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We present a fluctuating boundary integral method (FBIM) for overdamped Brownian 
Dynamics (BD) of two-dimensional periodic suspensions of rigid particles of complex 
shape immersed in a Stokes fluid. We develop a novel approach for generating Brownian 
displacements that arise in response to the thermal fluctuations in the fluid. Our approach 
relies on a first-kind boundary integral formulation of a mobility problem in which 
a random surface velocity is prescribed on the particle surface, with zero mean and 
covariance proportional to the Green’s function for Stokes flow (Stokeslet). This approach 
yields an algorithm that scales linearly in the number of particles for both deterministic 
and stochastic dynamics, handles particles of complex shape, achieves high order of 
accuracy, and can be generalized to three dimensions and other boundary conditions. We 
show that Brownian displacements generated by our method obey the discrete fluctuation–
dissipation balance relation (DFDB). Based on a recently-developed Positively Split Ewald 
method Fiore et al. (2017) [24], near-field contributions to the Brownian displacements are 
efficiently approximated by iterative methods in real space, while far-field contributions are 
rapidly generated by fast Fourier-space methods based on fluctuating hydrodynamics. FBIM 
provides the key ingredient for time integration of the overdamped Langevin equations 
for Brownian suspensions of rigid particles. We demonstrate that FBIM obeys DFDB by 
performing equilibrium BD simulations of suspensions of starfish-shaped bodies using a 
random finite difference temporal integrator.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Complex fluids containing colloidal particles are ubiquitous in science and industrial applications. Colloidal particles span 
length scales from several nanometers, such as magnetic nano-propellers [1] and molecular motors [2,3], to a few microns, 
such as self-phoretic Janus particles [4] and motile microorganisms [5]. In the last decade, increasing attention has been 
given to the emerging field of active colloidal suspensions [6–10], in which particles move autonomously or in response 
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to external forces. Despite the advances in the theory and experimental design of passive and active colloids, developing 
accurate and efficient computational methods that are capable of simulating tens or hundreds of thousands of particles, as 
well as handling particles of complex shape, still remains a formidable challenge. Here we develop a novel algorithm for 
generating the Brownian (stochastic) displacements required to perform overdamped Brownian dynamics of a suspension 
of rigid particles immersed in a Stokes fluid. Our method is based on boundary integral techniques, scales linearly in the 
number of particles for both deterministic and stochastic dynamics, handles particles of complex shape, and achieves high 
order accuracy. Because of its close connection to fluctuating hydrodynamics, we refer to our method as the Fluctuating 
Boundary Integral Method (FBIM). We restrict our attention to two-dimensional periodic domains. However, our approach can 
be extended to three dimensions and confined suspensions.

The two key ingredients that need to be included in a computational method for colloidal suspensions are the long-
ranged hydrodynamic interactions (HIs) and the correlated Brownian motion of the particles. In the absence of active and 
Brownian motion, describing the hydrodynamics of Stokesian suspensions requires the accurate solution of mobility prob-
lems [11,12], i.e., computing the linear and angular velocities of the particles in response to applied (external) forces and 
torques. This process defines the action of a body mobility matrix, which converts the applied forces to the resulting parti-
cle motions. The mobility matrix encodes the many-body hydrodynamic interactions among the particles, and is therefore 
dense with long-ranged interactions between all bodies. In the presence of Brownian motion, fluctuation–dissipation balance 
requires the Brownian displacements to have zero mean and covariance proportional to the hydrodynamic mobility matrix. 
This necessitates an algorithm for generating Gaussian random variables with covariance equal to the body mobility matrix. 
In this work, we present a new linear-scaling boundary integral method to generate, together, both the deterministic and 
Brownian displacements.

For passive suspensions of spherical particles in zero Reynolds number flows (infinite Schmidt number), the methods 
of Brownian [13–17] and Stokesian Dynamics (SD) [18–20] have dominated the chemical engineering community. These 
methods are tailored to sphere suspensions and utilize a multipole hierarchy truncated at either the monopole (BD) or 
dipole (SD) level in order to capture the far-field behavior of the hydrodynamic interactions. Modern fast algorithms can 
apply the action of the truncated mobility matrix with linear-scaling by using the Fast Multipole Method (FMM) for an 
unbounded domain [17], and using Ewald-like methods for periodic [20,21] and confined domains [15]. The Brownian 
(stochastic) displacements are typically generated iteratively by a Chebyshev polynomial approximation method [22], or by 
the Lanczos algorithm for application of the matrix square root [23]. However, since the hydrodynamic interactions among 
particles decay slowly like the inverse of distance in three dimensions and diverge logarithmically in two dimensions, the 
condition number of the mobility matrix grows as the number of particles increases (keeping the packing fraction fixed, see 
[24, Fig. 1]). Therefore, the overall computational scaling for generating Brownian displacements using iterative methods is 
only superlinear in general.

The fluctuating Lattice Boltzmann (FLB) method has been used for Brownian suspensions for some time [25,26]. This 
is an explicit solvent method which includes fluid inertia and thus operates at finite Schmidt number instead of in the 
overdamped limit we are interested in; furthermore, FLB relies on artificial fluid compressibility to avoid solving Poisson 
problems for the pressure. While the cost of each time step is linear in the number of particles (more precisely, the number 
of fluid cells) N , in three dimensions O

(
N2/3

)
time steps are required for vorticity to diffuse throughout the system volume, 

leading to superlinear O
(
N5/3

)
overall complexity [24].

As an alternative, methods such as the Fluctuating Immersed Boundary method (FIB) [27] and the fluctuating Force 
Coupling Method (FCM) [28,29] utilize fluctuating hydrodynamics to generate the Brownian increments in linear time by 
solving the fluctuating steady Stokes equations on a grid. This ensures that the computational cost of Brownian simulation is 
only marginally larger than the cost of deterministic simulations, in stark contrast to traditional BD approaches. The FIB/FCM 
approach to generating the Brownian displacements is further improved in the recently-developed Positively Split Ewald 
(PSE) method [24]. In PSE, the Rotne–Prager–Yamakawa (RPY) tensor [30] is used to capture the long-ranged hydrodynamic 
interactions, and its action is computed with spectral accuracy by extending the Spectral Ewald [21] method for the RPY 
tensor. The key idea in PSE is to use the Hasimoto splitting [31] to decompose the RPY tensor into near-field (short-ranged) 
and far-field (long-ranged) contributions, in a way that ensures that both contributions are independently symmetric positive 
definite (SPD). This makes it possible to apply a Lanczos algorithm [23] to generate the near-field contribution with only 
a small (O(1)) number of iterations, while the far-field contribution is computed by fast Fourier-space methods based on 
fluctuating hydrodynamics using only a few FFTs. Later in Sec. 3.3, we will apply the same SPD splitting idea to the Green’s 
function of steady Stokes flow to achieve linear scaling in the FBIM.

Essentially all commonly-used methods for overdamped Brownian suspension flows are limited to spherical particles 
(with some extensions to spheroids [32]), and generalization to include particles of complex shape is generally difficult. Fur-
ther, these methods employ an uncontrolled truncation of a multipole expansion hierarchy and therefore become inaccurate 
when particles get close to one another as in dense suspensions.

For deterministic Stokes problems, the Boundary Integral Method (BIM) [12] is very well-developed [33–35] and allows 
one to handle complex particle shapes and achieve controlled accuracy even for dense suspensions [36,37]. In the boundary 
integral framework, the steady Stokes equations are reformulated as an integral equation of unknown densities that are 
defined on the boundary, using a first-kind (single-layer densities) or second-kind (double-layer densities) formulation, or 
a mixture of both. Suspended particles of complex geometry can be directly discretized by a surface mesh, and, by a suit-
able choice of surface quadrature, higher-order (or even spectral) accuracy can be achieved. The key difficulty is handling 
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the singularity of the Green’s functions appearing in the boundary integral formulation. One possibility is to regularize the 
singularity, as done in the method of regularized Stokeslets [38] and the recently-developed linear-scaling rigid multiblob 
method [39], both of which rely on a regularized first-kind formulation. Regularization, however, comes at a drastic loss of 
accuracy, and to resolve near-field hydrodynamic interactions accurately one must make use of high-order accurate singular 
quadratures for the singular or near-singular kernel in the first- and second-kind integral operators, such as quadrature-by-
expansion (QBX) [40,41].

Discretizing the boundary integral equation typically leads to a dense linear system, and fast algorithms for performing 
the dense matrix-vector product are required to achieve linear-scaling, such as the Fast Multipole Method (FMM) [33,
35], and Spectral Ewald methods [36,37]. Much of the state-of-the-art BIM work on Stokes mobility problems [35–37,42]
uses (completed) second-kind (double-layer) formulations, and we will not review it in detail here since we will rely on 
a first-kind formulation. The current development of BIM for Stokesian suspensions is limited to the deterministic case 
only. In this work, we combine singular quadrature (namely, Alpert quadrature in two dimensions) and the idea of SPD 
splitting from the PSE method to develop a linear-scaling method for generating the Brownian displacements based on a 
first-kind boundary integral formulation. The key idea is that, instead of adding a stochastic stress to the fluid equations as 
done in fluctuating hydrodynamics, we prescribe a random surface velocity (distribution) on the particle surface that has 
zero mean and covariance proportional to the (singular) periodic Green’s function of Stokes flow (the periodic Stokeslet). 
Reformulating the resulting stochastic boundary value problem as a first-kind boundary integral equation reveals that the 
random surface velocity has covariance proportional to the single-layer integral operator, which suggests that one ought to 
handle the singularity of the covariance using the same machinery used to handle the singularity of the Green’s function 
in the first-kind BIM. This allows us to develop a numerical method that satisfies discrete fluctuation–dissipation balance 
(DFDB) to within solver and roundoff errors.

The outline of this paper is as follows. In the continuum formulation (Sec. 2), we show that computing the action of the 
hydrodynamic mobility matrix and its square root can be formulated equivalently as the solution of a Stokes boundary value 
problem, herein referred to as the Stochastic Stokes Boundary Value Problem (SSBVP). Reformulating the SSBVP as a first-kind 
boundary integral equation allows us to develop a numerical method (Sec. 3) that satisfies discrete fluctuation–dissipation 
balance (DFDB) to within solver and roundoff errors. We apply the FBIM to several benchmark problems in two dimensions 
(Sec. 4), and assess the effectiveness of the method by its accuracy and convergence, robustness, and scalability for sus-
pensions of many rigid disks. We also couple the FBIM with stochastic temporal integrators based on the idea of random 
finite differences [27,43,44] to perform BD simulations with starfish-shaped particles, and confirm that DFBD is obtained 
for sufficiently small time step sizes by comparing the numerical equilibrium distribution to the correct Gibbs–Boltzmann 
distribution.

2. Continuum formulation

This section presents the continuum formulation of the equations of motion for Brownian suspensions. We consider a 
suspension of N rigid Brownian particles of complex shape immersed in a viscous incompressible fluid with constant den-
sity ρ , viscosity η, and temperature T in a domain V with periodic boundary conditions. Each particle or body, indexed by 
β , is described by the position of a chosen “tracking point”, denoted by qβ , and its rotation relative to a chosen reference 
configuration, denoted by θβ . In this paper, we restrict the formulation and implementation to two spatial dimensions only, 
and θβ ∈ R is simply the angle of rotation. The generalization of the continuum formulation to three dimensional systems 
is conceptually straightforward but technically complicated by the fact that orientation in three dimensions cannot be rep-
resented by a vector in R3; instead, one can use normalized quaternions [43]. We denote the particle surface by �β which 
encloses an interior domain denoted by Dβ . The fluid domain exterior to the particles is defined by E = V\ 

{
∪N

β=1 Dβ

}
, 

where Dβ = Dβ ∪ �β .
A number of prior works [45–48] have arrived at a fluctuating hydrodynamics formulation of the equations of motion 

when fluid and particle inertia (and perhaps compressibility [49]) is accounted for.1 The fluid velocity v(r, t) and the 
pressure π follows the time-dependent fluctuating Stokes equations for all r ∈ E ,

ρ ∂t v + ∇π = η∇2 v + √
2ηkB T ∇ ·Z, (2.1a)

∇ · v = 0, (2.1b)

where kB is Boltzmann’s constant and Z(r, t) is a random Gaussian tensor field whose components are white in space and 
time with mean zero and covariance〈

Z i j(r, t) Zkl(r′, t)
〉 = (δikδ jl + δilδ jk)δ(r − r′)δ(t − t′). (2.2)

1 Note that Hauge and Martin-Lof [48] explain that there is some ambiguity in whether the stochastic traction is taken to be zero or nonzero on the 
particle surface; this choice does not, however, affect the resulting equations of motion for the bodies. We consider the formulation given here to be the 
more physically meaningful and follow Hinch [46], see in particular Section 3 of the comprehensive work of Roux [47].
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On the surface of �β , we assume that no-slip boundary condition (BC) holds,

v(x, t) = uβ + ωβ × (x − qβ), ∀x ∈ �β, (2.3)

where uβ and ωβ are the translational and rotational velocities of the particle. Each particle is also subject to applied force 
f β and torque τ β , which are related to the fluid stress tensor σ and stochastic stress tensor σ (s) by

mβ

duβ

dt
= f β −

∫
�β

(λβ + λ
(s)
β )(x)dSx,

Iβ · dωβ

dt
= τ β −

∫
�β

(x − xβ) × (λβ + λ
(s)
β )(x)dSx,

(2.4)

where mβ and Iβ are mass and moment of inertia tensor of body β . Here, λβ(x) = (σ · nβ)(x) and λ(s)
β (x) = (

σ (s) · nβ

)
(x)

are the normal components of the stress tensors on the outside of the surface of the body,

σ = −π I + η(∇v + ∇�v),

σ (s) = √
2ηkB TZ,

(2.5)

and nβ is the unit outward normal vector of �β pointing into the fluid domain.
In the overdamped (large Schmidt number) limit where the fluid velocity is eliminated as a fast variable through an 

adiabatic mode elimination procedure [50], the diffusive motion of the rigid bodies can be described by the stochastic 
differential equation (SDE) of Brownian Dynamics (BD)2 [47]:

d Q

dt
= N F +

√
2kB TN 1

2 W + (kB T )(∂Q ·N ), (2.6)

where Q β = {
qβ, θβ

}
and Q = {

Q β

}N
β=1 is a composite vector that collects the positions and orientations of particles (in 

two dimensions, Q β ∈ R
3). The first term on the right-hand-side of Eq. (2.6) is the deterministic motion of rigid bodies, 

where N ( Q ) � 0 is the symmetric positive semi-definite body mobility matrix that converts applied forces and torques 
F ( Q ) = {

f β( Q ),τ β( Q )
}N
β=1 to rigid body motion, and can be obtained by solving the standard mobility problem for rigid 

body motion,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · σ = ∇π − η∇2 v = 0,

∇ · v = 0,

v(x) = uβ + ωβ × (x − qβ), ∀ x ∈ �β,∫
�β

λβ(x)dSx = f β and
∫
�β

(x − xc) × λβ(x)dSx = τ β .

(2.7)

The random Brownian motion of the particles involves computing the “square root” of the body mobility matrix, denoted 
by N 1

2 ( Q ) acting on a vector of independent white noise processes W(t). In order for fluctuation–dissipation balance to 

hold, the matrix N 1
2 must satisfy N 1

2

(
N 1

2

)� = N , and does not necessarily have to be square. The last term on the 
right-hand-side of Eq. (2.6) is the stochastic drift term due to the Ito interpretation of the SDEs, where the divergence 
operator (∂x·) for a matrix-valued function A(x) is defined by (∂x · A)i = ∑

j ∂ Aij/∂x j .
Developing numerical schemes to integrate Eq. (2.6) has two main challenges. The first challenge is that, at every time 

step, one needs to generate the random velocity

U = {
uβ,ωβ

}N
β=1 = Ū + Ũ = N F +N 1

2 W , (2.8)

where Ū is the deterministic particle velocity due to applied forces and torques, Ũ is the random velocity due to the 
stochastic stress tensor, and W is a vector of independent and identically distributed (i.i.d.) Gaussian random variables with 
mean zero and covariance

〈W i W j〉 = 2kB T


t
δi j, (2.9)

2 We use the differential notation of SDEs common in the physics literature.
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where 
t is the time step size. More precisely, our task is to efficiently and accurately apply the action of N and N 1
2 . The 

second challenge is to compute or approximate the stochastic drift term (kB T )(∂Q · N ), which is conventionally handled 
by developing specialized stochastic temporal integrators [27,29,51–53]. The main focus of this paper is to tackle the first 
challenge by developing schemes that generate the action of N and N 1

2 based on a boundary integral formulation.

2.1. Boundary value problem formulation

For simplicity, we now consider only a single particle � described by {q, θ} immersed in a periodic domain V = [0, L]2, 
and we drop the subscript β . The generalization to account for many-body interaction is straightforward. In this section, 
we show that the random velocity given by Eq. (2.8) can be obtained by solving the Stochastic Stokes Boundary Value Problem
(SSBVP):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · σ = ∇π − η∇2 v = 0, r ∈ V\D,

∇ · v = 0,

v(x) = u + ω × (x − q) − v̆(x), x ∈ �,∫
�

λ(x)dSx = f and
∫
�

(x − q) × λ(x)dSx = τ ,

(2.10)

where v̆(x) is a random surface velocity prescribed on the particle, that has zero mean and covariance

〈v̆(x) v̆(y)〉 = 2kB T


t
G(x − y), for all (x �= y) ∈ �. (2.11)

Here G(r) is the Green’s function for steady Stokes flow with viscosity η, and includes the specified boundary conditions 
(periodic BCs in our case). For x = y, Eq. (2.11) is not well-defined since G is singular, which implies that v̆ is a distribution 
and not a function; a more precise definition is given later in Eq. (2.28).

By linearity of Stokes flow, the solution of Eq. (2.10) is the superposition of

v = v̄ + ṽ , σ = σ̄ + σ̃ , U = Ū + Ũ , (2.12)

where Ū = {ū, ω̄} and Ũ = {ũ, ω̃} with {v̄, σ̄ , ū, ω̄} satisfying a Stokes BVP without random surface velocity,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · σ̄ = ∇π̄ − η∇2 v̄ = 0,

∇ · v̄ = 0,

v̄(x) = ū + ω̄ × (x − q), x ∈ �∫
�

λ̄(x)dSx = f and
∫
�

(x − q) × λ̄(x)dSx = τ ,

(2.13)

and {ṽ, σ̃ , ũ, ω̃} satisfying a force- and torque-free Stokes BVP with a random surface velocity v̆ with zero mean and 
covariance (2.11),⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · σ̃ = ∇π̃ − η∇2 ṽ = 0,

∇ · ṽ = 0,

ṽ(x) = ũ + ω̃ × (x − q) − v̆(x), x ∈ �,∫
�

λ̃(x)dSx = 0 and
∫
�

(x − q) × λ̃(x)dSx = 0.

(2.14)

The BVP given by Eq. (2.13) is the standard mobility problem for rigid body motion that solves for the deterministic part of 
the particle velocity Ū = {ū, ω̄} =N F . The BVP given by Eq. (2.14) generates its stochastic part Ũ = {ũ, ω̃}.

To show that the random particle velocity Ũ determined by the mobility problem (2.14) indeed obeys the fluctuation–
dissipation balance,

〈Ũ Ũ
�〉 = 2kB T


t
N , (2.15)

we will invoke the Lorentz Reciprocal Theorem (LRT) [12, see Eq. (1.4.5)],∫
u · λ′ dS =

∫
u′ · λ dS, (2.16)
� �
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where {u, λ} and {u′, λ′} are two arbitrary velocity-traction pairs corresponding to solutions of the homogeneous Stokes 
equations. To apply the LRT, we substitute {u, λ} by {ṽ, ̃λ} from Eq. (2.14), and {u′, λ′} by {v(i), λ(i)}, where v(i) and λ(i)

are the velocity and traction of the standard mobility problem (2.13) with applied force and torque F = { f , τ } = e(i) , where 
e(i) ∈ R

3 is the ith column of the identity matrix. By using the associated BCs in Eq. (2.13) and Eq. (2.14) to express ṽ and 
v(i) on �, and then making use of the force and torque balance conditions for λ̃ and λ(i) , we can rewrite Eq. (2.16) as

Ũ · e(i) = Ũ i =
∫
�

v̆(x) · λ(i)(x)dSx. (2.17)

This allows to express the covariance of Ũ as:

〈Ũ i Ũ j〉 =
∫
�

∫
�

λ( j)(x) · 〈v̆(x)v̆(y)〉 · λ(i)(y)dS y dSx

= 2kB T


t

∫
�

∫
�

λ( j)(x) ·G(x − y) · λ(i)(y)dS y dSx.

(2.18)

It can be shown (see Appendix A) that the last integral in Eq. (2.18) is equal to the (i, j)th element of the body mobility 
matrix N , giving the desired result,

〈Ũ i Ũ j〉 = 2kB T


t
Ni j . (2.19)

This shows that solving the SSBVP (2.10) gives the desired deterministic and stochastic particle velocity

U = Ū + Ũ = N F +N 1
2 W . (2.20)

While the LRT has been used in the past to analyze the nonhomogeneous Stokes BVP involving the fluctuating stress 
[45], here we employ it to establish that the homogeneous Stokes BVP given by Eq. (2.14) and Eq. (2.11) yields the correct 
statistics for the rigid body motion of the immersed particles. The removal of the fluctuating stress driving the surrounding 
fluid allows for the eventual application of boundary integral techniques to solve the SSBVP.

2.2. First-kind integral formulation

For rigid particles moving in Stokes flow, we observe that the details of what happens inside the particle do not actually 
matter for its motion and its hydrodynamic interactions with other particles or boundaries. Therefore, it is possible to 
extend the fluid to the entire domain so that the fluid inside the body moves with a velocity that is continuous across the 
boundary of the body. Once we extend the fluid to the interior of bodies, we may write down an alternative formulation of 
the SSBVP (2.10) as a first-kind boundary integral equation [12],

v(x ∈ �) = u + ω × (x − q) − v̆(x) =
∫
�

G(x − y)ψ(y)dS y, (2.21)

along with the force and torque balance conditions∫
�

ψ(x)dSx = f and
∫
�

(x − q) × ψ(x)dSx = τ . (2.22)

Equations (2.21) and (2.22) together define a linear system of equations to be solved for the single-layer density ψ(x ∈ �)

and particle velocity U = {u,ω}. We remark that ψ is the jump in the normal component of the stress when going across 
the body surface from the “interior” flow to the “exterior” flow. If v̆ = 0, then ψ = λ is the traction.

In operator notation, we can write the system formed by Eqs. (2.21) and (2.22) as a saddle-point problem,[
M −K

−K∗ 0

][
ψ
U

]
= −

[
v̆
F

]
, (2.23)

where M denotes the single-layer integral operator defined by

(Mψ)(x ∈ �) =
∫
�

G(x − y)ψ(y)dS y, (2.24)

and K is a geometric operator that relates particle velocity to surface velocities,
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(KU )(x ∈ �) = u + ω × (x − q), (2.25)

and its adjoint K� is an integral operator that converts the single-layer density ψ to a force and torque,

K�ψ =
⎛
⎝∫

�

ψ(x)dSx ,

∫
�

(x − q) × ψ(x)dSx

⎞
⎠ = ( f ,τ ). (2.26)

The covariance of the random surface velocity v̆ can be written as

〈v̆ v̆〉 = 2kB T


t
M, (2.27)

by which we mean that Mψ ′ = 〈(v̆, ψ ′) v̆〉, for all ψ ′ in L2-space, and (·, ·) denotes the L2-inner product defined by 
( f , g) = ∫

�
f (x) · g(x) dSx . If the random surface velocity v̆ were a function and could therefore be evaluated pointwise, 

Eq. (2.27) would simply be a formal rewriting of Eq. (2.11). However, we reminder the reader again that Eq. (2.11) is also 
formal (in the same way that Eq. (2.2) is) and v̆ is a distribution and therefore cannot be evaluated pointwise. We can define 
v̆ more precisely as follows. Since M is a compact, self-adjoint and positive-semidefinite operator in the L2 sense, it has 
countably infinitely many eigenvalues λi ≥ 0 and orthonormal eigenfunctions w i , so we may write v̆ in the Karhunen–Loève 
expansion

v̆
d.=

∞∑
i=1

√
λi W i w i, (2.28)

where as before W i are independent Gaussian random variables with mean zero and variance 2kB T /
t . In formal operator 

notation, we will write Eq. (2.28) as v̆ = M 1
2 W , where 

(
M 1

2

)(
M 1

2

)� = M. We have found Eq. (2.27) (equivalently, 
Eq. (2.28)), rather than the deceptively simple Eq. (2.11), to be a suitable starting point for a finite-dimensional discretization 
of v̆ , as we explain shortly.

In this formulation, we require that v̆(x) is consistent with a divergence-free velocity field in the extended domain, i.e.,∫
�

v̆(x) · n(x)dSx = 0, (2.29)

which is required for Eq. (2.23) to be solvable since the single-layer operator M has a nontrivial null space consisting of 
single-layer densities that are normal to the boundary,

(Mn)(x ∈ �) =
∫
�

G(x − y)n(y)dS y = 0. (2.30)

From Eq. (2.28), we note that v̆ = M 1
2 W is perpendicular to the null space of M, and hence, the solvability condition 

Eq. (2.29) is fulfilled.
Formally,3 taking the Schur complement of Eq. (2.23) to eliminate ψ and solving for the body motion U , we obtain

U = Ū + Ũ = (K�M−1K)−1 F + (NK�M−1)v̆

= (K�M−1K)−1 F + (NK�M−1M 1
2 )W

= N F +N 1
2 W ,

(2.31)

which allows us to formally define N and N 1
2 explicitly as,

N = (K�M−1K)−1,

N 1
2 = NK�M−1M 1

2 .
(2.32)

Note that the random surface velocity v̆ is in the range of M by the construction of Eq. (2.28), so that M−1 v̆ is well-
defined. We can therefore formally show that fluctuation–dissipation balance holds in the continuum operator sense,

3 For the operator M−1 to be well-defined, we need to resort to its precise definition in either the space of band-limited functions or the fractional 
Sobolev space, but here, we will simply use this formal computation to inform our discretization and show later in Sec. 3.1 that our finite-dimensional 
discretization converges numerically.
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N 1
2

(
N 1

2

)� =NK�M−1M 1
2

(
M 1

2

)�
M−1KN

=N (K�M−1K)N
=N (N )−1N = N .

(2.33)

This shows that the desired random velocity U in Eq. (2.8) can be generated by solving Eq. (2.23), which is the first-kind 
boundary integral formulation of the SSBVP (2.10). While at first sight it may appear that we have simply formally rederived 
Eq. (2.19) by appealing to a first-kind BVP formulation, we will demonstrate next that the formal continuum formulation 
presented here has a well-defined finite-dimensional truncation that is very suitable for numerical computations.

3. Fluctuating boundary integral method

This section presents the fluctuating boundary integral method (FBIM) for suspensions of Brownian rigid particles in two 
dimensions. Our discrete formulation closely follows the (formal) continuum first-kind formulation presented in Sec. 2.2. We 
have found this to be much more effective than following the more general BVP formulation presented in Sec. 2.1. Specif-
ically, one approach to discretizing the SSBVP Eq. (2.10) is to first generate a (smooth) random surface velocity function
v̆ using a regularized4 variant of Eq. (2.11), and then to use a standard spectrally-accurate second-kind boundary inte-
gral formulation to solve the resulting boundary-value problem. Our preliminary investigations of such an approach have 
revealed that regularization (truncation) of the covariance in Eq. (2.11) leads to a drastic loss of accuracy in numerical 
fluctuation–dissipation balance. Instead, by relating the covariance of the random surface velocity to the first-kind opera-
tor as in Eq. (2.27), the regularization of the distribution v̆ becomes directly connected to the singular quadrature used to 
discretize M. As we demonstrate here, this leads to a first-kind formulation that satisfies discrete fluctuation–dissipation 
(DFDB) to within solver tolerances, while preserving the underlying accuracy of the singular quadrature.

We begin by presenting a discrete formulation of the mobility problem (2.23) by first discretizing the continuum op-
erators M, K and K� , to obtain a discrete saddle-point linear system, whose solution strictly obeys DFDB without any 
approximation. To efficiently solve the saddle-point linear system with Krylov iterative methods, we present the two 
key components of FBIM: a fast routine for computing matrix-vector product of the single-layer matrix M (i.e., the dis-
cretized operator M), and a fast method for generating the random surface velocity v̆ = M1/2W. To address the inherent 
ill-conditioning of the linear system arising from the first-kind integral formulation, we will also discuss block-diagonal 
preconditioning for the iterative solvers.

3.1. Discrete formulation of the mobility problem

We present the discrete formulation of the mobility problem (2.23) by first discretizing the continuum operators K, K�

and M. In the discrete formulation, for generality, we describe our method for many-body suspensions. Let us assume 
that �β is parametrized by γ β : [0, 2π ] → R

2. We introduce a collection of Np equispaced points s j = j
s, j ∈ {1, . . . , Np}, 
where 
s = 2π/Np , and �β is discretized by the collection of nodes xβ = {

xβ, j
}N p

j=1, where xβ, j = γ β(s j). We also denote 

the composite vector of all nodes or points by X = {
xβ

}N
β=1.

The discrete operator K is a geometric matrix defined by

(KU )
(
xβ, j

) = (Kβ U β) j = uβ + ωβ × (xβ, j − qβ), (3.1)

where Kβ is the sub-block of K that maps the particle velocity U β = {
uβ,ωβ

}
to the velocity at the node xβ, j on �β .

The adjoint operator K� defined by Eq. (2.26) can be discretized by the periodic trapezoidal rule for each body,

∫
�β

ψ(x)dSx ≈
N p∑
j=1

μβ, j, (3.2a)

∫
�β

(x − qβ) × ψ(x)dSx ≈
N p∑
j=1

(xβ, j − qβ) × μβ, j, (3.2b)

where μβ, j = ψ
(
xβ, j

)

s denotes an unknown discrete boundary force at the node xβ, j on �β . We can therefore write

(K�ψ)(X) ≈ K�μ, (3.3)

where μ = {
μβ

}N
β=1

is a composite vector that collects all the boundary forces.

4 The most direct way to regularize the singular Green’s function is to represent it in Fourier space and then simply truncate the finite-dimensional sum 
to a finite number of Fourier modes.
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To approximate the single-layer operator M, we need to employ a singular quadrature that can handle the singularity 
of G. The development of quadrature rules for singular or near-singular integrals is an active research area of its own 
[40,41,54–57]. In two dimensions, for simplicity, we will use the Alpert quadrature which is based on a modification of the 
trapezoidal rule with auxiliary nodes whose weights are configured to achieve the desired order of accuracy [54].

In matrix notation, the approximation of the single-layer integral operator evaluated on the vector of quadrature nodes 
X can be compactly written as

(Mψ)(X) ≈ Mμ, (3.4)

where M is the discretized matrix operator of M, hereinafter referred to as the single-layer matrix. The details of con-
structing M will be discussed in Sec. 3.2. We have chosen to keep track of surface forces in the discrete representation 
(rather than surface tractions as in the continuous case) as this yields both a symmetric saddle-point system in the usual 
sense, as well as the desirable property that Mi j → G(xi − x j) as |xi − x j | → ∞. The matrix M has a physical interpreta-
tion of a mobility matrix relating surface forces to surface velocities, which in turn suggests that M should be symmetric 
(self-adjoint) in the standard L2 sense.

Following the continuum formulation (see Eq. (2.27)), we require the discrete random surface velocity5 to satisfy

〈v̆v̆〉 = 2kB T


t
M. (3.5)

More precisely, we need to generate a vector of Gaussian random variables v̆ whose covariance is given by Eq. (3.5), and 
we denote it by v̆ = M1/2W, where W is a finite-dimensional vector of Gaussian random variables with mean zero and 
covariance

〈W i W j〉 = 2kB T


t
δi j, (3.6)

and M1/2 satisfies(
M1/2

)(
M1/2

)� = M. (3.7)

The discrete formulation of Eq. (2.23) is a saddle-point linear system for the boundary forces μ and the rigid body motion 
U , [

M −K
−K� 0

][
μ
U

]
= −

[
M1/2W

F

]
. (3.8)

By taking the Schur complement of M and eliminating μ, we obtain

U = N F + N
1
2 W

= (K�M†K)−1 F + (NK�M†M1/2)W,
(3.9)

from which we can define

N = (K�M†K)−1,

N
1
2 = NK�M†M1/2,

(3.10)

where M† is the pseudo-inverse of M, and N is an approximation of N up to the order of accuracy of Alpert quadrature. 
Under the definition of N and N

1
2 , we can verify that our discrete formulation satisfies DFDB without any approximation,

N
1
2

(
N

1
2

)� = NK�M†M1/2
(

M1/2
)�

M†KN,

= N(K�M†K)N,

= N(N)−1 N = N .

(3.11)

Note that these relations are well-defined finite-dimensional versions of the formal continuum equations (2.32) and (2.33).
To generate the random velocity given by Eq. (3.9) efficiently, we solve the saddle-point linear system (3.8) by GMRES. 

In the remaining sections, we present efficient numerical that compute the matrix-vector product Mμ and generate the 
random surface velocity v̆ = M1/2W.

5 The discrete v̆ can be thought of as being a suitably scaled finite-volume representation of the distribution v̆ .
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3.2. Fast matrix-vector multiplication for the single-layer matrix

In this section we develop a fast method to efficiently perform the matrix-vector product Mμ. The key idea for achieving 
linear-scaling is to use Ewald splitting to decompose the periodic Stokeslet as

G = G
(w)
ξ +G

(r)
ξ = H ∗G+ (G− H ∗G), (3.12)

where “∗” denotes convolution, and G(w)
ξ is a far-field (long-ranged) smooth kernel that decays exponentially in Fourier 

space, and G(r)
ξ is a near-field (short-ranged) singular kernel that decays exponentially in real space. The choice of splitting 

function H(r; ξ) by Hasimoto [31] is defined in Fourier space as

Ĥ(k; ξ) =
(

1 + k2

4ξ2

)
e−k2/4ξ2

, (3.13)

where ξ is the splitting parameter that controls the rate of exponential decay.
Using the Fourier representation of the periodic Green’s function of Stokes flow we can compute the far-field kernel in 

wave space as

G
(w)
ξ (r) = 1

ηV

∑
k �=0

Ĥ(k; ξ)

k2
(I − k̂k̂�) e−ik·r, (3.14)

where V = |V| = L2, k ∈ {2πκi/L : κi ∈ Z, i = 1, 2}, and k̂ = k/k for k = |k|. The near-field kernel is analytically computed in 
real space using the inverse Fourier transform,6

G
(r)
ξ (r) = 1

4πη

[
1

2
E1(ξ

2r2)I +
(

r ⊗ r

r2
− I

)
e−ξ2r2

]
, (3.15)

where E1(z) is the exponential integral defined by

E1(z) =
∞∫

1

e−zt

t
dt =

∞∫
z

e−t

t
dt. (3.16)

We observe from Eq. (3.15) that G(r)
ξ also has the logarithmic singularity of G, since in the limit z → 0,

E1(z) = −γ − log z + O (z), (3.17)

where γ is the Euler–Mascheroni constant. An important remark on the Hasimoto splitting is that it ensures both G(r)
ξ and 

G
(w)
ξ are SPD, because 0 ≤ Ĥ(k; ξ) ≤ 1 for all k and ξ [24].

The splitting of G naturally induces the splitting of the single-layer integral operator M = M(r) + M(w) , and subse-
quently, the corresponding splitting of the single-layer matrix

M = M(r) + M(w), (3.18)

where the elements of M(w) are obtained by applying the regular trapezoidal rule to M(w) , which gives(
M(w)

)
mn

= G
(w)
ξ (xm − xn). (3.19)

The elements of M(r) are obtained by applying Alpert’s hybrid Gauss-trapezoidal quadrature to M(r) , and can be further
decomposed as

M(r) = M(t) + M(a), (3.20)

where M(t) is the trapezoidal rule, i.e., 
(
M(t)

)
mn = G

(r)
ξ (xm − xn) for m �= n, and we define it to be zero for m = n. The 

singular quadrature correction M(a) is a banded matrix that contains Alpert weights for the logarithmic singularity of G(r)
ξ . 

The Alpert weights are defined on a set of auxiliary nodes that do not coincide with the trapezoidal nodes, so a local 
Lagrangian interpolation from the auxiliary nodes to the trapezoidal nodes is needed to obtain the elements of M(a) . Note 
that M(r) , M(w) and M(a) depend on ξ , but for conciseness of notation, the subscript ξ is omitted.

6 We gratefully thank Anna-Karin Tornberg for sharing with us notes on the Hasimoto splitting of the Stokeslet in two dimensions.
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A key ingredient of FBIM is a fast method to compute the matrix-vector product

Mμ =
(

M(a) + M(t) + M(w)
)
μ. (3.21)

We recall that the Alpert quadrature assigns only local correction weights to the trapezoidal nodes. Since M(a) is block-
diagonal and banded, matrix-vector products involving M(a) can be computed in O(N) operations using vector rotations 
and sparse matrix-vector multiplications,(

M(a)μ
)

β
= Rβ M(a)

ref R�
β μβ, β = 1, . . . , N, (3.22)

where M(a)

ref is a precomputed Alpert matrix for some reference configuration, and Rβ is the rotation matrix from the chosen 
reference configuration to the configuration of �β .

To accelerate matrix-vector products involving M(r) and M(w) which are not sparse, we rely on the Spectral Ewald 
method [21]. For the near-field contribution, due to the short-ranged nature of G(r)

ξ , the action of M(t) can be computed by 
using the cell list algorithm, commonly-used in Molecular Dynamics [58]. First, we partition the computational domain into 
Nbox × Nbox cells and sort the points into these cells, which takes O(N) work. The splitting parameter ξ is chosen such that 
the real-space sum converges to within a prescribed tolerance ε , at a cutoff radius rc = L/Nbox. For each target point, the 
real-space sum is reduced to a local interaction with source points in its own cell and in all adjacent cells (with periodicity), 
i.e., nine cells in two dimensions. If the density of points in each cell is approximately held fixed as the system size grows, 
the complexity of the direct summation in the near field is also O(N).

In the SE method, the far-field contribution given by Eqs. (3.14) and (3.19) can be factorized as

M(w) = D�BD, (3.23)

where the block-diagonal matrix B is defined in the Fourier space as

B(k, ξ) = Ĥ(k; ξ)

k2
(I − k̂k̂�), (3.24)

which essentially maps the Fourier representation of forces to velocities. The operator D is the non-uniform Discrete Fourier 
Transform (NUDFT) that converts point forces μ = {μn} on a collection of non-uniform source points {xn} to Fourier space. 
The operator D and its adjoint D� can be efficiently applied using the non-uniform Fast Fourier Transform (NUFFT) (see [59]
and the references therein). In operator notation, we can express the NUFFT as

D = CFS and D� = S�F�C�, (3.25)

where S and S� are a pair of spreading and interpolation operators using Gaussian kernels, and F and F� are the forward 
and inverse FFT operators on a uniform grid, and C and C� are “deconvolution” operators.

The main idea of NUFFT is to first smear (spread) the point forces to a uniform grid using a Gaussian kernel, then make 
use of the FFT on the uniform grid, and finally apply the deconvolution (see [59]). In the SE method, the Gaussian kernel 
with the Fourier representation e−ηk2/8ξ2

is used for spreading and interpolation, where η is a free parameter that sets 
the shape of Gaussian [21,60]. We observe that this Gaussian with parameter η is different from the one in the Hasimoto 
function for Ewald splitting. The main purpose for introducing an extra parameter η is that it allows the SE method to 
independently control the width of spreading and interpolation, so that the accuracy of evaluating the wave-space sum 
with NUFFT is decoupled from the accuracy of the Ewald sum.

Next we address the choice of parameters in the SE method. The parameters that need to be set by the user include 
the number of partition cells Nbox (or rc), the splitting parameter ξ , the size of the Fourier grid M (even), the number of 
points P (odd) for spreading and interpolation in the NUFFT, and the Gaussian shape parameter m (which is related to η, 
see [21, Eq. (22)]). First, we set the number of partition cells Nbox, primarily based on balancing the computational work 
between the real- and wave-space sums (see Sec. 4.3 for details), and set rc = L/Nbox. For a user-specified error tolerance 
level ε , the splitting parameter ξ and M are determined by the truncation error estimates in the real and wave spaces [21], 
respectively,

Cre−ξ2r2
c ≤ ε, (3.26a)

C w e−k2
max/4ξ2 ≤ ε, (3.26b)

where kmax corresponds to the largest mode of a grid of size M × M . The constants in the error estimates are estimated 
empirically as in [21], and we have found that Cr ≈ 100 and C w ≈ 1 are suitable for the Stokeslet in two dimensions. The 
remaining parameters P and m (or η) together determine the accuracy of evaluating the wave-space sum using NUFFT. 
From the error estimation of Lindbo and Tornberg [21,60], the optimal choice is m ∼ √

π P , so that the approximation error 
arising from the NUFFT (including quadrature error and Gaussian truncation error) is approximately e−π P/2 � ε , from which 
P is determined.
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The overall complexity of the wave-space sum is O(N) for spreading and interpolation and O(M2 log M2) for the FFTs. 
For dense suspensions in two dimensions, we have found in our implementation that the computational work is dominated 
by spreading and interpolation instead of the FFTs.

3.3. Fast sampling of the random surface velocity

The second key component of FBIM is a fast routine for sampling the random surface velocity v̆ = M1/2W. The action 
of M1/2 can be computed using iterative methods such as the Chebyshev polynomial approximation [22] or the Lanczos 
algorithm for matrix square root [23]. For the Stokeslet in two dimensions, applying iterative methods directly for M are 
expected to scale poorly for dense suspensions because of its logarithmic growth in the far field. The condition number of 
M, as well as the number of iterations required to converge for a given tolerance level, would grow with the system size. 
This would make the overall complexity for applying the action of M1/2 superlinear, even though the action of M can be 
applied with O(N) work.

To improve the superlinear complexity for generating the random surface velocity with iterative methods, we apply the 
Positively Split Ewald (PSE) method (developed for the RPY tensor) to the two-dimensional periodic Stokeslet [24]. The main 
idea of PSE is to split the action of M1/2 into a near-field part 

(
M(r)

)1/2
and a far-field part 

(
M(w)

)1/2
, and generate the 

random surface velocity as

M1/2W
d.=

(
M(r)

)1/2
W(r) +

(
M(w)

)1/2
W(w), (3.27)

so that the near-field contribution can be rapidly generated by the Lanczos algorithm [23] in the real space, and the far-field 
contribution can be efficiently handled in the wave space by NUFFT. The right-hand-side of Eq. (3.27) defines one way of 
computing the action of M1/2 provided that W(r) and W(w) are two independent Gaussian random vectors.

For a sufficiently small cut-off radius or a sufficiently large ξ , the real-space kernel G(r)
ξ decays exponentially, so that the 

near-field interaction is localized and the condition number of M(r) does not grow with the number of bodies, while the 
packing fraction is held fixed. However, due to the singular nature of G(r)

ξ , the condition number of M(r) may grow if the 
number of points per body increases. We have found that the Lanczos algorithm [61] with block-diagonal preconditioning 
(see Sec. 3.4) can significantly reduce the number of iterations. In the case when two bodies nearly touch, so that the 
problem itself becomes ill-conditioned, the block-diagonal approximation becomes worse and the number of iterations for 
all iterative solvers increases. Nevertheless, we have found that the block-diagonal preconditioner is still effective, and it 
takes a reasonable number of iterations for the Lanczos algorithm to converge, even for dense suspensions (see Fig. 4).

Note that the validity of Eq. (3.27) relies on the property that both M(r) and M(w) need to be SPD. We observe that, 
even though G(r)

ξ is a SPD kernel, its singular contribution given by the Alpert correction matrix M(a) is not symmetric 
for a general-shaped particle. We have confirmed numerically that using only the symmetric part of M(a) does not affect 
the accuracy of the Alpert quadrature. In practice, we observe that the Lanczos algorithm is rather insensitive to spurious 
negative eigenvalues of small magnitude that may exist for (M(r) + (M(r))�)/2.

The far-field matrix M(w) is SPD by construction because of Eq. (3.14), and we can rewrite Eq. (3.23) as

M(w) =
(

D�B1/2
)(

D�B1/2
)�

, (3.28)

with B1/2 defined in the wave space as

B1/2(k, ξ) = 1

k
Ĥ1/2(k; ξ)(I − k̂k̂�). (3.29)

The far-field contribution of the random surface velocity can be generated by(
M(w)

)1/2
W(w) = D�B1/2W(w) = S�F�C�B1/2W(w), (3.30)

where W(w)(κ) is a complex-valued random vector in the wave space, and κ = (κ1, κ2) for κi ∈ {− M
2 , . . . , M

2 − 1
}

. The 
sequence of operations in Eq. (3.30) can be interpreted as follows. We first generate random numbers in the wave space, and 
project onto the divergence-free subspace by the projection I − k̂k̂� , then scale by Ĥ1/2(k; ξ)/k, and apply deconvolution 
and (inverse) FFTs to obtain velocities in the real space on the grid, and finally, perform interpolation using a Gaussian 
kernel to obtain the random surface velocities on the particles. This is equivalent to how random velocities are generated in 
methods like FIB [27] and fluctuating FCM [28,29]. We remark that the cost of applying the action of 

(
M(w)

)1/2
in Eq. (3.30)

is even cheaper than the action of M(w) , since it only requires half the work.
We note that certain complex-conjugate symmetry of W(w)(κ) must be maintained to ensure its Fourier transform 

gives a real-valued Gaussian random vector with the correct covariance in the real space. Specifically, we require that, the 
zeroth mode κ = (0, 0) is set to be zero, and the Nyquist modes κ ∈ {

(− M
2 ,0), (0,− M

2 ), (− M
2 ,− M

2 )
}

are real-valued and 
generated from N (0, I2×2). All the remaining modes are generated by W(w)(κ) = a + ib for a, b ∈ N (0, 12 I2×2), and have 
the complex-conjugate symmetry: W(w)(κ) = (W(w)(κ ′))∗ , where κ ′ = −κ mod M .
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3.4. Block-diagonal preconditioning

This section presents the block-diagonal preconditioning technique introduced in [39] for solving the ill-conditioned lin-
ear system (3.8) with GMRES, and for generating the near-field contribution of the random surface velocity with the Lanczos 
algorithm [23,61]. The block-diagonal preconditioner for the linear system (3.8) is obtained by neglecting all hydrodynamic 
interactions between different bodies, i.e.,

P =
[

M̃ −K
−K� 0

]
, (3.31)

where M̃ is a block-diagonal approximation of M obtained by setting elements of M corresponding to pairs of points on 
distinct bodies to zero,

M̃αβ = δαβMαβ, (3.32)

and the subscripts with Greek letters denote the sub-block containing interactions between �α and �β . Applying the pre-
conditioner to Eq. (3.8) amounts to solving a linear system,[

M̃ −K
−K� 0

][
μ
U

]
= −

[
v̆
F

]
, (3.33)

which requires the action of the approximate body mobility matrix (Schur complement),

Ñ =
(

K�M̃†K
)−1

. (3.34)

The approximate body mobility matrix Ñ is also block-diagonal, and can be efficiently applied for each body,

Ñββ =
(

K�
β M†

ββKβ

)−1
. (3.35)

The matrix block Mββ in Eq. (3.35) is a small matrix with size 2Np × 2Np , which is precomputed for the reference configu-
ration,

Mref = M(a)

ref + M(t)
ref + M(w)

ref . (3.36)

The action of M†
ββ can be efficiently applied by using M†

ref , which is also precomputed using a dense SVD decomposition 
or eigenvalue decomposition, and by using rotation matrices for different bodies because of the translational and rotational 
invariance of the free-space Stokeslet,

M†
ββ ≈ RβM†

refR
�
β . (3.37)

We note that the two sides of Eq. (3.37) do not equal exactly, since the Alpert quadrature is not rotation-invariant for a 
general-shaped body. This is not an issue, since the error introduced by this artifact is within the error tolerance, and the 
preconditioner does not need to be exactly inverted to work effectively.

For the near-field contribution of the random surface velocity, we use the preconditioned Lanczos algorithm [61] to 
generate

v̆(r) = G†
(

GM(r)G�)1/2
W(r), (3.38)

where G is a block-diagonal preconditioner, whose diagonal blocks can be precomputed as a dense matrix for the reference 
configuration using the eigenvalue decomposition,

M(r)
ref = V�V∗, (3.39)

and we set

Gref = (�†)1/2V∗ and G†
ref = V�1/2, (3.40)

where the diagonal elements of � and �† corresponding to the spurious eigenvalues of � are set to be zero. This gives the 
desired discrete fluctuation–dissipation balance,〈

v̆(r)
ref v̆(r)

ref

〉
= G†

refGrefM
(r)G�

ref

(
G†

ref

)� = M(r)
ref. (3.41)
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Fig. 1. (Left panel) A cartoon illustration of radius of Alpert correction rAlpert and the cut-off radius of Ewald summation rc . Both blue and red nodes 
represent the quadrature nodes in the trapzoidal rule, and the red nodes are the special nodes with Alpert correction weights centered a target node 
xt . The radius of Alpert correction is defined by rAlpert = |xt − x f |, where x f is the last node with Alpert correction weight for a chosen order of Alpert 
quadrature. (Right panel) Normalized error (in matrix 2-norm) of N with respect to N (approximated with 12 digits of accuracy) versus the ratio rAlpert/rc

for the 4th- and 8th-order Alpert quadratures. The mobility solver gradually loses accuracy because the singular kernel (with support rc) is not sufficiently 
resolved by the Alpert quadrature as the ratio increases. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Generating v̆(r) as in Eq. (3.38) is efficient, since we can reuse the precomputed matrices in Eq. (3.40) throughout the 
simulation, and apply rotation matrices for each body,

Gββ = RβGrefR
�
β . (3.42)

We remark that the use of block-diagonal preconditioners does not increase the overall complexity of FBIM since they can 
be applied with O(N) work, and, furthermore, the cost is amortized over the length of the BD simulations.

4. Numerical results

This section presents numerical results of applying the FBIM to a number of benchmark problems in two dimensions. 
We first address the effect of the Ewald splitting parameter ξ on the accuracy of the first-kind mobility solver. Next we test 
the first-kind mobility solver by applying it to the steady Stokes flow through a square periodic array of disks, and compare 
the results to well-known analytical solutions. In the third test, we consider suspensions of Brownian rigid disks, and assess 
the effectiveness of FBIM by its accuracy and convergence, the robustness of iterative solvers, and its scalability to simulate 
suspensions of many-body particle systems. In the last set of numerical examples, we perform Brownian Dynamics (BD) 
simulations by combining the FBIM with previously-developed stochastic temporal integrators [27,52]. By simulating the 
free diffusion of a non-spherical (starfish-shaped) particle, we confirm that correctly handling the stochastic drift term in 
the temporal integrator is necessary in order to reproduce the equilibrium Gibbs–Boltzmann distribution. As a simple but 
nontrivial benchmark problem for many-body suspension, we investigate the dynamics of a pair of starfish-shaped particles 
connected by a harmonic spring, which includes interaction through the spring potential, hydrodynamic interaction between 
the particles and with their periodic images, as well as Brownian noises.

4.1. Choosing the Ewald splitting parameter

The first important aspect of FBIM that needs to be addressed is how the choice of ξ affects the accuracy of the first-kind 
mobility solver. In the Spectral Ewald (SE) method [21] the choice of ξ is only based on balancing the computational work 
between the real- and Fourier-space sums. In practice, we want to choose a sufficiently large ξ (i.e., a short-ranged singular 
kernel G(r)

ξ ), so that the computational work in the real-space can be made cheap at the expense of the FFT in Fourier 
space. In this work, we demonstrate that the choice of ξ is also limited by the accuracy of Alpert quadrature used to resolve 
the logarithmic singularity of G (diagonal elements of M).

The Alpert quadrature can be viewed as assigning (interpolated) local correction weights to nearby quadrature nodes 
of a target point xt , as illustrated in the left panel of Fig. 1. For example, the number of (one-sided) quadrature nodes 
with nonzero correction weights is 4 and 8 for the 4th- and 8th-order Alpert quadrature, respectively. Since G(r)

ξ decays 
exponentially with length scale ξ−1, the Alpert quadrature grid must resolve length scales smaller than ξ−1 in order to 
capture the logarithmic singularity of G(r)

ξ at the origin. Thus for a fixed grid, as ξ increases, we expect the accuracy of the 
Alpert quadrature to become progressively worse.

To demonstrate this issue, we study how the error of N changes with ξ as follows. We fix the packing fraction φ =
π/16 ≈ 0.196 and Np = 64 but use different values of ξ (i.e., different rc). The radius of Alpert correction rAlpert is defined 
by the distance between the target point xt and the farthest quadrature node x f with nonzero Alpert weight, i.e., rAlpert =
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|xt − x f |. Note that rAlpert is fixed once the quadrature order is fixed. The Ewald sum is computed with accuracy εEwald =
10−9 and the tolerance level of GMRES is εtol = 10−9. The body mobility matrix N is computed by solving the deterministic 
mobility problem with force and torque set to be the columns of the 3 × 3 identity matrix, which gives the corresponding 
columns of N . We can also compute the exact body mobility matrix N to 12 digits of accuracy with N p = 256 by using 
the second-kind boundary integral formulation (attached as supplementary material of this paper). In two dimensions the 
resulting linear system of the second-kind formulation is well-conditioned and its solution is spectrally accurate. In the right 
panel of Fig. 1, we show the normalized error of N (in matrix 2-norm) with respect to the 12-digit accurate approximation 
of N for the 4th- and 8th-order Alpert quadrature, and the error increases by at least two orders of magnitude for the 
range of rAlpert/rc considered. We conclude that choosing ξ with rAlpert/rc � 0.6 maintains the accuracy of Alpert quadrature 
sufficiently well.

4.2. Square lattice of disks

Steady Stokes flow around a square periodic array of fixed disks in two dimensions is one of the classical problems in 
fluid mechanics, and its analytic solution is a thoroughly studied topic in the literature. Notably, Hasimoto [31] obtained an 
analytical expression for the drag force F on a dilute array of disks moving with velocity U by solving the steady Stokes 
equations with Fourier series expansions. Later, Sangani and Acrivos [62] extended Hasimoto’s solution to the semi-dilute 
regime by including higher-order correction terms, and obtained the expansion

F

ηU
= 4π

− ln
√

φ − 0.738 + φ − 0.887φ2 + 2.039φ3 + O (φ4)
, (4.1)

where a is the radius of disk, l is the spacing of the square lattice of disks, and φ = πa2/l2 is the packing fraction. Another 
important regime for which there are theoretical solutions is the densely-packed regime. In this regime, the disks almost 
touch, so that there is flow through a narrow gap between two neighboring disks, and a lubrication correction is generally 
required to extend the solution to this regime. Sangani and Acrivos [63] obtained using lubrication theory the asymptotic 
formula

F

ηU
≈ 9π

2
√

2
ε− 5

2 (4.2)

where ε = (l − 2a)/l = 1 − √
4φ/π is the relative gap between two neighboring disks.

In the following test, we numerically solve the Stokes mobility problem (2.23) for the rigid body motion U with applied 
force and torque F = (1, 0, 0) to determine the relationship between the drag force and velocity. We set a = 1.0 and 
εEwald = εtol = 10−9, while varying the length of square lattice l to achieve different packing fractions. For this simple test 
problem, we do not seek to optimize code performance, and we set Nbox = 42 (ξ ≈ 20.13) for all the test cases. In Sec. 4.3
we will address the choice of optimal ξ in the example of dense suspension of rigid particles. For a dilute or semi-dilute 
suspension (φ < 0.2), the boundary � is discretized with Np = 64 quadrature nodes, which is a sufficient resolution for 
the first-kind solver to give at least 6 digits of accuracy. For a higher packing fraction (φ > 0.2), the number of quadrature 
nodes is determined by the ratio of the smallest gap between any two neighboring disks dg = l − 2a to the spacing between 
quadrature nodes ds = 2πa/Np . In a moderately-resolved computation, we require that the quadrature node spacing is 
comparable or smaller than the gap spacing, i.e., ds/dg � 1. For example, for the highest packing fraction considered in this 
test φ = 0.76 (note that for a close-packed square lattice φmax ≈ 0.7854), the number of quadrature nodes set by the ratio 
ds/dg = 1 is Np ≈ 190.

The linear system (3.8) is solved by GMRES with block-diagonal preconditioning. Numerical results for the normalized 
drag force over a broad range of packing fractions are shown in Fig. 2. We have obtained very good agreement with the 
dilute theory (4.1) (φ < 0.2). For the dense packing fractions, the dilute theory no longer provides a good description for 
the drag, but our solutions from the first-kind solver match the dense theory (4.2) very well, as shown in the right panel 
of Fig. 2. The solutions from the first-kind solver are also in excellent agreement with the highly-accurate solutions (at least 
9 digits of accuracy) from the second-kind solver for the range of packing fractions considered.

4.3. Suspension of Brownian rigid disks

In this section our primary goal is to study the performance of FBIM applying to suspensions of Brownian rigid parti-
cles in two dimensions. We will assess the effectiveness of FBIM from three aspects: accuracy and convergence, robustness 
of iterative solvers, and its efficiency and scalability to many-body particle systems. For simplicity, we focus on suspen-
sions of disks only, however, there is no significant difficulty in applying the FBIM to more general bodies. In the top 
panel of Fig. 3, we show two random configurations of N = 100 disks with different packing fractions: a dilute suspension 
with φ = 0.25 and a dense suspension with φ = 0.5. These configurations are generated by using an event-driven molec-
ular dynamics code. Since the random disks may nearly touch in the absence of (electrostatic) repulsive forces, especially 
when the packing fraction is high, we first generate a random configuration of disks with radius a0 at a higher packing 
fraction φ0, and then adjust the actual radius of disks a to achieve the desired packing fraction φ. In this approach, the 
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Fig. 2. The drag coefficients for a square periodic array of disks in steady Stokes flow, (Left panel) as a function of packing fraction φ , and compared to the 
dilute theory (4.1); (Right panel) as a function of the relative gap between disks ε , and compared to the dense theory (4.2). In both panels, the numerical 
results obtained from the first-kind solver with Alpert quadrature match very well with the spectrally-accurate results from the second-kind solver. (For 
details of the second-kind boundary integral formulation of the Stokes BVP, the reader is referred to the supplementary material of this paper.)

Fig. 3. (Top panel) Two random configurations of 100 rigid disks with packing fractions φ = 0.25 (dilute) and φ = 0.5 (dense) in a periodic unit cell. (Bottom 
panel) Normalized error of the mobility U = N F versus number of degrees of freedom (DOFs) per disk. For the dilute suspension, the second-kind solver 
converges spectrally fast and is generally more accurate than the first-kind solver. For the dense suspension, while the second-kind solver converges faster, 
the first-kind solver is actually more accurate at lower DOFs per disk.

pairs of random disks are separated by a relative minimum distance dmin/a = 2 
(√

φ0/φ − 1
)
. For the dilute suspension 

(φ = 0.25), we use φ0 = 0.4 so that dmin/a ≈ 0.523, and for the dense suspension (φ = 0.5), we use φ0 = 0.6 so that 
dmin/a ≈ 0.191.
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Fig. 4. Convergence of the Lanczos iteration for generating (M(r))1/2W(r) and the GMRES iteration (inset) for solving the saddle-point linear system Eq. (3.8)
with block-diagonal preconditioning for both iterative solvers. Generally, it requires more GMRES iterations for the dense packing (φ = 0.5), as shown in the 
inset. The number of GMRES iteration does not depend on ξ , since the choice of ξ does not change M in the linear system (3.8). The number of Lanczos 
iteration decreases with ξ , since the real-space kernel G(r)

ξ becomes more short-ranged as ξ increases, and therefore, the block-diagonal preconditioner 
gets progressively better in approximating the inverse of (M(r))1/2.

First, we investigate the accuracy and convergence of the first-kind mobility solver by applying it to the random config-
urations of disks shown in Fig. 3, subject to random forces and torques F (without random surface velocity v̆). In the 
first-kind mobility solver, we set εEwald = εtol = 10−9, and choose the splitting parameter ξ ≈ 50 (or Nbox = 102). Al-
though this value of ξ does not achieve the minimum CPU time (see Fig. 5), it ensures rAlpert/rc � 0.5 for the 8th-order 
Alpert quadrature, so that the singularity is sufficiently resolved in all test cases for convergence study purpose. For 
this set of computations, we consider different numbers of quadrature nodes, or degrees of freedom (DOFs) per body, 
Np ∈ {16,32,64,128}. The normalized error of U = N F is computed with respect to a 12-digit accurate solution com-
puted from the second-kind solver with 256 DOFs per disk. For the dilute suspension (bottom left panel of Fig. 3), the 
second-kind solver converges spectrally fast and is more accurate than the solutions from the first-kind solver. For the 
dense suspension (bottom right panel of Fig. 3), while the second-kind solver converges faster and gives more accurate 
solutions for large number of DOFs per body, the first-kind solver is more accurate for low resolutions. This can be ex-
plained as follows. When two disks nearly touch, the singular kernel of the first-kind integral (Stokeslet) grows as log r, 
but the singular kernel of the second-kind integral (stresslet) grows as r−1 in two dimensions. This observation implies 
that the first-kind mobility solver is more practical than the second-kind solver for simulating suspensions of rigid parti-
cles with high packing fractions, since it can produce sufficiently accurate solutions with a smaller number of DOFs per 
body.

Next, we study the robustness of iterative methods for solving the saddle-point linear system (3.8). For the random 
configurations shown in Fig. 3, in addition to random forces and torques, we also generate random surface velocity v̆ =
M1/2W, and include it on the right-hand-side of Eq. (3.8). We show in the inset of Fig. 4 the residual versus the number 
of GMRES iterations for solving Eq. (3.8) with block-diagonal preconditioning. It would take more than 3 times the number 
of GMRES iterations to converge to the same tolerance level without preconditioning. In general, when the packing fraction 
grows or when two disks get closer, the hydrodynamic interaction between the disks becomes stronger, and hence, the 
condition number of the linear system grows. As a result, it requires more GMRES iterations for the dense suspensions, as 
expected. The number of GMRES iteration is independent of ξ , since the choice of ξ does not change M = M(r) + M(w) in 
the linear system (3.8). We expect that GMRES will converge faster for three-dimensional problems because the Stokeslet 
decays faster (r−1 in the far field) in three dimensions. We also show in Fig. 4 the residual versus the number of Lanczos 
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Fig. 5. (Left panel) Execution time of FBIM and its algorithmic components versus ξ for the dense packing φ = 0.5. In our implementation, the computational 
work of FBIM is dominated by the subroutines for exporting M(r) sparsely and for evaluating the matrix-vector product M(w)μ (iteratively in GMRES). The 
total execution time of FBIM decreases with ξ , and the minimum CPU time is achieved near ξ ≈ 70, where the CPU time for exporting M(r) and evaluating 
M(w)μ crosses. (Right panel) Linear scaling of FBIM with growing number of disks in the suspension, while the packing fraction is held fixed.

iterations for generating (M(r))1/2W(r) with block-diagonal preconditioning, for different values of ξ . The number of Lanczos 
iterations decreases with ξ for both the dilute and dense suspensions. This can be explained by the observation that G(r)

ξ

becomes more short-ranged as ξ increases, and therefore, the block-diagonal preconditioner gets progressively better in 
approximating the inverse of (M(r))1/2.

We now present profiling and scaling analysis of FBIM. First, we present the profiling results of FBIM and its algorith-
mic components in Fig. 5, and analyze the optimal choice of the splitting parameter ξ . We focus on the densely-packed 
configuration with 64 DOFs per disk (ds/dg ≈ 0.5), and use the 4th-order Alpert quadrature. The accuracy of the first-kind 
mobility solver with these parameters is about 10−5 (see bottom right panel of Fig. 3), so we set εEwald = εtol = 10−6. 
We note that the execution time depends heavily on the choice of programming language, implementation and hard-
ware. Our proof-of-concept serial implementation of FBIM in two dimensions is written in MATLAB with some subroutines 
accelerated by C with the aid of MEX files. As previously discussed in Sec. 3, the main ingredients of FBIM are evaluat-
ing the matrix-vector products M(r)μ and M(w)μ in GMRES, and generating (M(r))1/2W(r) and (M(w))1/2W(w) using the 
Lanczos iteration. In our implementation, we found it optimal to export and store M(r) sparsely for rapid matrix-vector 
multiplication in Lanczos and GMRES. In our profiling analysis, we profile the time to export M(r) sparsely, the cumu-
lative time to evaluate M(r)μ and M(w)μ in GMRES separately, the time to generate (M(r))1/2W(r) and (M(w))1/2W(w)

separately, and the total execution time of FBIM. We note that the total execution time of FBIM also includes the 
time of applying the preconditioners and other overhead time. The left panel of Fig. 5 shows the profiling results of 
the densely-packed configuration for different values of ξ . First, we observe that our implementation of FBIM is domi-
nated by two subroutines: exporting M(r) and evaluating M(w)μ (iteratively). The CPU time of the sparse matrix-vector 
product M(r)μ and generating (M(w))1/2W(w) (non-iteratively) is negligible. The CPU time for generating (M(r))1/2W(r)

is also small because of the rapid matrix-vector multiplication of the sparse matrix M(r) . The CPU time for generating 
(M(r))1/2W(r) also includes the time for applying the preconditioner, which accounts for about 20%–30% of the computa-
tional work.

Generally, the execution time of the real-space subroutines decreases with ξ , because the amount of work in the 
real space reduces as G(r)

ξ becomes more short-ranged with ξ . On the other hand, the execution time of Fourier-space 
subroutines remains almost constant for the range of ξ considered in this test. This is because the cost of grid op-
erations in Fourier-space sums (spreading/interpolation of a Gaussian to grid in NUFFT) dominates the cost of FFT in 
two dimensions. We expect the FFT cost would eventually become dominant in three dimensions. In our implementa-
tion, we observe that even the total CPU time of FBIM decreases with ξ , whereas Fiore et al. [24] report an optimal ξ
for their GPU implementation of the PSE method in three dimensions. There is a wide range of ξ that approximately 
minimizes the total CPU time (from ξ ≈ 70 to ξ ≈ 100), as shown in the left panel of Fig. 5. We recall, however, that 
the choice of ξ in FBIM is also limited by the accuracy of Alpert quadrature. Using the criterion that rAlpert/rc � 0.6
for the densely-packed configuration, we obtain that ξ � 150 for the 4th-order Alpert quadrature, and that ξ � 75 for 
the 8th-order Alpert quadrature. Similar optimal range of ξ is also obtained in the profiling analysis for the dilute 
configuration.

Another important computational aspect that needs to be addressed is how the FBIM scales as the number of rigid 
particles grows while the packing fraction is held fixed. This aspect of FBIM is particularly important for applications in-
volving a large number of particles. In the right panel of Fig. 5, we report the total execution time of FBIM with increasing 
number of rigid disks, while the packing fraction is held fixed at φ = 0.25 and φ = 0.5, and ξ is also fixed (ξ ≈ 70) 
for both configurations. We conclude that FBIM scales linearly in the number of rigid particles for both dilute and dense 
suspensions.
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Fig. 6. (Left panel) A single starfish particle with four-fold rotational symmetry, described by the position of tracking point q and its rotation θ . (Right panel) 
Equilibrium position for a pair of starfish particles connected by a harmonic spring. The enclosing box shown in the figure is the periodic unit cell.

4.4. Brownian dynamics of rigid particles

In the following tests, we combine the FBIM with stochastic temporal integrators to perform Brownian Dynamics (BD) 
for rigid particles. Applying the weakly first-order accurate Euler–Maruyama (EM) scheme to Eq. (2.6), we obtain the BD 
algorithm,

Q n+1 = Q n + 
t Nn F n +
√

2kB T 
t (Nn)
1
2 Wn

+ 
t
kB T

δ

[
N

(
Q n + δ

2
W̃n

)
W̃n − N

(
Q n − δ

2
W̃n

)
W̃n

]
,

(4.3)

where 
t is the time step size, the superscript denotes the time step level at which quantities are evaluated (e.g., Q n =
Q (t = n
t) and Nn = N( Q n)), δ is a small parameter, and Wn and W̃n are uncorrelated vectors of i.i.d standard Gaussian 
random variables.

The last term in Eq. (4.3) is a centered random finite difference (RFD) approximation to the stochastic drift term that is 
equal in expectation to (
t kB T )(∂Q ·N )n for sufficiently small δ [27,43,44]. The RFD term guarantees that the EM scheme 
is a consistent stochastic integrator of Eq. (2.6), but is simpler and more efficient in practice than the Fixman midpoint 
scheme [51], in which the action of N− 1

2 is required. The choice of δ is determined by a balance between truncation and 
roundoff error in the centered RFD, which gives δ/a ∼ ε1/3, where ε is the accuracy of the matrix-vector product N F and 
a is the characteristic length of the particle. We note that the EM scheme requires solving the saddle-point linear system 
(3.8) three times: once for generating the velocity Nn F n + √

2kB T /
t (Nn)
1
2 Wn , and twice for the RFD approximation.

The EM scheme is not particularly accurate even for the deterministic motion. Another weakly first-order accurate tem-
poral integrator that has been observed to give a better accuracy is the stochastic Adams–Bashforth (AB) scheme [44],

Q n+1 = Q n + 
t

(
3

2
Nn F n − 1

2
Nn−1 F n−1

)
+

√
2kB T 
t (Nn)

1
2 Wn

+ 
t
kB T

δ

[
N

(
Q n + δ

2
W̃n

)
W̃n − N

(
Q n − δ

2
W̃n

)
W̃n

]
,

(4.4)

in which the deterministic mobility N F in Eq. (2.6) is approximated by the second-order Adams–Bashforth approximation. 
We observe, however, that the AB scheme is more expensive to use in practice, because it requires four mobility problem 
solves instead of three in the EM scheme. More efficient schemes can be developed but are not the focus of our work [53].

4.4.1. Free diffusion of a single starfish
We consider a starfish-shaped particle freely diffusing (i.e., no applied force and torque) in a periodic unit lattice. A sim-

ilar benchmark problem was studied by Delong et al. [27] using the FIB method, and by Delmotte et al. [29] using the FCM 
method for a single spherical particle in a periodic domain. In their case the body mobility matrix does not depend on the 
position of the particle, and therefore ∂Q · N = 0. However, for a starfish N depends on orientation due to interactions 
with periodic images and ∂Q ·N is nonzero.

The starfish particle has four-fold rotational symmetry (left panel of Fig. 6), and is described by

� : (x(s), y(s)) = rs(1 + b cos(4s)) · (cos s, sin s), s ∈ [0,2π ], (4.5)
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Fig. 7. (Left panel) Equilibrium probability distribution of a single starfish particle freely diffusing in a periodic square lattice. The EM scheme without RFD 
produces a biased equilibrium distribution, and matches the theory Eq. (4.9) (solid). The EM scheme with RFD produces the correct Gibbs–Boltzmann 
distribution (dashed). (Right panel) Translational mean square displacement (MSD) for the freely-diffusing starfish particle using the biased and unbiased 
EM schemes.

where the characteristic length of the starfish particle is its maximum radius a = rs(1 + b). In the continuum setting, the 
body mobility matrix of the four-fold starfish particle is a diagonal matrix and depends only on the rotation θ , i.e.,

N (θ) =
⎡
⎣ Nxx(θ)

Nyy(θ)

Nθθ (θ)

⎤
⎦ , (4.6)

where Nxx , Nyy and Nθθ are the rotational and translational self-mobilities. Because of the symmetry of the starfish parti-
cle, we also have Nxx =Nyy . The elements of N (θ) can be computed to 12 digits of accuracy using the second-kind solver 
by solving the deterministic mobility problem with F set to be the columns of the identity matrix for different θ .

Applying the EM scheme without RFD to the freely-diffusing starfish particle, we obtain the biased scheme,

Q n+1 = Q n +
√

2kB T 
t(Nn)
1
2 Wn. (4.7)

In the limit 
t → 0, the biased scheme Eq. (4.7) is consistent with the Ito SDE

d Q

dt
=

√
2kB T 
t (N (θ))

1
2 W(t)

= −N (θ)(∂Q Ũ ) +
√

2kB T 
t (N (θ))
1
2 W(t) + (kB T )∂Q · (N (θ)),

(4.8)

where the bias potential is Ũ ( Q = {q, θ}) = kB T log(Nθθ ). By examining the corresponding Fokker–Plank equation, we can 
show that the biased SDE (4.8) preserves the biased equilibrium distribution

P̃eq( Q ) ≡ P̃eq(θ) = Z−1 exp
(−Ũ (θ)/kB T

) = (ZNθθ )
−1 . (4.9)

We note that the correct Gibbs–Boltzmann distribution preserved by the unbiased scheme (EM with RFD) is a uniform 
distribution Peq( Q ) = constant.

In our computation, we set b = 0.3 and a = 1.3rs = 0.45, which gives a relatively high packing fraction φ ≈ 0.393 for the 
starfish particle, in order to amplify the difference between the biased distribution P̃ eq and the correct Gibbs–Boltzmann dis-
tribution Peq (see left panel of Fig. 7). The starfish particle is discretized by Np = 64 quadrature points using the 4th-order 
Alpert quadrature. In the first-kind mobility solver, we set the error tolerance level ε = 10−7. The RFD parameter δ is set 
by δ/a ∼ ε1/3. The short-time translational χtrans and rotational χrot diffusion coefficients are determined by the Stokes–
Einstein relations,

χtrans = kB T 〈Nxx〉 ≈ 2.47 × 10−3,

χrot = kB T 〈Nθθ 〉 ≈ 2.081 × 10−1,
(4.10)

where the average 〈·〉 is taken with respect to the equilibrium distribution. We use a small time step size 
t = 0.02 to 
minimize truncation errors, and each simulation is run for T = 100, where τrot is the rotational Brownian time scale.

Fig. 7 shows the estimated biased and unbiased equilibrium distributions (with error-bars of 2 standard deviations) 
obtained from 600 independent trajectories of the starfish particle freely diffusing in a periodic unit lattice. The numerical 
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results using EM without RFD indeed match the biased equilibrium distribution P̃ eq(θ), whereas EM with RFD preserves the 
correct Gibbs–Boltzmann distribution at equilibrium. In the right panel of Fig. 7, we compare the translational mean square 
displacement (MSD) for the biased and unbiased schemes, and also compare to the Einstein formula〈

||q(t + s) − q(t)||2
〉
= 4kB T 〈Nxx〉 t, (4.11)

where the average 〈·〉 is taken with respect to the biased and unbiased equilibrium distribution, respectively. We conclude 
that consistent approximation to the stochastic drift term, such as the RFD approximation, is not only important for the 
equilibrium dynamics, but is also necessary for producing the short-time dynamics (MSD) correctly.

4.4.2. A pair of interacting starfish
In this test, we perform BD simulation of a pair of starfish particles connected by a Hookean spring with rest length 

ls in a periodic square lattice of length l = 2 (right panel of Fig. 6). The two starfish particles interact through the spring 
connecting the two tracking points q1, q2 via a potential Uspring, and the rotation of each particle is also attached to a 
preferred angle through a harmonic potential U rot(θ). The total potential U ( Q ) is given by

U ( Q ) = U (q1, θ1,q2, θ2)

= Uspring(q1,q2) + U rot(θ1) + U rot(θ2)

= ks

2
(|q1 − q2| − ls)

2 + kθ

2

(
θ1 − π

4

)2 + kθ

2

(
θ2 − π

2

)2
,

(4.12)

where ks , kθ are the stiffness coefficients. In the equilibrium, the Gibbs–Boltzmann preserved by Eq. (2.6) with F = −∂Q U
is

Peq( Q ) ∝ exp (−U ( Q )/kB T )

∝ exp

(
− Uspring(q1,q2)

kB T

)
· N

(
π

2
,

kB T

kθ

)
· N

(
π

4
,

kB T

kθ

)
,

(4.13)

where N (μ, σ 2) denotes the normal distribution with mean μ and variance σ 2.
In the computation, each particle has size a/l = 1.3 rs/l = 1/12, and is discretized by Np = 48 quadrature points using 

the 4th-order Alpert quadrature. The spring rest length is ls = 5a and the stiffness coefficient ks is set based on the criterion 
that 3 standard deviations of the distance d = |q1 − q2| is approximately 2a, i.e., 3

√
kB T /ks ≈ 2a, so that the particles very 

rarely overlap. The presence of harmonic springs defines the spring relaxation time scales,

τs = 1

ks〈Nxx〉 and τθ = 1

kθ 〈Nθθ 〉 , (4.14)

where Nxx and Nθθ are the translational and rotational self-mobilities of a single particle, which can be computed with high 
accuracy using the second-kind solver. The value of the parameters are ks = 81, kθ ≈ 2.446, and τs = τθ ≈ 0.1189. Recall 
that the dominant computational work of FBIM is to compute the mobility N F (see left panel of Fig. 5). To reduce the 
amount of computational work, we found that solving the mobility problems in RFD with a lower tolerance level ε = 10−3

while maintaining a higher tolerance ε = 10−6 in the deterministic mobility does not introduce any observable statistical 
errors in the computation.

In Fig. 8, we compare errors of the mean and covariance of θ1, θ2 and the distance d = |q1 − q2| with respect to 
the equilibrium statistics calculated analytically from Eq. (4.13). The numerical results are generated from 16 independent 
trajectories with length T ≈ 14.86. We observe in Fig. 8 that AB2 is more accurate than EM (see the panel that shows 
cov(d, d)). We also observe that the cross covariances are statistically indistinguishable from zero for sufficiently small 
time step sizes, indicating that the distance between particles and their rotations are uncorrelated, as expected from the 
equilibrium distribution Eq. (4.13).

5. Conclusions

In this paper we presented a fluctuating boundary integral method (FBIM) for simulating the overdamped Brownian Dy-
namics (BD) of rigid particles of complex shape in periodic domains. To the best of our knowledge, it is the first boundary 
integral method that accounts for Brownian motion of nonspherical particles immersed in a viscous incompressible fluid. 
Its main advantages are that particles of complex shape can be directly discretized with a surface mesh, and the deter-
ministic mobility of the particles can be computed with high accuracy by using high-order singular quadrature techniques. 
Importantly, the Brownian displacements of the particles are computed along the way with only a marginal increase in the 
overall cost, and strictly satisfy discrete fluctuation–dissipation balance. To accomplish this, instead of adding a stochastic 
stress tensor to the fluid equations as done in fluctuating hydrodynamics, we eliminated the fluid in the spirit of boundary 
integral representations. This led to a Stochastic Stokes Boundary Value Problem (SSBVP) in which we prescribed a random 
surface velocity distribution that has covariance proportional to the (periodic) Stokeslet. We found that using a first-kind 
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Fig. 8. Error bars (with two standard deviations) of the mean and covariance of distance between two tracking points d = |q1 −q2| and rotations θ1, θ2 for a 
pair of starfish particles interacting with the potential Eq. (4.12). The numerical results are produced using the EM and AB schemes, with both including the 
RFD term. The AB scheme is more accurate than the EM scheme for cov(d, d). The cross covariances are statistically indistinguishable from zero, indicating 
the particle positions and their rotations are uncorrelated, as expected from the equilibrium distribution Eq. (4.13).

boundary integral formulation is simplest since the first-kind integral operator inherits the SPD property from the Green’s 
function for Stokes flow. The matrix discretizing the single-layer operator directly gives the covariance of the required fluc-
tuating surface velocity, including a suitable handling of the singularity of the Oseen tensor. While formal analysis suggests 
that second-kind boundary integral methods are to be preferred over first-kind methods, we found that first-kind methods 
can be more accurate for dense suspensions, and showed that a simple block-diagonal preconditioner can effectively handle 
the ill-conditioning of the first-kind formulation. We confirmed through different benchmark problems that FBIM can effi-
ciently compute both deterministic and Brownian motion of rigid particles in accordance with the order of accuracy of the 
singular quadrature scheme. Our preconditioned iterative solvers (GMRES and Lanczos) converged within a small number 
of iterations and only grew slowly with the packing fraction. We also confirmed that the computational cost of FBIM scales 
linearly with the number of particles, even for moderately dense packing fractions. Finally, we coupled FBIM with stochas-
tic temporal integrators, and showed that it reproduced the correct equilibrium Gibbs–Boltzmann distribution of Brownian 
suspensions of particles of complex shape.

The FBIM presented in this work is a only a first step toward the overarching goal of performing accurate, efficient and 
robust BD simulations of a large collection of rigid particles of complex shape. Our proof-of-concept implementation of 
FBIM and numerical examples were presented in two spatial dimensions only. The continuum formulation of FBIM, which 
generates both deterministic and stochastic velocities in agreement with Eq. (2.20), applies directly to three dimensions. 
In principle, our discrete formulation of FBIM can also be extended to three spatial dimensions. This extension requires, 
however, developing a suitable quadrature rule for the single-layer potential. While in two dimensions we were able to use 
the trapezoidal rule as the underlying quadrature rule and apply Alpert corrections to account for the singularity of the 
Oseen tensor, in three dimensions these pieces need to be developed anew. First, a suitable discretization of the particles’ 
surfaces (e.g., using higher-order triangular elements) and a suitable non-singular quadrature rule need to be developed. 
For special particles shapes, notably spheres or spheroids, one can use specially chosen surface grids with the trapezoidal 
rule [36,37]; however, for general particle shapes it is not straightforward to achieve spectral accuracy. One of the desired 
properties of the quadrature rule is to ensure that the far-field component of the discrete single-layer matrix M is symmetric 
and positive definite. In particular, we expect that a good quadrature rule would yield the SPD matrix M = �G�T , where 
Gi j = G(xi − x j), and � encodes the quadrature weights and mesh connectivity. Second, a singular quadrature near-field 
correction for the single-layer kernel needs to be constructed. A recently developed option is quadrature-by-expansion 
(QBX) [40,41]. Recently, af Klinteberg and Tornberg [37] applied QBX to simulate a collection of non-Brownian spheroids 
immersed in a Stokes flow; however, the generalizations to more complex particle shapes requires an underlying, high-order 
smooth quadrature rule.

A particular challenge in developing singular quadrature schemes is preserving underlying symmetry properties of the 
single layer operator. Namely, the single layer integral operator is SPD and is rotationally invariant, meaning that if the body 
is rotated the result of applying the operator is also rotated in the same way. The Alpert quadrature correction used in 
this work gives a banded high-order log-singularity correction for the near-field component of M that is neither symmetric, 
nor positive definite, nor rotationally invariant. We found all of these artifacts to be numerical errors below the order of 
accuracy of the quadrature scheme, as expected. However, it would be much better to have a singular quadrature scheme 
that does not have such unphysical artifacts by construction. The traditional focus in boundary integral methods has been 
on achieving higher-order accuracy. What is more important for Brownian suspensions is preserving physical properties of 
the continuum operators in their discrete “mimetic” counterparts, so that even coarse resolutions give physically-consistent 
(even if not very accurate) discretizations.
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We note that a Galerkin boundary integral formulation combined with multipole expansions has been used by Singh 
and Adhikari and collaborators to model active suspensions of spherical particles in an unbounded domain [64]. In some 
sense, this is an extension of the traditional Stokesian Dynamics method to include moments higher than the stresslet, as 
necessary to account for active flows. Recently the method has been extended to include Brownian contributions and to 
account for confinement near a no-slip boundary [65]. While also based on a boundary integral formulation, this class of 
methods differs in significant ways from the one proposed here. Most importantly, our approach uses numerical quadrature 
instead of analytical integration, and therefore generalizes to arbitrary (smooth) particle shapes. Furthermore, we do not 
truncate a multipole hierarchy at a finite number of moments, and can therefore achieve controlled accuracy (i.e., a desired 
number of digits of accuracy). Nevertheless, generalizations of FBIM to three dimensions require a nontrivial amount of 
effort, and for spherical particles the Galerkin approach may be an effective alternative that yields sufficiently accurate 
answers in practice.

Another key aspect of Brownian Dynamics simulations is the temporal integration schemes. There are three main chal-
lenges in this regard. The first is that in three dimensions orientation cannot be represented by a vector. This can most 
straightforwardly be handled by using normalized quaternions to represent particle orientation, as shown in [43]. In the 
end, as long as a method to compute particle velocities in agreement with Eq. (2.20) is provided, handling the quater-
nion constraint simply amounts to using quaternion multiplication, rather than addition, to update orientations [43,53]. The 
second challenge is capturing the stochastic drift term proportional to the divergence of the body mobility matrix using 
linear-scaling iterative methods. In this work we used methods that perform random finite difference on the body mobility. 
This requires solving two mobility problems per time step just to capture the stochastic drift term, therefore at least dou-
bling the cost of a time step. In future work we will describe novel temporal integrators that can be used with FBIM to give 
more accurate answers for larger time step sizes, and which use only a single mobility solve to capture the stochastic drift 
term [53]. A third challenge is to handle the fact that Brownian displacements can lead to overlaps between the particles, 
even for small time step sizes. Unlike the rigid multiblob method [39], which builds on a regularized first-kind boundary in-
tegral formulation, traditional boundary integral methods based on singular quadratures break down when particles overlap. 
Even if particles do not overlap, unless the surface discretization is refined adaptively (which would be too costly for denser 
suspensions), traditional boundary integral representations will give unphysical answers that can easily lead to breakdown 
especially in the presence of noise. A possible solution to this is to use a regularization of the formulation for particle gaps 
below the resolution of the method. This is done naturally in the rigid multiblob method [53], and also more recently in a 
Galerkin multipole method [65], by using the Rotne–Prager–Yamakawa regularization of the Oseen tensor.

Another important direction of future work is to extend FBIM to model Brownian suspensions in other geometries, 
notably in unbounded domains. One option is to adapt our method to use a newly developed spectral Ewald summation for 
the free-space Stokeslet [66]. We note, however, that the computational cost of the FFTs in Ewald-type methods may become 
non-trivial for three dimensional problems. A challenge of great interest is incorporating the Fast Multipole Method (FMM) 
to generate the random surface velocity, thus developing a grid-free (near) linear-scaling method for Brownian suspension 
in an unbounded domain. For simple confined geometries, such as colloids sedimented in the vicinity of a single no-slip 
wall, one can use known analytical Green’s functions for Stokes flow as done in [65]. It turns out that because of the more 
rapid decay of the Green’s function in the presence of a wall, iterative methods can efficiently generate the random surface 
velocity without requiring special handling of the far-field interactions [44]. Nevertheless, achieving both linear scaling and 
controlled accuracy are challenges even in such simple geometries. For finite domains of more complicated geometry, one 
can discretize the domain boundary explicitly [67], and then employ the free-space Spectral Ewald method [66].
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Appendix A. Body mobility matrix and Lorentz reciprocal theorem

In this appendix, we derive the following expression for elements of the body mobility matrix N in terms of the periodic 
Green’s function G(x, y) of Stokes flow,

(N )i j ≡ Ni j =
∫
�

∫
�

λ( j)(x) ·G(x − y) · λ(i)(y)dS y dSx, (A.1)

where the precise definition of λ(i), λ( j) appears later.
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For simplicity, we consider only a single rigid body � immersed in a Stokes fluid with periodic boundary conditions. The 
generalization of (A.1) to account for many bodies is straightforward. First, we recall that, the mobility problem that solves 
for the translational velocity u and the rotational velocity ω of the body, in response to the force f and torque τ exerted 
on the body is described by the steady Stokes equations with no-slip boundary condition, and force and torque balance 
conditions:

−∇ · σ = ∇π − η∇2 v = 0,

∇ · v = 0,

v(x) = u + ω × (x − q), ∀x ∈ �,∫
�

λ(x)dSx = f and
∫
�

(x − q) × λ(x)dSx = τ ,

(A.2)

where η is the fluid viscosity, σ the fluid stress tensor, and v is the fluid velocity, respectively. Here λ = (σ · n)(x) is the 
surface traction of the body with n being the unit normal vector to the surface. The mobility problem (A.2) can be viewed 
as a linear mapping

U = N F , (A.3)

where N is the body mobility matrix that relates the rigid body motion U = {u, ω} to the applied force and torque 
F = { f , τ }.

Let {v(i), σ (i), u(i), ω(i)} and {v( j), σ ( j), u( j), ω( j)} denote the solutions to the mobility problem (A.2) with applied force 
and torque F = { f (i), τ (i)} = e(i) and F = { f ( j), τ ( j)} = e( j) respectively. Here e(i) and e( j) are the standard basis vectors 
(in two dimensions, e(i) ∈ R

3). It is not difficult to see that U ( j) = {u( j), ω( j)} corresponds to the jth column of N . It 
is understood that whenever the force or torque is made dimensionless in the canonical problem, the other quantities’ 
dimensions are adjusted accordingly. Thus, if the force is made dimensionless, velocities have units of the force-velocity 
mobility, while the tractions have units of inverse area. If the torque is made dimensionless, then the velocities have units 
of the torque-velocity mobility and the tractions have units of inverse length.

Invoking the Lorentz Reciprocal Theorem (LRT) [12] and eliminating boundary terms arise from integration-by-parts using 
periodic BCs, we obtain∫

�

v(i) · λ( j) dS =
∫
�

v( j) · λ(i) dS. (A.4)

After substituting the no-slip BC for v( j) on the RHS of (A.4), and make use of the force and torque balance condition for 
λ(i) , we obtain that∫

�

v(i) · λ( j) dS =
∫
�

[
u( j) + ω( j) × (x − q)

]
· λ(i) dSx

= u( j) · f (i) + ω( j) · τ (i)

= U ( j) · e(i) = Ni j .

(A.5)

We recall that v(i)(x) for x ∈ � can be written as

v(i)(x) =
∫
�

G(x − y) · λ(i)(y)dS y, x ∈ �, (A.6)

where G is the Green’s function of Stokes flow with unit viscosity and periodic BCs (periodic Stokeslet), as dictated by the 
first-kind boundary integral formulation of the mobility problem [12]. Lastly, we substitute (A.6) for v(i) on the LHS of (A.5)
to conclude that

Ni j =
∫
�

∫
�

λ(i)(x) ·G(x − y) · λ( j)(y)dS y dSx. (A.7)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .08 .021.

https://doi.org/10.1016/j.jcp.2018.08.021


1118 Y. Bao et al. / Journal of Computational Physics 374 (2018) 1094–1119
References

[1] Ambarish Ghosh, Peer Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett. 9 (6) (2009) 2243–2245.
[2] C.S. Peskin, G.M. Odell, G.F. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys. J. 65 (1) (1993) 316–324.
[3] H. Rafii-Tabar, R. Tavakoli-Darestani, Modelling the stochastic dynamics of biological nano-motors: an overview of recent results, J. Comput. Theor. 

Nanosci. 6 (4) (2009) 806–819.
[4] Hong-Ren Jiang, Natsuhiko Yoshinaga, Masaki Sano, Active motion of a Janus particle by self-thermophoresis in a defocused laser beam, Phys. Rev. Lett. 

105 (26) (2010) 268302.
[5] Donald L. Koch, Ganesh Subramanian, Collective hydrodynamics of swimming microorganisms: living fluids, Annu. Rev. Fluid Mech. 43 (2011) 637–659.
[6] Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J. Pine, Paul M. Chaikin, Living crystals of light-activated colloidal surfers, Science 

339 (6122) (2013) 936–940.
[7] Walter F. Paxton, Kevin C. Kistler, Christine C. Olmeda, Ayusman Sen, Sarah K. St. Angelo, Yanyan Cao, Thomas E. Mallouk, Paul E. Lammert, Vincent H. 

Crespi, Catalytic nanomotors: autonomous movement of striped nanorods, J. Am. Chem. Soc. 126 (41) (2004) 13424–13431.
[8] Daisuke Takagi, Adam B. Braunschweig, Jun Zhang, Michael J. Shelley, Dispersion of self-propelled rods undergoing fluctuation-driven flips, Phys. Rev. 

Lett. 110 (3) (2013) 038301.
[9] Jonathan R. Howse, Richard A.L. Jones, Anthony J. Ryan, Tim Gough, Reza Vafabakhsh, Ramin Golestanian, Self-motile colloidal particles: from directed 

propulsion to random walk, Phys. Rev. Lett. 99 (4) (2007) 48102.
[10] Stephen J. Ebbens, Jonathan R. Howse, In pursuit of propulsion at the nanoscale, Soft Matter 6 (4) (2010) 726–738.
[11] Sangtae Kim, Seppo J. Karrila, Microhydrodynamics: Principles and Selected Applications, Courier Corporation, 2013.
[12] Constantine Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992.
[13] R.M. Jendrejack, J.J. de Pablo, M.D. Graham, Stochastic simulations of DNA in flow: dynamics and the effects of hydrodynamic interactions, J. Chem. 

Phys. 116 (17) (2002) 7752–7759.
[14] Richard M. Jendrejack, David C. Schwartz, Michael D. Graham, Juan J. de Pablo, Effect of confinement on DNA dynamics in microfluidic devices, J. Chem. 

Phys. 119 (2003) 1165.
[15] J.P. Hernandez-Ortiz, J.J. de Pablo, M.D. Graham, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry, 

Phys. Rev. Lett. 98 (14) (2007) 140602.
[16] Yu Zhang, Juan J. de Pablo, Michael D. Graham, An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries: 

application to dna flowing through a nanoslit with embedded nanopits, J. Chem. Phys. 136 (2012) 014901.
[17] Zhi Liang, Zydrunas Gimbutas, Leslie Greengard, Jingfang Huang, Shidong Jiang, A fast multipole method for the Rotne–Prager–Yamakawa tensor and 

its applications, J. Comput. Phys. 234 (2013) 133–139.
[18] A. Sierou, J.F. Brady, Accelerated Stokesian dynamics simulations, J. Fluid Mech. 448 (2001) 115–146.
[19] Adolfo J. Banchio, John F. Brady, Accelerated Stokesian dynamics: Brownian motion, J. Chem. Phys. 118 (2003) 10323.
[20] Mu Wang, John F. Brady, Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions, J. Comput. Phys. 306 (2016) 443–477.
[21] Dag Lindbo, Anna-Karin Tornberg, Spectrally accurate fast summation for periodic Stokes potentials, J. Comput. Phys. 229 (23) (2010) 8994–9010.
[22] Marshall Fixman, Construction of Langevin forces in the simulation of hydrodynamic interaction, Macromolecules 19 (4) (1986) 1204–1207.
[23] Tadashi Ando, Edmond Chow, Yousef Saad, Jeffrey Skolnick, Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics 

simulations, J. Chem. Phys. 137 (6) (2012).
[24] A.M. Fiore, F. Balboa Usabiaga, A. Donev, J.W. Swan, Rapid sampling of stochastic displacements in Brownian dynamics simulations, J. Chem. Phys. 

146 (12) (2017) 124116, software available at https://github .com /stochasticHydroTools /PSE.
[25] R. Adhikari, K. Stratford, M.E. Cates, A.J. Wagner, Fluctuating lattice Boltzmann, Europhys. Lett. 71 (2005) 473–479.
[26] B. Dünweg, A.J.C. Ladd, Lattice Boltzmann simulations of soft matter systems, in: Adv. Comp. Sim. for Soft Matter Sciences III, 2009, pp. 89–166.
[27] S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B.E. Griffith, A. Donev, Brownian dynamics without Green’s functions, J. Chem. Phys. 140 (13) 

(2014) 134110, software available at https://github .com /stochasticHydroTools /FIB.
[28] Eric E. Keaveny, Fluctuating force-coupling method for simulations of colloidal suspensions, J. Comput. Phys. 269 (2014) 61–79.
[29] Blaise Delmotte, Eric E. Keaveny, Simulating Brownian suspensions with fluctuating hydrodynamics, J. Chem. Phys. 143 (24) (2015) 244109.
[30] Jens Rotne, Stephen Prager, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys. 50 (1969) 4831.
[31] H. Hasimoto, On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid 

Mech. 5 (02) (1959) 317–328.
[32] D. Liu, E.E. Keaveny, Martin R. Maxey, George E. Karniadakis, Force-coupling method for flows with ellipsoidal particles, J. Comput. Phys. 228 (10) 

(2009) 3559–3581.
[33] Anna-Karin Tornberg, Leslie Greengard, A fast multipole method for the three-dimensional stokes equations, J. Comput. Phys. 227 (3) (2008) 1613–1619.
[34] Rachh Manas, Leslie Greengard, Integral equation methods for elastance and mobility problems in two dimensions, SIAM J. Numer. Anal. 54 (5) (2016) 

2889–2909.
[35] Eduardo Corona, Leslie Greengard, Manas Rachh, Shravan Veerapaneni, An integral equation formulation for rigid bodies in stokes flow in three di-

mensions, J. Comput. Phys. 332 (2017) 504–519.
[36] Ludvig Af Klinteberg, Anna-Karin Tornberg, Fast Ewald summation for Stokesian particle suspensions, Int. J. Numer. Methods Fluids 76 (10) (2014) 

669–698.
[37] Ludvig af Klinteberg, Anna-Karin Tornberg, A fast integral equation method for solid particles in viscous flow using quadrature by expansion, J. Comput. 

Phys. 326 (2016) 420–445.
[38] David J. Smith, A boundary element regularized stokeslet method applied to cilia-and flagella-driven flow, Proc. R. Soc. Lond. Ser. A 465 (2112) (2009) 

3605–3626.
[39] F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A.P.S. Bhalla, B.E. Griffith, A. Donev, Hydrodynamics of suspensions of passive and active rigid particles: 

a rigid multiblob approach, Commun. Appl. Math. Comput. Sci. 11 (2) (2016) 217–296, software available at https://github .com /stochasticHydroTools /
RigidMultiblobsWall.

[40] Charles L. Epstein, Leslie Greengard, Andreas Klöckner, On the convergence of local expansions of layer potentials, SIAM J. Numer. Anal. 51 (5) (2013) 
2660–2679.

[41] Andreas Klöckner, Alexander Barnett, Leslie Greengard, Michael O’Neil, Quadrature by expansion: a new method for the evaluation of layer potentials, 
J. Comput. Phys. 252 (2013) 332–349.

[42] Eric E. Keaveny, Michael J. Shelley, Applying a second-kind boundary integral equation for surface tractions in Stokes flow, J. Comput. Phys. 230 (5) 
(2011) 2141–2159.

[43] S. Delong, F. Balboa Usabiaga, A. Donev, Brownian dynamics of confined rigid bodies, J. Chem. Phys. 143 (14) (2015) 144107, software available at 
https://github .com /stochasticHydroTools /RigidMultiblobsWall.

[44] Florencio Balboa Usabiaga, Blaise Delmotte, Aleksandar Donev, Brownian dynamics of confined suspensions of active microrollers, J. Chem. Phys. 
146 (13) (2017) 134104, software available at https://github .com /stochasticHydroTools /RigidMultiblobsWall.

http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4D61676E657469634E616E6F50726F70656C6C6572s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E61696E4D6F746F725F5065736B696Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42696F4E616E6F4D6F746F72735F53696D756C6174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42696F4E616E6F4D6F746F72735F53696D756C6174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4A616E75735061727469636C65s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4A616E75735061727469636C65s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib41637469766553757370656E73696F6E73s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib48656D6174697465735F536369656E6365s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib48656D6174697465735F536369656E6365s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib436174616C797469634E616E6F6D6F746F7273s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib436174616C797469634E616E6F6D6F746F7273s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib466C697070696E674E616E6F726F6473s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib466C697070696E674E616E6F726F6473s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53656C662D4D6F74696C65436F6C6C6F6964616C5061727469636C6573s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53656C662D4D6F74696C65436F6C6C6F6964616C5061727469636C6573s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4163746976654E616E6F5377696D6D657273526576696577s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4D6963726F687964726F64796E616D696373426F6F6Bs1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C5F506F7A72696B69646973s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E44796E616D6963735F444E41s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E44796E616D6963735F444E41s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E44796E616D6963735F444E4132s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E44796E616D6963735F444E4132s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E44796E616D6963735F4F726465724Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E44796E616D6963735F4F726465724Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42445F49424D5F47726168616Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42445F49424D5F47726168616Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5250595F464D4Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5250595F464D4Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E44796E616D6963735F4F726465724E6C6F674Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B657369616E44796E616D6963735F42726F776E69616Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53445F537065637472616C4577616C64s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537065637472616C4577616C645F53746F6B6573s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42445F4669786D616E5F737172744Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537175617265526F6F744B72796C6F76s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537175617265526F6F744B72796C6F76s1
https://github.com/stochasticHydroTools/PSE
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4C425F546865726D616C466C756374756174696F6E73s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4C425F536F66744D61747465725F526576696577s1
https://github.com/stochasticHydroTools/FIB
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib466F726365436F75706C696E675F466C756374756174696F6E73s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib466C756374756174696E6746434D5F4443s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib526F746E65507261676572s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4D6F62696C69747932445F486173696D6F746Fs1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4D6F62696C69747932445F486173696D6F746Fs1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib466F726365436F75706C696E675F456C6C69736F696473s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib466F726365436F75706C696E675F456C6C69736F696473s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B657333445F477265656E67617264s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B657332445F4D616E6173s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B657332445F4D616E6173s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B657333445F464D4Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B657333445F464D4Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C5F506572696F6469633344s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C5F506572696F6469633344s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C5F53706865726F6964514258s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C5F53706865726F6964514258s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5269676964526567756C6172697A656453746F6B65736C657473s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5269676964526567756C6172697A656453746F6B65736C657473s1
https://github.com/stochasticHydroTools/RigidMultiblobsWall
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5142585F4570737465696Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5142585F4570737465696Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5142585F4B6C6F636B6E6572s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib5142585F4B6C6F636B6E6572s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B65735365636F6E644B696E645F5368656C6C6579s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53746F6B65735365636F6E644B696E645F5368656C6C6579s1
https://github.com/stochasticHydroTools/RigidMultiblobsWall
https://github.com/stochasticHydroTools/RigidMultiblobsWall
https://github.com/stochasticHydroTools/RigidMultiblobsWall


Y. Bao et al. / Journal of Computational Physics 374 (2018) 1094–1119 1119
[45] R.F. Fox, G.E. Uhlenbeck, Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations, Phys. Fluids 13 (1970) 1893.
[46] E.J. Hinch, Application of the Langevin equation to fluid suspensions, J. Fluid Mech. 72 (03) (1975) 499–511.
[47] J.N. Roux, Brownian particles at different times scales: a new derivation of the Smoluchowski equation, Physica A 188 (1992) 526–552.
[48] E.H. Hauge, A. Martin-Lof, Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys. 7 (3) (1973) 259–281.
[49] R. Zwanzig, M. Bixon, Compressibility effects in the hydrodynamic theory of Brownian motion, J. Fluid Mech. 69 (1975) 21–25.
[50] Grigorios A. Pavliotis, Andrew M. Stuart, Multiscale Methods: Averaging and Homogenization, vol. 53, Springer, 2008.
[51] M. Fixman, Simulation of polymer dynamics. I. General theory, J. Chem. Phys. 69 (1978) 1527.
[52] S. Delong, Y. Sun, B.E. Griffith, E. Vanden-Eijnden, A. Donev, Multiscale temporal integrators for fluctuating hydrodynamics, Phys. Rev. E 90 (2014) 

063312, software available at https://github .com /stochasticHydroTools /MixingIBAMR.
[53] Brennan Sprinkle, Florencio Balboa Usabiaga, Neelesh A. Patankar, Aleksandar Donev, Large scale Brownian dynamics of confined suspensions of rigid 

particles, J. Chem. Phys. 147 (24) (2017) 244103, software available at https://github .com /stochasticHydroTools /RigidMultiblobsWall.
[54] Bradley K. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput. 20 (5) (1999) 1551–1584.
[55] J. Thomas Beale, Wenjun Ying, Jason R. Wilson, A simple method for computing singular or nearly singular integrals on closed surfaces, Commun. 

Comput. Phys. 20 (3) (2016) 733–753.
[56] James Bremer, Zydrunas Gimbutas, A Nyström method for weakly singular integral operators on surfaces, J. Comput. Phys. 231 (14) (2012) 4885–4903.
[57] P. Kolm, V. Rokhlin, Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl. 41 (3) (2001) 327–352.
[58] M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids, Oxford Science Publications, 1987.
[59] L. Greengard, J. Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev. 46 (3) (2004) 443–454.
[60] Dag Lindbo, Anna-Karin Tornberg, Spectral accuracy in fast Ewald-based methods for particle simulations, J. Comput. Phys. 230 (24) (2011) 8744–8761.
[61] Edmond Chow, Yousef Saad, Preconditioned Krylov subspace methods for sampling multivariate gaussian distributions, SIAM J. Sci. Comput. 36 (2) 

(2014) A588–A608.
[62] A.S. Sangani, A. Acrivos, Slow flow through a periodic array of spheres, Int. J. Multiph. Flow 8 (4) (1982) 343–360.
[63] A.S. Sangani, A. Acrivos, Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiph. Flow 8 (3) (1982) 193–206.
[64] Rajesh Singh, Somdeb Ghose, R. Adhikari, Many-body microhydrodynamics of colloidal particles with active boundary layers, J. Stat. Mech. Theory Exp. 

2015 (6) (2015) P06017.
[65] Rajesh Singh, R. Adhikari, Fluctuating hydrodynamics and the Brownian motion of an active colloid near a wall, Eur. J. Comput. Mech. 26 (1–2) (2017) 

78–97.
[66] Ludvig af Klinteberg, Davoud Saffar Shamshirgar, Anna-Karin Tornberg, Fast Ewald summation for free-space Stokes potentials, Res. Math. Sci. 4 (1) 

(2017) 1.
[67] Oana Marin, Katarina Gustavsson, Anna-Karin Tornberg, A highly accurate boundary treatment for confined stokes flow, Comput. Fluids 66 (2012) 

215–230.

http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4C4C4E535F46445F466F78s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib564143465F4C616E676576696Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4C616E676576696E44796E616D6963735F5468656F7279s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib564143465F466C756374487964726Fs1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42726F776E69616E436F6D70726573736962696C6974795F5A77616E7A6967s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib417665726167696E67486F6D6F67656E697A6174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib42445F4669786D616Es1
https://github.com/stochasticHydroTools/MixingIBAMR
https://github.com/stochasticHydroTools/RigidMultiblobsWall
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib416C706572745F51756164726174757265s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53696E67756C6172496E74656772616C5F4265616C65s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53696E67756C6172496E74656772616C5F4265616C65s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53696E67756C6172496E74656772616C5F47696D6275746173s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib53696E67756C6172496E74656772616C5F4B6F6C6Ds1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib416C6C656E5F54696C6465736C65795F626F6F6Bs1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib4E55464654s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537065637472616C4577616C645F456C656374726F73746174696373s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537175617265526F6F74507265636F6E646974696F6E696E67s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537175617265526F6F74507265636F6E646974696F6E696E67s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib506572696F646963417272617932445F41637269766F7331393832s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib506572696F646963417272617932445F41637269766F733139383262s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C47616C65726B696Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C47616C65726B696Es1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C57616C6C5F416468696B617269s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C57616C6C5F416468696B617269s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537065637472616C4577616C645F467265655370616365s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib537065637472616C4577616C645F467265655370616365s1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C5F57616C6Cs1
http://refhub.elsevier.com/S0021-9991(18)30544-8/bib426F756E64617279496E74656772616C5F57616C6Cs1

	A ﬂuctuating boundary integral method for Brownian suspensions
	1 Introduction
	2 Continuum formulation
	2.1 Boundary value problem formulation
	2.2 First-kind integral formulation

	3 Fluctuating boundary integral method
	3.1 Discrete formulation of the mobility problem
	3.2 Fast matrix-vector multiplication for the single-layer matrix
	3.3 Fast sampling of the random surface velocity
	3.4 Block-diagonal preconditioning

	4 Numerical results
	4.1 Choosing the Ewald splitting parameter
	4.2 Square lattice of disks
	4.3 Suspension of Brownian rigid disks
	4.4 Brownian dynamics of rigid particles
	4.4.1 Free diffusion of a single starﬁsh
	4.4.2 A pair of interacting starﬁsh


	5 Conclusions
	Acknowledgements
	Appendix A Body mobility matrix and Lorentz reciprocal theorem
	Appendix B Supplementary material
	References


