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This study focuses on development of two approaches based on finite volume schemes for 
solving both one-dimensional and multidimensional nonlinear simultaneous coagulation-
fragmentation population balance equations (PBEs). Existing finite volume schemes and 
sectional methods such as fixed pivot technique and cell average technique have many 
issues related to accuracy and efficiency. To resolve these challenges, two finite volume 
schemes are developed and compared with the cell average technique along with the exact 
solutions. The new schemes have features such as simpler mathematical formulations, easy 
to code and robust to apply on nonuniform grids. The numerical testing shows that both 
new finite volume schemes compute the number density functions and their corresponding 
integral moments with higher precision on a coarse grid by consuming lesser CPU time. In 
addition, both schemes are extended to approximate generalized simultaneous coagulation-
fragmentation problems and retains the numerical accuracy and efficiency. For the higher 
dimensional PBEs (2D and 3D), the investigation and verification of the numerical schemes 
is done by deriving new exact integral moments for various combinations of coagulation 
kernels, selection functions and fragmentation kernels.
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1. Introduction

Particulate processes tend to change particles properties such as size, mass, porosity and enthalpy due to various mecha-
nisms such as coagulation, fragmentation, attrition, consolidation, nucleation and growth. A few of the important industrial 
scale applications (in chemical engineering and pharmaceutical sciences) involving these mechanisms are crystallization 
[35], depolymerization [1], high shear granulation [6], twin-screw granulation [14,21] and sprayed fluidized bed granula-
tion [15]. However, in this paper, our primary emphasis is on the handling of a framework in which the properties of the 
particles are modified due to both coagulation and fragmentation processes. Coagulation (or Aggregation) is a mechanism 
in which two or more smaller particles come together to form a large size particle (see Fig. 1). During this process, the 
evolution of total number of particles decreases over time, while the mass remains conserved. In addition, as contrasted 
to coagulation, smaller particles are produced which increase the total number of particles in the system during the frag-
mentation mechanism, but the total mass remains unchanged. As a consequence of these mechanisms, various particles 
with different properties (size or volume) are produced in the system due to coagulation and fragmentation processes. In 
order to model such processes, mathematical models called population balances are needed to understand a change in the 
distribution of the particle property.

Fig. 1. Schematic diagram of coagulation and fragmentation processes.

Mathematically, the fragmentation and coagulation mechanisms can be classified as linear and nonlinear integro-partial 
differential equation, respectively. The one-dimensional simultaneous coagulation-fragmentation population balance model 
for a well mixed system which is used to describe the dynamics of the system [38] can be written as follows

∂n(t, u)

∂t
= Q ±

agg(t, u) + Q ±
brk(t, u), (1)

with initial condition n(0, u) = n0(u), u ∈R+ , where, (t, u) ∈R2+ and R+ := (0, ∞). Further,

• n(t, u): represents the number density function.
• Q ±

agg(t, u): rate at which particles properties u are formed due to birth and death and is defined as

Q ±
agg(t, u) = 1

2

u∫
0

β(t, u − u′, u′)n(t, u − u′)n(t, u′)du′ −
∞∫

0

β(t, u, u′)n(t, u)n(t, u′)du′. (2)

In the above equation (2), the first term refers to the birth of the particle property u due to the merging of the particles 
properties u − u′ and u′ , whereas the second term corresponds to the death of the particle property u due to aggregation of 
the particle property u with any other particle. The coagulation kernel β(t, u, u′) describes the rate at which the particles 
properties u and u′ forms a bigger size particle. Coagulation kernels are non-negative and symmetric with respect to volume 
arguments, that is, β(t, u, u′) = β(t, u′, u). The conventional form of the coagulation kernel is β(t, u, u′) = β0(t)β(u, u′) and 
for simplicity we choose β0(t) = 1.

• Q ±
brk(t, u): rate at which the formation of the particles properties u takes place due to the fragmentation process and 

is defined by
2
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Q ±
brk(t, u) =

∞∫
u

b(u, u′)S(u′)n(t, u′)du′ − S(u)n(t, u), (3)

where the function b(u, u′) is the particle size distribution for the formation of particle property u from the particle 
property u′. Moreover, S(u) is the selection function which describes the rate of selection of particle property u to 
break and mathematically can be written as S(u) = S0s(u) where S0 is considered to be 1 for the simple cases and 
s(u) = 1, u and u2. In addition, the function b(u, u′) must satisfy the following conditions:
(a)

∫ u
0 b(u, u′)du′ = v(u), and

(b)
∫ u′

0 ub(u, u′)du′ = u′ ,
where v(u) defines the number of fragments obtained from the fragmentation of particle property u and should be 
equal or bigger than 2.

To monitor the change in particles properties, the number density function n(t, u) is essential to obtain, however, some 
integral properties such as moments are also of great interest [45,50,52] which is defined by

μi(t) =
∞∫

0

uin(t, u)du, (4)

for integers i = 0,1,2, . . .. The zeroth moment (μ0(t)) represents the total number of particles and the first order moment 
(μ1(t)) defines total mass in the system.

Due to the presence of nonlinear integral in the equation (1), it is very challenging to find the exact solution for various 
coagulation kernels having complex structures such as Brownian kernel, kinetic theory of granular flow kernel along with 
Austin kernel corresponding to fragmentation equation. However, Patil and Andrews [32], Lin et al. [29] and Kaur et al. [16,
17] were still able to derive the exact solutions for a simpler structured coagulation kernel (constant kernel) and binary 

fragmentation kernel (b(u, u′) = 2

u′ ) with linear selection rate (S(u) = u). Some other studies related to analytical solutions 
for higher dimensional population balance equations are provided by Fernández-Díaz and Gómez-García [10] and references 
therein. To overcome the issue of analytical solutions, many numerical methods including finite volume schemes [25,39,43,
51], the method of moments [3,5,31,34], finite element method [2,8], Stochastic methods [13,30,33,56], Haar Wavelet [27]
and sectional methods such as Fixed Pivot Technique [26,41,42] and Cell Average Technique [18,20,23,24,28,47] have been 
presented.

Among listed methods, the existing finite volume schemes [11,12,36] are well known for predicting the number density 
function accurately but do not focus on the accuracy of various order moments. Moreover, method of moments needs the 
conversion of original population balance equation into the moment form. Therefore, method of moments approaches merely 
focused on capturing the moments of different order accurately and lose the knowledge of the number density function. 
However, Monte Carlo methods are the most suitable numerical methods for approximating the coagulation-fragmentation 
mechanisms but a large number of particles are required in the system to approximate the number density function and 
various moments accurately which makes them computationally very expensive. This leads us to the choice of sectional 
methods whose ability to predict moments as well as number density function is excellent. But, the complex mathematical 
formulations of sectional methods are their major drawbacks which further restrict them to extend for solving higher 
dimensional population balance equations [7,46]. Attarakih et al. [4] developed a conservative discretization approach for 
approximating a one dimensional droplet breakage equation for interacting liquid-liquid dispersion which is highly accurate 
and efficient. For achieving the accuracy of the numerical results [4], 50 nonuniform cells were used and no extension in 
the higher dimensional equations is available in literature. Hence, unable to apply on the applications such as granulation 
[40] in which two or more particles properties are required to be tracked.

Recently, Singh et al. [49] has introduced a finite volume scheme (FVS) whose mathematical formulation is very simple, 
easy to code and reliably predicts integral moments and number density on a coarse grid. This scheme focuses solely on 
the conservation of the total mass in the system, but for certain real-life applications, the preservation of the total num-
ber of particles is equally important. The problem of non-preservation of the total number of particles has been addressed 
by Kumar et al. [22] extending the scheme of Singh et al. [49] which not only preserves the total mass in the system but 
also preserves the total number of particles in the system. On the other hand, Saha et al. [39] developed a mass conserv-
ing as well as number preserving finite volume schemes for solving a pure fragmentation PBE. Now the question arises 
whether these numerical schemes will be stable enough (in terms of discretization errors) when extended to solve a one-
dimensional simultaneous coagulation-fragmentation mechanisms? How these numerical schemes behave when extended 
to a approximate multidimensional population balance equation?

In the literature, it has been shown that the solution of simultaneous coagulation-fragmentation PBE produces significant 
uncertainty, leading to significant discretization errors, and thus a very refined grid is needed to correctly approximate all 
numerical outcomes, making these methods computationally very costly [25,26,57]. Even a numerical technique developed 
by Kostoglou and Karabelas [19] for solving a pure coagulation equation when applied in the presence of fragmentation 
presents new attributes such as the attainment of a steady state or the appearance of a bimodal or multimodal number 
3
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Fig. 2. One-dimensional domain discretization.

density function that was not anticipated. So, Kostoglou and Karabelas [19] made their conclusion by describing it as an 
inadequate method for solving a simultaneous coagulation-fragmentation PBE.

In comparison to existing sectional methods, the finite volume scheme [11] involves the conversion of the original PBE 
(1) into the mass conservation form and produces highly inaccurate results of number density function on a coarse grid. 
Later, Kumar et al. [25] developed two methods, namely, one-moment conserving FVS and two-moment conserving FVS. They 
have shown that when one moment preserving FVS method for coagulation PBE is solved by considering the fragmentation 
mechanism, it neither holds the preservation of the zeroth moment nor conserve the first order moment. However, the 
second method is able to conserve the zeroth as well as first order moments but a dense grid is required to predict these 
results accurately which makes this method computationally very expensive. The mass conservation equation used by Filbet 
and Laurençot [11] and Kumar et al. [25] is given as below:

∂(un(t, u))

∂t
= − ∂

∂u

[ u∫
0

∞∫
u−v

vβ(v, ν, t)n(t, v)n(t, ν)dνdv
]
, v, t ∈ [0,∞[. (5)

Therefore, in this analysis, our primary motivation is to establish two stable (precise and efficient) finite volume ap-
proximations for the resolution of one-dimensional simultaneous coagulation-fragmentation PBE. In addition, we also con-
centrate on extending one-dimensional finite-volume schemes to approximate multidimensional simultaneous coagulation-
fragmentation equations to evaluate the effect of discretization errors on numerical solutions. This is because existing 
schemes when extended to the approximate the higher dimensional population balances, add large values to the discretiza-
tion errors [37] which was overcome by considering a refined grid. To the best of our knowledge, there is no numerical 
method available for approximating a 3D simultaneous coagulation-fragmentation equation, however, the extension of the 
new schemes are done for a 3D PBE in this current work and verified against newly derived integral moments.

Let us now briefly outline the contents of this paper: our exercise begins with a brief introduction of the existing finite 
volume schemes for pure coagulation as well as pure fragmentation and new methods based on existing methods for solv-
ing a simultaneous coagulation-fragmentation PBE are proposed. In same section, the theoretical proofs of the conservation 
of the moments are provided for both methods. In the next section 3, the developed methods are extended to solve a 
multidimensional simultaneous coagulation-fragmentation PBE. In section 4.2, the numerical results are discussed and ana-
lyzed to verify the accuracy as well as the efficiency of both numerical methods for one, two and three-dimensional PBEs, 
respectively. Finally, Section 5 summarizes the conclusions of this study.

2. Approximations for one dimensional coagulation-fragmentation

In this part, the mathematical formulations of the proposed finite-volume treatments for the solution of simultaneous 
coagulation-fragmentation PBE on nonuniform grid are given. The advantage of using nonuniform grid over the uniform grid 
is shown by Forestier-Coste and Mancini [12]. They have shown that lesser number of nonuniform grid points are required 
than the nonuniform grid points for achieving the accuracy which reduces the computational expense. The concept behind 
all numerical methods discussed in this article is based on the premise that the particles inside the grid cell are concentrated 
on their representatives. For the numerical schemes, a finite one-dimensional computational domain with an upper limit, 
umax < ∞ is taken and divided into I number of smaller cells having ui as representative volume, for i ∈ {1, 2, ..., I} (see 
Fig. 2). Now, define the grid points and the step size by

u1/2 = umin, ui = ui−1/2 + ui+1/2

2
, �ui = ui+1/2 − ui−1/2.

The goal is to propose two finite volume schemes (a) mass conserving finite volume scheme and (b) number preserving 
mass conserving for solution of the original PBE (1). Since numerical discretization is used to solve PBE (1), but due to the 
inclusion of infinity in the integral, it is impossible to solve these problems numerically. Hence, for the implementation of 
the numerical schemes, the domain must be restricted to η := {u : umin ≤ u < umax} and the coagulation kernel is restricted 
to:

β(t, u, u′) =
{

β(t, u, u′), (u + u′) ≤ umax;
0, otherwise.

(6)
4
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Fig. 3. Representation of set ϒi .

2.1. Mass conserving scheme-MC

In this section, the detail derivation of mathematical formulation of the finite volume mass conservation scheme for the 
solution of simultaneous coagulation-fragmentation is established. For the numerical approximation, let us first define the 
following set of indices:

ϒi = {
( j,k) ∈ N ×N : ui−1/2 < (u j + uk) ≤ ui+1/2

}
. (7)

Here ui−1/2 and ui+1/2 are the lower and upper ends of the ith cell, respectively and the representative of the ith cell is 
ui (see Fig. 2). The graphical illustration of the ϒi is shown in Fig. 3. Further, dividing the time domain as t p+1 = t p + �t p

for p ∈N . For i ∈ 1,2, ..., I , assume that np
i is the average value of n at time t p on the cell i which is an approximation of 

n(t p, ui) and is given by the following expression

np
i = 1

�ui

ui+1/2∫
ui−1/2

n(t p, u)du. (8)

Since we deal with integrals assuming that the point masses are concentrated on representatives, that is, n(t, u) ≈∑I
j=1 N jδ(u − u j). Here, N j denotes the total number of particles in the jth cell. Substituting the approximation of n(t, u)

in equation (1) and pursuing the calculations from the work of Kumar et al. [23], we define the finite volume scheme as

np+1
i = np

i + �t p
(1

2

I∑
i=1

∑
( j,k)∈ϒi

β j,knp
j np

k �u j�uk(u j + uk) −
I∑

i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j

+
I∑

i=1

ui

I∑
k=i

Sknp
k �uk

gi
k∫

ui−1/2

b(u, uk)du −
I∑

i=1

Sin
p
i

)
, (9)

where

gi
k =

{
ui, if k = i,

ui+1/2, if k �= i.

One will observe that the above expression does not hold the mass conservation property. Therefore, some weights 
defined in equations in the first and fourth terms, respectively are added to the formulation in order to achieve the mass 
conservation property. Thus, the final expression of MC FVS for solving a simultaneous coagulation-fragmentation equation 
takes the following form:

np+1
i = np

i + �t p
(1

2

I∑
i=1

∑
( j,k)∈ϒi

β j,knp
j np

k �u j�uk(u j + uk)ωi, j,k −
I∑

i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j

+
I∑

i=1

ui

I∑
k=i

Sknp
k �uk

gi
k∫

ui−1/2

b(u, uk)du −
I∑

i=1


i Sin
p
i

)
, (10)

where

ωi, j,k = u j + uk

ui
, (11)
5
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i = 1

ui

i∑
k=1

uuk

gi
k∫

uk−1/2

b(u, ui)du, i = 1,2, · · · , I. (12)

To solve these simultaneous processes efficiently, the total birth and total death rates of both processes are considered, 
that is, we accumulate all those particles who fall in a cell independently of the events that make them appear in the cell. 
In particular, these events are due to the coagulation and fragmentation processes. Mathematically, the discrete formulation 
of the simultaneous coagulation-fragmentation problem is obtained as

np+1
i = np

i + �t p
(

BMC
coag+ f rag,i − DMC

coag+ f rag,i

)
, (13)

where the first and second terms on the right side of the equation represent the birth and death of the particles in the ith 
cell due to the simultaneous coagulation-fragmentation processes and are given a

BMC
coag+ f rag,i = 1

2

I∑
i=1

∑
( j,k)∈ϒi

β j,knp
j np

k �u j�uk(u j + uk)ωi, j,k +
I∑

i=1

ui

I∑
k=i

Sknp
k �uk

gi
k∫

ui−1/2

b(u, uk)du, (14)

and

DMC
coag+ f rag,i =

I∑
i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j +
I∑

i=1


i Sin
p
i . (15)

Next our intent is to prove that the formulation (10) conserves the total mass in the system. The numerical approxima-
tion holds the mass conservation property when it satisfies the following condition:

I∑
i=1

ui�uin
p+1
i =

I∑
i=1

ui�uin
p
i , for each p. (16)

Proposition 1. The discrete formulation (10) holds the mass conservation property (first order moment) under the restriction (6).

Proof. Multiplying the discrete formulation provided in equation (10) by ui�ui and summing over all i, the left-hand side 
gives the first order moment at time t p+1 and the right-hand side can be evaluated to:

μi(t
p+1) =

I∑
i=1

np
i ui�ui + �t p T , (17)

where

T = 1

2

I∑
i=1

∑
( j,k)∈ϒi

β j,knp
j np

k �u j�uk(u j + uk) +
I∑

i=1

ui

I∑
k=i

Sknp
k �uk

gi
k∫

ui−1/2

b(u, uk)du

−
I∑

i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j −
I∑

i=1


i Sin
p
i . (18)

In order to prove the mass conservation for simultaneous coagulation-fragmentation PBE, it is required to show that T =
0. To prove this, first change the order of the sums in the second term of the right-hand side and using the relation 

uk∫
0

ub(u, uk)du = uk , the equation (18) takes the following form:

T = 1

2

I∑
i=1

I∑
j=1

β j,knp
j np

k �u j�ukui +
I∑

k=i

Sknp
k �uk

I∑
i=1

ui

gi
k∫

ui−1/2

b(u, uk)du

−
I∑

i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j −
I∑

i=1


i Sin
p
i . (19)
6
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Using the symmetry property of the coagulation kernel, substituting the value of 
 and interchange the indices in the 
second (from k → i) and fourth (from i → k) terms, the equation changes to

T =
I∑

i=1

I∑
j=1

βi, jn
p
j np

i �u j�uiui +
I∑

k=i

Sknp
k �uk

I∑
i=1

ui

gi
k∫

ui−1/2

b(u, uk)du

−
I∑

i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j −
I∑

k=1


k Sknp
k . (20)

This implies T = 0, that is, the total mass of the system is conserved for every time. �
2.2. Number preserving mass conserving scheme-NPMC

In this subsection, the mathematical expressions of the number preserving mass conserving finite volume scheme for 
solving a simultaneous coagulation-fragmentation PBE (1) on non-uniform meshes are provided. In the previous scheme, the 
major concern of the formulation was to conserve only the total mass in the system. However, the idea of this particular 
finite volume schemes is based on not only conserving the total mass in the system but also focuses on preserving the total 
number of particles in the system. The basic concept of this scheme is quite similar to the MC as the same set of indices 
given in equation (7) are chosen. Hence, by defining the same time discretization, the expression of the formulation can be 
written as follows:

np+1
i = np

i + �t p

2

( ∑
( j,k)∈ϒi

β j,knp
j np

k

�u j�uk

�ui
−

I∑
j=1

βi, jn
p
i np

j �u j

)

+�t p

(
1

�ui

I∑
k=i

Sknp
k �uk

gi
k∫

ui−1/2

b(u, uk)du − Sin
p
i

)
. (21)

Since the main aim of NPMC is to preserve the total number of particles as well as conserve the total mass in the sys-
tem. However, the expression (21) only gives an account for the preservation of the total number of particles but do not 
hold mass conservation property. However, this can be achieved easily by introducing four weights into the formulation 
corresponding to the birth and death terms. Hence, the expression takes the following form:

np+1
i = np

i + �t p

(
1

2

∑
( j,k)∈ϒi

β j,knp
j np

k

�u j�uk

�ui
wb

j,k −
I∑

j=1

βi, jn
p
i np

j �u j wd
i, j

+ 1

�ui

I∑
k=i

Sknp
k �ukθ

b
k

gi
k∫

ui−1/2

b(u, uk)du − Sin
p
i θd

i

)
. (22)

Here wb
j,k , wd

i, j , θ
b
k and θb

k are the weights responsible for the number preservation and mass conservation and are defined 
as

wb
j,k =

{ u j+uk
2ul jk

−(u j+uk)
, (u j + uk) ≤ umax;

0, otherwise.

wd
i, j =

{ uli j
2uli j

−(ui+u j)
, (ui + u j) ≤ umax;

0, otherwise.

θb
k = uk[v(uk) − 1]∑i=1

k (uk − ui)
∫ ui−1/2

gi
k

b(u, uk)du
, (23)

and
7
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θd
i = wb

i

ui

i∑
k=1

uk

gi
k∫

uk−1/2

b(u, ui)du. (24)

Here l jk denotes the index of the cell where the aggregating particle of the properties (u j + uk) falls. Moreover, the index l jk

is symmetric with respect to its subindices, that is, l jk = lkj . Similar to our previous, the discrete formulation of the NPMC 
scheme for approximating simultaneous coagulation-fragmentation problem can also be rewritten as

np+1
i = np

i + �t p
(

BNPMC
coag+ f rag,i − DNPMC

coag+ f rag,i

)
, (25)

where the first and second terms on the right side of the equation represent the birth and death of the particles in the ith 
cell due to the simultaneous coagulation-fragmentation processes and are given as

BNPMC
coag+ f rag,i = 1

2

I∑
i=1

∑
( j,k)∈ϒi

β j,knp
j np

k �u j�uk(u j + uk)wb
j,k

+
I∑

i=1

ui

I∑
k=i

Sknp
k �ukθ

b
k

gi
k∫

ui−1/2

b(u, uk)du, (26)

and

DNPMC
coag+ f rag,i =

I∑
i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j wd
j,k +

I∑
i=1


i Sin
p
i θd

k . (27)

Next our purpose is to prove that the formulation (22) preserves zeroth and conserves first order moments. The nu-
merical approximation (22) holds mass conservation under the condition (16) and preserves the number property when it 
satisfies the following condition:

∞∑
i=1

np+1
i �ui =

∞∑
i=1

np
i �ui − �t p

2

I∑
i=1

I∑
j=1

βn
i, jn

p
i np

j �ui�u j +
I∑

i=1

Sin
p
i �ui(v(ui) − 1). (28)

The above discrete formulation (28) can be easily retrieved by applying the mid-point quadrature rule to the original con-
tinuous PBE (1).

Proposition 2. The discrete formulation (22) holds the mass conservation property (first order moment) under the restriction (6).

Proof. Multiplying the discrete formulation provided in equation (22) by ui�ui and summing over all i similar to the MC 
FVS, one obtains

μ1(t
p+1) =

I∑
i=1

np
i ui�ui + �t p T̂ , (29)

where

T̂ = 1

2

I∑
i=1

∑
( j,k)∈ϒi

β j,knp
j np

k �u j�ukui wb
j,k −

I∑
i=1

I∑
j=1

uiβi, jn
p
i np

j �ui�u j wd
i, j

+
I∑

i=1

ui

I∑
k=1

Sknp
k �ukθ

b
k

gi
k∫

ui−1/2

b(u, uk)du −
I∑

i=1

ui Sin
p
i �uiθ

d
i . (30)

Similar to the case of the MC FVS, it is required to show T̂ = 0 for this discrete formulation. Proceeding as above Propo-
sition 1, first change the order of integration of the sums in the third term of the right hand side will give the following 
expression:
8
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T̂ = 1

2

I∑
i=1

∑
( j,k)∈ϒi

β j,knp
j np

k �u j�ukui wb
j,k −

I∑
i=1

I∑
j=1

uiβ
n
i, jn

p
i np

j �ui�u j wd
i, j

+
I∑

i=1

Sin
p
i �ui

(
θb

i

i∑
k=1

uk

gi
k∫

uk−1/2

b(u, uk)du − θd
i

)
. (31)

Further, rearranging the terms using the symmetry of the kernel and li j , the following can be achieved:

T̂ =1

2

I∑
i=1

I∑
j=1

βi, jn
p
j np

i �u j�ui
uiuli j

2uli j − (ui + u j)
−

I∑
i=1

I∑
j=1

βn
i, jn

p
i np

j �ui�u j
uiuli j

2uli j − (ui + u j)

+
I∑

i=1

Sknp
k �uk

( k∑
k=1

ui

gi
k∫

ui−1/2

b(u, uk)du − uk
1

uk

k∑
i=1

ui

gk
i∫

ui−1/2

b(u, uk)du
)

(32)

= 0.

This clearly signifies that the NPMC FVS does hold the mass conservation property of the system. �
Proposition 3. The discrete formulation (22) holds the number preservation property (zeroth order moment) under the restriction (6).

Proof. Multiplying the discrete formulation provided in equation (22) by �ui and summing over all i leads to the following 
relation

μ1(t
p+1) =

I∑
i=1

np
i ui�ui + �t p T̂1, (33)

where

T̂1 = 1

2

I∑
i=1

I∑
j=1

βi, jn
p
j np

i �u j�ui wb
i, j −

I∑
i=1

I∑
j=1

βi, jn
p
i np

j �ui�u j wd
i, j

+
I∑

i=1

I∑
k=i

Sin
p
i �uiθ

b
i

gi
k∫

ui−1/2

b(u, uk)du −
I∑

i=1

Sin
p
i �uiθ

d
i . (34)

Combining the first-two summations and substituting the values of weights, we have

T̂1 = 1

2

I∑
i=1

I∑
j=1

βi, jn
p
j np

i �u j�ui

( ui + u j

2uli j − (ui + u j)
− uli j

2uli j − (ui + u j)

)
+

I∑
i=1

Sin
p
i �ui×

ui[v(ui) − 1]∑i
k=1(ui − uk)

∫ uk−1/2

gi
k

b(u, ui)du

( i∑
k=1

(ui − uk)

uk−1/2∫
gi

k

b(u, ui)du
)
. (35)

On simplification, the above gives

T̂1 = −1

2

I∑
i=1

I∑
j=1

βi, jn
p
j np

i �u j�ui +
I∑

i=1

Sin
p
i �ui

ui[v(ui) − 1]∑i
k=1(ui − uk)

∫ uk−1/2

gi
k

b(u, ui)du
×

( i∑
k=1

(ui − uk)

uk−1/2∫
gi

k

b(u, ui)du
)
. (36)

This implies
9
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T̂1 = −1

2

I∑
i=1

I∑
j=1

βi, jn
p
j np

i �u j�ui +
I∑

i=1

Sin
p
i �ui(v(ui) − 1). (37)

Hence the NPMC FVS is also preserving the total number property of the system along with its mass conservation prop-
erty. �
3. Approximations for multidimensional coagulation-fragmentation

Before dealing with the validation of the numerical methods for a one-dimensional PBE, let us first give the generalized 
formulations for approximating a multidimensional simultaneous coagulation-fragmentation PBE. Define Rd+ the space of 
vectors 	u = [u1, u2, . . . , ud]T of length d, such that uk ≥ 0 for all k = 1, 2, . . . , d. The multidimensional population balance 
model incorporating simultaneous coagulation-fragmentation processes can be written as follows:

∂n(t, 	u)

∂t
= Q ±

agg(t, 	u) + Q ±
brk(t, 	u), (38)

with initial condition n(0, 	u) = n0(	u), 	u ∈R+ , where, (t, 	u) ∈R2+ and R+ := (	0, 	∞). The finite dimensional vector 	u denotes 
the state vector in terms of additive properties like mass or volume. Moreover,

Q ±
agg(t, 	u) = 1

2

	u∫
	0

β(t, 	u − 	u′, 	u′)n(t, 	u − 	u′)n(t, 	u′)d	u′ −
	∞∫

	0
β(t, 	u, 	u′)n(t, 	u)n(t, 	u′)d	u′, (39)

and

Q ±
brk(t, 	u) =

	∞∫
	u

b(	u, 	u′)S(	u′)n(t, 	u′)d	u′ − S(	u)n(t, 	u), (40)

where β(t, 	u, 	u′), b(	u, 	u′) and S(	u) defines the aggregation kernel, breakage kernel and selection function, respectively 
similar to the one-dimensional case and d	u = ∏d

k=1 duk .

The multidimensional moment of order p = ∑d
r=1 λr is defined by

μλ1,λ2,...,λd (t) =
	∞∫

	0

d∏
k=1

uλk
k n(t, 	u)d	u. (41)

Choosing λk = 0 for every k will give the zeroth order moment whereas the first order moment μ0,...1,...,0(t) (1 in kth 
position) is the total value (mass) of the kth property.

Before providing the formulations of the finite volume schemes for solving the multidimensional population balance 
model incorporating simultaneous coagulation-fragmentation, first it required to define the computational domain. The mul-
tidimensional computational domain with the limits 	umin and 	umax is divided into I number of cells in the computational 
domain. For any cell i, the lower and upper boundaries of the cell are denoted by 	ui−1/2 and 	ui+1/2 respectively. The repre-

sentative of the cell i is 	ui = [ui1 , ui2 , . . . , uid ]T where uir = uir−1/2 + uir+1/2

2
with the usual assumption 	u1r−1/2 = 	umin for 

each r.
Similar to one case, here we also develop two finite volume schemes for the multidimensional PBE (38). Proceeding as 

previous cases, assume that np
i for i ∈ 1,2, ..., I is the average value of n at time t p on the ith cell which is an approximation 

of n(t p, 	ui) and is given by

np
i = 1

�	ui

	ui+1/2∫
	ui−1/2

n(t p, 	u)d	u. (42)

For the multidimensional case, it is also assumed that the point masses are concentrated on representatives, that is, n(t, 	u) ≈∑I
j=1 N jδ(	u − 	u j). Substituting this expression in equation (38) and using the indices defined in equation (7) will give us 

the following expression:

np+1
i = np

i + �t p
(1

2

∑
i

β(	u j, 	uk)n
p
j np

k

�	u j�	uk

�	ui
−

I∑
j=1

β(	ui, 	u j) np
i np

j �	u j
( j,k)∈ϒ

10
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+ 1

�	ui

I∑
k=i

Sknk�	uk

gi
k∫

	ui−1/2

b(	u, 	uk)d	u − Sini

)
. (43)

It can be observed that the above formulation is not mass conserving as it is the essential criteria for any numerical method. 
Therefore, the following weights are added to make the formulation mass conserving:

ωi, j,k = 	u j + 	uk

	ui
, (44)

and


i = 1
	ui

i∑
k=1

	u	uk

gi
k∫

	uk−1/2

b(	u, 	ui)d	u, i = 1,2, · · · , I, (45)

where

gi
k =

{
	ui, if k = i,

	ui+1/2, if k �= i.

By adding the weights in the equation (43) will take the following form:

np+1
i = np

i + �t p
(1

2

∑
( j,k)∈ϒi

β(	u j, 	uk)n
p
j np

k

�	u j�	uk

�	ui
ωi, j,k −

I∑
j=1

β(	ui, 	u j) np
i np

j �	u j

+ 1

�	ui

I∑
k=i

Sknk�	uk

gi
k∫

	ui−1/2

b(	u, 	uk)d	u
i − Sini

)
. (46)

This formulation is only focusing on the conservation of the total mass in the system but does not responsible for the 
preservation of the total number of particles (zeroth order moment). The theoretical proof of the mass conservation property 
is similar to the case described in Proposition 1 of section 2.1.

Further our intention will be to derive a formulation for the multidimensional PBE (38) which holds both preservation 
of zeroth order moment and conservation of first order moment. This can be done easily by adding the following weights 
to the formulation (43):

wd
i, j =

⎧⎨⎩
	u j + 	uk

2	ul jk − (	u j + 	uk)
, (	ui + 	u j) ≤ 	umax;

0, otherwise.
(47)

wd
i, j =

⎧⎨⎩
	uli j

2	uli j − (	ui + 	u j)
, (	ui + 	u j) ≤ 	umax;

0, otherwise.
(48)

and

θb
k = 	uk[v(	uk) − 1]∑i=1

k (	uk − 	ui)
∫ 	ui−1/2

gi
k

b(	u, 	uk)d	u
, (49)

θd
i = wb

i

	ui

i∑
k=1

	uk

gi
k∫

	uk−1/2

b(	u, 	ui)d	u. (50)

Further substituting the weights wd
i, j , wb

i, j , θ
b
k and θd

k in the formulation (43) will give the final expression of the number 
preserving mass conserving discrete formulation is given by

np+1
i = np

i + �t p

(
1

2

∑
i

β(	u j, 	uk)n
p
j np

k

�	u j�	uk

�	ui
wd

i, j −
I∑

j=0

β(	ui, 	u j) np
i np

j �	u j wb
i, j
( j,k)∈ϒ

11
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+ 1

�	ui

I∑
k=i

Sknk�	ukθ
b
k

gi
k∫

	ui−1/2

b(	u, 	uk)d	u
i − Siniθ
d
k

)
. (51)

The theoretical proofs of the integral properties such as preservation of total number of particles and conservation of 
total mass in the system are similar to the proofs provided in Propositions 2 & 3 of section 2.2.

Since we are working with an explicit discrete methods, therefore, it is meaningful to impose some constraints on time 
step to ensure positivity of the solution (often called the CFL condition). Similar to the condition proposed by Filbet and 
Laurençot [11], the following constraint on the time step ensures the positivity of the solution:

�t p < min
i

(∣∣∣∣∣ np
i

B p
i − D p

i

∣∣∣∣∣
)

. (52)

Here B p
i and D p

i are discrete birth and death terms at time t p , respectively of the numerical methods described in sec-
tions 2.1, 2.2 and 3.

4. Results and discussions

In order to validate the efficiency and accuracy of the numerical schemes, the numerical results predicted by both MC and 
NPMC schemes are compared with the existing cell average technique [23] and the exact results for analytically tractable 
kernels. To show the accuracy of numerical methods, the quantitative relative errors [44,48,53–55] in the different order 
moments (corresponding to analytically tractable kernels) for different number of grid points are also calculating using:

�i(t) =
∣∣∣μexc

i − μnum
i

μexc
i

∣∣∣. (53)

The superscripts exc and num represent the exact and numerical solutions, respectively. Here, �0 and �1 denote the relative 
errors in zeroth order moment (total number of particles) and first order moment (total mass of the system), respectively. 
It is significant to note that the relative errors in the various order moments are calculated at the end of the simulations 
(end time). The computations for all schemes were carried out using MATLAB on a i5 7th generation CPU with 2.40 GHz 
and 16 GB RAM.

4.1. Simultaneous coagulation-fragmentation-1D

In this part of the paper, the numerical results obtained by solving a simultaneous coagulation-fragmentation PBE are 
compared with the exact results corresponding to various combination of coagulation kernel and selection functions. In 
particular, four various combinations of coagulation kernel and selection functions are considered:

Case (a): Constant coagulation kernel and constant selection function.
Case (b): Constant coagulation kernel and linear selection function.
Case (c): Multiplicative coagulation kernel and constant selection function.
Case (d): Multiplicative coagulation kernel and linear selection function.

For every combination, a binary fragmentation kernel is considered. The exact solution of the number density function 
for a simultaneous coagulation-fragmentation PBE were derived by Patil and Andrews [32] corresponding to a constant 
coagulation kernel and linear selection function with binary breakage kernel. For the other combinations, there is no avail-
ability of the number density function in the literature, hence, the comparison is conducted only for zeroth and first order 
moments and their analytical (or exact) results were derived by Kumar et al. [25].

4.1.1. Case (a): constant coagulation kernel and constant selection function
For a simultaneous coagulation-fragmentation PBE, the comparison of numerical results with the exact results is con-

ducted for a constant coagulation kernel and constant selection function. The domain considered to run the simulations 
consist of particles sized from umin = 10−3 to umax = 200, divided into 30 nonuniform cells, whereas the time taken to run 
the simulations is 0 to 18.

Fig. 4 shows the comparison of the numerical results and exact results for a combination of constant coagulation kernel 
and constant selection function. Since the exact solution of number density function is not available in literature. Therefore, 
the accuracy of the numerical methods is verified by comparing with the exact zeroth and first order moments. One can 
observe that the zeroth and first order moments approximated by NPMC and cell average technique (CAT) overlap with the 
exact results, however, the MC shows underprediction for the zeroth order moment. This is because the MC do not give any 
account for the preservation of the zeroth order moment, whereas both NPMC and CAT preserves the zeroth order moment 
along with the conservation of the first order moment. Moreover, if the number of grid points in a given domain increases, 
12



Fig. 4. Comparison of various order moments for constant coagulation kernel and constant selection function.

Table 1
Relative errors in various order moments for constant coagulation kernel and constant selection function.

� CAT 
30 cells

MC 
30 cells

NPMC 
30 cells

CAT 
50 cells

MC 
50 cells

NPMC 
50 cells

�0 0.05391 0.15736 0.05359 0.05341 0.09419 0.05144
�1 9.14 × 10−10 6.18 × 10−10 5.81 × 10−12 3.91 × 10−10 1.59 × 10−10 0.00000

Table 2
CPU time taken by numerical methods using constant coagulation kernel and constant selection function.

Method Cells Time taken (in seconds) Cells Time taken (in seconds)

MC 30 0.3865 50 0.5091
NPMC 30 0.3635 50 0.4669
CAT 30 0.4598 50 0.6927

Table 3
Relative errors in various order moments for constant coagulation kernel and linear selection function.

� CAT 
30 cells

MC 
30 cells

NPMC 
30 cells

CAT 
50 cells

MC 
50 cells

NPMC 
50 cells

�0 0.02303 0.10433 0.02303 0.01341 0.04419 0.01044
�1 1.55 × 10−15 1.22 × 10−15 9.99 × 10−16 3.44 × 10−16 8.88 × 10−16 2.88 × 10−16

the results obtained by the MC scheme certainly improve to higher extent, however adds value to the computational time. 
This can be verified in Table 1, quantitatively. It shows that the relative errors in zeroth and first order moments improve 
when a refined grid is used. It is also interesting to see that the number of particles are increasing till time t = 4 as the 
combination of binary fragmentation kernel and constant selection function is dominating the constant coagulation kernel 
(see Fig. 5(e)). After time t = 4, the system acquires the steady-state solution.

In addition, the comparison of the all numerical methods is also done in terms of the computational CPU time. Table 2
shows that the NPMC and MC obtained the various results more efficiently than the CAT. However, among NPMC and MC, 
the NPMC took lesser time to compute these numerical results than the MC.

4.1.2. Case (b): constant coagulation kernel and linear selection function
Further the comparison of the numerical results obtained with the constant coagulation kernel and linear selection 

function are compared with the exact results. The computational domain considered for the numerical simulations is same 
as the previous case. Fig. 5 illustrates the comparison of the numerical results with the exact results for this particular 
case. It is shown that the zeroth order moments computed by NPMC and CAT agree very well with the exact moment, 
whereas similar to the previous case, the zeroth order moment obtained by the MC method shows underprediction from 
the exact moment. Moreover, the first order moments approximated by all numerical methods coincide with the exact 
result. In addition, the number density function plotted at different times computed using all numerical methods show 
equal accuracy, that is, the numerical results overlap with the exact results.
M. Singh Journal of Computational Physics 435 (2021) 110215
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Fig. 5. Comparison of various order moments and number density for constant coagulation kernel and linear selection function.
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Table 4
CPU time taken by numerical methods using constant coagulation kernel and linear selection function.

Method Cells Time taken (in seconds) Cells Time taken (in seconds)

MC 30 0.8298 50 1.2558
NPMC 30 0.7442 50 1.0727
CAT 30 0.9373 50 1.9820

Table 5
Relative errors in various order moments for multiplicative coagulation kernel and constant selection function.

� CAT 
30 cells

MC 
30 cells

NPMC 
30 cells

CAT 
50 cells

MC 
50 cells

NPMC 
50 cells

�0 0.11673 0.15000 0.10099 0.10650 0.08783 0.05144
�1 0.16233 0.04717 0.07102 0.04230 0.03789 0.03770

Table 6
CPU time taken by numerical methods using multiplicative coagulation kernel and constant selection function.

Method Cells Time taken (in seconds) Cells Time taken (in seconds)

MC 30 0.3685 50 0.4751
NPMC 30 0.2608 50 0.3301
CAT 30 0.4066 50 0.7947

In addition, the relative errors existed in the various order moments calculated by all numerical methods are illustrated
in Table 3. As expected, the NPMC shows less errors in the zeroth and first order moments than both MC and CAT. Moreover, 
in terms computational aspect, the NPMC method calculated the numerical results by consuming lesser CPU time than the 
other methods on coarse as well as refined grids (see Table 4). Additionally, the MC method is also more efficient than the 
CAT.

4.1.3. Case (c): multiplicative coagulation kernel and constant selection function
To enhance the comparison, a more complex coagulation kernel (multiplicative kernel, β(u, u′) = uu′) is considered with 

the constant selection function. The multiplicative kernel is well known as a gelling kernel, that is, a state that occurs for 
certain coagulation kernels where mass is lost from particles of finite size and appears in particles of infinite size Ernst 
et al. [9] The computational grid taken from umin = 10−10 to umax = 103 is divided into 30 and 50 non-uniform cells and 
the simulations are run from time 0 to 0.45. The comparison of the numerical results and exact results corresponding to a 
multiplicative coagulation kernel and constant selection function can be seen in Fig. 6. The exact results of zeroth and first 
order moments are provided in Kumar et al. [25]. The zeroth order moment approximated by the NPMC shows very good 
agreement with the exact moment where both CAT and MC show overproduction and underprediction from the exact result, 
respectively. Moreover, the first order moment predicted by both MC and NPMC methods show comparative results but on 
the other side the CAT started to lose mass after time t = 0.325s (see Fig. 6(b)). Additionally, the second order moments 
predicted by both finite volume schemes show better accuracy than the CAT as the existing method deviates significantly 
from the exact solution, refer to Fig. 6(c). However, these numerical results can be improved to desired values by choosing 
a more refined grid as demonstrated in Fig. 7. It can be seen that the different order moments compared in Figs. 7(a), 7(b)
and 7(c) improve to large extent when a nonuniform grid of 50 cells is used. However, still, the second order moments 
computed by both MC and NPMC show better results than the CAT, see Fig. 7(c). In addition, the relative error in various 
order moments is shown in Table 5 for a computational grid consist of 30 and 50 nonuniform cells. It can be observed that 
the relative errors in the moments approach almost equal values on a refined grid for all numerical methods. But, in terms 
of computational time, the NPMC and MC are highly efficient methods in calculating the numerical results as compared to 
the CAT on both coarse and refined grids as shown in Table 6.

4.1.4. Case (d): multiplicative coagulation kernel and linear selection function
Here, a comparison of the numerical results corresponding to multiplicative coagulation kernel and linear selection func-

tion is shown with the exact results. The grid considered and time taken to run the simulations is similar to the previous 
case.

Fig. 8 demonstrates the comparison of the moments predicted using the numerical methods with the exact moments. 
The exact results for zeroth as well as first order moments were derived by Kumar et al. [25] for this particular case. 
The zeroth and first order moments predicted by both NPMC and CAT are showing a very good agreement with the exact 
moments. However, as expected the zeroth order moment predicted by the MC shows underprediction from the exact result. 
Moreover, all numerical results show very good agreement for the first order moments.

In order to check the accuracy of this case on a refined grid, the relative errors existed in the moments are calculated 
and listed in Table 7. The similar trend to the previous case is obtained by the moments as the NPMC calculated these 
15



Fig. 6. Comparison of various order moments for multiplicative coagulation kernel and constant selection function using 30 nonuniform cells.

Table 7
Relative errors in various order moments for multiplicative coagulation kernel and linear selection function.

� CAT 
30 cells

MC 
30 cells

NPMC 
30 cells

CAT 
50 cells

MC 
50 cells

NPMC 
50 cells

�0 0.16165 0.10807 0.10807 0.05341 0.09419 0.05144
�1 2.2 × 10−15 1.3 × 10−15 3.7 × 10−16 1.8 × 10−16 1.3 × 10−16 0.00000

Table 8
CPU time taken by numerical methods using constant coagulation kernel and linear selection function.

Method Cells Time taken (in seconds) Cells Time taken (in seconds)

MC 30 0.2047 50 0.3358
NPMC 30 0.1755 50 0.3178
CAT 30 0.4604 50 0.9181

errors with more precision than the other two methods. Also, from Table 8, it is easy to observe that the NPMC method 
predicted these results by consuming lesser CPU time than both MC and CAT.

Finally, it can be concluded that the NPMC method is the highly accurate and efficient method for approximating a 
one-dimensional simultaneous coagulation-fragmentation equation.
M. Singh Journal of Computational Physics 435 (2021) 110215
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Fig. 7. Comparison of various order moments for multiplicative coagulation kernel and constant selection function using 50 nonuniform cells.

Fig. 8. Comparison of various order moments for multiplicative coagulation kernel and linear selection function.
17
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Fig. 9. Comparison of various order moments for a constant coagulation kernel and linear selection function.

Table 9
Relative errors in various order moments for constant coagulation kernel and linear selection function.

� MC 
400 cells

NPMC 
400 cells

MC 
525 cells

NPMC 
525 cells

�0 0.1111 0.0012 0.0567 8.14 × 10−04

�1 2.09 × 10−15 2.09 × 10−15 1.30 × 10−16 1.33 × 10−16

4.2. Simultaneous coagulation-fragmentation-2D

This section is devoted to comparing the results of both MC and NPMC for approximating a multidimensional simulta-
neous coagulation-fragmentation PBE with the exact results corresponding to different combinations of coagulation kernels 
and selection functions. In particular, the following combination is considered for the comparison:

Case (1): Constant coagulation kernel and linear selection function.
Case (2): Additive coagulation kernel and constant selection function.

Similar of the one-dimensional case, for the multidimensional cases the binary breakage kernel is considered. It can be 
observed in the literature that for the multidimensional PBE, the exact results are neither available for the number density 
functions nor the different order moments corresponding to any combination of coagulation-fragmentation kernels. In this 
work, the accuracy of the methods is verified by deriving the new exact results of zeroth as well as first order moments for 
Case (1) and Case (2). Even though the formulations of the numerical methods are provided for approximating the multidi-
mensional simultaneous coagulation-fragmentation PBE but the verification is only done by considering a two-dimensional 
PBE as the exact solutions for moments are difficult to derive for higher dimensional PBE’s. The complete derivation of the 
exact moments obtained by solving a two-dimensional PBE can be found in Appendix A.

4.2.1. Case (1): constant coagulation kernel and linear selection function
In this section, the comparison numerical zeroth and first order moments with exact results is conducted using constant 

coagulation kernel and linear selection function. The computational grid taken for conducting is taken from 	umin = 10−6 to 
	umax = 3 × 103 is divided into 20 non-uniform cells along both directions for a two-dimensional PBE, that is, a grid of 400 
nonuniform cells is considered. However, the simulations are run until time t = 1.5.

Fig. 9 demonstrates the comparison of zeroth and first order moments predicted numerically and analytically (or exact). 
As expected, the zeroth order moment computed by the NPMC method shows excellent agreement with the exact mo-
ment whereas, the zeroth order moment computed using the MC method exhibits underprediction from the exact moment. 
However, the first order moment captured very well by both numerical methods and overlaps with the exact moment. In 
addition, the relative errors existed in the moments are quantified in Table 9. It also reveals that the errors obtained in both 
moments using NPMC are lesser than the MC. However, if a more refined grid is used then the errors in the moments can 
be reduced to a desired level. Moreover, the time required to compute the numerical results by both numerical methods is 
listed in Table 10. It reveals that the NPMC is more efficient than the MC as it took less CPU time to compute the numerical 
results.
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Table 10
CPU time taken by numerical methods using constant coagulation kernel and linear selection function.

Method Cells Time taken (in seconds) Cells Time taken (in seconds)

MC 400 35.67 525 78.01
NPMC 400 35.15 525 77.81

Fig. 10. Comparison of various order moments for additive coagulation kernel and constant selection function.

Table 11
Relative errors in various order moments for constant coagulation kernel and linear selection function.

� MC 
400 cells

NPMC 
400 cells

MC 
525 cells

NPMC 
525 cells

�0 0.1547 0.0108 0.0054 0.0012
�1 2.47 × 10−15 2.58 × 10−15 1.57 × 10−16 1.57 × 10−16

Table 12
CPU time taken by numerical methods using constant coagulation kernel and linear selection function.

Method Cells Time taken (in seconds) Cells Time taken (in seconds)

MC 400 39.67 525 63.01
NPMC 400 38.92 525 60.17

4.2.2. Case (2): additive coagulation kernel and constant selection function
In order to check the accuracy and efficiency of the numerical methods, now the numerical results obtained using 

both approximations are compared with the newly derived exact moments. The exact results for the zeroth and first order 
moments are illustrated in Appendix A. The computational domain considered for comparison consists of particles ranging 
from 	umin = 10−6 to 	umax = 2 × 104 is divided into 20 cells along both directions for the case of two-dimensional PBE, 
that is, in total 20 × 20 cells are considered. The simulations are run until time t = 2. Similar to the previous case, the 
comparison of numerical and exact results predicted by approximating a two-dimensional PBE are shown in Fig. 10 for 
additive coagulation kernel and constant selection function. The plot shows that the zeroth order moment computed by the 
NPMC is matching well with the exact result, however, the MC shows slight deviation from the exact result. In addition, the 
first order moments are very well approximated by both methods, that is, the mass conservation property holds for both 
numerical methods. The quantitative errors in both moments are listed in Table 11 and it can be seen that the errors in 
moments obtained by NPMC are lesser as than the MC. Further, these errors can be reduced by increasing the number of 
cells in the given domain. Additionally, in terms of CPU time, Table 12 reveals that the NPMC is highly efficient than the 
MC, that is, the NPMC took lesser CPU time to compute the various results than the MC.

4.3. Simultaneous coagulation-fragmentation-3D

In order to enhance the comparison of numerical results with the exact results, we also compare the numerical results 
by approximating a 3D simultaneous coagulation-fragmentation equation in terms of integral moments. For the compar-
ison, a additive coagulation kernel β(u1, u2, u1, u′ , u′ , u′ ) = β0(u1 + u2 + u3 + u′ + u′ + u′ ), constant selection function 
1 2 3 1 2 3
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Fig. 11. Comparison of various order moments for additive coagulation kernel and constant selection function.

(S(u1, u2, u3) = S0) and binary breakage function (b(u1, u2, u3, u′
1, u

′
2, u

′
3) =

2

u′
1u′

2u′
3
) are considered. As we have seen from 

the 1D as well 2D cases that the NPMC method is emerged to be more accurate than the MC and existing cell average tech-
nique, hence only the comparison of NPMC is conducted against the analytical results. The computational domain taken for 
comparison consists of particles ranging from 	umin = 10−6 to 	umax = 5 × 105 is divided into 12 × 12 × 12 non-uniform cells 
along three directions (u1, u2, u3) for the case of a 3D simultaneous coagulation-fragmentation equation and the simulations 
are run until time t = 1. The analytical solutions for zeroth and first order moments corresponding to three dimensional 
simultaneous coagulation-fragmentation equation are provided in Appendix B. It can be seen from the Figs. 11(a) and 11(b)
that the zeroth order moment predicted by the NPMC matches well with the analytical result even on a coarse grid. In 
addition, the first order moment also shows consistency, that is, the NPMC conserves the total mass in the system and 
matches well with the analytical result.

Finally, it can be concluded that the proposed methods are not only approximated a one-dimensional simultaneous 
coagulation-fragmentation PBE well but also can be easily extended to the higher dimensional simultaneous coagulation-
fragmentation PBE. From the above discussion, it can be observed that discretization errors in the moments are not much 
enhanced and show very stable results when these finite volume schemes are extended to solve higher dimensional prob-
lems.

5. Conclusions

In the present work, two finite volume schemes for approximating a generalized simultaneous coagulation-fragmentation 
PBE on non-uniform grid are proposed. The qualitative and quantitative comparisons of the finite volume schemes with cell 
average technique in terms of different order moments have been shown for analytically tractable kernels. The results indi-
cate that the NPMC predicts the various order moments as well as number density functions with equal or higher precision 
than the CAT with fewer grids, whereas the MC shows deviation for the zeroth order moment. However, both finite vol-
ume schemes are easy to code and consume lesser CPU than the CAT. Further, the errors in the different numerical results 
can be improved by considering a more refined grid and the MC method also achieved equal accuracy as both NPMC and 
CAT. Moreover, it has been also shown that the finite volume scheme can be easily extended to solve higher dimensional 
problems and are more stable numerical methods. We also derived the exact results for the moments corresponding to 
multidimensional PBE. Finally, it can be concluded that due to simpler mathematical formulations, the NPMC finite vol-
ume schemes are highly recommended for solving the problems related to the industrial applications involving twin screw 
granulation and sprayed fluidized bed granulation.
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Appendix A. Derivation of exact zeroth and first order moments-2D

For a vector 	u = (u1, u2), the two dimensional simultaneous coagulation-fragmentation PBE (38) can be rewritten as 
follows:

∂n(t, u1, u2)

∂t
= 1

2

u1∫
0

u2∫
0

β(t, u1 − u′
1, u2 − u′

2, u′
1, u′

2)n(t, u1 − u′
1, u2 − u′

2)n(t, u′
1, u′

2)

× du′
1du′

2 −
∞∫

0

∞∫
0

β(t, u1, u2, u′
1, u′

2)n(t, u1, u2)n(t, u′
1, u′

2)du′
1du′

2

+
∞∫

u1

∞∫
u2

b(u1, u2, u′
1, u′

2)S(u′
1, u′

2)n(t, u′
1, u′

2)du′
1du′

2 − S(u1, u2)n(t, u1, u2), (A.1)

with initial data

n(0, u1, u2) = n0(u1, u2) , u1, u2 ∈]0,∞[ .
Multiplying the above equation by u1

ru2
s , integrating twice from 0 to ∞ and change the order of the first integral, we 

obtain the following equation in r, sth moment as

dμr,s(t)

dt
=

∞∫
0

∞∫
0

∞∫
0

∞∫
0

[1

2
(u1 + u2 + u′

1 + u′
2)

rs − (u1 + u2)
r(u′

1 + u′
2)

s
]
β(t, u1, u2, u′

1, u′
2)

× n(t, u1, u2)n(t, u′
1, u′

2)du1du2du′
1du′

2 +
∞∫

0

∞∫
0

[ u′
1∫

0

u′
2∫

0

u1
ru2

sb(u1, u2, u′
1, u′

2)du1du2

− u′
1

ru′
2

s
]

S(u′
1, u′

2)n(t, u′
1, u′

2)du′
1du′

2. (A.2)

Using r = 1, s = 0 and r = 0, s = 1, it is easy to show that 
dμ1,0

dt
= 0 and 

dμ0,1

dt
= 0. This is expected as the total mass in 

the system for the case of simultaneous coagulation-fragmentation PBE should be constant for any time. Next, our purpose 
is to derive the ordinary differential equation for the zeroth order moment, that is, r = 0, s = 0, as

dμ0,0(t)

dt
= −1

2

∞∫
0

∞∫
0

∞∫
0

∞∫
0

β(t, u1, u2, u′
1, u′

2)n(t, u1, u2)n(t, u′
1, u′

2)du1du2du′
1du′

2

+
∞∫

0

∞∫
0

[
N̄(u′

1, u′
2) − 1

]
S(u′

1, u′
2)n(t, u′

1, u′
2)du′

1du′
2. (A.3)

Further simplification in the above equation can be done by assuming N̄(u′
1, u

′
2) = p (constant) which is also used to 

calculate the exact solutions.

A.1. Case (1): constant coagulation kernel and linear selection function

Substituting the values of β(u1, u2, u′
1, u

′
2) = β0(u1 + u2 + u′

1 + u′
2) and S(u1, u2) = S0(u1 + u2) in equation (A.3), the 

following equation is obtained:

dμ0,0(t)

dt
= −1

2
β0(μ0,0)

2 + (p − 1)S0(μ1,0(0) + μ0,1(0)). (A.4)

After simplification, we get the final expression for the zeroth order moment as
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μ0,0(t) = c1

[
1 + c2 exp(β0c1t)

1 − c2 exp (β0c1t)

]
, (A.5)

where c1 =
√

2(p − 1)S0(μ1,0(0) + μ0,1(0))

β0
and c2 = μ0,0(0) − c1

μ0,0(0) + c1
.

A.2. Case (2): additive coagulation kernel and constant selection function

Substituting the values of β(u1, u2, u′
1, u

′
2) = β0(u1 + u2 + u′

1 + u′
2) and S(u1, u2) = S0 in equation (A.3), the following 

equation is obtained:

dμ0,0(t)

dt
= −1

2
4β0μ0,0μ1,0(0) + (p − 1)S0μ0,0. (A.6)

Solving the above equation will give us the following expression of the zeroth order moment

μ0,0(t) = c1 exp(−2β0μ1,0(0)t + (p − 1)S0t), (A.7)

where c1 = μ0,0(0).

Appendix B. Derivation of exact zeroth and first order moments-3D

For a vector 	u = (u1, u2, u3), the three dimensional simultaneous coagulation-fragmentation PBE (38) can be rewritten 
as follows:

∂n(t, u1, u2, u3)

∂t
= 1

2

u1∫
0

u2∫
0

u3∫
0

β(t, u1 − u′
1, u2 − u′

2, u3 − u′
3, u′

1, u′
2, u′

3)n(t, u1 − u′
1, u2 − u′

2, u3 − u′
3)

× n(t, u′
1, u′

2, u′
3)du′

1du′
2du′

3 −
∞∫

0

∞∫
0
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0

β(t, u1, u2, u′
1, u′

2, u′
3)n(t, u1, u2, u3)n(t, u′

1, u′
2, u′

3)du′
1du′

2du′
3

+
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u1

∞∫
u2

∞∫
u3

b(u1, u2, u3, u′
1, u′

2, u′
3)S(u′

1, u′
2, u′

3)n(t, u′
1, u′

2, u′
3)du′

1du′
2du′

3 − S(u1, u2, u3)n(t, u1, u2, u3), (B.1)

with initial data

n(0, u1, u2, u3) = n0(u1, u2, u3) , u1, u2, u3 ∈]0,∞[ .
Multiplying equation (B.1) by u1

qu2
r u3

s , integrating thrice from 0 to ∞ and change the order of the first integral, we 
obtain the following equation in q, r, sth moment as

dμq,r,s(t)

dt
=

∞∫
0

∞∫
0

∞∫
0

∞∫
0

∞∫
0
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0

[1

2
(u1 + u2 + u3 + u′

1 + u′
2 + u′

3)
qrs − (u1 + u2)

q(u′
1 + u′

2)
r(u3 + u′

3)
s
]

β(t, u1, u2, u3, u′
1, u′

2, u′
3)n(t, u1, u2, u3)n(t, u′

1, u′
2, u′

3)du1du2du3du′
1du′

2du′
3

+
∞∫

0

∞∫
0
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0

[ u′
1∫

0

u′
2∫

0

u′
3∫

0

u1
qu2

ru3
sb(u1, u2, u3, u′

1, u′
2, u′

3)du1du2du3 − u′
1

qu′
2

ru′
3

s

]

× S(u′
1, u′

2, u′
3)n(t, u′

1, u′
2, u′

3)du′
1du′

2du′
3. (B.2)

Using q = 1, r = 0, s = 0; q = 0, r = 1, s = 0 and q = 0, r = 0, s = 1, it is easy to show that 
dμ1,0,0

dt
= 0, 

dμ0,1,0

dt
= 0

and 
dμ0,0,1

dt
= 0 as the total mass in the system for a simultaneous coagulation-fragmentation PBE must be constant over 

the time domain. Next, let us derive the ordinary differential equation for the zeroth order moment, that is, for q = 0, r =
0, s = 0, the above equation can be written as
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dμq,r,s(t)

dt
= −1
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∞∫
0
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0
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0
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0
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0

β(t, u1, u2, u3, u′
1, u′
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3 +

∞∫
0
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0
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0

[ u′
1∫

0

u′
2∫

0

u′
3∫

0

u1
qu2

ru3
sb(u1, u2, u′

1, u′
2, u′

3)du1du2du3 − u′
1

qu′
2

ru′
3

s

]
× S(u′

1, u′
2)n(t, u′

1, u′
2, u′

3)du′
1du′

2du′
3. (B.3)

For simplification assume N̄(u′
1, u

′
2, u

′
3) = p (constant) and further substituting the values of S(u1, u2) = S0 and 

β(u1, u2, u3, u′
1, u

′
2, u

′
3) = β0(u1 + u2 + u3 + u′

1 + u′
2 + u′

3) in equation (B.3), the following equation is obtained:

dμ0,0,0(t)

dt
= −1

2
6β0μ0,0,0μ1,0,0(0) + (p − 1)S0μ0,0,0. (B.4)

Solving the above equation will give us the following expression of the zeroth order moment

μ0,0,0(t) = c1 exp(−3β0μ1,0,0(0)t + (p − 1)S0t), (B.5)

where c1 = μ0,0,0(0).
The generalized form of the zeroth order moment corresponding to simultaneous coagulation-fragmentation PBE having 

two or more internal coordinates is given by

μλ1,λ2,··· ,λd (t) = c1 exp(−d × β0M1(0)t + (p − 1)S0t). (B.6)

Here c1 = μλ1,λ2,··· ,λd (0) where λk is zero for every k, M1(0) is the initial mass along the first internal coordinate and d
represents the number of internal coordinates in the PBE.
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