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Finite difference operators satisfying the summation-by-parts (SBP) rules can be used to
obtain high order accurate, energy stable schemes for time-dependent partial differential
equations, when the boundary conditions are imposed weakly by the simultaneous
approximation term (SAT).

In general, an SBP-SAT discretization is accurate of order p + 1 with an internal accuracy
of 2p and a boundary accuracy of p. Despite this, it is shown in this paper that any linear
functional computed from the time-dependent solution, will be accurate of order 2p when
the boundary terms are imposed in a stable and dual consistent way.

The method does not involve the solution of the dual equations, and superconvergent
functionals are obtained at no extra computational cost. Four representative model prob-
lems are analyzed in terms of convergence and errors, and it is shown in a systematic
way how to derive schemes which gives superconvergent functional outputs.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

When numerically computing solutions to equations in computational fluid dynamics (CFD), accurate solutions to the
equations themselves might not be the primary target. Typically, functionals computed from the solution, such as the lift
and drag coefficients, are of equal or even larger interest.

Already in the late 1990s, Giles et al. realized the importance of duality to enhance the computation of functionals in CFD
applications [1–6]. Since then, duality and adjoint equations have been vastly studied in the context of finite element meth-
ods (FEM) [2] and more recently using discontinuous Galerkin (DG) methods [7–10], finite volume methods (FVM) [11] and
spectral difference methods [12].

One can separate three distinct uses of the adjoint equations; adaptive mesh refinement [13], error analysis [14] and opti-
mal design problems [15,16]. The success of duality based approaches to, in particular, adaptive mesh refinement and error
estimation, has made the study of duality somewhat restricted to unstructured methods such as FEM, DG and FVM.

Recently, however, it was shown by Hicken and Zingg [17,18] that the adjoint equations can be used for finite difference
(FD) methods to raise the order of accuracy of linear functionals computed from the FD solution. The technique was based on
using FD operators on summation-by-parts (SBP) form [19,20] together with the simultaneous approximation term (SAT) for
imposing boundary conditions weakly [21]. It was shown that when discretizing the equations in a dual consistent [9,17]
way, the order of accuracy of the output functional was higher than the FD solution itself. This superconvergent behaviour
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was seen already in [3] for FEM and in [7] for DG, but it had not been previously proven for finite difference schemes. Some
work on solution superconvergence for FD-based methods, using mimetic operators, can be seen in i.e. [22].

So far, most applications of the adjoint equations deal with steady-state problems, including the recent results presented
in [17]. The reason is that the adjoint equation has limited use for realistic (non-linear) time-dependent problems since it
runs backwards in time [23]. Hence to actually solve the adjoint time-dependent equation, the full time history of the primal
equation has to be stored [24]. For large scale problems, this quickly becomes unfeasible [25,26]. Some work has been done
in the time-dependent setting [25,23], in particular for adaptive error control [24,11,27] and optimization [26,12].

What is to be presented in this paper is the extension of [17] to unsteady problems for computing superconvergent time-
dependent linear functionals. By superconvergence, we mean that the order of convergence of the output functional is higher
than the design order of accuracy of the scheme. We will address two problems which usually occurs when attempting to
use duality for time-dependent functional computations;

� The discrete adjoint equations does not approximate the continuous adjoint equations, i.e. the scheme is dual inconsistent
� If the scheme is dual consistent, it is unstable

The SBP discretization together with the SAT technique is highly suitable for addressing the above issues since the scheme
allows for a multitude of parameters which can be chosen such that the scheme is both dual consistent and stable. These two
features will result in a superconvergent time-dependent functional output.

2. SBP-SAT discretizations

Summation-by-parts finite difference operators were originally constructed by Kreiss and Scherer [28] in the 70’s as a
means for constructing energy stable [29] finite difference approximations. The operators are constructed such that they
are automatically stable for linearly well-posed Cauchy problems. Together with the SAT procedure introduced by Carpenter
et al. [21], the SBP-SAT technique provides a method of constructing energy stable and high order accurate finite difference
schemes for any linearly well-posed initial-boundary value problem. Since then, the technique has been widely used and
proven robust for a variety of problem. See for example [30–37] and references therein.

The SBP operators can be defined as follows.

Definition 1. A matrix D is called a first derivative SBP operator if D can be written as
D ¼ P�1Q ; ð1Þ
where P defines a norm by jjujj2 ¼ uT Pu and Q satisfies
Q þ Q T ¼ diag½�1;0; . . . ;0;1�: ð2Þ

In this paper, only diagonal matrices P will be used. In that case, D consist of a 2p-order accurate central difference

approximation in the interior while at the boundaries, the accuracy reduces to a p-order one-sided difference. The global
accuracy can then be shown to be p + 1 [32].

By using non-diagonal matrices P as norms in the SBP definition, it is possible to raise both the boundary and global order
of accuracy. For a block-diagonal P, the boundary stencil can be chosen to be 2p� 1 order accurate which increases the global
accuracy to 2p [19,32,38,39]. There are, however, drawbacks with a non-diagonal matrix P. In many cases, the equations are
non-linear or have variable coefficients and energy stability can only be proven if P commutes with diagonal matrices. Unless
P is carefully constructed to fit each problem under consideration, a diagonal P is the only alternative.

For many realistic problems, the boundary of the domain is non-smooth and the domain has to be split into blocks, where
a curvilinear coordinate transformation is applied in each block. If the matrix P is not diagonal, energy stability cannot be
shown in general since P is required to commute with the (diagonal) Jacobian matrix of the coordinate transformation
[35,40–42].

When computing linear functionals, however, we can recover the loss compared to the accuracy from a non-diagonal P,
while keeping the simplicity and flexibility of a diagonal P. It is hence always possible to prove energy stability, and keeping
the full order of accuracy.

Currently there exist diagonal norm SBP operators for the first derivative accurate of order 2, 3, 4 and 5. The second deriv-
ative can be approximated using either the first derivative twice which results in a wide finite difference stencil, or a com-
pact operator as described in [20,43]. In this paper, we will rewrite the equations in a form which does not require the
application of a second derivative operator.

A first order hyperbolic PDE, for example the advection equation on 0 6 x 6 1,
ut þ aux ¼ 0;
uð0; tÞ ¼ d1ðtÞ;
uðx;0Þ ¼ d2ðxÞ;

ð3Þ
with a > 0, can be approximated on an equidistant grid with N þ 1 gridpoints as
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d
dt

uh þ aDuh ¼ 0; ð4Þ
where uh is the discrete gridfunction approximating u. However, since the continuous PDE (3) needs to be supplied with a
boundary condition at the inflow boundary, the scheme (4) has to be modified. The imposition of the boundary condition is
done weakly using SAT as
d
dt

uh þ aDuh ¼ rP�1ðeT
0uh � d1Þe0; ð5Þ
where e0 ¼ ½1;0; . . . ;0� and d1 ¼ d1ðtÞ is the time-dependent boundary data. The coefficient r is a parameter which has to be
determined such that the scheme is stable in the P-norm.

2.1. The energy method

To prove well-posedness of the continuous Eq. (3) and stability of the numerical scheme (5), the energy metod in contin-
uous and discrete form is used. We multiply (3) with u and integrate by parts over the spatial domain to obtain (when
assuming d1 ¼ 0)
jjujj2t ¼ �au2ð1; tÞ: ð6Þ
It is clear that the growth rate of energy is bounded and hence we say that (3) is well-posed.1

In the discrete case we multiply (5) with uT
hP and use the SBP properties of the operator to obtain
jjuhjj2t ¼ ðaþ 2rÞu2
hðx0Þ � au2

hðxNÞ: ð7Þ
It is clear that an energy estimate is obtained for
r 6 � a
2

ð8Þ
and for r ¼ � a
2 we have exactly (6).

We can see that the parameter r is allowed to vary in a semi-infinite range for which the scheme is stable. Any additional
requirement we place on the scheme, for example dual consistency, has to be within a subset of values allowed by the energy
estimate. This flexibility together with the ability to mimic integration by parts is what makes the SBP-SAT method suitable
for treating adjoint problems.

Remark 2.1. Note that the assumption d1 ¼ 0 merely simplifies the analysis. Boundary and initial data can be included, in
which case the problem is called strongly well-posed. If the boundary and initial data is included in the discrete case, and an
energy estimate is obtained, the problem is called strongly stable [45].
3. Adjoint problems and dual consistency

There are various ways of obtaining the adjoint equations. Most common is to consider a PDE subject to a set of control
parameters and a functional output of interest, and in various ways taking derivatives of the functional with respect to the
control parameters [1,27]. The adjoint equation can then be seen as a sensitivity equation for the primal PDE, and is some-
times referred to as the sensitivity equation. In this work we will adopt the notation in [17] and derive the adjoint equation
by posing the SBP-SAT method in a variational framework similar to the one used in FEM.

The order of convergence is measured in space, not in time. To obtain a superconvergent time-dependent linear functional
output, it is sufficient to consider the steady equations and discretize them in a dual consistent way which does not violate
any stability conditions for the unsteady equations.

We shall use the following notations regarding the inner products. The continuous inner product is defined as
ðf ; gÞ ¼
Z

X
fgdX ð9Þ
and the corresponding discrete inner product is defined as
ðfh; ghÞh ¼ f T
h Pgh; ð10Þ
where fh, gh are projections of f, g onto a grid, and P is the matrix (and integration operator) used to define a norm in the
definition of the SBP operator. The subscript h will be omitted for known functions if the meaning is clear from the context.

Before we begin, we need to define what is meant by the continuous dual problem, discrete dual problem and dual con-
sistency. Let L be a linear differential operator and consider the (steady) equation
stence of solutions is not formally considered in this context. Existence is motivated by the fact that a minimal number of boundary conditions is used to
an energy estimate [44].
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Lu� f ¼ 0; 8x 2 X; ð11Þ
subject to homogeneous boundary conditions. Let
JðuÞ ¼ ðg;uÞ ð12Þ
be a linear functional output of interest. We obtain the adjoint equation by seeking / in some appropriate function space,
such that
JðuÞ ¼ ð/; f Þ: ð13Þ
A formal computation gives
JðuÞ ¼ ðg;uÞ � ð/; Lu� f Þ ¼ ð/; f Þ � ðL�/� g;uÞ ð14Þ
and hence the adjoint equation is given by
L�/� g ¼ 0; ð15Þ
where L� is the formal adjoint of L. Note that L� is abstractly defined, and finding an exact expression for the dual operator is
in general a non-trivial task. In the case of linear differential operators, the adjoint operator is obtained by integration by
parts.

Remark 3.1. In this paper, we consider homogeneous boundary and initial conditions. This is only for the purpose of
analysis. The dual problem depends only on the form of the boundary conditions, but not on the particular boundary or
initial data. In computations, the boundary and initial data can be non-zero.

The boundary conditions for the adjoint equation are obtained by considering the boundary terms resulting from the inte-
gration by parts procedure. After applying the homogeneous boundary conditions for the primal PDE, the dual boundary con-
ditions are defined as the minimal set of homogeneous conditions such that all boundary terms vanish.

Definition 2. The continuous dual problem is given by
L�/ ¼ g ð16Þ
subject to the dual boundary conditions.
The same reasoning can be applied in the discrete setting. Let
Lhuh � f ¼ 0 ð17Þ
be a discretization of (11), including the homogeneous boundary conditions. Then
JhðuhÞ ¼ ðg;uhÞh ð18Þ
is an approximation of (12). We obtain the discrete dual problem by seeking /h such that
JhðuhÞ ¼ ð/h; f Þh: ð19Þ
The same formal computation as before gives
JhðuhÞ ¼ ðg;uhÞh � ð/h; Lhuh � f Þh ¼ ð/h; f Þh � ðP
�1LT

hP/h � g;uhÞh ð20Þ
and we have

Definition 3. The discrete dual problem is given by
P�1LT
hP/h � g ¼ 0: ð21Þ
Remark 3.2. In an SBP-SAT setting, the difference operator Lh can be written as
Lh ¼ P�1eLh ð22Þ
and the discrete dual problem reduces to
P�1eLT
h/h ¼ g: ð23Þ
Finally, by using (16) and (21) we make the definition of dual consistency.
Definition 4. A discretization is called dual consistent if (21) is a consistent approximation of (16).

So far, we have been concerned with steady problems only. Since we are interested in unsteady problems, we need to
define what is meant by dual consistency in this context. Consider an unsteady problem
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ut þ Lu� f ¼ 0; t > 0; 8x 2 X; ð24Þ
subject to homogeneous boundary and initial conditions. By seeking / such that
Z T

0
JðuÞdt ¼

Z T

0
ð/; f Þdt ð25Þ
we obtain
Z T

0
JðuÞdt ¼

Z T

0
JðuÞdt �

Z T

0
ð/; ut þ Lu� f ÞdtZ T

0
ð/t � L�/þ g; uÞdt þ

Z T

0
ð/; f Þdt:

ð26Þ
The time-dependent dual problem thus becomes
�/t þ L�/ ¼ g ð27Þ
subject to the dual boundary conditions. A homogeneous initial condition for the dual problem is placed at time t ¼ T which
removes the boundary term from the partial time integration.

The discrete procedure can be formulated analogously. Let
d
dt

uh þ Lhuh � f ¼ 0 ð28Þ
be a semi-discretization of (24), including the boundary conditions. We then have the following definition regarding dual
consistency of time-dependent problems,

Definition 5. The semi-discretization (28) is called spatially dual consistent if the corresponding steady problem is dual
consistent.

Note that a stable and consistent discretization of the primal PDE does not imply spatial dual consistency.
To prove the main result of this paper, we need Corollary 1 from [46], which states that P is a 2p-order accurate quadra-

ture. For our purpose, we can restate the result as.

Lemma 3.1. Let P be the norm-matrix of an SBP discretization with 2p-order internal accuracy. Then for u 2 C2p we have
JhðuÞ ¼ JðuÞ þ Oðh2pÞ: ð29Þ

Using Lemma 3.1 we can prove the main result of this paper which is.
Theorem 3.2. Let
d
dt

uh þ Lhuh ¼ f ð30Þ
be a stable and spatial dual consistent SBP-SAT discretization of the continuous problem
ut þ Lu ¼ f : ð31Þ
Then the linear functional
JhðuhÞ ¼ gT Puh ð32Þ
is a 2p-order accurate approximation of
JðuÞ ¼
Z

X
gT udX: ð33Þ
Proof. By using the results in [46] together with the definition of the discrete dual problem, we can add and subtract terms
to relate the the continuous functional to the discrete as
JðuÞ ¼ JhðuÞ þ Oðh2pÞ ¼ gT Puh þ gT Pðu� uhÞ þ Oðh2pÞ ¼ gT Puh þ gT Pðu� uhÞ � /T
hPðLhuh � f Þ þ Oðh2pÞ

¼ JhðuhÞ þ gT Pðu� uhÞ � /T
hPLhðu� uhÞ � /T Pf þ /T

hPLhuþ Oðh2pÞ

¼ JhðuhÞ � ðu� uhÞT PðP�1LT
hP/h � gÞ þ /T PðLhu� f Þ þ Oðh2pÞ ¼ JhðuhÞ þ /T PðLhu� f Þ þ Oðh2pÞ; ð34Þ
where the last error term is of order h2p [46]. We can hence conclude that
JðuÞ ¼ JhðuhÞ þ Oðh2pÞ: � ð35Þ
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4. Derivation of stable and spatially dual consistent schemes

Based on Theorem 3.2, we will derive stable and spatially dual consistent schemes for four time-depedent model prob-
lems in a systematic way. The equations we consider are the advection equation, the heat equation, the viscous Burgers’
equation and an incompletely parabolic system of equations. We will see that a stable and spatial dual consistent discreti-
zation produces superconvergent time-dependent linear functionals.

4.1. The advection equation

Consider (3) again together with a linear functional output of interest. We let the boundary condition be homogeneous,
add a forcing function and ignore the initial condition,
ut þ aux ¼ f ;

uð0; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð36Þ
Note that JðuÞ is a time-dependent functional. The adjoint equation is obtained by letting ut ¼ 0 and finding / such that
JðuÞ ¼ ð/; f Þ. We get
JðuÞ ¼ JðuÞ �
Z 1

0
/ðaux � f Þdx ¼ �a/ð1; tÞuð1; tÞ �

Z 1

0
ðg þ a/xÞudxþ ðv ; f Þ ð37Þ
and hence the steady adjoint problem is given by
� a/x ¼ g;

/ð1; tÞ ¼ 0:
ð38Þ
Note that the sign has changed and the adjoint boundary condition is located at the opposite boundary compared to the pri-
mal problem.

Eq. (36) is discretized as before,
d
dt

uh þ aP�1Quh ¼ f þ rP�1ðeT
0uh � 0Þe0; ð39Þ
where 0 is the boundary data. We know from the preceding energy estimate (7) that the scheme is stable if r 6 � a
2. The addi-

tion of the forcing function does not change the number or form of the boundary conditions and can be assumed to be zero in
an energy estimate according to the principle of Duhamel [45]. To determine spatial dual consistency, we let d

dt uh ¼ 0 and
rewrite (39) as
Lhuh ¼ Pf ; ð40Þ
where
Lh ¼ aQ � rE0 ð41Þ
and E0 ¼ eT
0e0 ¼ diag½1; 0; . . . ;0�. According to the definition of dual consistency,
LT
h/h ¼ Pg ð42Þ
has to be a consistent approximation of the adjoint Eq. (38). By using the SBP property of Q, we expand (42) as
�aP�1Q/h ¼ g � aP�1EN/h þ ðrþ aÞP�1E0/h ð43Þ
which is a consistent approximation of (38) only if
r ¼ �a: ð44Þ
For any other value of r, the numerical scheme would impose a boundary condition at x ¼ 0 which does not exist in the ad-
joint equation. We can also see that r ¼ �a does not violate the stability condition given by the energy estimate. Thus the
scheme is both stable and spatially dual consistent.

Remark 4.1. Note that the parameter r is allowed to vary in a semi-infinite range from the stability requirements, while
spatial dual consistency requires a unique value.
4.2. The heat equation

The heat equation on 0 6 x 6 1 with homogeneous Dirichlet boundary conditions is given by
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ut ¼ auxx þ f ;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð45Þ
The initial condition is omitted since the derivation of the dual problem depends only on the equation and the form of the
boundary conditions. In the computations, however, an initial condition has to be supplied. In order to derive a stable and
spatially dual consistent scheme, (45) has to be rewritten as a first order system in the same way as in the local discontin-
uous Galerkin (LDG) method [47]. It has been shown that the LDG method has interesting superconvergent features not only
for functionals, but also for the solution itself [7,30,48]. We hence adapt the LDG formulation and rewrite (45) as
ut ¼
ffiffiffi
a
p

vx þ f ;

v ¼
ffiffiffi
a
p

ux;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð46Þ
To obtain the dual problem, we let ut ¼ 0 and write (46) as
Awþ Bwx ¼ F; ð47Þ
where w ¼ ½u;v �T , F ¼ ½f ;0�T and
A ¼
0 0
0 1

� �
; B ¼ 0 �

ffiffiffi
a
p

�
ffiffiffi
a
p

0

" #
: ð48Þ
Let now G ¼ ½g;0�T , h ¼ ½/;w�T and find h such that
JðwÞ ¼ ðh; FÞ: ð49Þ
Note that
JðwÞ ¼ ðG;wÞ ¼ ðg;uÞ ð50Þ
and we are still computing the functional of interest from the primal problem. This gives us the adjoint problem by
computing
JðwÞ ¼ JðwÞ �
Z 1

0
hTðAwþ Bwx � FÞdx ¼

Z 1

0
wTðG� Ahþ BhxÞdx� hT Bw

� �1

0 þ ðh; FÞ: ð51Þ
The adjoint equation is thus given by
Ah� Bhx ¼ G ð52Þ
and the adjoint boundary conditions are the minimal number of conditions such that hT Bw
� �1

0 ¼ 0. After applying the homo-
geneous boundary conditions for the primal problem, we get the adjoint problem on component form
ffiffiffi

a
p

wx ¼ g;

wþ
ffiffiffi
a
p

/x ¼ 0;
/ð0; tÞ ¼ 0;
/ð1; tÞ ¼ 0:

ð53Þ
The primal PDE on LDG form (46) is discretized as
d
dt

uh ¼
ffiffiffi
a
p

P�1Qvh þ f þ rLP�1ðeT
0uh � 0Þe0 þ rRP�1ðeT

Nuh � 0ÞeN;

vh ¼
ffiffiffi
a
p

P�1Quh þ sLP�1ðeT
0uh � 0Þe0 þ sRP�1ðeT

Nuh � 0ÞeN :

ð54Þ
By multiplying the first equation by uT
hP, the second by vT

hP and adding the results we get
1
2

d
dt
jjuhjj2 þ jjvhjj2 ¼ ðsL �

ffiffiffi
a
p
ÞuT

hE0vh þ ðsR þ
ffiffiffi
a
p
ÞuT

hENvh þ rLuT
hE0uh þ rRuT

hENuh ð55Þ
and the scheme is clearly stable if
sL ¼
ffiffiffi
a
p

; sR ¼ �
ffiffiffi
a
p

; rL 6 0; rR 6 0: ð56Þ
To determine spatial dual consistency we again let ut ¼ 0 and rewrite (54), using (56), as
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Lhwh ¼ eF ; ð57Þ
where wh ¼ ½uh;vh�T , eF ¼ ½Pf ;0�T and
Lh ¼
�rLE0 � rREN �

ffiffiffi
a
p

Q
�

ffiffiffi
a
p

Q �
ffiffiffi
a
p

E0 þ
ffiffiffi
a
p

EN P

" #
: ð58Þ
The discrete dual problem is given by
LT
hhh ¼ eG; ð59Þ
where hh ¼ ½/h;wh�
T , eG ¼ ½Pg;0�T , and it has to be a consistent approximation of (53) without violating the stability conditions

(56). By using the SBP properties of the operators we expand (59) and write it in component form as
ffiffiffi
a
p

P�1Qwh ¼ g þ rLP�1E0/h þ rRP�1EN/h

wh þ
ffiffiffi
a
p

P�1Q/h ¼ �
ffiffiffi
a
p

P�1E0/h þ
ffiffiffi
a
p

P�1EN/h

ð60Þ
which exactly approximates (53), including the dual boundary conditions. Note that there are no restrictions on rL;R for dual
consistency.

Remark 4.2. Note that the stability requirements are sufficient for spatial dual consistency, in contrast to the pure advection
case.
Remark 4.3. The LDG form can be transformed back to second order form, see also [30], in which case the scheme becomes
d
dt

uh ¼ aðP�1QÞ2uh þ f þ ðrLI þ aP�1QÞP�1ðeT
0uh � 0Þe0 þ ðrRI � aP�1QÞP�1ðeT

Nuh � 0ÞeN; ð61Þ
where I is the identity matrix of size N þ 1. Note that we get back the wide second derivative operator, possibly suggesting
that dual consistency requires a second derivative operator which can be factorized into the product of two first derivative
operators.
4.3. The viscous Burgers’ equation

The viscous Burgers’ equation, together with a linear functional of interest, with homogeneous Dirichlet boundary con-
ditions on 0 6 x 6 1 is given on conservative form by
ut þ
u2

2

� �
x

¼ euxx þ f ;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð62Þ
Since (62) is a non-linear equation, the present theory cannot directly be applied. The viscous Burger’s equation have regular
solutions due to the viscosity term, and the behavior of the solution is not far from that of a linear problem. In the absence of
a general method for non-linear analysis, a linear analysis is used. In the presence of shocks, for more complicated equations,
it is not clear what meaning a linear analysis have.

We linearize (62) around a constant state u ¼ a to obtain the linear equation,
ut þ aux ¼ euxx þ f ;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ;

ð63Þ
which is usually referred to as the advection–diffusion equation.
Since (62) contains second derivatives, we introduce the auxiliary variable v ¼

ffiffiffi
e
p

ux and rewrite the steady (linear) prob-
lem as
Awþ Bwx ¼ F; ð64Þ
where w ¼ ½u;v �T , F ¼ ½f ;0�T and
A ¼
0 0
0 1

� �
; B ¼ a �

ffiffiffi
e
p

�
ffiffiffi
e
p

0

" #
: ð65Þ
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To find the adjoint equation, we define G ¼ ½g;0�T and seek h ¼ ½/;w�T such that
JðwÞ ¼ ðh; FÞ ð66Þ
as before. Integration by parts leads to
JðwÞ ¼ JðwÞ �
Z 1

0
hTðAwþ Bwx � FÞdx ¼

Z 1

0
wTðG� Ahþ BhxÞdx� hT Bw

� �1

0 þ ðh; FÞ ð67Þ
and hence the adjoint equation is given on component form as
� a/x þ
ffiffiffi
e
p

wx ¼ g;

/þ
ffiffiffi
e
p

/x ¼ 0;

/ð0; tÞ ¼ 0;

/ð1; tÞ ¼ 0:

ð68Þ
The stability analysis will also be performed on the linearized equations. The time-dependent equation on LDG form is dis-
cretized as
d
dt

uh þ aP�1Quh ¼
ffiffiffi
e
p

P�1Qvh þ rLP�1ðeT
0uh � 0Þe0 þ rRP�1ðeT

Nuh � 0ÞeN þ f ;

vh ¼
ffiffiffi
e
p

P�1Quh þ sLP�1ðeT
0uh � 0Þe0 þ sRP�1ðeT

Nuh � 0ÞeN

ð69Þ
and the coefficients rL;R and sL;R has to be determined such that the scheme is stable. By multiplying the first equation in (69)
by uT

hP and the second by vT
hP, we obtain by adding the results
d
dt
jjuhjj2 þ 2jjvhjj2 ¼ ð2rL þ aÞuT

hE0uh þ ð2rR � aÞuT
hENuh þ 2ðsL �

ffiffiffi
e
p
ÞvT

hE0uh þ 2ðsR þ
ffiffiffi
e
p
ÞvT

hENuh: ð70Þ
We can see that (70) is stable if we chose
rL 6 �
a
2
; rR 6

a
2
; sL ¼

ffiffiffi
e
p

; sR ¼ �
ffiffiffi
e
p

: ð71Þ
To determine if the scheme is spatially dual consistent, we let ut ¼ 0 and rewrite (69), using (71), as
Lhwh ¼ eF ; ð72Þ
where wh ¼ ½uh;vh�T ; eF ¼ ½Pf ;0�T and
Lh ¼
aQ þ rLE0 þ rREN �

ffiffiffi
e
p

�
ffiffiffi
e
p

Q �
ffiffiffi
e
p

E0 þ
ffiffiffi
e
p

EN P

" #
: ð73Þ
The discrete dual problem is then given by
LT
hhh ¼ eG; ð74Þ
where hh ¼ ½/h;wh�
T and eG ¼ ½Pg; 0�T , which has to be a consistent approximation of (68) without violating the stability con-

ditions (71). By expanding (74), we can write it in component form as
� aP�1Q/h þ
ffiffiffi
e
p

P�1Qwh ¼ �ðrL � aÞP�1E0/h � ðrR þ aÞP�1EN/h þ g

wh þ
ffiffiffi
e
p

P�1Q/h ¼ �
ffiffiffi
e
p

P�1E0/h þ
ffiffiffi
e
p

P�1EN/h

ð75Þ
which can be seen to be a consistent approximation of (74) without violating any of the stability conditions in (71). Hence
the scheme (69) is both a stable and spatially dual consistent approximation of the linearized equation.

When performing the computations, however, we use the nonlinear LDG formulation
d
dt

uh þ P�1Q
u2

h

2

� �
¼

ffiffiffi
e
p

P�1Qvh þ rLP�1ðeT
0uh � 0Þe0 þ rRP�1ðeT

Nuh � 0ÞeN þ f ;

vh ¼
ffiffiffi
e
p

P�1Quh þ sLP�1ðeT
0uh � 0Þe0 þ sRP�1ðeT

Nuh � 0ÞeN ;

ð76Þ
where every occurence of the mean flow coefficient, a, in the SAT is replaced by u to obtain a nonlinear SAT. This procedure is
motivated by the linearization and localization principle, see [49] for details.

Remark 4.4. Note again that stability is sufficient for spatial dual consistency and no extra conditions have to be placed on
the SAT coefficients. The coefficients rL;R are still allowed to vary in a semi-infinite range.
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4.4. An incompletely parabolic system

In this section we consider the incompletely parabolic system
Ut þ AUx ¼ BUxx þ F;

JðUÞ ¼ ðG;UÞ;
ð77Þ
where U ¼ ½p;u�; F ¼ ½f1; f2�T ;G ¼ ½g1; g2�
T and
A ¼
�u �c
�c �u

� �
; B ¼

0 0
0 e

� �
: ð78Þ
Eq. (77) can be thought of as the symmetrized [50] Navier–Stokes equations linearized around the mean velocity �u > 0 and
speed of sound �c. We shall assume a linearization around a subsonic flow field, that is �u < �c. In this case, (77) requires two
boundary conditions at the inflow boundary and one at the outflow. For the purpose of analysis, we will use the homoge-
neous Dirichlet conditions
uð0; tÞ ¼ 0; pð0; tÞ ¼ 0; uð1; tÞ ¼ 0: ð79Þ
To obtain the adjoint equations, we let ut ¼ pt ¼ 0 and rewrite (77) in LDG form as
Awþ Bwx ¼ F; ð80Þ
where w ¼ ½p;u; v�T ; F ¼ ½f1; f2; 0�T ; v ¼
ffiffiffi
e
p

ux and
A ¼
0 0 0
0 0 0
0 0 1

264
375; B ¼

�u �c 0
�c �u �

ffiffiffi
e
p

0 �
ffiffiffi
e
p

0

264
375: ð81Þ
The adjoint equations are now found by seeking h ¼ ½/;w; m�T such that
JðwÞ ¼ ðh; FÞ: ð82Þ
Integration by parts gives
JðwÞ ¼ JðwÞ �
Z 1

0
hTðAwþ Bwx � FÞdx ¼

Z 1

0
wTðG� Ahþ BhxÞdx� hT Bw

� �1

0 þ ðh; FÞ; ð83Þ
where G ¼ ½g1; g2;0�
T . The adjoint problem is hence given on component form as
� �u/x � �cwx ¼ g1;

� �c/x � �uwx þ
ffiffiffi
e
p

mx ¼ g2;

mþ
ffiffiffi
e
p

wx ¼ 0;
wð0; tÞ ¼ 0;
/ð1; tÞ ¼ 0;
wð1; tÞ ¼ 0:

ð84Þ
Note that the dual problem has one boundary condition at x ¼ 0 and two at x ¼ 1, in contrast to the primal problem for
which the situation is reversed.

The time-dependent problem (80) is discretized as
d
dt

ph þ �uP�1Qph þ �cP�1Quh ¼ r1P�1ðeT
0ph � 0Þe0 þ r2P�1ðeT

0uh � 0Þe0 þ r3P�1ðeT
Nuh � 0ÞeN;

d
dt

uh þ �cP�1Qph þ �uP�1Quh �
ffiffiffi
e
p

P�1Qvh ¼ s1P�1ðeT
0ph � 0Þe0 þ s2P�1ðeT

0uh � 0Þe0 þ s3P�1ðeT
Nuh � 0ÞeN;

vh �
ffiffiffi
e
p

P�1Quh ¼ c1P�1ðeT
0ph � 0Þe0 þ c2P�1ðeT

0uh � 0Þe0 þ c3P�1ðeT
Nuh � 0ÞeN ð85Þ
and the coefficients r1;2;3; s1;2;3 and c1;2;3 has to be determined such that the scheme is stable. By applying the energy method
to each of the equations and adding them, we can write the result as
d
dt
jjphjj

2 þ d
dt
jjuhjj2 þ 2jjvhjj2 ¼ wT

hM0wþwhMNwh; ð86Þ
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where wh ¼ ½ph;uh;vh� and
M0 ¼
ð�uþ 2r1ÞE0 ð�c þ r2 þ s1ÞE0 c1E0

ð�c þ r2 þ s1ÞE0 ð�uþ 2s2ÞE0 ðc2 �
ffiffiffi
e
p
ÞE0

c1E0 ðc2 �
ffiffiffi
e
p
ÞE0 0

264
375;

MN ¼
��uEN ð��c þ r3ÞEN 0

ð��c þ r3ÞEN ð��uþ 2s3ÞEN ðc3 þ
ffiffiffi
e
p
ÞEN

0 ðc3 þ
ffiffiffi
e
p
ÞEN 0

264
375:

ð87Þ
To simplify (86), we introduce the Kronecker product, which is defined for arbitrary matrices X and Y by
X � Y ¼

x11Y x12Y . . . x1nY

x21Y x22Y . . . x2nY

..

. . .
. . .

. ..
.

xm1Y xm2Y . . . xmnY

266664
377775: ð88Þ
The Kronecker product is bilinear, associative and satisfies the mixed product property

ðX1 � Y1ÞðX2 � Y2Þ ¼ ðX1X2 � Y1Y2Þ ð89Þ
if the usual matrix products are defined. For inversion and transposing we have
ðX � YÞ�1;T ¼ ðX�1;T � Y�1;TÞ ð90Þ
if the usual matrix inverses are defined.
Using the Kronecker product, we can factorize (86) as
d
dt
jjphjj

2 þ d
dt
jjuhjj2 þ 2jjvhjj2 ¼ wT

hðm0 � E0Þwh þwT
hðmN � ENÞwh; ð91Þ
where m0;N are the smaller submatrices
m0 ¼

�uþ 2r1 �c þ r2 þ s1 c1

�c þ r2 þ s1 �uþ 2s2 c2 �
ffiffiffi
e
p

c1 c2 �
ffiffiffi
e
p

0

2664
3775; ð92Þ

mN ¼

��u ��c þ r3 0

��c þ r3 ��uþ 2s3 c3 þ
ffiffiffi
e
p

0 c3 þ
ffiffiffi
e
p

0

2664
3775: ð93Þ
Since E0; EN P 0, we obtain a stable scheme is the coefficients are chosen such that m0;mN 6 0. The coefficients are given in

Proposition 4.1. The scheme (85) is stable using
r1 6 �
�u
2
; �c þ r2 þ s1 ¼ 0; s2 6 �

�u
2
; c1 ¼ 0; c2 ¼

ffiffiffi
e
p

ð94Þ
for the coefficients in (92) and
r3 ¼ �c; c3 ¼ �
ffiffiffi
e
p

; s3 6
�u
2

ð95Þ
for the coefficients in (93).
Proof. By inserting the coefficients (94) and (95) into the scheme (85), the energy estimate (91) reduces to
d
dt
jjphjj

2 þ d
dt
jjuhjj2 þ 2jjvhjj2 6 0: � ð96Þ
To determine the spatial dual consistency of (85), we let pt ¼ ut ¼ 0 and rewrite as
Lhwh ¼ eF ; ð97Þ
where eF ¼ ½Pf1; Pf2;0�T and
Lh ¼
�uQ � r1E0 �cQ � r2E0 � �cEN 0
�cQ � s1E0 �uQ � s2E0 � s3EN �

ffiffiffi
e
p

Q

0 �
ffiffiffi
e
p

Q �
ffiffiffi
e
p

E0 þ
ffiffiffi
e
p

EN P

264
375: ð98Þ
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The discrete dual problem is then given by
Table 1
Time-av

Accu

3rd
4th
5th
LT
hhh ¼ eG; ð99Þ
where hh ¼ ½/h;wh; mh�T , eG ¼ ½Pg1; Pg2;0�
T , and it has to be a consistent approximation of (84) without violating the stability

conditions. By expanding (99), using (94) and (95), we get
� �uP�1Q/h � �cP�1Qwh ¼ ðr1 þ �uÞP�1E0/h þ ðs1 þ �cÞP�1E0wh � �uP�1EN/h � �cP�1ENwh þ g1;

� �cP�1Q/h � �uP�1Qwh þ
ffiffiffi
e
p

P�1Qmh ¼ ðr2 þ �cÞP�1E0/h þ ðs2 þ �uÞP�1E0wh þ ðs3 � �uÞP�1ENwh þ g2;ffiffiffi
e
p

P�1Qwh þ m ¼ �
ffiffiffi
e
p

P�1E0wh þ
ffiffiffi
e
p

P�1ENwh: ð100Þ
Remember that the boundary conditions in the dual Eq. (84) are different from those of the primal equation. This puts
restrictions on the coefficients in order to obtain a consistent approximation of the dual problem. The coefficients are given
in

Proposition 4.2. The scheme (85) is stable and spatially dual consistent with (94), (95) and the choices
r1 ¼ ��u; r2 ¼ ��c: ð101Þ
Proof. The choice (101) cancels the terms in (100) for which additional erroneous boundary conditions would be imposed
for the dual problem. Note that r2 ¼ ��c implies
s1 ¼ 0: ð102Þ
The choice of coefficients given in (101) and (102) does not violate the stability conditions given in (94) and (95). h
Remark 4.5. Note that only the coefficients at the inflow boundary are uniquely determined by the spatial dual consistency
requirements. For the outflow boundary, the conditions for stability are sufficient.
Remark 4.6. The requirements for spatial dual consistency has always constituted a subset of the stability requirements. We
have hence been able to construct schemes which are both energy stable and spatially dual consistent. The energy analysis
for stability typically renders some coefficients in the SAT to be semi-bounded, while the additional requirement of spatial
dual consistency fixes some coefficients to unique values in the semi-bounded region.
5. Numerical results

A forcing function have been chosen in all cases such that an analytical solution is known, and the rate of convergence and
errors are computed with respect to the analytical solution. The analytical solution is smooth for all times, even for the vis-
cous Burger’s equation. This is known as the method of manufactured solutions [51]. Note that the boundary and initial data
are constructed from the analytical solution and are hence the conditions are no longer homogeneous.

The time integration is performed until time t ¼ 10 using the classical 4th-order Runge–Kutta method with timestep
Dt ¼ 2� 10�6, to ensure that the time integration errors are negligible. In each time step we perform a mesh refinement from
32 to 160 gridpoints, in steps of 16, and compute the rate of convergence for both the solution and the functional. In this way,
the rate of convergence can be computed as a function of time.

We compare the new schemes with standard SBP-SAT schemes which impose the Dirichlet boundary conditions tradi-
tionally without respect to the dual problem. The solutions to all problems were verified to converge with the design order
of accuracy. In Tables 1 and 2 we summarize the time-average rates of functional convergence for the dual consistent and
dual inconsistent cases, respectively.

The advection equation, heat equation, viscours Burger’s equation and the incompletely parabolic system of equations are
representatives for the hyperbolic, parabolic, nonlinear and mixed type of partial differential equations. Despite them being
different in nature, the results regarding the functional convergence are consistent. A spatially dual consistent SBP-SAT dis-
cretization gives rise to time-dependent superconvergent linear functional output.
erage rates of the functional convergence for the dual consistent discretization.

racy Advection Heat Burger’s System ðJðpÞ; JðuÞÞ

4.14808 4.0073 4.19861 4.27252, 4.18926
6.9023 6.86841 6.36518 6.61803, 6.53875
6.99999 8.83809 8.61754 8.76432, 8.67103



Table 2
Time-average rates of the functional convergence for the dual inconsistent discretization.

Accuracy Advection Heat Burger’s System ðJðpÞ; JðuÞÞ

3rd 3.06438 4.17441 3.93663 2.71162, 3.68422
4th 4.13107 5.22073 5.08856 3.41406, 3.72249
5th 4.64093 5.42542 5.60646 4.53447, 4.25429

Table 3
Average errors using N ¼ 32 grid points.

Accuracy Solution for p Functional for p

Consistent Wide Compact Consistent Wide Compact

3rd 2.0446e�03 2.0571e�03 1.6012e�03 5.0140e�05 2.8720e�04 5.6833e�04
4th 1.8328e�03 1.3131e�03 1.2423e�03 2.3244e�05 4.0409e�04 8.4830e�04
5th 1.1855e�02 6.9236e�03 6.9241e�03 1.2150e�05 1.2854e�03 3.1519e�03

Solution for u Functional for u

3rd 5.0395e�03 1.0337e�03 4.2541e�04 1.0125e�04 5.1268e�04 4.6830e�04
4th 2.1250e�03 1.0265e�03 4.1681e�04 1.6691e�05 3.1254e�04 3.6392e�04
5th 1.5030e�02 1.1059e�02 3.9369e�03 9.7499e�06 6.1595e�04 5.2289e�03
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We stress that the method presented does not require any knowledge about the solution of the adjoint equations. Spatial
dual consistency is a property of the discretization based upon knowledge of the form of the adjoint equation and its bound-
ary conditions. Superconvergent functionals are thus obtained at no extra computational cost.

The superconvergence of the functional ensures that for sufficiently high resolutions, the dual consistent discretization
will outperform a spatially dual inconsistent discretization. Most realistic simulations are, however, marginally or under-re-
solved and it is desirable that the higher order accuracy does not come at the cost of large error constants which ruin com-
putations on a coarse mesh.

The errors in the solution and in the linear functionals were computed for a coarse mesh. The solution and functional er-
rors were computed as a function of time for the coarsest grid level, N ¼ 32 grid points. We consider only the incompletely
parabolic case to reduce the number of tables. The results were verified to be analogous for the other cases. We have also
included an inconsistent scheme with a more accurate compact discretization of the second derivative as described in
[20,52]. The errors are summarized in Table 3, where we present the average error over time for both the solutions and
the functionals. From Table 3, we can see that the dual consistent discretization is somewhat less accurate in computing
the solution, but much more accurate in computing the functionals. The 5th-order accurate spatially dual consistent discret-
ization is already at 32 gridpoints 2 orders of magnitude more accurate than the spatially dual inconsistent discretization.
6. Summary and conclusions

We have defined and derived spatially dual consistent discretizations based on finite difference operators satisfying the
summation-by-parts properties. The boundary conditions were imposed weakly using the simultaneous approximation
term. We have presented derivations of spatial dual consistency in a general way and applied the technique to four repre-
sentative equations; the advection equation, the heat equation, the viscous Burgers’ equation and an incompletely parabolic
system of equations.

In the cases we considered, the requirements for spatial dual consistency conform with the stability requirements. It was
hence always possible to derive schemes which are both energy stable and spatially dual consistent for the cases we have
considered, despite all model problems being of different type.

It was shown for all considered cases that a spatial dual consistent discretization produced superconvergent linear func-
tionals computed from the solution. By superconvergece we mean that the solution is accurate of order p + 1 (or p + 2 under
certain conditions), while the linear functional is computed with 2p-order accuracy.

We have computed the errors in both the solution and in the linear functionals for a coarse mesh to ensure that the super-
convegence does not come at the cost of large error constants. It was seen that the solution computed from the spatially dual
consistent scheme was somewhat less accurate, while the functional could be two orders of magnitude more accurate al-
ready on a coarse grid.

The superconvergence does not require any knowledge about the solution of the adjoint equations. By considering only
the form of the adjoint equation and its boundary conditions, it is a matter of choosing the SAT such that the scheme be-
comes stable and spatial dual consistent. Superconvergent functional outputs can thus be computed at no extra computa-
tional cost compared to a standard discretization.
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