness and mass matrices at l. Under certain requirements
for the space Vxi

off , we can guarantee that (10) holds for all w 2 Vxi
snapshots (and not only for all w 2 Vxi

off which is a smaller
subspace).

Once multiscale basis functions are constructed, we project the global solution onto the space of basis functions. One can
choose different global coupling methods and we present some of them, see [33,39,42].

Galerkin coupling. For a Galerkin formulation, we need conforming basis functions. We modify Vxi
on by multiplying the

functions from this space with partition of unity functions; see [11,12,24,25]. The modified space has the same dimension
and is given by Spanjðviw

xi ;on
j Þ, where wxi ;on

j 2 Vxi
onðlÞ and vi is supported in xi. Then, the Galerkin approximation can be writ-

ten as
uG
msðx;lÞ ¼

X
i;j

ci
jviðxÞw

xi ;on
j ðx;lÞ:
If we introduce
VG
on ¼ Spani;jðviw

xi ;on
j Þ; ð15Þ
then Galerkin formulation is given by
jðuG
ms;v ;lÞ ¼ ðf ;vÞ; 8 v 2 VG

on: ð16Þ
Petrov–Galerkin coupling. We denote VPG
on ¼ Spani;jfw

xi
j g and write the PG approximation of the solution as
uPG
msðx;lÞ ¼

X
i;j

ci
jw

xi
j ðx; lÞ:
Then the Petrov–Galerkin formulation is given by
jðuPG
ms;v ;lÞ ¼ ðf ;vÞ; 8 v 2 VG

on; ð17Þ
where VG
on is defined with (15).

Discontinuous Galerkin coupling. One can also use the discontinuous Galerkin (DG) approach (see also [9,21,47]) to couple
multiscale basis functions. This may avoid the use of the partition of unity functions; however, a global formulation needs to
be chosen carefully. We have been investigating the use of DG coupling and the detailed results will be presented elsewhere.
Here, we would like to briefly mention a general global coupling that can be used. The global formulation is given by
jDGðu;vÞ ¼ f ðvÞ for all v ¼ fvK 2 VK
ong; ð18Þ
where
jDGðu;vÞ ¼
X

K

jDG
K ðu;vÞ and f ðvÞ ¼

X
K

Z
K

f vK dx ð19Þ
for all u ¼ fuKg, v ¼ fvKg. Each local bilinear form jDG
K is given as a sum of three bilinear forms:
jDG
K ðu;vÞ :¼ jKðu; vÞ þ rKðu;vÞ þ pKðu;vÞ; ð20Þ
where jK is the bilinear form,
jKðu;vÞ :¼
Z

K
jrruK � rvK dx; ð21Þ
where jr is the restriction of jðxÞ in K; the rK is the symmetric bilinear form,
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rKðu;vÞ :¼
X
E�@K

1
lE

Z
E

ejE
@uK

@nK
ðvK � vK 0 Þ þ

@vK

@nK
ðuK 0 � uKÞ

� �
ds;
where ejE is a weighted average of jðxÞ near the edge E; lE is the length of the edge E, and K 0 and K are two coarse-grid ele-
ments sharing the common edge E; and pK is the penalty bilinear form,
pKðu;vÞ :¼
X
E�@K

1
lE

dE

Z
E

ejEðuK 0 � uKÞðvK 0 � vKÞds: ð22Þ
Here dE is a positive penalty parameter that needs to be selected and its choice affects the performance of GMsFEM. One can
choose eigenvalue problems based on DG bilinear forms. We refer to [28] for some results along this direction.

Remark 5 (On the convergence of GMsFEM). Here, we briefly discuss the convergence of the GMsFEM based on Galerking
coupling. We denote the bilinear form (3) on the whole domain D by jDðu;v ;lÞ, and by ums ¼

P
i;jci;jviw

i
j the GMsFEM

interpolant, and by uxi
0 ¼

P
jci;jw

i
j an approximation over the patch xi. Then, the error analysis is the following.
jDðu� ums;u� ums;lÞ � jDðu� uoff ;u� uoffÞ þ jD

X
i

viðuoff � uxi
0 Þ;

X
i

viðuoff � uxi
0 Þ; l

 !
�

jDðu� uoff ;u� uoff ;lÞ þ
X

K

jK

X
i

viðuoff � uxi
0 Þ;

X
i

viðuoff � uxi
0 Þ;l

 !
�

jDðu� uoff ;u� uoff ;lÞ þ
X

i

aon
xi
ððuoff � uxi

0 Þ; ðuoff � uxi
0 Þ; lÞ �

jDðu� uoff ;u� uoff ;lÞ þ
X

i

dson
xi
ðuoff � uxi

0 ; ðuoff � uxi
0 Þ; lÞ �

jDðu� uoff ;u� uoff ;lÞ þ
X

i

dson
xi
ðu;u;lÞ � jDðu� uoff ;u� uoff ; lÞ þ dson

D ðuoff ;uoff ;lÞ:

ð23Þ
Here, we used the fact that jKðviw;viw;lÞ � aon
xi
ðviw;viw;lÞ, which is an assumption on the choice of aon

xi
, the inequality (10),

and replaced the sum over K by the sum over larger regions xi. We note that the assumption jKðviw;viw;lÞ � aon
xi
ðviw;viw;lÞ

can be easily satisified with an appropriate choice of aon
xi

in continuous Galerkin framework (see [30]). One can choose
son
xi
ðviw;viw;lÞ based on finite element formulation such that son

xi
ðviw;viw;lÞ ¼ jxi

ðviw;viw;lÞ. For discontinuous Galerkin
formulation (with no partition of unity vi), we refer to [28] for the appropriate choice of aon

xi
. The hidden constants depend

on the number of neighboring element of each coarse block and the constants in (10) and (13). Moreover, there is an irred-
ucable error jDðu� uoff ;u� uoff ;lÞ. We note that one can obtain sharper estimates using a bootstrap argument in parameter-
independent case (see [30,31]) under some assumptions and show that the error decreases as the coarse-mesh size
decreases.
2.4. Iterative solvers – online correction of fine-grid solution

In the previous approach, the coarse spaces are designed to achieve a desired accuracy. One can also iterate (on residual
and/or the basis functions) for a given source term and converge to the true solution without increasing the dimension of the
coarse space. Both approaches have their application fields and allows computing the fine-grid solution with an increasing
accuracy. Next, we briefly describe the solution procedure based on the concept of two-level iterative methods.

We denote by fD0ig
M
i¼1 the overlapping decomposition obtained from the original non-overlapping decomposition fDigM

i¼1

by enlarging each subdomain Di to
D0i ¼ Di [ fx 2 D;distðx;DiÞ < dig; i ¼ 1; . . . ;M; ð24Þ
where dist is some distance function and let Vh
0ðD

0
iÞ be the set of finite element functions with support in D0i and zero trace on

the boundary @D0i. We also denote by RT
i : Vh

0ðD
0
iÞ ! Vh the extension by zero operator.

With the help of ðu� u0Þ, we can correct the coarse-grid solution. A number of approaches can be used. For instance, we
write the solution in the form
u ¼ u0 þ
X

i

bviv i;
where v i are defined in xi (though it can be taken to be supported in a different domain) and bvi is a partition of unity. Sup-
pose that v i has zero trace on @xi. We can solve the local problems
Lðv iÞ ¼ f � Llðu0Þ;
with zero boundary condition on @xi. Other correction schemes can be implemented to correct the coarse-grid solution. For
example, we can use the traces of u0 to correct the solution in each subdomain in a consecutive fashion.
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When the bilinear form is symmetric and positive definite, we can consider additive two-level domain decomposition
methods to find the solution of the fine-grid finite element problem
jðu;v ;lÞ ¼ f ðvÞ; for all v 2 Vh; ð25Þ
where Vh is the fine-grid finite element space of piecewise linear polynomials. The matrix of this linear systems is written as
SðlÞuðlÞ ¼ b:
Here, S is the stiffness matrix associated to the bilinear form j and b such that vT b ¼ f ðvÞ for all v 2 Vh. We can solve the
fine-scale linear system iteratively with the preconditioned conjugate gradient (PCG) method (or any other Krylov type
method for a non-positive problem). Any other suitable iterative scheme can be used as well. We introduce the two level
additive preconditioner of the form
B�1ðlÞ ¼ RT
0;onðlÞbS�1

0 ðlÞR0;onðlÞ þ
XM

i¼1

RT
i S�1

i ðlÞRi; ð26Þ
where the local matrices are defined by
vT SiðlÞw ¼ aðv ;w;lÞ for all v ;w 2 Vh
0ðD

0
iÞ: ð27Þ
The coarse projection matrix RT
0;on is defined by RT

0;on ¼ RT
0;onðlÞ ¼ ½U1; . . . ;UNv � and the online coarse matrixbS0ðlÞ ¼ R0;onðlÞSðlÞRT

0;onðlÞ. The columns Ui’s are fine-grid coordinate vectors corresponding to the basis functions, e.g., in
the Galerkin formulations they correspond to the basis functions fviðxÞw

xi ;on
j ðx;lÞg. See [49,43] and references therein for

more details on various domain decomposition methods.
The application of the preconditioner involves solving local problems in each iteration. In domain decomposition meth-

ods, our main goal is to reduce the number of iterations in the iterative procedure. It is well known that a coarse solve needs
to be added to the one level preconditioner in order to construct robust methods. The appropriate construction of the coarse
space V0 plays a key role in obtaining robust iterative domain decomposition methods. Our methods provide an inexpensive
coarse solves and efficient iterative solvers for general parameter-dependent problems. This will be discussed in the next
sections.

3. Case studies and relation to existing methods. Discussions and applications

In this section, we illustrate basic concepts via some specific examples. We use existing methods in the literature for mul-
tiscale problems and show how these methods can be put under the general framework of the GMsFEM and show some
numerical results.

3.1. Case with no parameter

In this section, we write a method proposed in [23] as a special case of GMsFEM. First, we consider a case with no param-
eter, i.e.,
LðuÞ ¼ f ; or corresponding jðu;vÞ ¼ f ðvÞ:
In this case, offline multiscale basis functions are used for online simulations due to the absence of the parameter. Next, we
discuss the construction of multiscale basis functions (see [23,26,24]).

The construction of the offline space starts with the snapshot space. We choose the snapshot space as all fine-grid func-
tions within a coarse region.

For the construction of the offline space, we can choose
aoff
xi
ðw;wÞ ¼

X
k;xk

T
xi–0

jxk
ðvkw;vkwÞ; ð28Þ
where jxi
ð�; �Þ is the restriction of jð�; �Þ in xi and vk is the partition of unity corresponding to xk. For example, for the elliptic

equation (see (2)),
jxi
ðw;wÞ ¼

Z
xi

jrw � rw:
As for soff
xi

, we select
soff
xi
ðw;wÞ ¼ jxi

ðw;wÞ:
The corresponding eigenvalue problem can be explicitly written as before. In our numerical implementation, we choose
aoff

xi
ðw;wÞ ¼

P
k;xk

T
xi–0

R
xi

jjrvkj
2jwj2 (see [30] that shows that this is not smaller than (28) in the space of local j-harmonic

functions).



128 Y. Efendiev et al. / Journal of Computational Physics 251 (2013) 116–135
In the first example, we do not construct an online space and the offline space is used in GMsFEM, Vxi
on ¼ Vxi

off . The basis
functions are constructed by multiplying the eigenvectors corresponding to the dominant eigenvalues by partition of unity
functions, see (15). The Galerkin coupling of these basis functions are performed based on (16). Note that the stiffness is pre-
computed in the offline stage and there is no need for any stiffness matrix computation in the online stage.

We point out that the choice of initial partition of unity basis functions vi, are important in reducing the number of very
large eigenvalues. We note that the dimension of the coarse space depends on the choice of vi and, thus, it is important to
have a good choice of vi. The essential ingredient in designing them is to guarantee that there are fewer large eigenvalues,
and thus the coarse space dimension is small. With an initial choice of multiscale basis functions vi that contain many local-
izable small-scale features of the solution, one can reduce the dimension of the resulting coarse space.

Next, we briefly discuss a few numerical examples (see [23] for more discussions). We present a numerical result for the
coarse-scale approximation and for the two-level additive preconditioner (26) with the local spectral multiscale coarse
spaces as discussed above. The equation �divðjruÞ ¼ 1 is solved with boundary conditions u ¼ xþ y on @D. For the
coarse-scale approximation, we vary the dimension of the coarse spaces by adding additional basis functions corresponding
to the largest eigenvalues. We investigate the convergence rate, while for preconditioning results, we will investigate the
behavior of the condition number as we increase the contrast for various choices of coarse spaces. The domain
D ¼ ½0;1� � ½0;1� is divided into 10� 10 equal square subdomains. Inside each subdomain we use a fine-scale triangulation,
where triangular elements constructed from 10� 10 squares are used. We consider the scalar coefficient jðxÞ depicted in
Fig. 5 that corresponds to a background one and high conductivity channels and inclusions.

We test the accuracy of GMsFEMs when coarse spaces include eigenvectors corresponding to the large eigenvalues. We
implement GMsFEM by choosing the initial partition of unity functions to consist of multiscale functions with linear bound-
ary conditions (MS) (see (29)). We use the following notation. GMsFEMþ0 refers to the GMsFEM where the coarse space in-
cludes all eigenvectors that correspond to eigenvalues which are asymptotically unbounded as the contrast increases, i.e.,
these eigenvalues increase as we increase the contrast. One of these eigenvectors corresponds to a constant function in
the coarse block. GMsFEMþn refers to the GMsFEM where in addition to eigenvectors that correspond to asymptotically un-
bounded eigenvalues, we also add n eigenvectors corresponding to the next n eigenvalues. (See Fig. 6).

In previous studies [35,36,30], we discussed how the number of these asymptotically unbounded eigenvalues depends on
the number of inclusions and channels. In particular, we showed that if there are n inclusions (isolated regions with high
conductivity) and m channels (isolated high-conductivity regions connecting boundaries of a coarse grid), then the number
of asymptotically unbounded eigenvalues is nþm when standard bilinear partition of unity function, v0

i , used. However, if
the partition of unity vk is chosen as multiscale finite element basis functions ([38]) defined by
Fig. 5.
interpr
divðjrvms
i Þ ¼ 0 in K 2 xi; vms

i ¼ v0
i in @K; 8 K 2 xi; ð29Þ
then the number of asymptotically unbounded eigenvalues is m. We can also use energy minimizing basis functions that are
defined (see [52]) as
min
X

i

Z
xi

jjrvemf
i j

2 ð30Þ
subject to
P

iv
emf
i ¼ 1 with SuppðviÞ � xi, i ¼ 1; . . . ;Nv , to achieve even smaller dimensional coarse spaces.

In all numerical results, the errors are measured in the energy norm (j � j2A), H1 norm (j � j2H1 ), and L2-weighted norm (j � j2L2 )
respectively. We present the convergence as we increase the number of additional eigenvectors. In Table 1, we present the
numerical results when the initial partition of unity consists of multiscale basis functions with linear boundary conditions
for the contrast g ¼ 106. We note that the convergence is robust with respect to the contrast and the error reduces. The error
is proportional to the largest eigenvalue (K�) whose eigenvector is not included in the coarse space as one can observe from
Coefficient jðxÞ. The dark region has high conductivity g and the white background has conductivity 1. Green lines show the coarse grid. (For
etation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 6. From left to right and top to bottom: j1, j2, j3, j4.

Table 1
Convergence results (in %) for GMsFEM with MS with increasing dimension of the coarse space. Here, g ¼ 106. The initial coarse space is spanned by multiscale
basis functions with piecewise linear boundary conditions (vms). The coefficient is depicted in Fig. 5.

H ¼ 1=10 j � j2A j � j2H1 j � j2L2 K�

GMsFEM+0 (153) 14.3 14.3 6.17e�02 0.0704
GMsFEM+1 (234) 5.82 5.82 1.02e�02 0.0117
GMsFEM+2 (315) 5.33 5.33 8.60e�03 0.0071
GMsFEM+3 (396) 4.64 4.64 6.53e�03 0.0043
GMsFEM+4 (477) 4.01 4.01 4.80e�03 0.0032
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the table (correlation coefficient between K� and the energy error is 0:99). We observe that the errors are smaller compared
to those obtained using MsFEM with piecewise linear initial conditions.

Next, we present numerical results when the snapshot space consists of harmonic functions in xi. More precisely, for
each fine-grid function, dh

l ðxÞ, which is defined by dh
l ðxÞ ¼ dl;k; 8l; k 2 JhðxiÞ, where Jhðxþi Þ denotes the fine-grid boundary

node on @xþi , we solve
�divðjðxÞrwsnap
l Þ ¼ 0 in xi
subject to boundary condition, wsnap
l ¼ dh

l ðxÞ. We use bilinear partition of unity functions for the mass matrix. The numerical
results are presented in Table 2 and we observe slightly worse results compared to Table 1; however, the errors are compa-
rable for dimensions of order 400. We have observed similar results if larger regions are used for computing snapshot func-
tions (see Remark 4). We report the results on oversampling techniques in [31].

Next, we present the results for a two-level preconditioner. We implement a two-level additive preconditioner with the
following coarse spaces: multiscale functions with linear boundary conditions (MS); energy minimizing functions (EMF);
spectral coarse spaces using piecewise linear partition of unity functions as an initial space (GMsFEM with Lin); spectral
coarse spaces where multiscale finite element basis functions with linear boundary conditions (vms) are used as an initial
partition of unity (GMsFEM with MS); spectral coarse spaces with ej where energy minimizing basis functions (vemf ) are used



Table 2
Convergence results (in %) for GMsFEM with MS with increasing dimension of the coarse space. Here, g ¼ 106. The initial coarse space is
spanned by bilinear basis functions and harmonic functions are used as a space of snapshots. The coefficient is depicted in Fig. 5.

Coarse dim j � j2A j � j2L2

Dim = 202 13.7 0.2
Dim = 364 3.24 1.44e�3
Dim = 607 0.021 1.0e�4
Dim = 850 0.164 5.6e�5

Table 3
Number of iterations until convergence and estimated condition number for the PCG and different values of the contrast g with the coefficient depicted in Fig. 5.
We set the tolerance to 1e�10. Here H ¼ 1=10 with h ¼ 1=100.

g MS EMF GMsFEM with Lin GMsFEM with MS GMsFEM with EMF

103 83(2.71e+002) 69(1.43e+002) 31(8.60e+000) 31(9.34e+000) 32(9.78e+000)

105 130(2.65e+004) 74(1.29e+004) 33(8.85e+000) 33(9.72e+000) 34(1.02e+001)

107 189(2.65e+006) 109(1.29e+006) 34(8.85e+000) 35(9.60e+000) 37(1.02e+001)

Dim 81 81 165 113 113
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as an initial partition of unity (GMsFEM with EMF). In Table 3, we show the number of PCG iterations and estimated condi-
tion numbers. We also show the dimensions of the coarse spaces. Note that the standard coarse space with one basis per
coarse node has the dimension 81� 81. The smallest dimension can be achieved by using energy minimizing basis functions
as an initial partition of unity. We observe that the number of iterations does not change as the contrast increases when
spectral coarse spaces are used. This indicates that the preconditioner is optimal. On the other hand, when using multiscale
basis functions (one basis per coarse node), the condition number of the preconditioned matrix increases as the contrast
increases.

3.2. Elliptic equation with input parameter

Here, we present a method proposed in [29] as a special case of GMsFEM. We consider a parameter-dependent elliptic
equation (see (2))
LlðuÞ ¼ f ; or corresponding jðu;v ;lÞ ¼ f ðvÞ: ð31Þ
As before, we start the computation with the snapshot space consisting of local fine-grid functions and compute offline
basis functions. In this example, we will construct offline multiscale spaces for some selected values of l;li (i ¼ 1; . . . ;Nrb),
where Nrb is the number of selected values of l used in constructing multiscale basis functions. These values of l are selected
via an inexpensive RB procedure [29]. We briefly describe the offline space construction. For each selected lj (via RB proce-
dure [29]), we choose the offline space
aoff
xi ;j
ðw;wÞ ¼

Z
xi

jðx;ljÞww:
As for soff
xi

, we select
soff
xi ;j
ðw;wÞ ¼ jxi

ðw;w;ljÞ:
Then, the selected dominant eigenvectors are orthogonalized with respect to H1 inner product.
At the online stage, for each parameter value, multiscale basis functions are computed based on the offline space. In par-

ticular, for each xi and for each input parameter, we formulate a quotient to find a subspace of Vxi
onðlÞ, where the space will

be constructed for each l. For the construction of the online space, we choose
aon
xi
ðw;w; lÞ ¼

Z
xi

jðx;lÞw2:
For the bilinear form for s, we choose
son
xi
ðw;w;lÞ ¼ jxi

ðw;w;lÞ:
In this case, the online space is a subspace of the offline space and computed by solving an eigenvalue problem for a given
value of the parameter l. The online space is computed by solving an eigenvalue problem in xi using Vxi

off , see (14). Using
dominant eigenvectors, we form a coarse space as in (15) and solve the global coupled system following (16). For the numer-
ical example, we will consider the coefficient that has an affine representation (see (4)). The online computational cost of
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assembling the stiffness matrix involves summing Q pre-computed matrices corresponding to coarse-grid systems. We point
out that the choice of initial partition of unity functions, vi, are important in reducing the number of very large eigenvalues
(we refer to [29] for further discussions).

We present a numerical example for �divðjðx;lÞruÞ ¼ 1 which is solved with boundary conditions u ¼ xþ y on @D. We
take D ¼ ½0;1� � ½0;1� that is divided into 10� 10 equal square subdomains. As in Section 3.1, in each subdomain we use a
fine-scale triangulation, where triangular elements constructed from 10� 10 squares are used.

We consider a permeability field which is the sum of four permeability fields each of which contains inclusions such that
their sum gives several channelized permeability field scenarios. The permeability field is described by
jðx; lÞ :¼ l1j1ðxÞ þ l2j2ðxÞ þ l3j3ðxÞ þ l4j4ðxÞ: ð32Þ
There are several distinct features in this family of conductivity fields which include inclusions and the channels that are
obtained by choosing l1 ¼ l2 ¼ 1=2 or l3 ¼ l4 ¼ 1=2. There exists no single value of l that has all the features. Furthermore,
we will use a trial set for the reduced basis algorithm that does not include li ¼ 1=2 ði ¼ 1;2;3;4Þ. For details see
[29,13,15,16,48]

As there are several distinct spatial fields in the space of conductivities, we will choose multiple functions in our reduced
basis. In the case of insufficient number of samples in the offline space, we observe that the online permeability field does not
contain appropriate features and this affects the convergence rate. We observe in Table 4 that we indeed need Nrb P 4 to
capture all the details of the solution. In this table, we compare the errors obtained by GMsFEM with a different number
of online basis functions. We observe convergence with respect to the number of local eigenvectors when Nrb increases.
We note that in these computations, we also have an error associated with the fact that the offline space is not sufficiently
large and thus the error decay is slow as we increase the number of basis functions. We have also computed weighted L2

error which shows a similar trend and the L2 errors are generally much smaller.

3.3. Anisotropic flows in parameter-dependent media

In this example, we apply GMsFEM to anisotropic flows by considering the elliptic problem with tensor coefficients
jðx;lÞ ¼
j11ðx;lÞ 0

0 1

� �

where the j1;1 coefficient is described by
j1;1ðx; lÞ :¼ ð1� lÞj0ðxÞ þ lj1ðxÞ: ð33Þ
We consider an example from where the first component of the permeability has 3 distinct different features in jðx;lÞ:
inclusions (left), channels (middle), and shifted inclusions (right); see Fig. 7. The permeability field is described by
jðx; lÞ :¼ ð1� lÞj0ðxÞ þ lj1ðxÞ: ð34Þ
We can represent 3 distinct different features in jðx;lÞ: inclusions (left), channels (middle), and shifted inclusions (right),
see Fig. 7. There exists no single value of l that has all the features. Furthermore, we will use a trial set for the reduced basis
algorithm that does not include l ¼ 0:5.

We will use a trial set for the reduced basis algorithm that does not include l ¼ 0:5. The trial set is chosen as in the case of
isotropic case using a greedy algorithm. The important features in these permeability fields characterize the preferred direc-
tions of conductivity.

We note that the coarse space has a structure that differs from the case of isotropic coefficients. In particular, the coarse space
has a larger dimension and contains all functions that are constant along x1 direction in the examples under consideration [27].

First, we present numerical results for the two-level domain decomposition solvers. In Table 5, we present the results for
a two-level preconditioner. We implement a two-level additive preconditioner with the coarse spaces introduced earlier:
multiscale functions with linear boundary conditions (MS); spectral coarse spaces where piecewise linear partition of unity
functions are used as an initial partition of unity (GMsFEM with Lin); and spectral coarse spaces where multiscale finite ele-
ment basis functions with linear boundary conditions (vms) are used as an initial partition of unity (GMsFEM with MS).

From this table, we see that the number of PCG iterations and estimated condition numbers do not depend on the contrast
when spectral basis functions are used. We use Nrb ¼ 3 because we need at least three features to represent the permeability
Table 4
Convergence results (energy norm in % and space dimension) for GMsFEM with the increasing dimension of the coarse space. Here,
h ¼ 0:01, g ¼ 106, and l1 ¼ l2 ¼ l3 ¼ l4 ¼ 1=2 (error with MsFEM 96.77%).

H ¼ 1=10 Nrb ¼ 2 Nrb ¼ 3 Nrb ¼ 4

GMsFEM+0 45.5(478) 40.3(565) 9.2(588)
GMsFEM+1 39.4(599) 27.5(686) 5.3(709)
GMsFEM+2 38.4(720) 26.8(807) 5.1(830)
GMsFEM+3 36.2(841) 26.2(928) 4.9(951)



Fig. 7. From left to right: l ¼ 0, l ¼ 1 and l ¼ 1=2.

Table 5
Number of iterations until convergence and estimated condition number for the PCG and different values of the contrast g with
l ¼ 0:5. We set the tolerance to 1e�10. Here H ¼ 0:1 with h ¼ 0:01.

g MS GMsFEM with Lin Nrb ¼ 3 GMsFEM with MS Nrb ¼ 3

104 125(6.52e+2) 45(22.79) 42(15.16)

106 260(6.14e+4) 37(8.94) 44(13.15)

Dim 81(0.8% of fine DOF) 862(8.4% of fine DOF) 744(7.4% of fine DOF)
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field as in the earlier example. We observed from our previous study that if Nrb < 3, one could not get a contrast-independent
condition number for the preconditioned system. On the other hand, when multiscale basis functions (one basis function per
node) is used, the number of iterations and the condition number of the preconditioned system increase as the contrast in-
creases. These results indicate that the preconditioner is optimal when the spectral basis functions are used and the coarse
spaces include eigenvectors corresponding to important eigenvalues. Moreover, we observe that the dimension of the coarse
space is smaller when multiscale finite element basis functions are used an initial partition of unity.

In Table 6, we present numerical results to study the errors of GMsFEM when the contrast is g ¼ 106. As there are three
distinct spatial fields in the space of conductivities, we choose at least three realizations. In Table 6, we compare the errors
obtained by GMsFEM when the online problem is solved with a corresponding number of basis functions. We observe con-
vergence with respect to the number of local eigenvectors. The convergence with respect to Nrb can also be observed.

3.4. Some generalizations

The procedure proposed above can be applied to general linear problems such as parabolic and wave equations. The suc-
cess of the method will depend on the local model reduction that is encoded in aoff

xi
; aon

xi
, soff

xi
, and son

xi
. These bilinear forms need

to be appropriately defined for a given Llð�Þ.
One can apply GMsFEM to a linearized nonlinear problem where the operator is frozen at the current value of the solu-

tion. In this case, one can treat the frozen value of the solution as a scalar parameter on a coarse-grid block level. Note that if
global model reduction techniques are used, then one will have to deal with a very large parameter space and these com-
putations will be prohibitively expensive.

To demonstrate this concept, we assume that nonlinear equation is linearized
Llðunþ1; unÞ ¼ f :
For example, for the steady-state nonlinear quasilinear equation, we can consider the following linearization (see
Section 2.1)
�divðjðx;unÞrunþ1Þ ¼ f : ð35Þ
Table 6
Convergence results (energy norm in % and space dimension) with the increasing dimension of the coarse space. Linear basis
functions are used to generate the mass matrix. Here, h ¼ 0:01, g ¼ 108, l ¼ 1=2 (error with MsFEM 88%).

H ¼ 0:1 Nrb ¼ 2 Nrb ¼ 4 Nrb ¼ 4

GMsFEM+0 3.8(1204) 3.4(1360) 3.2(1517)
GMsFEM+1 2.6(1325) 2.4(1481) 2.2(1638))
GMsFEM+2 2.1(1446) 1.8(1602) 1.7(1759)



Table 7
Relative errors in energy norm and the coarse space dimension in the last iteration. Here, g ¼ 104 .

Coarse dim K� j � j2L2 j � j2A

293 78.7 2.87 14.17
352 244 0.4 7.02
620 981 0.05 2.9
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To apply GMsFEM, one can consider un as a constant parameter, l ¼ un, within each coarse-grid block. In this case, l can
be regarded as a parameter that represents the average of the solution in each coarse block (see Section 2.1). In the example
of the steady-state Richards’ equation, u can be assumed to be a constant within a coarse-grid block. For general problems
(e.g., if the linearization is aroundru), one needs to use higher dimensional parameter space to representru at a coarse-grid
level.

The construction of the offline space will follow the GMsFEM procedure (see Section 2.1). We can construct a snapshot
space either by taking local fine-grid functions or by using the value of the parameter corresponding to uj that will appear
in the linearization of the global system. Furthermore, the offline space is constructed via a spectral decomposition of the
snapshot space as described in Section 2.1.

At the online stage, we consider an approximation of (35) with un replaced by its average in each coarse-grid block. We
denote this approximate solution by eunþ1
�divðjðx; heuniÞeunþ1Þ ¼ f ;
where heuni is the average of eun over the coarse regions. For each parameter value l, which is the average of the solution on a
coarse-grid block l ¼ 1

xi

R
xi

u, the multiscale basis functions are computed based on the solution of local problem. In partic-
ular, for each xi and for each input parameter and l ¼ 1

xi

R
xi

u, we formulate a quotient to find a subspace of Vxi
on where the

space will be constructed for each l. For the construction of the online space, we follow Section 2.1. The online space is com-
puted by solving an eigenvalue problem in xi using Vxi

off for the current value of un see (14). Using dominant eigenvectors, we
form a coarse space as in (15) and solve the global coupled system following (16) at the current un. For the numerical exam-
ple, we will consider the coefficient that has an affine representation (see (4)) which reduces the computational cost asso-
ciated with calculating the stiffness matrix in the online stage (see page Section 3.2).

Remark 6 (Adaptivity in the parameter space). We note that one can use adaptivity in the parameter space to avoid
computing the offline space for a large range of parameters and compute the offline space only for a short range of
parameters and update the space. This is, in particular, the case for applications where one has a priori knowledge about how
the parameter enters into the problem. To demonstrate this concept, we assume that the parameter space K can partitioned
into a number of smaller parameter spaces Ki;K ¼

S
iKi, where Ki may overlap with each other. Furthermore, the offline

spaces are constructed for each Ki. In the online stage, depending on the online value of the parameter, we can decide which
offline space to use. This reduces the computational cost in the online stage. In many applications, e.g., in nonlinear
problems, one may remain in one of Ki’s for many iterations and thus use the same offline space to construct the online
space.

We present a numerical example for
�divðkðx;uÞruÞ ¼ f ;
with u ¼ 0 on @D and
kðx;uÞ ¼ k0ðx;uÞ j1ðxÞ þ eauj2ðxÞð Þ; ð36Þ
where j1ðxÞ and j2ðxÞ are defined as in the previous example (see Fig. 7). The main objective of this example is to demon-
strate that one can use u in kðx;uÞ as a scalar parameter within a coarse-grid block. In contrast, in global methods, if u in
kðx;uÞ is used as a parameter, it will be a high dimensional parameter. We will take the average of u as a parameter in each
coarse-grid block as discussed above.

In Table 7, we present numerical results to study the accuracy of GMsFEM. We take f ¼ 1. In our numerical simulations,
we use 10 values for the averaged solution in each block and solve local eigenvalue problems for 8 dominant eigenvectors to
construct the snapshot space. From this space (80 snapshots in each xi), we construct the offline space by selecting the dom-
inant eigenvectors. In Table 7, we present numerical results and show the dimension of the online space at the last iteration.
From our numerical results, we observe that the errors are small and decrease as we increase the dimension of the local spec-
tral spaces. The number of iterations needed to converge is the same (3) for all coarse space dimensions. On the other hand,
the error is large if MsFEM with one basis function per node is used. This error in the energy norm is 47%.

4. Conclusions

In this paper, we propose a multiscale framework, the Generalized Multiscale Finite Element Method (GMsFEM), for solv-
ing PDEs with multiple scales. The main objective is to propose a framework that extends MsFEMs to more general problems
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with complex input space that includes parameters, high contrast, and right-hand-sides or boundary conditions. The GMs-
FEM starts with a family of snapshots for the local solutions. These snapshots can usually be generated based on the solu-
tions of local problems or simply taking local fine-grid functions. First, based on the local snapshot space, the offline space is
constructed. The construction of the offline space involves solving a spectral problem in the snapshot space. This process
introduces a prioritization on the snapshot space across the input space. In the online stage of the simulations, for each
new parameter and a source term, the online multiscale basis functions are constructed efficiently. We discuss various con-
structions. For example, in the absence of parameters, there is no computational work needed in the online stage. When the
solution nonlinearly depends on the input space parameters, the construction of the online coarse spaces involves solving a
spectral problem over the offline space. We also discuss the online correction of the reduced solution via two-level domain
decomposition methods. The optimality of the preconditioners is demonstrated through a few examples. We show that the
GMsFEM covers some of existing multiscale methods. The generalization of the GMsFEM to nonlinear problems is also con-
sidered. We illustrate these methods through a few numerical examples. Numerical examples suggest that the proposed
framework can be effective in studying multiscale problems with an input space dimension and multiple right-hand-sides.
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