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The paper proposes a novel factorization technique for static condensation of a spectral-
element discretization matrix that yields a linear operation count of just 13N multiplica-
tions for the residual evaluation, where N is the total number of unknowns. In comparison 
to previous work it saves a factor larger than 3 and outpaces unfactored variants for all 
polynomial degrees. Using the new technique as a building block for a preconditioned 
conjugate gradient method yields linear scaling of the runtime with N which is demon-
strated for polynomial degrees from 2 to 32. This makes the spectral-element method 
cost effective even for low polynomial degrees. Moreover, the dependence of the iterative 
solution on the element aspect ratio is addressed, showing only a slight increase in the 
number of iterations for aspect ratios up to 128. Hence, the solver is very robust for 
practical applications.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

While spectral Fourier methods [1] provide the optimum efficiency for the high accuracy computation of regular solu-
tions due to the spectral convergence and the availability of fast transformations, they require periodic boundary conditions 
or some particular treatment, such as damping zones, for more complex cases. Spectral methods based on more general 
orthogonal polynomials are also employed for flow simulations [2], but are often restricted to regular solutions and a re-
duced set of boundary conditions as well. Other high-order schemes like the discontinuous Galerkin (DG) methods or the 
spectral-element methods (SEM) have been conceived for geometrical flexibility and the possibility to adjust the order of 
approximation. For these (and other) reasons, the latter have been receiving vital interest from the community during the 
last years. Yet, fast solvers for these methods are still a matter of research.

As with high-order methods the number of degrees of freedom inside an element scales with the polynomial degree to 
the power of three, ways to reduce the algebraic problem size are sought. The static condensation method is often used 
to this end. For instance the first work on SEM in [3] already employs it, as do more recent ones [4,5]. Other applica-
tions of static condensation include the explicit solution for cuboidal geometries [6], p-multigrid techniques for rectangular 
geometries [7] and the application as preconditioner for a DG scheme [8].

The algorithms in the cited references benefit from the static condensation with spectacular increases in performance. 
However, they all share one downside: When increasing the polynomial degree, the operation count scales super-linearly 
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with the number of degrees of freedom, so that the method becomes less and less efficient with higher and higher poly-
nomial degrees. To remain efficient at high polynomial degrees, linear complexity is required throughout the entire solver, 
from the operator execution, to the preconditioner, to the remaining operations inside an iteration.

As the implicit treatment of diffusion terms and pressure-velocity coupling in solvers for incompressible fluid flow often 
reduce to a Helmholtz equation, the goal of this article is to provide a Helmholtz solver with linear scaling. It extends 
earlier works of the authors in [9] and [10], where preliminary variants of the condensed Helmholtz operator with linear 
operation count were proposed. While these variants resulted in linear execution times of the iterations, they outperformed 
unfactorized versions implemented via dense matrix–matrix multiplications only for polynomial degrees p > 10. Current 
simulations, however, tend to use lower polynomial degrees [11,5,12] so that with these methods a gain might not be 
achieved. The present paper proposes an efficient static condensation method for a spectral-element discretization using 
cuboidal elements, outperforming matrix–matrix multiplications down to a polynomial degree of p = 2. Similar to the work 
in many of the cited references, the development is performed for a Cartesian discretization here.

The paper is laid out as follows: Section 2 focuses on tensor-product matrices as a necessary prerequisite and the 
third section on the spectral-element method. Section 4 recapitulates the static condensation while the fifth section recalls 
operators from [9]. Section 6, finally, puts these elements together and proposes the new method. In Section 7 and 8, the 
efficiency of the new operators and solvers is quantitatively assessed with suitable test cases.

2. Tensor-product matrices

Many partial differential equations exhibit a separable substructure [13], i.e. the differential operator can be decomposed 
into smaller operators acting in single coordinate directions only. This allows for further analysis of the operator and the 
resulting system matrices. Indeed, it is the basic approach to lower the operation count here, as illustrated by the following 
very simple example. Assume that a two-dimensional problem is discretized using a spectral method with n degrees of 
freedom in each direction such that the vector of discrete unknowns is v ∈ R

n2
. The system matrix C ∈R

n2,n2
is dense, so 

that its straightforward application requires n4 multiplications. If it is a tensor-product matrix, however, its application can 
be reformulated as

Cv = (B ⊗ A)v = (B ⊗ I) (I ⊗ A)v (1)

with I ∈R
n,n being the identity matrix, A ∈ R

n,n the operator in the first direction and B ∈ R
n,n the operator in the sec-

ond one. The consecutive application of A and B then requires only 2n3 multiplications. In general, tensor products of 
dimension d require only dnd+1 multiplications compared to n2d for the application of the whole matrix.

Tensor-product matrices possess additional properties that allow for factorization techniques. E.g., the multiplication of 
two tensor-product matrices is reducible to the multiplication of the respective submatrices

(A ⊗ C) (B ⊗ D) = (AB) ⊗ (CD) . (2)

Also, transpose and inverse can be reformulated

(A ⊗ B)T = AT ⊗ BT (3)

(A ⊗ B)−1 = A−1 ⊗ B−1 . (4)

Further properties and applications of tensor-product matrices are presented in [13] and [14].

3. The spectral-element method with cuboidal elements

The continuous Helmholtz problems in a domain � reads

λu − �u = f , (5)

where u is the variable to solve for, λ ≥ 0 is a real constant parameter, � the Laplace operator and f the right-hand side. 
This equation was first formulated in the field of acoustic research with λ < 0. Nonetheless, the case λ ≥ 0 is commonly 
referred to as Helmholtz equation in the fluid dynamics community.

Decomposing the domain into ne elements �e , the spectral-element method leads to the discrete equation system

RHLRT uG = RFL , (6)

where uG is the solution vector, FL is the discretized right-hand side, R gathers the contributions from the elements, and its 
transpose RT scatters the global degrees of freedom to those local to the elements [14,15]. The local Helmholtz operator HL
is a block-diagonal matrix consisting of the element Helmholtz operators He .

This paper only considers the case of cuboidal elements. A three-dimensional tensor-product basis is utilized in each 
element, allowing the standard element basis functions φi jk to be decomposed into three one-dimensional basis functions 
such that [14]
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Fig. 1. Left: Three-dimensional tensor-product element with GLL nodes of order p = 3. Right: Compass notation for element faces.

∀ 0 ≤ i, j,k ≤ p : φi jk (ξ1, ξ2, ξ3) = ϕi (ξ1)ϕ j (ξ2)ϕk (ξ3) (7)

with ξ1, ξ2, ξ3 ∈ [−1,1] the local coordinates in the element and {ϕi : i = 0, . . . , p} the set of basis functions employed in all 
three directions. These one-dimensional functions result in the standard element mass and stiffness matrices

Mij =
1∫

−1

ϕi (ξ)ϕ j (ξ) dξ (8)

Kij =
1∫

−1

ϕ′
i (ξ)ϕ′

j (ξ) dξ , (9)

where the prime denotes differentiation. Using a tensor-product basis, the operations on each element can be decomposed 
and the Helmholtz operator becomes

He = de,0M ⊗ M ⊗ M + de,1M ⊗ M ⊗ K + de,2M ⊗ K ⊗ M + de,3K ⊗ M ⊗ M . (10)

For an element �e of extent he,i , i ∈ {1,2,3}, in the three coordinate directions the vector coefficients de in (10) reads

de = he,1he,2he,3

8

(
λ 4

h2
e,1

4
h2

e,2

4
h2

e,3

)T
. (11)

For convenience, de,0 incorporates the Helmholtz parameter λ here, whereas the remaining components represent metric 
terms.

Throughout this paper, Lagrange polynomials to the Gauß–Lobatto–Legendre (GLL) quadrature points constitute the 
one-dimensional nodal basis functions. Hence, the tensor-product GLL points can be identified with the degrees of freedom 
of an element, as depicted in Fig. 1a. The mass matrix is approximated via GLL quadrature, generating a diagonal matrix 
and thereby simplifying the structure of the Helmholtz operator: The mass term M ⊗ M ⊗ M reduces to a diagonal matrix 
whereas each stiffness term becomes diagonal in two dimensions, e.g. M ⊗ K ⊗ M in direction one and three. While the 
simplification lowers the number of operations, it still scales with O

(
p4

)
and, hence, super-linearly with respect to the 

number of unknowns. The super-linear complexity represents a roadblock on the path to higher polynomial degrees and 
reduces the efficiency of the solvers. Hence, the next sections focus on the removal of this obstruction.

4. The static condensation method

The Helmholtz equation is elliptic, so that the Dirichlet problem is well posed [16]. This property can be utilized to 
eliminate the internal nodes of an element, reducing the number of unknowns significantly, but coupling the remaining 
ones tighter. In the following, this will be discussed for a single element dropping the subscript e indicating the element.

The degrees of freedom of the element are sorted into those located on the boundary, denoted by the subscript B, and 
those in the interior, denoted by the subscript I, as illustrated in Fig. 2 for a two-dimensional element. The subscripts I
and B are also used for the corresponding matrices, where applicable, so that, e.g., HIB stands for the part of the Helmholtz

operator mapping from the boundary to the inner degrees of freedom, whereas MII refers to the inner part of the one-
dimensional mass matrix. After sorting the variables accordingly, the element Helmholtz operator becomes(

HBB HBI
HIB HII

)(
uB
uI

)
=

(
FB
FI

)
. (12)
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Fig. 2. Categorization of the degrees of freedom in a two-dimensional element with p = 4 into inner and boundary degrees. (a): All degrees of freedom in 
the element, (b): nodes corresponding to internal degrees of freedom, (c): only boundary nodes.

As HII corresponds to the homogeneous Dirichlet operator and, hence, is invertible, uI equates to

uI = H−1
II (FI − HIBuB) . (13)

This, in turn, yields(
HBB − HBIH

−1
II HIB

)
︸ ︷︷ ︸

Ĥ

uB = FB − HBIH
−1
II FI︸ ︷︷ ︸

F̂

. (14)

The operator

Ĥ = HBB︸︷︷︸
Hprim

−HBIH
−1
II HIB︸ ︷︷ ︸

Hcond

(15)

defines a condensed element Helmholtz operator with the rank equal to the number of boundary points. It is composed 
of two parts: The primary part, Hprim, is the restriction of the full Helmholtz operator to the boundary nodes, whereas the 
condensed part, Hcond, stems from the condensation process and represents the interaction of the boundary values and the 
internal degrees of freedom.

After solving the equation system for the element boundary values (14), equation (13) defines the interior unknowns. 
Algorithm 1 summarizes the resulting solution process.

Algorithm 1 Solution algorithm with static condensation.
Restrict to boundary nodes, condense right-hand side
foreach �e do

F̂e ← FB,e − HBI,eH−1
II,eFI,e

ûe ← uB,e

end

û ← Solution(R̂ĤR̂T û = R̂F̂)

Regain interior degrees of freedom
foreach �e do

uI,e ← H−1
II,e

(
FI,e − HIB,euB,e

)
ue ← (

uB,e uI,e
)

end

Attention to detail is required in the implementation of Ĥ. A naive matrix–matrix implementation requires O
(

p4
)

mul-
tiplications and, hence, scales super-linearly with the number of degrees of freedom. In contrast, treating the primary and 
condensed part separately and exploiting the tensor-product structure yields linear scaling, as shown in [10].

5. Sum-factorization of the condensed equation

The condensed operator Ĥ is composed of the primary and the condensed part: The former is the restriction of the 
full Helmholtz operator to the boundary nodes and the suboperators inherit the tensor-product structure. Since most of 
the remaining degrees of freedom reside on the element faces, the face-to-face coupling is the most expensive suboperator 
and requires investigation. In the following compass notation will be utilized to identify faces of the element by the index 
set I = {w,e, s,n,b, t}. As all of the suboperators for the six faces are similar, the discussion will utilize the east face, Fe
in compass notation (Fig. 1b). The degrees of freedom on this face, uFe , correspond to

{
uijp

}
i, j=1,...,p−1 using the notation 

from (7). Hence, the primary part from the east face onto itself can be written as
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HFeFe = d0MII ⊗ MII ⊗ Mpp + d1MII ⊗ MII ⊗ K pp + d2MII ⊗ KII ⊗ Mpp + d3KII ⊗ MII ⊗ Mpp .

Due to the symmetry of the system matrices and the last dimension of the tensor-product operating on only one value, the 
above becomes

HFeFe = d0M00MII ⊗ MII + d1 K00MII ⊗ MII + d2M00MII ⊗ KII + d3M00KII ⊗ MII , (16)

with d0 . . .d3 from (11) and MII and KII as the interior part of the one-dimensional mass and stiffness matrices. This 
expression is readily evaluated in 2n3

I +O
(
n2

I

)
multiplications, where the number of points per face is n2

I = (p − 1)2. The 
other terms of the primary part map between opposite faces and are diagonal, e.g.

HFwFe = d1 K0pMII ⊗ MII . (17)

Due to the diagonal mass matrix only the Laplace terms couple collocation points, and a face gets only coupled with the 
edges around it and the opposite face. The cross-terms between non-opposing faces, e.g. east and north face, compute to 
zero. Hence, the whole primary part requires 6 · 2n3

I +O
(
n2

I

)
multiplications and scales linearly with the number of degrees 

of freedom.
The condensed part consists of three suboperators:

Hcond = HBIH
−1
II HIB .

As established in Section 3, only the Laplace terms infer interaction between nodes in an element. This interaction is along 
mesh lines. Hence, the element edges and vertices do not map into the interior, only the faces of the element do. A first 
implementation of the condensed part consists of precomputing the face-to-face operators and using them directly, as 
done in Algorithm 2. Since the matrices possess n2

I · n2
I entries, the algorithm requires 6n2

I · 6n2
I = 36n4

I multiplications. The 
scaling is super-linear with respect to the number of degrees of freedom, but an implementation can benefit from optimized 
libraries, e.g. level 3 BLAS routines [17], mitigating this drawback.

Algorithm 2 Evaluation of the condensed operator in a direct face-to-face variant.
foreach j ∈ I do

vF j ← ∑
i∈I Hcond

F j Fi
uFi

end

Reference [9] of the present authors investigated a linearly scaling variant of the operator based on tensor products. 
Linear scaling is possible when exploiting the tensor-product structure of all suboperators. For HBI and HIB a tensor-product 
structure is induced by the restriction of (10) to the boundary nodes. The inverse H−1

II can be expressed via the fast diago-
nalization method [13] to yield

H−1
II = (SII ⊗ SII ⊗ SII)D−1 (SII ⊗ SII ⊗ SII)

T (18)

where

D = d0I ⊗ I ⊗ I + d1I ⊗ I ⊗ � + d2I ⊗ � ⊗ I + d3� ⊗ I ⊗ I (19)

and

SIIMIIS
T
II = I, SIIKIIS

T
II = � . (20)

The last expression defines the one-dimensional transformation matrix SII and the matrix of eigenvalues � to the gener-
alized eigenproblem for KII and MII . While the diagonal matrix D is constructed of tensor-product matrices, its inverse is 
diagonal as well but not a tensor-product matrix any more. Instead of using Algorithm 2, a sum-factorization in the inner 
element eigenspace can be utilized for the face-to-face operators, e.g. for face west

vFw =
∑
i∈I

Hcond
FwFi

uFi

=
∑
i∈I

HFwI (SII ⊗ SII ⊗ SII)︸ ︷︷ ︸
HFwE

D−1
(

ST
II ⊗ ST

II ⊗ ST
II

)
HIFi︸ ︷︷ ︸

HEFi

uFi

⇔ vFw = HFwED−1
∑
i∈I

HEFi uFi , (21)

where the index E denotes the inner element eigenspace. Table 1 lists all the suboperators HEFi . Being products of 
tensor-product matrices they are tensor-product matrices themselves and are applicable in 3n3

I multiplications. First com-
puting D−1 ∑

i∈I HEFi uFi , then using it to calculate the six vectors vF j leads to Algorithm 3. This algorithm evaluates the 
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Table 1
Suboperators of the factorized condensed part of one element.

i HFi E HEFi

w d1 (MIISII) ⊗ (MIISII) ⊗ (K0ISII) d1
(
ST

II MII
) ⊗ (

ST
II MII

) ⊗ (
ST

II KI0
)

e d1 (MIISII) ⊗ (MIISII) ⊗ (
KpISII

)
d1

(
ST

II MII
) ⊗ (

ST
II MII

) ⊗ (
ST

II KIp
)

s d2 (MIISII) ⊗ (K0ISII) ⊗ (MIISII) d2
(
ST

II MII
) ⊗ (

ST
II KI0

) ⊗ (
ST

II MII
)

n d2 (MIISII) ⊗ (
KpISII

) ⊗ (MIISII) d2
(
ST

II MII
) ⊗ (

ST
II KIp

) ⊗ (
ST

II MII
)

b d3 (K0ISII) ⊗ (MIISII) ⊗ (MIISII) d3
(
ST

II KI0
) ⊗ (

ST
II MII

) ⊗ (
ST

II MII
)

t d3
(
KpISII

) ⊗ (MIISII) ⊗ (MIISII) d3
(
ST

II KIp
) ⊗ (

ST
II MII

) ⊗ (
ST

II MII
)

condensed part in 37n3
I multiplications and, thus, achieves linear complexity. Additionally, the memory requirements be-

come linear as well, since only D−1 is required, whereas all the other matrices are independent of the number of elements.
While Algorithm 3 uses fewer multiplications for p ≥ 3, the implementation was only faster for polynomial de-

grees p > 10 [9]. As current high-order large-scale simulations employ polynomial degrees ranging between 8 and 12 [11,
18], the possible gains actually achieved are small or even negative. However, further factorization leads to more efficient 
operators, as developed below.

Algorithm 3 Evaluation of the condensed part that accumulates contributions in the eigenspace and then maps back to the 
faces.
ǔ ← ∑

i∈I HEFi uFi

v̌ ← D−1ǔ
foreach j ∈ I do

vF j ← HF j Ev̌
end

6. Factorizing the factorization

Table 1 assembles the tensor-product suboperators of the condensed part used in Algorithm 3. Two thirds of the matrix 
operations stem from the application of MIISII or its transpose. Eliminating these common terms lowers the multiplication 
count considerably and is a key to achieving better performance. A coordinate transformation provides an easy approach 
towards this goal, as it leads to new system matrices K̃ and M̃, which possess favorable properties. By applying the matrix

S =
⎛
⎝1 0 0

0 SII 0
0 0 1

⎞
⎠ (22)

to all three directions, the element Helmholtz operator He defined in (10) is transformed to

H̃e : = (S ⊗ S ⊗ S)He

(
ST ⊗ ST ⊗ ST

)
= de,0

(
SMST

)
⊗

(
SMST

)
⊗

(
SMST

)
+ de,1

(
SMST

)
⊗

(
SMST

)
⊗

(
SKST

)
+ de,2

(
SMST

)
⊗

(
SKST

)
⊗

(
SMST

)
+ de,3

(
SKST

)
⊗

(
SMST

)
⊗

(
SKST

)
. (23)

Defining the transformed mass matrix

M̃ = SMST =
⎛
⎝M00 0 0

0 I 0
0 0 Mpp

⎞
⎠ (24)

and the transformed stiffness matrix,

K̃ = SKST =
⎛
⎝ K00 K0IST

II K0p

SIIKI0 � SIIKIp

Kp0 KpIST
II Kpp

⎞
⎠ , (25)

reduces the transformed Helmholtz operator to

H̃e = de,0M̃ ⊗ M̃ ⊗ M̃ + de,1M̃ ⊗ M̃ ⊗ K̃ + de,2M̃ ⊗ K̃ ⊗ M̃ + de,3K̃ ⊗ M̃ ⊗ M̃ . (26)

In the transformed system both M̃II = I and K̃II = � are diagonal. As a result, the generalized eigenvalue decomposition 
of K̃II with respect to M̃II = I possesses the transformation matrix
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Table 2
Suboperators of the factorized condensed part in 
the transformed system.

i H̃Fi E H̃EFi

w d1I ⊗ I ⊗ K̃0I d1I ⊗ I ⊗ K̃I0

e d1I ⊗ I ⊗ K̃pI d1I ⊗ I ⊗ K̃Ip

s d2I ⊗ K̃0I ⊗ I d2I ⊗ K̃I0 ⊗ I
n d2I ⊗ K̃pI ⊗ I d2I ⊗ K̃Ip ⊗ I
b d3K̃0I ⊗ I ⊗ I d3K̃I0 ⊗ I ⊗ I
t d3K̃pI ⊗ I ⊗ I d3K̃Ip ⊗ I ⊗ I

S̃II = I (27)

⇒ M̃IĨSII = I . (28)

The above identities simplify the suboperators from Table 1 to those in Table 2, thereby lowering the operation count. Where 
the condensed part of the original operator required 13n3

I + 24n3
I multiplications, the condensed part of the transformed 

system utilizes only 13n3
I multiplications only. In addition, the primary part simplifies as well. The matrix HFeFe in (16), e.g., 

becomes

H̃FeFe = d0M00I ⊗ I + d1 K00I ⊗ I + d2M00I ⊗ � + d3M00� ⊗ I (29)

which is diagonal as well. The primary part of the transformed system now requires O
(
n2

I

)
multiplications compared 

to 12n3
I +O

(
n2

I

)
with the original form (16).

While the operator application simplifies, the pre- and post-processing steps expand due to the transformation. This is 
reflected by Algorithm 4, which solves the transformed system involving the transformed operator ˆ̃H = H̃BB − H̃BIH̃

−1
II H̃IB.

Algorithm 4 Solution algorithm with static condensation in transformed system.
Transform, restrict to boundary nodes, condense right-hand side
foreach �e do

ũe ← (
S−1 ⊗ S−1 ⊗ S−1

)T
ue

F̃e ← (
S−1 ⊗ S−1 ⊗ S−1

)
Fe

ˆ̃Fe ← F̃B,e − H̃BI,eH̃−1
II,e F̃I,e

ˆ̃ue ← ũB,e

end

ˆ̃u ← Solution(R̂ ˆ̃HR̂T ˆ̃u = R̂ ˆ̃F)

Regain interior degrees of freedom, transform back
foreach �e do

ũI,e ← H̃−1
II,e

(̃
FI,e − H̃IB,e ũB,e

)
ũe ← (

ũB,e ũI,e
)

ue ← (S ⊗ S ⊗ S)T ũe
end

7. Efficiency of operators

The previous sections presented several variants to apply the condensed Helmholtz operator. The first one realizes Algo-
rithm 2, the naive approach, using a single full matrix–matrix multiplication to couple the faces of the condensed element. 
It is labeled MMC. The matrix incorporates a primary and a condensed part and requires 36n4

I ne multiplications for appli-
cation. The second variant implements Algorithm 3 with tensor products and is labeled TPC. It uses 12n3

I ne multiplications 
for the primary and 37n3

I ne for the condensed part. The tensor-product variant for the transformed system is termed TPT in 
the following and only requires 13n3

I ne multiplications in total. Table 3 summarizes the multiplication count of the variants 
and their precomputation costs.

Runtime is not proportional to the number of multiplications, as loading, storing, and execution take time as well. Hence, 
performance tests were conducted to directly measure the efficiency of the different operators. The polynomial degree was 
varied between 2 ≤ p ≤ 32 for a constant number of elements ne = 512 and a Helmholtz parameter λ = π .

The operators were implemented in Fortran 2008 and compiled with the Intel Fortran compiler v. 2015, where a single 
call to DGEMM served for computing the face-to-face interaction in MMC. The measurements were conducted on a single 
core of an Intel Xeon E5-2690. The setup and application of each operator was repeated 101 times and the last 100 times 
averaged, to remove effects from library loading.
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Table 3
Complexities of leading terms of application and precomputation steps for three 
different variants of the condensed Helmholtz operator.

Variant Precomputation Primary part Condensed part

MMC O
(
n5

I ne
)

56n2
I ne 36n4

I ne

TPC O
(
n3

I ne
)

12n3
I ne 37n3

I ne

TPT O
(
n3

I ne
)

68n2
I ne 13n3

I ne

Fig. 3. Average runtime of matrix precomputation and operator evaluation with the different variants as a function of the polynomial degree p us-
ing ne = 512. (a): Operator precomputation, (b): operator application.

Fig. 3a depicts operator setup times. The precomputation scales with the expected O
(
n5

I

)
for MMC [4] and with O

(
n3

I

)
for TPC and TPT. For homogeneous grids, where the setup of MMC reduces to that of one element, the setup times are in 
the same order of magnitude as the time for a single application of the operator, shown in Fig. 3b, and can therefore be 
neglected for unsteady solution processes requiring a huge number of time steps. With non-uniform meshes, the setup time 
of MMC increases ne-fold, possibly dominating the runtime of the whole solver process, as the setup time then is equal 
to the time of about 200 operator applications. Furthermore, storing the full matrices becomes a problem in particular 
with double precision. Using a polynomial degree of p = 17 and ne = 512 the face-to-face matrices require approximately 
9.7 Gigabyte of memory. The variants TPC and TPT do not encounter these problems due to the linear scaling of their 
memory requirements.

Fig. 3b depicts measured operator execution times. For MMC the operator runtime starts with some oddity at p = 2, but 
scales with n4

I starting from p = 5. TPC starts with a higher runtime for p = 3, but due to the lower slope it becomes faster 
than MMC at p = 10 and achieves a speedup of 10 over MMC for p = 32. TPT exhibits the best of both worlds: It starts 
with a lower runtime than MMC and scales as TPC does. Furthermore, it is faster than TPC by a factor of more than 2 and 
is 20 times faster than MMC for p = 32.

According to Table 3, a slope of 3 is expected for the tensor-product based versions, but the measured runtimes exhibit a 
slightly smaller slope of about 2.8. Multiple explanations are possible. First, and foremost, the primary part consists of many 
suboperators whose operation count scales with O

(
n2

I ne
)
. Second, the implementation consists of loops with nI iterations. 

These become more efficient as the polynomial degree increases. The combination of both can yield the lower slope. The 
result is an operator whose execution time scales sub-linearly with respect to the number of degrees of freedom.

8. Performance of solvers

The previous sections focused on the linear scaling of operators with the number of degrees of freedom when changing 
the order as a prerequisite for solvers with linear scaling. A typical solver, however, does not only consist of the operator 
to be applied. A good iteration scheme and preconditioner are required as well for the fast solution of the given equation. 
In most cases, multigrid techniques are employed to achieve a constant iteration count. To investigate the impact of the 
condition of the system matrices on the solution procedure, a conjugate gradient solver suffices [19,20], leaving only the 
choice of the preconditioner to be made.

As the preconditioner is required to scale linearly with respect to the number of degrees of freedom, only diagonal and 
tensor-product preconditioners are suited. In [9], block-Jacobi preconditioners for the faces of the elements were investi-
gated. These employ the exact inverse of the operators from a face to itself and can be evaluated in tensor-product form. 
The remaining grid entities, i.e. edges and vertices, are treated similarly. This preconditioner is referred to as the block 
preconditioner in the following.

Four solvers are tested here. The first one, labeled UC, is an unpreconditioned solver for the condensed system. The 
second one, DC, adds diagonal preconditioning. The third one, BC, applies block preconditioning to the condensed system. 
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Table 4
Complexities of the leading terms of the different parts of the solvers 
investigated.

Solver Variant Operator Preconditioning Preconditioner

UC TPC 49n3
I ne None −

DC TPC 49n3
I ne Diagonal 6n2

I ne

BC TPC 49n3
I ne Block 24n3

I ne

BT TPT 13n3
I ne Diagonal 6n2

I ne

Fig. 4. Meshes with 8 × 8 elements in the x1–x2-plane for different values of the expansion factor.

All three variants utilize TPC as evaluation method for the static condensed Helmholtz operator. The fourth solver, labeled 
BT, works in the transformed system and applies TPT in combination with block preconditioning, which reduces to the 
application of a diagonal matrix in the transformed system. Table 4 summarizes the complexities of one iteration.

The test problem considered is created by a manufactured solution to (5) in the domain � = (0,2π)3 with inhomoge-
neous Dirichlet boundary conditions. The chosen solution is

uex (x) = cos (k(x1 − 3x2 + 2x3)) sin (k(1 + x1))

· sin (k(1 − x2)) sin (k(2x1 + x2)) sin (k(3x1 − 2x2 + 2x3)) ,
(30)

generalizing the one employed in [7] to three dimensions. The right-hand side of (5) is evaluated analytically from

f (x) = λuex (x) − �uex (x) , (31)

and the boundary conditions set to uex.
In the following, the case λ = 0 is investigated. This in fact is the Poisson equation for which the resulting system matrix 

is not diagonally dominant anymore. Hence, this case is harder than λ > 0, thus providing the ultimate test. The stiffness 
parameter in (30) is set to k = 5.

The domain is discretized using ne = 8 × 8 × 8 elements, where a constant expansion factor α between the elements 
leads to a non-uniform spacing as illustrated in Fig. 4. As a result, the aspect ratio of the elements in the grids can differ 
substantially from element to element when α gets larger. This leads to elements of cube-like, pancake-like, and needle-like 
shape populating the same grid and results in a system matrix teeming with different eigenvalues due to the varying 
metric coefficients. Hence, preconditioning is required to attain fast convergence and the test focuses on the gain by the 
preconditioner compared to the cost of applying it.

Three cases are investigated here (Fig. 4): α = 1, implying a uniform mesh with a maximum aspect ratio of ARmax = 1; 
α = 1.5, where the maximum aspect ratio in the x1–x2 plane is ARmax ≈ 17; and α = 2 with ARmax = 128. The solution 
process was stopped when the Euclidean norm of the residual is reduced by a factor of 1012 . The computations were 
repeated 11 times. Only the last 10 repetitions contribute to the average runtime, precluding influences from initialization, 
e.g. library loading. As for time-dependent simulations with implicit diffusion treatment the size of the time step, and 
thereby the Helmholtz parameter λ, usually change from time step to time step if the time step size is adjusted according 
to a stability criterion, the precomputation times are included in the measurements. The hardware configuration was the 
same as employed in Section 7 above.

Fig. 5 summarizes the results of the test. In all three cases, the iteration count behaves similarly: The number of iterations 
starts at a low value and increases with the polynomial degree, as to be expected. The slope is the largest for UC, slightly 
lower for DC, and lowest for BC and BT, which exhibit nearly the same iteration count. For the latter three solvers, the 
iteration count does not differ substantially for different values of α, only an increase by a factor of about 1.5 is observed 
between ARmax = 1 and ARmax = 128. The unpreconditioned solver is not as robust: A factor of four lies between the 
iteration count for α = 1 and the one for α = 1.5 and a twenty-fold increase is found between α = 1 and α = 2. Hence, 



446 I. Huismann et al. / Journal of Computational Physics 346 (2017) 437–448
Fig. 5. Iteration count and CPU time for the solution of the linear system using meshes with different expansion factors. (a) and (b): α = 1, (c) and (d): α =
1.5, (e) and (f): α = 2.

when regarding the number of iterations, all preconditioned variants are usable, though DC with some drawbacks compared 
to BC and BT. But the unpreconditioned one is not usable for non-uniform meshes.

Table 5 lists the runtimes per iteration for the case α = 2. As expected, the unpreconditioned solver yields the lowest 
runtime per iteration for the condensed system, with the diagonal preconditioner slightly increasing the runtime and the 
block preconditioner taking 50% longer per iteration. However, this advantage is over-compensated by the iteration count of 
UC: The diagonal preconditioning reduces the runtime of the solver by a factor around 10 for p = 8 and approximately by 
a factor of 17 for p = 32. Using the block-preconditioning yields further savings in runtime. Hence, the large effect of the 
block-preconditioning on the iteration count is mitigated by the runtime spent for preconditioning: The solver DC uses only 
a quarter more runtime for polynomial degrees p ≤ 16 than BC and requires less implementation effort.

The solver BC results in a large operator runtime and involves a preconditioner which is too costly. These drawbacks are 
removed with BT: The operator is faster and the preconditioner is diagonal in the transformed system and, hence, cheap to 
apply, while generating the same iteration count. Combining both properties leads to a performance gain by a factor of 3 to 
4 compared to the diagonally preconditioned case and a factor of 2 to 3 compared to the block-preconditioned version.

While these savings seem insignificant, it has to be kept in mind, that in fact the solvers do not only consist of operator 
and preconditioner. Many array operations are present in a CG solver and the gather-scatter operation requires runtime as 
well. The new variant spends most of the time not in applying the operator nor in the preconditioner, but rather multiplying 
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Table 5
Computation times per degree of freedom and approximated iteration times per degree of 
freedom as a function of the polynomial degree obtained with the four different solvers us-
ing α = 2 and ne = 83.

p Iteration time per DOF [ns] Solution time per DOF [μs]

UC DC BC BT UC DC BC BT

8 52.3 56.2 75.7 25.6 154 15.3 12.6 4.25
12 33.4 36.8 49.2 20.3 133 12.0 9.05 3.73
16 29.1 31.7 41.5 17.7 145 11.6 8.17 3.47
20 27.3 29.5 38.9 16.1 159 11.6 8.02 3.31
24 26.6 28.6 38.8 14.4 177 12.0 8.34 3.09
28 24.9 26.5 36.3 13.1 185 11.7 8.03 2.88
32 23.6 25.2 34.4 12.4 192 11.5 7.81 2.81

Fig. 6. Iteration count and runtimes, averaged over the last 10 of 11 runs, for p = 16 when varying the number of elements.

arrays, etc. For these, no performance gain is possible, so that a hard barrier is present which limits the potential of further 
factorization.

To investigate the robustness of the solvers against the number of elements ne, the testcase α = 1 was repeated for a 
constant polynomial degree of p = 16 with ne varying from 23 to 163. With CG solvers the runtime of a three-dimensional 
finite element solver generally scales with n4/3

e [20]. Fig. 6 shows the iteration count and the CPU time obtained by averaging 
over the last 10 of 11 runs of the present SEM solvers. Overall, the number of iterations increases with the number of 
elements. An exception are drops occurring at ne = 53,103,153. These coincide with the wave numbers of the manufactured 
solution, 5 = k,10 = 2k,15 = 3k and, hence, are an artifact of the chosen test. The number of iterations exhibits a slightly 
lower slope than 1/3. As a result the CPU time scales better than the expected n4/3

e . This effect is welcomed, but the reason 
is probably that the number of elements is still somewhat below the asymptotic regime. Yet the solvers are not robust 
against an increase in the number of elements, which was to be expected. To achieve this feat, preconditioning with the 
topology in mind is required, e.g., using low-order finite elements [21,8] or multigrid [22]. This, however, is beyond the 
scope of the current paper.

9. Conclusions

This paper proposes a new technique for evaluating the condensed Helmholtz operator when using cuboidal elements. 
It is based on a tensor-product factorization, with a suitably chosen transformation optimizing the multiplication count. 
The resulting variant of the discrete operator not only scales linearly with the number of degrees of freedom, which was a 
major goal of this paper, but also reduces the multiplication count to a quarter of that required by an earlier method [9]. This 
allows the new technique to outpace even variants utilizing highly optimized libraries for matrix–matrix multiplications. An 
example was provided with the MMC variant that uses DGEMM. Not only does the new method yield a speedup for all 
polynomial degrees over MMC, by a factor of 20 for p = 32 for example. It also achieves a speedup of 2 over previous 
tensor-product implementations in [9].

After comparing the efficiency of the operators, different solvers based on the two fastest evaluation techniques were 
investigated using preconditioning with linear scaling in the operation count. Block-Jacobi type preconditioners provided a 
lower iteration count than diagonal preconditioning, which is nearly independent of the aspect ratio of the elements. For 
instance an increase of the maximum aspect ratio from ARmax = 1 to ARmax = 128 adds just 50% to the iteration count. 
Yet in the original condensed system, the block preconditioning is far more expensive than in the transformed system. This 
makes the new solver 2 to 3 times faster than the previous variants. Moreover, the scaling of the operators leads to a linear 
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scaling of the runtime with respect to the number of degrees of freedom. This was achieved with standard programming 
language, compiler, and hardware.

While the proposed solver scales very well with respect to the polynomial degree, the performance degrades with the 
number of elements. This issue was mostly disregarded here, except with some timing measurements. It can be removed by 
a multigrid approach [22], which is, however, beyond the scope of this paper. Actually, in the transformed system efficient 
preconditioning can be diagonal which is well suited for operator-based multigrid variants such as cascadic multigrid [23]
or multigrid CG methods [24]. Future work will focus on combining the operator factorization laid out in this paper with 
multigrid techniques to attain a constant iteration count and, hence, to construct a solver scaling linearly in all parameters.
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