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We present an effective asymptotic method for approximating the density of particles 
for kinetic equations with a Bhatnagar–Gross–Krook (BGK) relaxation operator in the 
large scale hyperbolic limit. The density of particles is transformed via a Hopf–Cole 
transformation, where the phase function is expanded as a power series with respect 
to the Knudsen number. The expansion terms can be determined by solving a sequence 
of equations. In particular, it has been proved in [3] that the leading order term is the 
viscosity solution of an effective Hamilton–Jacobi equation, and we show that the higher 
order terms can be formally determined by solving a sequence of transport equations. 
Both the effective Hamilton–Jacobi equation and the transport equations are independent 
of the Knudsen number, and are formulated in the physical space, where the effective 
Hamiltonian is obtained as the solution of a nonlinear equation that is given as an 
integral in the velocity variable, and the coefficients of the transport equations are given as 
integrals in the velocity variable. With appropriate Gauss quadrature rules for evaluating 
these integrals effectively, the effective Hamilton–Jacobi equation and the transport 
equations can be solved efficiently to obtain the expansion terms for approximating the 
density function. In this work, the zeroth, first and second order terms in the expansion are 
used to obtain second order accuracy with respect to the Knudsen number. The proposed 
method balances efficiency and accuracy, and has the potential to deal with kinetic 
equations with more general BGK models. Numerical experiments verify the effectiveness 
of the proposed method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following kinetic equation with a Bhatnagar–Gross–Krook (BGK) relaxation operator in the large scale 
hyperbolic limit [2],

∂t f ε(t,x,v) + v · ∇x f ε(t,x,v) = 1

ε
(M(v)ρε(t,x) − f ε(t,x,v)), (t,x,v) ∈ R+ ×R

n ×V, (1)
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where f ε(t, x, v) denotes the density of particles moving with velocity v ∈ V at time t ∈ R+ and position x ∈ R
n , V ⊂R

n is 
bounded and symmetric, ε > 0 is proportional to the Knudsen number, ρε(t, x) denotes the macroscopic density of particles, 
i.e.,

ρε(t,x) =
∫
V

f ε(t,x,v)dv, (t,x) ∈R+ ×R
n,

and M is a fixed Maxwellian density which is symmetric and satisfies the following moment identities,∫
V

M(v)dv = 1,

∫
V

vM(v)dv = 0,

∫
V

v2M(v)dv = θ2. (2)

The BGK model is a relaxation model associated with the Boltzmann equation for the kinetic description of gases. It 
provides a much simpler form of the collision term and retains the principal effects of particle collisions, which enables 
more tractable solution methods. The BGK model is known to be accurate in describing systems close to equilibrium [6]. 
The importance of the BGK model in applications has motivated the development of many numerical methods tailored to 
particular structures of the equations; refer to the survey paper [8] and references therein. The main difficulties for solving 
such equations are due to the high-dimensional structure of the density of particles and the presence of multiple scales. In 
a three-dimensional (3-D) simulation, the problem is 3 (space) + 3 (velocity) + 1 (time) dimensional. For small values of ε , 
the problem is stiff and standard time discretization methods are forced to operate on a very small time scale. Therefore, 
the problem is highly challenging, and an effective numerical method must balance accuracy and efficiency.

In this work, we use equation (1) to propose and explain an asymptotic approach to approximate the density of particles, 
aiming to balance efficiency and accuracy. The method is based on the Hopf–Cole (HC) transformation [11]. As ε → 0, the 
density of particles relaxes rapidly towards the Maxwellian distribution, which motivates the following HC transformation 
of the density,

f ε(t,x,v) = M(v)exp

(
−ψε(t,x,v)

ε

)
, (3)

where ψε is the phase function. It has been proved rigorously in [3] that ψε satisfies the following properties.

Proposition 1.1 ([3]). Let V ⊂ R
n be a bounded subset. Assume M ∈ L1(V) is nonnegative and symmetric, and satisfies the moment 

identities (2), ψε(0, x, v) = ψ0(x) ≥ 0, and ψ0 ∈ W 1,∞(Rn), then ψε ∈ W 1,∞(R+ × R
n × V) and satisfies the following uniform 

estimates,

0 ≤ ψε(t, ·, ·) ≤ ‖ψ0‖∞,

‖∇xψ
ε(t, ·, ·)‖∞ ≤ ‖∇xψ0‖∞,

‖∇vψ
ε(t, ·, ·)‖∞ ≤ t‖∇xψ0‖∞,

‖∂tψ
ε(t, ·, ·)‖∞ ≤ V max‖∇xψ0‖∞,

(4)

where V max is the maximum modulus of velocity.

We shall expand the phase function ψε as a power series,

ψε(t,x,v) = ψ0(t,x,v) + εψ1(t,x,v) + ε2ψ2(t,x,v) + · · · + εkψk(t,x,v) + · · · , (5)

as ε → 0, where {ψk}∞k=0 are the expansion terms. By substituting the expansion (5) into equation (1) and collecting terms 
of same orders in ε , we shall show later that one can formally derive governing equations for the sequence {ψk}∞k=0. In 
particular, it has been shown in [3,4] that the leading order term ψ0 can be obtained as the viscosity solution of an effective 
Hamilton–Jacobi (HJ) equation. We show formally that higher order terms {ψk}∞k=1 can be determined with solutions of a 
sequence of transport equations. The effective HJ equation and the transport equations are formulated in the physical space 
with coefficients given as integrals in the velocity variable, and they are independent of ε .

Since the governing equations for {ψk}∞k=0 are formulated in the physical space, they do not depend on ε , and their 
coefficients can be evaluated with appropriate Gauss quadrature rules, we can solve them efficiently and use the solutions 
to approximate the phase function and the density function with formulae (5) and (3) respectively. The overall complexity 
is expected to be significantly reduced compared to that of dealing with the BGK model directly in the phase space. In this 
work, we will use the zeroth, first and second order terms, {ψ0, ψ1, ψ2}, to approximate ψε and f ε by

ψε ≈ ψ0 + εψ1 + ε2ψ2, and f ε ≈ M(v)exp

(
−ψ0

− ψ1 − εψ2
)

. (6)

ε
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This approximation of f ε is formally O (ε2) accurate as ε → 0. And efficient finite difference schemes will be designed to 
numerically solve the effective HJ equation and the transport equations for {ψ0, ψ1, ψ2}.

The proposed approach is related to the Chapman–Enskog theory [5], where f ε is expanded as

f ε(t,x,v) = f 0(t,x,v) + ε f 1(t,x,v) + ε2 f 2(t,x,v) + · · · =
∞∑

k=0

εk f k(t,x,v), (7)

with { f k}∞k=0 determined through a sequence of equations in the phase space, and higher order terms depend on lower 
order terms. From the HC transformations (3) and the power series expansion (5), we have

f ε(t,x,v) = M(v)exp

(
−ψ0(t,x,v)

ε
− ψ1(t,x,v)

)
exp

(
−

∞∑
k=1

εkψk+1(t,x,v)

)

= M(v)exp

(
−ψ0

ε
− ψ1

)
(1 + ε(−ψ2) + ε2((ψ2)2 − ψ3) + ε3(−(ψ2)2 + ψ2ψ3 − ψ4) + · · · ),

which can be rewritten as the expansion (7). The main difference between the proposed method and the Chapman–Enskog 
expansion is that {ψk}∞k=0 can be determined with solutions of a sequence of equations that are formulated in the physical 
space, which is analogous to the semiclassical approximation and Wentzel–Kramers–Brillouin (WKB) approximation in the 
computational high frequency wave propagation [14,13,9,18,19]. Therefore, the equations are numerically easier to solve 
with a much lower complexity.

The rest of the paper is organized as follows. In Section 2 we present the effective HJ equation and the transport 
equations for determining the expansion terms. In Section 3 we present numerical schemes for solving the equations and ap-
proximating the density function. In Section 4, numerical experiments are performed to demonstrate the proposed method. 
Concluding remarks along with discussion of future projects are given at the end.

2. Governing equations

In this section, we recall the results from [3,4] on the effective Hamilton–Jacobi equation for ψ0, and derive formally the 
governing equations for ψ1 and ψ2.

2.1. Effective Hamilton–Jacobi equation for ψ0

It has been proved that ψε(t, x, v) → ψ0(t, x) (locally) uniformly as ε → 0. The limit function ψ0 is independent of v
and is the viscosity solution of an effective HJ equation [3,4]. As in [4], we denote Conv(V) as the convex hull of V, and 
define

μ(p) ≡ max
v∈Conv(V)

{v · p}, Sing(M) ≡
⎧⎨
⎩p ∈R

n :
∫
V

M(v)

μ(p) − v · p
dv ≤ 1

⎫⎬
⎭ .

Theorem 2.1 ([3,4]). Let V ⊂ R
n be bounded and symmetric, and M ∈ L1(V) be nonnegative and symmetric, and M satisfies the 

moment identities in (2). Then ψε converges (locally) uniformly towards ψ0 , where ψ0 is the viscosity solution of the following 
effective HJ equation,

∂tψ
0(t,x) + H(∇xψ

0(t,x)) = 0, (8)

with the effective Hamiltonian H(p) for p = ∇xψ
0(t, x) defined as follows,

• if p ∈ Sing(M), H(p) = μ(p) − 1;
• if p /∈ Sing(M), H(p) is uniquely given as the solution of the equation∫

V

M(v)

1 + H(p) − v · p
dv = 1, (9)

such that 1 + H(p) − v · p > 0 for all v ∈V. That is,∫
V

M(v)

1 − ∂tψ0(t,x) − v · ∇xψ0(t,x)
dv = 1, (t,x) ∈R+ ×R

n, (10)

and the denominator of the integrand is positive for all v ∈ V.
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In this work, we focus on cases when Sing(M) = ∅ as in [3]. The cases with Sing(M) �= ∅ will be considered in a future 
work.

The limit function ψ0 is the leading order term in the power series expansion (5).
By differentiating equation (9) with respect to p, we have∫

V

M(v)(∇p H(p) − v)

(1 + H(p) − v · p)2
dv = 0,

which implies

∇p H(p)

∫
V

M(v)

(1 + H(p) − v · p)2
dv =

∫
V

vM(v)

(1 + H(p) − v · p)2
dv, (11)

and |∇p H(p)| ≤ V max [3]. By differentiating equation (9) with respect to p twice, we have

∫
V

M(v)[D2
p H(p)(1 + H(p) − v · p)2) − 2(1 + H(p) − v · p)(∇p H(p) − v) ⊗ (∇p H(p) − v)]

(1 + H(p) − v · p)4
dv = 0,

which implies

D2
p H(p)

∫
V

M(v)

(1 + H(p) − v · p)2
dv = 2

∫
V

M(v)[(∇p H(p) − v) ⊗ (∇p H(p) − v)]
(1 + H(p) − v · p)3

dv. (12)

Equation (12) implies that H(p) is convex [3].

2.2. Transport equations for ψ1 and ψ2

We continue to derive the governing equations for ψ1 and ψ2.

Proposition 2.1. Under the same assumptions in Theorem 2.1 and assuming Sing(M) = ∅, ψ1(t, x, v) is given by

ψ1(t,x,v) = log G(t,x,v) − λ(t,x), (13)

where

G(t,x,v) ≡ 1 − ∂tψ
0(t,x) − v · ∇xψ

0(t,x), (14)

and λ(t, x) satisfies the following transport equation,

∂tλ(t,x) + B(t,x)

a(t,x)
· ∇xλ(t,x) = r(t,x)

a(t,x)
, (15)

with

a(t,x) =
∫
V

M(v)

G2(t,x,v)
dv,

B(t,x) =
∫
V

vM(v)

G2(t,x,v)
dv,

r(t,x) =
∫
V

M(v)(∂t G(t,x,v) + v · ∇xG(t,x,v))

G3(t,x,v)
dv.

(16)

Proposition 2.2. Under the same assumptions in Theorem 2.1 and assuming Sing(M) = ∅, ψ2(t, x, v) is given by

ψ2(t,x,v) = β(t,x) − ∂tψ
1(t,x,v) + v · ∇xψ

1(t,x,v)

G(t,x,v))

= β(t,x) − ∂t G(t,x,v) + v · ∇xG(t,x,v)

2
+ ∂tλ(t,x) + v · ∇xλ(t,x)

,

(17)
G (t,x,v) G(t,x,v)
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where G is given by (14), and β(t, x) satisfies the following transport equation,

∂tβ(t,x) + B(t,x)

a(t,x)
· ∇xβ(t,x) = R(t,x)

a(t,x)
, (18)

with {a(t, x), B(t, x)} given by (16) and

R(t,x) =
∫
V

M(v)[∂2
t G(t,x.v) + 2v · ∇x∂t G(t,x.v) + v · D2

x G(t,x.v) · v]
G4(t,x.v)

dv

−
∫
V

M(v)[∂2
t λ(t,x) + 2v · ∇x∂tλ(t,x) + v · D2

xλ(t,x) · v]
G3(t,x.v)

dv

− 3
∫
V

M(v)[∂t G(t,x.v) + v · ∇xG(t,x.v)]2

G5(t,x.v)
dv −

∫
V

M(v)[∂tλ(t,x) + v · ∇xλ(t,x)]2

G3(t,x.v)
dv

+ 3
∫
V

M(v)[∂t G(t,x.v) + v · ∇xG(t,x.v)][∂tλ(t,x) + v · ∇xλ(t,x)]
G4(t,x,v)

dv.

(19)

Proof of Proposition 2.1. Substituting the HC transformation (3) into equation (1) yields the following equation for ψε ,

1 − ∂tψ
ε(t,x,v) − v · ∇xψ

ε(t,x,v) =
∫
V

M(v′)exp

(
ψε(t,x,v) − ψε(t,x,v′)

ε

)
dv′. (20)

From equation (20), we have

M(v)

1 − ∂tψε(t,x,v) − v · ∇xψε(t,x,v)
=

M(v)exp
(
−ψε(t,x,v)

ε

)
∫
V

M(v′)exp
(
−ψε(t,x,v′)

ε

)
dv′

= f ε(t,x,v)∫
V

f ε(t,x,v′)dv′ .

Taking integration with respect to v on both sides of the above equation yields∫
V

M(v)

1 − ∂tψε(t,x,v) − v · ∇xψε(t,x,v)
dv = 1. (21)

By subtracting equation (10) from equation (21), we have

∫
V

M(v)(∂tψ
1,ε + v · ∇xψ

1,ε)

(1 − ∂tψε − v · ∇xψε)(1 − ∂tψ0 − v · ∇xψ0)
dv = 0, (22)

where ψ1,ε = ψ1 + εψ2 + ε2ψ3 + · · · = ∑∞
k=1 εk−1ψk . And from equation (20), we have

[(1 − ∂tψ
0 − v · ∇xψ

0) + ε(−∂tψ
1,ε − v · ∇xψ

1,ε)]exp
(
−ψ1,ε(t,x,v)

)
=

∫
V

M(v′)exp
(
−ψ1,ε(t,x,v′)

)
dv′.

(23)

Letting ε → 0 in equations (23) and (22) yields

[1 − ∂tψ
0(t,x) − v · ∇xψ

0(t,x)]exp
(
−ψ1(t,x,v)

)
=

∫
V

M(v′)exp
(
−ψ1(t,x,v′)

)
dv′, (24)

and ∫
V

M(v)(∂tψ
1(t,x,v) + v · ∇xψ

1(t,x,v))

(1 − ∂tψ0(t,x) − v · ∇xψ0(t,x))2
dv = 0, (25)

respectively.
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By taking the logarithm on both sides of (24), and defining

λ(t,x) ≡ log

⎛
⎝∫

V

M(v′)exp
(
−ψ1(t,x,v′)

)
dv′

⎞
⎠ ,

we have the formula (13). Then by substituting the formula (13) into equation (25), we have the transport equation (15) for 
λ(t, x). �
Proof of Proposition 2.2. From equation (22), we have

∫
V

M(v)[(∂tψ
1 + v · ∇xψ

1) + ε(∂tψ
2,ε + v · ∇xψ

2,ε)]
(1 − ∂tψε − v · ∇xψε)G(t,x,v)

dv = 0, (26)

with ψ2,ε = ψ2 + εψ3 + ε2ψ4 + · · · = ∑∞
k=2 εk−2ψk . From equation (26) and with the following Taylor expansion,

1

1 − ∂tψε − v · ∇xψε
= 1

G(t,x,v) − ε(∂tψ1 + v · ∇xψ1) − ε2(∂tψ2,ε + v · ∇xψ2,ε)

= 1

G(t,x,v)
+

∞∑
k=1

[ε(∂tψ
1 + v · ∇xψ

1) + ε2(∂tψ
2,ε + v · ∇xψ

2,ε)]k

Gk+1(t,x,v)

= 1

G(t,x,v)
+ ε(∂tψ

1 + v · ∇xψ
1)

G2(t,x,v)
+ O (ε2),

we have∫
V

M(v)(∂tψ
1 + v · ∇xψ

1)

G2(t,x,v)
dv + ε

∫
V

M(v)(∂tψ
1 + v · ∇xψ

1)2

G3(t,x,v)
dv

+ ε

∫
V

M(v)(∂tψ
2,ε + v · ∇xψ

2,ε)

(1 − ∂tψε − v · ∇xψε)G(t,x,v)
dv = O (ε2).

(27)

After canceling out the first term in equation (27) due to equation (25), we have

∫
V

M(v)(∂tψ
1 + v · ∇xψ

1)2

G3(t,x,v)
dv +

∫
V

M(v)(∂tψ
2,ε + v · ∇xψ

2,ε)

(1 − ∂tψε − v · ∇xψε)G(t,x,v)
dv = O (ε),

which implies

∫
V

M(v)(∂tψ
2 + v · ∇xψ

2)

G2(t,x,v)
= −

∫
V

M(v)(∂tψ
1 + v · ∇xψ

1)2

G3(t,x,v)
dv, (28)

as ε → 0.
From equation (20), we have

(1 − ∂tψ
0 − v · ∇xψ

0) − ε(∂tψ
1 + v · ∇xψ

1) − ε2(∂tψ
2,ε + v · ∇xψ

2,ε)

=
∫
V

M(v′)exp
(
ψ1(t,x,v) − ψ1(t,x,v′) + ε(ψ2,ε(t,x,v) − ψ2,ε(t,x,v′))

)
dv′,

which, along with equation (24), implies

−(∂tψ
1 + v · ∇xψ

1) − ε(∂tψ
2,ε + v · ∇xψ

2,ε)

=
∫
V

M(v′)exp
(
ψ1(t,x,v) − ψ1(t,x,v′)

)(
exp

(
ε[ψ2,ε(t,x,v) − ψ2,ε(t,x,v′)]) − 1

ε

)
dv′.
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Letting ε → 0 and using equation (24) again, we have

−(∂tψ
1(t,x,v) + v · ∇xψ

1(t,x,v))

=
∫
V

M(v′)exp
(
ψ1(t,x,v) − ψ1(t,x,v′)

)
(ψ2(t,x,v) − ψ2(t,x,v′))dv′,

(∂tψ
1(t,x,v) + v · ∇xψ

1(t,x,v))e−ψ1(t,x,v) +
∫
V

M(v′)exp
(
−ψ1(t,x,v′)

)
dv′ψ2(t,x,v)

=
∫
V

M(v′)exp
(
−ψ1(t,x,v′)

)
ψ2(t,x,v′)dv′,

(∂tψ
1(t,x,v) + v · ∇xψ

1(t,x,v))e−ψ1(t,x,v) + eλ(t,x)ψ2(t,x,v)

=
∫
V

M(v′)exp
(
−ψ1(t,x,v′)

)
ψ2(t,x,v′)dv′,

∂tψ
1(t,x,v) + v · ∇xψ

1(t,x,v)

G(t,x,v)
eλ(t,x) + eλ(t,x)ψ2(t,x,v)

=
∫
V

M(v′)exp
(
−ψ1(t,x,v′)

)
ψ2(t,x,v′)dv′,

∂tψ
1(t,x,v) + v · ∇xψ

1(t,x,v)

G(t,x,v)
+ ψ2(t,x,v)

= e−λ(t,x)

∫
V

M(v′)exp
(
−ψ1(t,x,v′)

)
ψ2(t,x,v′)dv′.

By defining

β(t,x) ≡ e−λ(t,x)

∫
V

M(v′)exp
(
−ψ1(t,x,v′)

)
ψ2(t,x,v′)dv′,

we have the formula (17). By substituting the formula (17) into equation (28) and after careful calculations, we have the 
transport equation (18) for β(t, x). �
Remark 1. With λ(t, x) and β(t, x) obtained from equations (15) and (18) respectively, we can compute ψ1(t, x, v) and 
ψ2(t, x, v) through formulae (13) and (17) respectively. The above derivations can be repeated to derive a sequence of 
equations such as equations (15) and (18) whose solutions can be used to compute the terms {ψk}∞k=1 in the expansion (5). 
Higher order terms depend on lower order terms. In this work, we focus on ψ0, ψ1 and ψ2.

2.3. Formulations for numerical implementations

We further simplify the transport equations (15) and (18) for numerical implementations by removing the time deriva-
tives in the definitions of r(t, x) and R(t, x). That is, we can evaluate G , ∂t G , ∇xG , ∂2

t G , ∇x∂t G , D2
xG , ∂tλ, ∂2

t λ, and 
∇x∂tλ in formulae (16) and (19) with only function values and spatial derivatives of {ψ0, λ, β}, H(∇xψ

0), ∇p H(∇xψ
0), 

and D2
p H(∇xψ

0).
From the effective HJ equation (8), we have

∂tψ
0(t,x) = −H(∇xψ

0(t,x)),

∇x∂tψ
0(t,x) = −∇p H(∇xψ

0) · D2
xψ

0(t,x).

By the definition of G(t, x, v) in (14), we have

G(t,x,v) = 1 + H(∇xψ
0(t,x)) − v · ∇xψ

0(t,x),

∇xG(t,x,v) = (∇p H(∇xψ
0) − v) · D2

xψ
0,

∂t G(t,x,v) = ∇p H(∇xψ
0) · ∇x∂tψ

0(t,x) − v · ∇x∂tψ
0(t,x)

= −(∇p H(∇xψ
0) − v) · D2

xψ
0 · ∇p H(∇xψ

0),
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∂2
t G(t,x,v) = −(2∇p H(∇xψ

0) − v) · D2
xψ

0 · [D2
p H(∇xψ

0) · ∇x∂tψ
0]

= −(2∇p H(∇xψ
0) − v) · D2

xψ
0 · [D2

p H(∇xψ
0) · (∇p H(∇xψ

0) · D2
xψ

0)],
∇x∂t G(t,x,v) = −(D2

p H(∇xψ
0) · (∇p H(∇xψ

0) · D2
xψ

0)) · D2
xψ

0

− (∇p H(∇xψ
0) − v) · [D2

xψ
0 · D2

p H(∇xψ
0) · D2

xψ
0 + ∇p H(∇xψ

0) · ∇x D2
xψ

0],
D2

xG(t,x,v) = D2
xψ

0 · D2
p H(∇xψ

0) · D2
xψ

0 − v · ∇x D2
xψ

0.

From the transport equation (15), we have

∂tλ(t,x) = r(t,x)

a(t,x)
− B(t,x)

a(t,x)
· ∇xλ(t,x),

∇x∂tλ(t,x) = a∇xr − r∇xa

a2
− a∇xB − B ⊗ ∇xa

a2
· ∇xλ − B(t,x)

a
· D2

xλ,

and

∂2
t λ(t,x) = a∂tr − r∂ta

a2
− a∂tB − B∂ta

a2
· ∇xλ − B

a
· ∇x∂tλ

= a∂tr − r∂ta

a2
− a∂tB − B∂ta

a2
· ∇xλ

− B

a
·
[

a∇xr − r∇xa

a2
− a∇xB − B ⊗ ∇xa

a2
· ∇xλ − B

a
· D2

xλ

]
.

In order to evaluate ∂ta, ∂tB, ∂tr, ∇xa, ∇xB and ∇xr in the above formulae, we have

∂ta(t,x) = −2
∫
V

M(v)∂t G(t,x,v)

G3(t,x,v)
dv,

∇xa(t,x) = −2
∫
V

M(v)∇xG(t,x,v)

G3(t,x,v)
dv,

∂tB(t,x) = −2
∫
V

vM(v)∂t G(t,x,v)

G3(t,x,v)
dv,

∇xB(t,x) = −2
∫
V

vM(v) ⊗ ∇xG(t,x,v)

G3(t,x,v)
dv,

∂tr(t,x) = −2
∫
V

M(v)[(∂2
t G + v · ∇x∂t G)G3 − 3(∂t G + v · ∇xG)G2∂t G]

G6(t,x,v)
dv,

∇xr(t,x) = −2
∫
V

M(v)[(∇x∂t G + v · D2
xG)G3 − 3(∂t G + v · ∇xG)G2∇xG]

G6(t,x,v)
dv,

where the evaluations of G , ∂t G , ∇xG , ∂2
t G , ∇x∂t G , and D2

xG can be done by previous formulae.
Furthermore, from equations (11) and (12), we will evaluate ∇p H(p) and D2

p H(p) as

∇p H(p) = B

a
,

D2
p H(p) = 2

a

∫
V

M(v)[(∇p H(p) − v) ⊗ (∇p H(p) − v)]
(1 + H(p) − v · p)3

dv

= 2

a

∫
V

M(v)[(B/a − v) ⊗ (B/a − v)]
(1 + H(p) − v · p)3

dv.

3. Numerical schemes

With the formulations derived in Section 2, ψ0 is determined by equations (8) and (9), ψ1 is obtained through the 
solution λ of equation (15) and ψ0 with formula (13), and ψ2 is obtained through the solution β of equation (18), λ and 
ψ0 with formula (17). Once they are computed, f ε is approximated by formula (6).
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From the above derivations, we note that for solving the transport equation (15) for λ(t, x), the first and second spatial 
derivatives of ψ0 and ∇p H(∇xψ

0) are involved; and for solving the transport equation (18) for β(t, x), the first, second and 
third derivatives of ψ0, the first and second derivatives of λ, and {∇p H(∇xψ

0), D2
p H(∇xψ

0)} are involved. Hence, higher 
order schemes are required. For instance, in order to get first order accurate β , third order accurate λ and fifth order 
accurate ψ0 are needed. This is similar to the situation in computational geometrical optics with WKB approximations as 
explained in [22].

In this section, we present high order numerical schemes for solving equations (8), (15) and (18).

3.1. High order schemes

For notational simplicity, we present the schemes in 2-D for a generic equation with the form,

∂tφ(t,x) + H(t,x,∇xφ(t,x)) = s(t,x).

Assume the computational domain is 
 ≡ {x ≡ (x, y) : xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}, where periodic boundary con-
ditions in (x, y) are imposed, and the velocity domain is V ≡ {v ≡ (u, v) : umin ≤ u ≤ umax, vmin ≤ v ≤ vmax} with 
umin = −umax and vmin = −vmax. The domain 
 is discretized and covered by a uniform mesh 
h ≡ {(xi, y j) : xi =
xmin + i�x, y j = ymin + j�y; 0 ≤ i ≤ Nx, 0 ≤ j ≤ N y} with mesh sizes �x = (xmax − xmin)/Nx , and �y = (ymax − ymin)/N y . 
And the time step size is denoted as �t . For mesh sizes �x, �y, �t , φk

i, j will denote a numerical approximation to the 
viscosity solution φ(tk, xi, y j) = φ(k�t, xmin + i�x, ymin + j�y). Some standard notations will be used such as

�x±φi, j = ±(φi±1, j − φi, j), and �
y
±φi, j = ±(φi, j±1 − φi, j).

The building block is the first order monotone scheme [7],

φk+1
i, j = φk

i, j − �t Ĥ

(
�x+φk

i, j

�x
,
�x−φk

i, j

�x
,
�

y
+φk

i, j

�y
,
�

y
−φk

i, j

�y

)
+ �tsk

i, j, (29)

where Ĥ is a monotone numerical Hamiltonian consistent with H , i.e.,

Ĥ(p, p,q,q) = H(p,q),

Ĥ is non-increasing in its first and third arguments and nondecreasing in the other two, and the time step size �t is chosen 
such that the Courant–Friedrichs–Lewy (CFL) condition is satisfied, i.e.,

V max

(
�t

�x
+ �t

�y

)
≤ 1.

We consider the following monotone Godunov Hamiltonian Ĥ [1,20],

Ĥ G(p+, p−,q+,q−) = extp∈I(p−,p+)extq∈I(q−,q+)H(p,q), (30)

where

extp∈I(a,b) =

⎧⎪⎨
⎪⎩

min
a≤p≤b

if a ≤ b,

max
b≤p≤a

if a > b.

The Godunov Hamiltonian Ĥ G is monotone for A ≤ p± ≤ B , C ≤ q± ≤ D , with A, B , C and D appropriate constants.
For high order schemes, we use the weighted essentially non-oscillatory (WENO) finite difference approximations to 

approximate p± = φ±
x , q± = φ±

y , and the Runge–Kutta (RK) procedures for time discretization.
For approximating φ±

x and φ±
y , we use fifth order WENO construction (WENO5) [16,12,23], i.e.,

(φ−
x )i, j = 1

12�x

(−�x+φi−2, j + 7�x+φi−1, j + 7�x+φi, j − �x+φi+1, j
)

− �WENO
(

�x−�x+φi−2, j

�x
,
�x−�x+φi−1, j

�x
,
�x−�x+φi, j

�x
,
�x−�x+φi+1, j

�x

)
,

where
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�WENO(a,b, c,d) = 1

3
ω0(a − 2b + c) + 1

6

(
ω2 − 1

2

)
(b − 2c + d),

ω0 = α0

α0 + α1 + α2
, ω2 = α2

α0 + α1 + α2
,

α0 = 1

(ε0 + I S0)2
, α1 = 6

(ε0 + I S1)2
, α2 = 3

(ε0 + I S2)2
,

I S0 = 13(a − b)2 + 3(a − 3b)2,

I S1 = 13(b − c)2 + 3(b + c)2,

I S2 = 13(c − d)2 + 3(3c − d)2,

and

(φ+
x )i, j = 1

12�x

(−�x+φi−2, j + 7�x+φi−1, j + 7�x+φi, j − �x+φi+1, j
)

− �WENO
(

�x−�x+φi+2, j

�x
,
�x−�x+φi+1, j

�x
,
�x−�x+φi, j

�x
,
�x−�x+φi−1, j

�x

)
.

WENO5 approximations for φ±
y can be constructed similarly. ε0 is chosen as 10−13 to avoid division by zero.

For the time discretization, we use the fifth order RK method by Lawson [15], i.e.,

K1 = L(φk),

K2 = L(φk + �ta21 K1),

K3 = L(φk + �t(a31 K1 + a32 K2)),

K4 = L(φk + �t(a41 K1 + a42 K2 + a43 K3)),

K5 = L(φk + �t(a51 K1 + a52 K2 + a53 K3 + a54 K4)),

K6 = L(φk + �t(a61 K1 + a62 K2 + a63 K3 + a64 K4 + a65 K5)),

φk+1 = φk + �t(b1 K1 + b2 K2 + b3 K3 + b4 K4 + b5 K5 + b6 K6),

(31)

where⎛
⎜⎜⎜⎝

a21
a31 a32
a41 a42 a43
a51 a52 a53 a54
a61 a62 a63 a64 a65

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1/12
−1/8 3/8
3/5 −9/10 4/5

39/80 −9/20 3/20 9/16
−59/35 66/35 48/35 −12/7 8/7

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

7/90
0

32/90
12/90
32/90
7/90

⎞
⎟⎟⎟⎟⎟⎠ ,

and L(φ) = −Ĥ(φ±
x , φ±

y ) + s(x, y).
With the numerical techniques presented above, the algorithm based on RK and WENO is summarized as:

Algorithm 1 (WENO-RK method).

• For k = 0, 1, 2, . . . .
– at any node (xi, y j),

∗ use the WENO constructions to approximate (φ±
x )i, j and (φ±

y )i, j ,

∗ use the RK procedures to obtain φk+1
i, j .

We use Algorithm 1 to solve equations (8), (15) and (18) numerically.
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3.2. Computation of ψ0

When applying Algorithm 1 to numerically solve the effective HJ equation (8), we need to evaluate the numerical Hamil-
tonian Ĥ and maintain the positivity of ψ0 [17].

Given p, q, the effective Hamiltonian H(p, q), as well as the numerical Hamiltonian Ĥ G (p+, p−, q+, q−), are determined 
implicitly by equation (9) which is a nonlinear function in H , i.e.,

F (H(p,q)) ≡
vmax∫

vmin

umax∫
umin

M(u, v)

1 + H(p,q) − up − vq
dudv − 1 = 0.

From Theorem 2.1, we know H(p, q) ≥ max(u,v)∈V{up + vp − 1}, H(0, 0) = 0, and ∇p H(0, 0) = 0. From the convex-
ity of H , we know H(p, q) ≥ 0. Hence, we must find the solution of the nonlinear equation for H(p, q) ∈ I H(p,q) ≡
[max{0, max(u,v)∈V{up + vp − 1}}, ∞). Since

F ′(H) = −
vmax∫

vmin

umax∫
umin

M(u, v)

(1 + H − up − vq)2
dudv < 0,

F (H) is decreasing in I H(p,q) , which implies the solution is unique in I H(p,q) [17]. We use Newton’s method to solve the 
nonlinear equation (9). Starting with an initial guess H0, the method generates a sequence {Hm} that converges to H by

Hm = Hm−1 − F (Hm−1)

F ′(Hm−1)
, m ≥ 1.

Both F (H) and F ′(H) must be evaluated as integrals in the velocity variable (u, v), for which we use Gauss quadrature 
rules, i.e.,

F (H) ≈
∑

s

∑
t

wu
s w v

t

1 + H − us p − vtq
− 1,

F ′(H) ≈ −
∑

s

∑
t

wu
s w v

t

(1 + H − us p − vtq)2
,

(32)

where {wu
s , us} (respectively, {w v

t , vt}) are weights and abscissas of an appropriate Gauss quadrature rule on [umin, umax]
(respectively, [vmin, vmax]).

We summarize Newton’s method for solving the nonlinear equation (9) [17].

Algorithm 2 (Newton’s method for equation (9)).

1. Initial guess: set H0 ≥ max{0, |p|umax + |q|vmax − 1}.
2. Newton’s iterations: for m ≥ 1,

Hm = max

{
Hm−1 − F (Hm−1)

F ′(Hm−1)
, 0, |p|umax + |q|vmax − 1

}
, (33)

where F (Hm−1) and F ′(Hm−1) are approximated by Gauss quadrature rules (32).
3. Termination: if |F (Hm)| < δ for some termination criterion δ > 0, or m ≥ Miter for some maximum number of iterations 

Miter , stop the iterations.

With Algorithm 2, the positivity of the effective Hamiltonian is maintained [17].
Therefore, when applying Algorithm 1 to solve the effective HJ equation (8), we need to use Algorithm 2 to compute the 

numerical Hamiltonian Ĥ . Furthermore, in order to maintain the positivity of ψ0, we set

ψ
0,k+1
i, j = max{ψ0,k+1

i, j ,0}
at the final stage of the RK procedure. This simple enforcement does not affect the order of accuracy of the WENO-RK 
method as proved in [17].
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3.3. Computation of ψ1 and ψ2

We can compute ψ1(t, x, v) with λ(t, x) and ψ0(t, x) as in formula (13), where λ(t, x) is obtained by solving the transport 
equation (15) with Algorithm 1. When applying Algorithm 1 to solve equation (15), we compute the coefficients a(t, x), 
B(t, x) and r(t, x) with Gauss quadrature rules, i.e.,

a(t,x) ≈
∑

s

∑
t

wu
s w v

t

(1 + H − usψ
0
x − vtψ

0
y)2

,

B(t,x) ≈
∑

s

∑
t

wu
s w v

t (us, vt)

(1 + H − usψ
0
x − vtψ

0
y)2

,

r(t,x) ≈
∑

s

∑
t

wu
s w v

t (−(
B(t,x)
a(t,x)

− (us, vt)) · D2
xψ

0(t,x) · ( B(t,x)
a(t,x)

− (us, vt)))

(1 + H − usψ
0
x − vtψ

0
y)3

.

We can compute ψ2(t, x, v) with β(t, x), λ(t, x) and ψ0(t, x) as in formula (17), where β(t, x) is obtained by solving the 
transport equation (18) with Algorithm 1. When applying Algorithm 1 to solve equation (18), we compute the coefficients 
a(t, x), B(t, x) and R(t, x) with same Gauss quadrature rules as above.

3.4. Approximation of f ε

At a given time t , once ψ0(t, x), λ(t, x) and β(t, x) are computed, we can first compute G(t, x, v) = 1 − ∂tψ
0(t, x) − v ·

∇xψ
0(t, x) = 1 + H(∇xψ

0(t, x)) − v · ∇xψ
0(t, x) with H(∇xψ

0(t, x)) computed by Algorithm 2, then obtain ψ1(t, x, v) and 
ψ2(t, x, v) with formulae (13) and (17) respectively, and finally approximate f ε(t, x, v) with formula (6).

We know

f ε(t,x,v) = M(v)exp

(
−ψε(t,x,v)

ε

)

= M(v)exp

(
−ψ0(t,x)

ε
− ψ1(t,x,v) − εψ2(t,x,v) + O (ε2)

)

= M(v)exp

(
−ψ0(t,x)

ε
− ψ1(t,x,v) − εψ2(t,x,v)

)(
1 + O (ε2)

)
,

which implies∣∣∣∣∣∣
f ε(t,x,v) − M(v)exp

(
−ψ0(t,x)

ε − ψ1(t,x,v) − εψ2(t,x,v)
)

M(v)exp
(
−ψ0(t,x)

ε − ψ1(t,x,v) − εψ2(t,x,v)
)

∣∣∣∣∣∣ = O (ε2).

Therefore, we expect that the proposed method for approximating f ε is O (ε2) accurate. Numerical examples in Section 4
verify the accuracy.

Remark 2. Assume that K Gauss abscissas/weights are used, and O (N) mesh points are used in each spatial dimension 
(and in each velocity dimension for standard methods). At each time step, the complexity of the proposed method is 
O (K n Nn); while the complexity of standard methods is O (N2n). In practice, we have K � N . And the proposed method 
does not depend on ε . Compared to the standard methods, the proposed method has a much lower complexity without 
losing accuracy.

The proposed methodologies associated with the simpler BGK operator (1) are potentially extendable to more general 
BGK models, which will be presented and analyzed in a forthcoming paper.

4. Numerical examples

Several numerical experiments are performed to demonstrate the accuracy of the proposed method. We record both the 
relative l∞ and l1 errors between the solutions f ε by the proposed method and the reference solutions f ε,ref , i.e.,

‖ f ε(t,x,v) − f ε,ref (t,x,v)‖∞
‖ f ε,ref (t,x,v)‖∞

,
‖ f ε(t,x,v) − f ε,ref (t,x,v)‖1

‖ f ε,ref (t,x,v)‖1
.

The convergence order (conv. order) is also recorded. The reference solutions are computed with the implicit–explicit Runge–
Kutta (IMEX-RK) scheme in [21]. Numerical plots of the density function f ε , the macroscopic density ρε and the momentum
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Table 1
1-D example case 1. The relative l∞ and l1 errors are recorded at t = 0.5.

Error \ mesh ε = 1e−1

ε ε/2 ε/4 ε/8 ε/16

11 41 161 641 2561

rel. l∞ 4.69e−1 2.11e−1 6.33e−2 1.03e−2 1.62e−3
conv. order. – 1.15 1.74 2.62 2.67
rel. l1 1.72e−1 8.26e−2 2.25e−2 5.05e−3 9.12e−4
conv. order. – 1.06 1.88 2.16 2.47

Table 2
1-D example case 2. The relative l∞ and l1 errors are recorded at t = 0.5.

Error \ mesh ε = 1e−1

ε/2 ε/4 ε/8 ε/16 ε/32

41 161 641 2561 10241

rel. l∞ 1.68e−1 5.25e−2 1.64e−2 4.79e−3 1.27e−3
conv. order. – 1.68 1.68 1.78 1.92
rel. l1 1.46e−1 4.06e−2 1.11e−2 3.16e−3 9.11e−4
conv. order. – 1.85 1.87 1.81 1.79

Table 3
1-D example case 3. The relative l∞ and l1 errors are recorded at t = 0.5.

Error \ mesh ε = 1e−1

ε ε/2 ε/4 ε/8 ε/16

11 41 161 641 2561

rel. l∞ 5.24e−1 2.34e−1 8.47e−2 1.71e−2 1.47e−3
conv. order. – 1.16 1.47 2.31 3.54
rel. l1 3.60e−1 1.66e−1 4.87e−2 1.09e−2 1.72e−3
conv. order. – 1.12 1.77 2.16 2.66

jε(t,x) =
∫
V

v f ε(t,x,v)dv

are presented for further comparisons.
For evaluating integrals in the velocity variable when applying Algorithms 1 and 2, we use a Gauss quadrature rule with 

M(v) as the weight function. The abscissas/weights can be computed with the algorithm in [10].

Example 1. We use 1-D examples to demonstrate the accuracy of the proposed method.

• 1-D case 1: 
 = [−1, 1], V = [−1, 1], M(v) ≡ 0.5, ψ0(0, x) = 0.05(1 + sin(π(1 + x))), λ(0, x) = cos(2π(1 + x)) − 1, 
and β(0, x) = 1 − cos(2π(1 + x)). Table 1 shows the comparisons between the computed solutions and the reference 
solutions.

• 1-D case 2: 
 = [−1, 1], V = [−2, 2], M(v) = e−v2
/
√

πerf(2), ψ0(0, x) = 0.05(1 + cos(π(1 + x))), λ(0, x) = sin(2π(1 +
x)) − 1, and β(0, x) = 1 − sin(2π(1 + x)). Table 2 shows the comparisons between the computed solutions and the 
reference solutions. Fig. 1 shows numerical plots of the solutions.

• 1-D case 3: 
 = [−1, 1], V = [−4, 4], M(v) = e−v2
/
√

πerf(4), ψ0(0, x) = 0.05(1 + sin(π(1 + x))), λ(0, x) = cos(2π(1 +
x)) − 1, and β(0, x) = 1 − sin(2π(1 + x)). Table 3 shows the comparisons between the computed solutions and the 
reference solutions. Fig. 2 shows numerical plots of the solutions.

For evaluating integrals in the velocity variable in Algorithms 1 and 2, 16 Gauss abscissas/weights are used. Tables 1, 2 and 
3 demonstrate that the proposed method is O (ε2) accurate.

Example 2. We use 2-D examples to demonstrate the method.

• 2-D case 1: 
 = [−1, 1] × [−1, 1], V = [−2, 2] × [−2, 2], M(u, v) = e−(u2+v2)/πerf2(2), ψ0(0, x, y) = 0.025(2 −
sin(π(1 + x)) − cos(π(1 + y))), λ(0, x, y) = cos(π(1 + x)) + cos(π(1 + y)) − 2, and β(0, x, y) = 2 − cos(π(1 + x)) +
cos(π(1 + y)). Table 4 shows the comparisons between the computed solutions and the reference solutions. Fig. 3
shows the plots of the numerical solutions.



308 S. Luo, N. Payne / Journal of Computational Physics 341 (2017) 295–312
Fig. 1. 1-D example case 2: solution at t = 0.5 with ε = 1
40 (Top) and ε = 1

160 (Bottom). (a)–(c): plots of f ε by proposed method; and (b)–(d): plots of f ε

by reference solution. Spatial mesh for the proposed method is 161 for both ε ’s; while spatial mesh for the reference solution is 161 for ε = 1
40 and 2561

for ε = 1
160 .

Fig. 2. 1-D example case 3: solution at t = 0.5 with ε = 1
40 (Top) and ε = 1

160 (Bottom). (a)–(c): plots of f ε by proposed method; and (b)–(d): plots of f ε

by reference solution. Spatial mesh for the proposed method is 161 for both ε ’s; while spatial mesh for the reference solution is 161 for ε = 1
40 and 2561

for ε = 1
160 .

• 2-D case 2: 
 = [−1, 1] × [−1, 1], V = [−4, 4] × [−4, 4], M(u, v) = e−(u2+v2)/πerf2(4), ψ0(0, x, y) = 0.025(2 −
cos(π(1 + x)) − cos(π(1 + y))), λ(0, x, y) = sin(π(1 + x)) + cos(π(1 + y)) − 2, and β(0, x, y) = 2 − cos(π(1 + x)) −
sin(π(1 + y)). Table 5 shows the comparisons between the computed solutions and the reference solutions. Fig. 4
shows the plots of the numerical solutions.
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Table 4
2-D example case 1. The relative l∞ and l1 errors are recorded at t = 0.1.

Error \ mesh ε = 1e−1

ε ε/2 ε/4 ε/8 ε/16

11 × 11 21 × 21 41 × 41 81 × 81 161 × 161

rel. l∞ 4.46e−2 1.24e−2 3.48e−3 7.89e−4 1.43e−4
conv. order. – 1.85 1.83 2.14 2.46
rel. l1 4.79e−2 1.40e−2 3.63e−3 8.81e−4 2.25e−4
conv. order. – 1.77 1.95 2.04 1.97

Fig. 3. 2-D example case 1: solution at t = 0.2 with ε = 0.01. (a)–(b): plots of ρε by proposed method and reference solution respectively; (c)–(d): plots 
of jε (first component) by proposed method and reference solution respectively; and (e)–(f): plots of jε (second component) by proposed method and 
reference solution respectively. Spatial mesh: 81 × 81.

For evaluating integrals in the velocity variable in Algorithms 1 and 2, 16 Gauss abscissas/weights are used. Tables 4 and 5
demonstrate that the proposed method is O (ε2) accurate.

Example 3. We present a 3-D example with 
 = [−1, 1]3, V = [−2, 2]3, ψ0(0, x) = 0.025(3 − sin(π(1 + x)) − cos(π(1 +
y)) − sin(π(1 + z))), λ(0, x) = −(3 − sin(π(1 + x)) − sin(π(1 + y)) − sin(π(1 + z))), β(0, x) = 3 − cos(π(1 + x)) − cos(π(1 +
y)) − cos(π(1 + z)), and M(v) = e−v2

/π3/2erf3(2). For evaluating integrals in the velocity variable in Algorithms 1 and 2, 
8 Gauss abscissas/weights are used. Fig. 5 shows the plots of the numerical solutions.
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Table 5
2-D example case 2. The relative l∞ and l1 errors are recorded at t = 0.1.

Error \ mesh ε = 1e−1

ε ε/2 ε/4 ε/8 ε/16

11 × 11 21 × 21 41 × 41 81 × 81 161 × 161

rel. l∞ 4.88e−2 1.37e−2 3.84e−3 8.54e−4 1.54e−4
conv. order. – 1.83 1.83 2.17 2.47
rel. l1 4.21e−2 1.23e−2 3.18e−3 7.87e−4 2.03e−4
conv. order. – 1.76 1.95 2.01 1.95

Fig. 4. 2-D example case 2: solution at t = 0.2 with ε = 0.01. (a)–(b): plots of ρε by proposed method and reference solution respectively; (c)–(d): plots 
of jε (first component) by proposed method and reference solution respectively; and (e)–(f): plots of jε (second component) by proposed method and 
reference solution respectively. Spatial mesh: 81 × 81.

5. Conclusions

We present an asymptotic approach to numerically solving kinetic equations with a simple BGK relaxation operator in 
the large scale hyperbolic limit. Through a Hopf–Cole transformation, the computation of the density of particles is switched 
to the approximation of the phase function. The phase function is expanded as a power series with respect to the Knudsen 
number. The leading order term is the viscosity solution of an effective Hamilton–Jacobi equation, and the high order 
terms can be determined with solutions of a sequence of transport equations. These equations can be solved efficiently in 
the physical space since they are independent of the Knudsen number and their coefficients are given as integrals in the 
velocity variable that can be evaluated efficiently by Gauss Quadrature rules. In this work, zeroth, first and second order 
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Fig. 5. 3-D example: solution at t = 0.1 with ε = 0.01. (a)–(c)–(e): plots of ρε by proposed method at x = 0, y = 0 and z = 0 respectively; and (b)–(d)–(f): 
plots of ‖jε‖2 by proposed method at x = 0, y = 0 and z = 0 respectively.

terms in the expansion are used and examined. Numerical experiments verify the efficiency of the method and demonstrate 
that the method has expected second order accuracy with respect to the Knudsen number.

The proposed asymptotic approach shows potentials to deal with kinetic equations with more general BGK operators, 
which is more desirable for real applications. Several projects will be pursued in the future: (1) higher order terms in 
the power series expansion will be included in the approximation to obtain higher order accuracy; and (2) the asymptotic 
approach will be extended to solve kinetic equations with more general BGK operators. For instance, we will consider the 
classical BGK model

∂t f ε(t,x,v) + v · f ε(t,x,v) = 1

ε
( f ε

M(t,x,v) − f ε(t,x,v)), t ≥ 0,

with

f ε
M(t,x,v) = ρε(t,x)M(t,x,v), M(t,x,v) = 1

(2π RT (t,x))n/2
exp

(
−‖v − u(t,x)‖2

2

2RT (t,x)

)
,

where ρε , u and T are, respectively, the macroscopic density, velocity, and temperature of the gas, and they are obtained 
from the moments of f ε that are defined as⎛

⎝ ρε(t,x)

m(t,x)

E(t,x)

⎞
⎠ =

∫
f ε(t,x,v)

⎛
⎝ 1

v
1 ‖v‖2

⎞
⎠dv.
V 2
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Here m is the momentum, and E is the total energy. The macroscopic velocity is u = m/ρε , and through internal energy e
one can obtain the temperature with ρεe = E −ρεu2/2, e = nRT /2. Similar equations in the physical space for determining 
the terms in the power series expansion will be derived and implemented.
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