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A time-domain numerical modeling of Biot poroelastic waves is presented. The viscous
dissipation occurring in the pores is described using the dynamic permeability model
developed by Johnson–Koplik–Dashen (JKD). Some of the coefficients in the Biot-JKD model
are proportional to the square root of the frequency: in the time-domain, these coefficients
introduce order 1=2 shifted fractional derivatives involving a convolution product. Based
on a diffusive representation, the convolution kernel is replaced by a finite number of
memory variables that satisfy local-in-time ordinary differential equations. Thanks to the
dispersion relation, the coefficients in the diffusive representation are obtained by per-
forming an optimization procedure in the frequency range of interest. A splitting strategy
is then applied numerically: the propagative part of Biot-JKD equations is discretized using
a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved
exactly. Comparisons with analytical solutions show the efficiency and the accuracy of this
approach.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Porous media consist of a solid matrix within which fluids can circulate freely. The propagation of waves in these media
has many crucial implications in applied mechanics, in situations where materials such as industrial foams, spongious bones
[34] and petroleum rocks [3] have to be characterized, for example. The poroelastic model originally developed by Biot in
1956 [1] includes two classical waves (one ‘‘fast’’ compressional wave and one shear wave), in addition to a second ‘‘slow’’
compressional wave, which is highly dependent on the saturating fluid. This slow wave was observed experimentally in
1981 [32], thus confirming the validity of Biot’s theory.

Two frequency regimes have to be distinguished when dealing with poroelastic waves. One of the main problems is how
to model the dissipation of mechanical energy. In the low-frequency range (LF) [1], the viscous boundary layer that develops
in the fluid is large in comparison with the diameter of the pores, and the viscous efforts are proportional to the relative
velocity of the motion between the fluid and solid components. In the high-frequency range (HF), modeling the dissipation
is a more delicate task: Biot first presented an expression for particular pore geometries [2]. In 1987, Johnson–Koplik–Dashen
(JKD) [19] published a general expression for the dissipation in the case of random pores. The viscous efforts depend in this
model on the square root of the frequency of the perturbation. When writing the evolution equations in the time domain,
time fractional derivatives are introduced, which involves convolution products with singular kernels [26]. Analytical solu-
tions have been derived in simple academic geometries and homogeneous media [13].
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Many numerical methods have been developed in the LF regime: see [5] and the introduction to [7] for general reviews. In
the HF regime, the fractional derivatives greatly complicate the numerical modeling of the Biot-JKD equations. The past val-
ues of the solution are indeed required in order to evaluate these convolution products, which means that the time evolution
of the solution must be stored. This of course greatly increases the memory requirements and makes large-scale simulations
impossible. To our knowledge, only two approaches to this problem have been proposed so far in the literature. The first
approach consisted in discretizing the convolution products [27], and the second one was based on the use of a diffusive
representation of the fractional derivative [25,36]. In the latter approach, the convolution product is replaced by a continuum
of diffusive variables – or memory variables – satisfying local differential equations [17]. This continuum is then discretized
using appropriate quadrature formulas, resulting in the Biot-DA (diffusive approximation) model.

However, the diffusive approximation proposed in [25] has three major drawbacks. First, the quadrature formulas make
the convergence towards the original fractional operator very slow. Secondly, in the case of small frequencies, the Biot-DA
model does not converge towards the Biot-LF model. Lastly, the number of memory variables required is not specified. The
aim of the present study is therefore to develop a new diffusive approximation method in which these drawbacks do not
arise. Since it is proposed here to focus on the discretization of the fractional derivatives, we will deal only with the 1-D
equations of evolution in homogeneous media, so that the shear wave will not be considered. However, the strategy pro-
posed here can be extended quite straightforwardly to 2D and 3D geometries, as discussed below.

This paper is organized as follows. The original Biot-JKD model is briefly outlined in Section 2 and the principles under-
lying the diffusive representation of fractional derivatives are described. The decrease of energy and the dispersion analysis
are addressed. In Section 3, the method used to discretize the diffusive model is presented: the diffusive approximation thus
obtained is easily treatable by computers. Following a similar approach than in viscoelasticity [15], the coefficients of the
model are determined using an optimization procedure in the frequency range of interest, giving an optimum number of
additional computational arrays. The numerical modeling is addressed in Section 4, where the equations of evolution are
split into two parts: a propagative part, which is discretized using a fourth-order scheme for hyperbolic equations, and a dif-
fusive part, which is solved exactly. Some numerical experiments performed with realistic values of the physical parameters
are presented in Section 5. In Section 6, a conclusion is drawn and some futures lines of research are given.
2. Physical modeling

2.1. Biot model

The Biot model describes the propagation of mechanical waves in a macroscopic porous medium consisting of a solid ma-
trix saturated with a fluid circulating freely through the pores [1,3,4]. It is assumed that

� the wavelengths are large in comparison with the diameter of the pores;
� the amplitude of the perturbations is small;
� the elastic and isotropic matrix is completely saturated with a single fluid phase;
� the thermo-mechanical effects are neglected.

This model involves 10 physical parameters: the density qf and the dynamic viscosity g of the fluid; the density qs and the
shear modulus l of the elastic skeleton; the porosity 0 < / < 1, the tortuosity a P 1, the absolute permeability at null fre-
quency j, the Lamé coefficient kf and the two Biot’s coefficients b and m of the saturated matrix. The following notations are
introduced
qw ¼
a
/

qf ; q ¼ /qf þ ð1� /Þqs; v ¼ qqw � q2
f > 0;

k0 ¼ kf �mb2; C ¼ k0 þ 2l > 0:
ð1Þ
Taking us and uf to denote the solid and fluid displacements, the unknowns in 1D are the elastic velocity v s ¼ @us
@ t , the filtra-

tion velocity w ¼ @W
@t ¼ / @

@ t ðuf � usÞ, the elastic stress r, and the acoustic pressure p. The constitutive laws are
r ¼ ðkf þ 2lÞe�mbn; ð2aÞ

p ¼ mð�beþ nÞ; ð2bÞ
where e ¼ @us
@x is the strain and n ¼ � @W

@x is the rate of fluid change. On the other hand, the conservation of momentum yields
q
@vs

@t
þ qf

@w
@t
¼ @r
@x
þ fb; ð3aÞ

qs
@v s

@t
þ qw

@w
@t
þ g

j
F �w ¼ � @p

@x
þ ff ; ð3bÞ
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where � is the convolution product in time; fb and ff are the body force for an unit volume of the bulk material and the pore
fluid, respectively. The Eq. (3b) is a generalized Darcy law. The quantity F �w denotes the viscous dissipation induced by the
relative motion between the fluid and the elastic skeleton.

2.2. High frequency dissipation: the JKD model

The frontier between the low-frequency range (LF) and the high-frequency range (HF) is reached when the viscous efforts
and the inertial effects are similar. The transition frequency is given by [1,3]
fc ¼
g/

2pajqf
¼ xc

2p
: ð4Þ
In LF, the flow in the pores is of the Poiseuille type, and dissipation efforts in (3b) are given by
FðtÞ ¼ dðtÞ () FðtÞ �wðx; tÞ ¼ wðx; tÞ; ð5Þ
where d is the Dirac distribution. In HF, the width of the viscous boundary-layer is small in comparison with the size of the
pores, and modeling the dissipation process is a more complex task. Here we adopt the widely-used model proposed by
Johnson–Koplik–Dashen (JKD) in 1987, which is valid for random networks of pores with constant radii [19]. The only addi-
tional parameter is the viscous characteristic length K. We take
P ¼ 4aj
/K2 ; X ¼ xc

P
¼ g/2 K2

4a2 j2 qf
; ð6Þ
where P is the Pride number (typically P � 1=2). Based on the Fourier transform in time, bFðxÞ ¼ R
R

FðtÞe�ixt dt, the frequency
correction given by the JKD model can be written
bFðxÞ ¼ 1þ ix
4a2 j2 qf

gK2 /2

 !1=2

;

¼ 1þ iP
x
xc

� �1=2

;

¼ 1ffiffiffiffi
X
p ðXþ ixÞ1=2

:

ð7Þ
This correction is the simplest function satisfying the LF and HF limits of the dynamic permeability [19]. Therefore, the term
FðtÞ � wðx; tÞ involved in (3b) is
FðtÞ �wðx; tÞ ¼ F�1 1ffiffiffiffi
X
p ðXþ ixÞ1=2 bwðx;xÞ� �

;

¼ 1ffiffiffiffi
X
p ðDþXÞ1=2wðx; tÞ:

ð8Þ
The operator D1=2 is a shifted order 1/2 time fractional derivative, generalizing the usual derivative characterized by
@ w
@ t ¼ F

�1 ix bwðxÞ� �
. The notation ðDþXÞ1=2 accounts for the shift X in (8).

2.3. The Biot-JKD equations of evolution

Based on (2), (3) and (8), the Biot-JKD equations can be written
q
@v s

@ t
þ qf

@w
@ t
¼ @r
@ x
þ fb; ð9aÞ

qf
@ vs

@ t
þ qw

@w
@ t
þ g

j
1ffiffiffiffi
X
p ðDþXÞ1=2 w ¼ � @ p

@ x
þ ff ; ð9bÞ

r ¼ ðkf þ 2lÞe�mbn; ð9cÞ

p ¼ m ð�beþ nÞ: ð9dÞ
We rearrange this system by separating @ vs
@ t and @ w

@ t in (9a) and (9b) and using the definitions of e and n. Taking
c ¼ g
j

q
v

1ffiffiffiffi
X
p ; ð10Þ
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one obtains the following system of equations of evolution
@v s

@ t
� qw

v
@r
@ x
�

qf

v
@ p
@ x
¼

qf

q
cðDþXÞ1=2wþ fvs ; ð11aÞ

@w
@ t
þ

qf

v
@r
@ x
þ q

v
@ p
@ x
¼ �c ðDþXÞ1=2wþ fw; ð11bÞ

@r
@ t
� ðkf þ 2lÞ @ v s

@ x
�mb

@w
@ x
¼ fr; ð11cÞ

@ p
@ t
þmb

@ v s

@ x
þm

@w
@ x
¼ fp; ð11dÞ
with fvs ¼ ðqw f b � qf f f Þ=v and fw ¼ ðq f f � qf f bÞ=v. Terms fr and fp have also been added to the derivatives of constitutive
laws to simulate sources of mass.

2.4. The diffusive representation

Taking
DXwðx; tÞ ¼ @w
@t
þXw; ð12Þ
the shifted fractional derivative (8) can be written [10]
ðDþXÞ1=2wðx; tÞ ¼ 1ffiffiffiffi
p
p

Z t

0

e�Xðt�sÞffiffiffiffiffiffiffiffiffiffiffi
t � s
p DXwðx; sÞds: ð13Þ
The operator ðDþXÞ1=2 is not local in time and involves the entire time history of w. As we will see in Section 3, a different
way of writing this derivative is more convenient for numerical evaluation. Based on Euler’s C function, the diffusive repre-
sentation of the totally monotone function 1ffiffi

t
p [9,17,18,35] is
1ffiffi
t
p ¼ 1ffiffiffiffi

p
p

Z 1

0

1ffiffiffi
h
p e�htdh: ð14Þ
Substituting (14) into (13) gives
ðDþXÞ1=2wðx; tÞ ¼ 1
p

Z t

0

Z 1

0

1ffiffiffi
h
p e�hðt�sÞ e�Xðt�sÞDXwðx; sÞdhds;

¼ 1
p

Z 1

0

1ffiffiffi
h
p wðx; h; tÞdh; ð15Þ
where the diffusive variable is defined as
wðx; h; tÞ ¼
Z t

0
e�ðhþXÞðt�sÞDXwðx; sÞds: ð16Þ
For the sake of clarity, the dependence on X and w is omitted in w. From (16), it follows that the diffusive variable w satisfies
the ordinary differential equation
@ w
@ t ¼ �ðhþXÞwþ DXw;

wðx; h;0Þ ¼ 0:

(
ð17Þ
The diffusive representation therefore transforms a non-local problem (13) into a continuum of local problems (17). It should
be emphasized at this point that no approximations have been made up to now. The computational advantages of the dif-
fusive representation will be seen in Sections 3 and 5, where the discretization of (15) and (17) will yield a tractable
formulation.

2.5. Energy of Biot-JKD

Now, we express the energy of the Biot-JKD model (9). This result generalizes the analysis performed in the LF range in
[12].

Proposition 1. Let
E ¼ E1 þ E2 þ E3;
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with
E1 ¼
1
2

Z
R

qv2 þ qw w2 þ 2qf v w
� �

dx;

E2 ¼
1
2

Z
R

1
C

rþ bpð Þ2 þ 1
m

p2
� �

dx;

E3 ¼
1
2

Z
R

Z
h2Rþ

g
j

1
p

1ffiffiffiffiffiffiffi
Xh
p 1

hþ 2X
ðw� wÞ2 dhdx:

ð18Þ
Then E is an energy which satisfies
dE
dt
¼ �

Z
R

Z
h2Rþ

g
j

1
p

1ffiffiffiffiffiffiffi
Xh
p 1

hþ 2X
Xw2 þ ðhþXÞw2� �

dhdx 6 0: ð19Þ
Proposition 1 is proven in appendix 1. It calls for the following comments:

� the Biot-JKD model is well-posed;
� when the viscosity of the saturating fluid is neglected (g ¼ 0), the energy of the system is conserved;
� the terms in (18) have a clearly physical significance: E1 is the kinetic energy, and E2 is the potential energy. The term E3

corresponds to the kinetic energy resultin from the filtration velocity.
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2.6. Dispersion analysis

Injecting a mode eiðxt�kxÞ in (11) gives the dispersion relation between the angular frequency x and the wavenumber k.
Taking
D4 ¼ m ðk0 þ 2lÞ;
D2ðxÞ ¼ � ðkf þ 2lÞqw þm ðq� 2qf bÞ

� �
x2 þ ix g

j
bF ðxÞ ðkf þ 2lÞ;

D0ðxÞ ¼ vx4 � ix3 g
j q bFðxÞ:

8>><>>: ð20Þ
the dispersion relation takes the form
Deðk;xÞ ¼ D4 k4 þ D2ðxÞk2 þ D0ðxÞ ¼ 0: ð21Þ
Expressions (20), (21) are valid in the case of both the Biot-LF and Biot-JKD models with the frequency correction defined by
bFðxÞ ¼ bF LFðxÞ ¼ 1 Biot � LF; ð22aÞbF JKDðxÞ ¼ 1ffiffiffi
X
p ðXþ ixÞ1=2 Biot � JKD: ð22bÞ

(

The solutions kpf and kps of (21) give the phase velocities cpf ¼ x=Reðkpf Þ of the fast wave and cps ¼ x=ReðkpsÞ of the slow
wave, with 0 < cps < cpf . The attenuations apf ¼ �Imðkpf Þ and aps ¼ �ImðkpsÞ can also be deduced. Both the phase velocities
and the attenuations of Biot-LF and Biot-JKD are strictly increasing functions of the frequency. The high frequency limits of
fast and slow phase velocities, c1pf and c1ps , which are obtained by diagonalizing the left-hand side of system (11), satisfy the
relation
vc4 � ðkf þ 2lÞqw þm ðq� 2qf bÞ
� �

c2 þm ðk0 þ 2lÞ ¼ 0: ð23Þ
Fig. 1 shows the dispersion curves corresponding to the Biot-LF and Biot-JKD models. The physical parameters are those
used in the numerical experiments presented in Section 5. Note that the scales are radically different in the case of fast and
slow waves. The following properties can be observed:

� when f < fc , the Biot-JKD and Biot-LF dispersion curves are very similar as might be expected, since limx!0
bF JKDðxÞ ¼ 1;

� the fast wave is almost not affected by the frequency correction bFðxÞ while the slow wave is greatly affected;
� when f � fc , the slow wave degenerates to a diffusion process and is characterized by ReðkpsÞ ¼ ImðkpsÞ. When f > fc , the

slow wave propagates but is greatly attenuated.

3. The Biot-DA (diffusive approximation) model

The aim of this section is to approximate the Biot-JKD model, using a numerically tractable approach. For this purpose, we
follow a diffusive representation of fractional derivatives, initally proposed in [25].

3.1. The Biot-DA first-order system

Using a quadrature formula on N points, with weights a‘ and abscissa h‘ > 0, the diffusive representation (15) can be
approximated by
ðDþXÞ1=2wðx; tÞ ¼ 1
p

Z 1

0

1ffiffiffi
h
p wðx; t; hÞdh;

’
XN

‘¼1

a‘wðx; t; h‘Þ;

�
XN

‘¼1

a‘w‘ðx; tÞ:

ð24Þ
From (17), the N diffusive variables w‘ satisfy the ordinary differential equations
@ w‘
@ t ¼ �ðh‘ þXÞw‘ þ DXw;

w‘ðx;0Þ ¼ 0:

(
ð25Þ
The fractional derivatives are replaced by their diffusive approximation (24) in the JKD model (11). Upon adding the Eqs. (25)
and performing some straightforward operations, the Biot-DA system is written as a first-order system in time and space
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@ vs
@ t �

qw
v

@ r
@ x �

qf

v
@ p
@ x ¼

qf

q c
XN

‘¼1

a‘w‘ þ fvs ;

@ w
@ t þ

qf

v
@ r
@ x þ

q
v
@ p
@ x ¼ �c

XN

‘¼1

a‘w‘ þ fw;

@ r
@ t � ðkf þ 2lÞ @ vs

@ x �mb @ w
@ x ¼ fr;

@ p
@ t þmb @ vs

@ x þm @ w
@ x ¼ fp;

@ wj

@ t þ
qf

v
@ r
@ x þ

q
v
@ p
@ x ¼ Xw� c

XN

‘¼1

a‘w‘ � ðhj þXÞwj þ fw; j ¼ 1; . . . ;N:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð26Þ
Taking the vector of unknowns
U ¼ ðvs;w;r;p;w1; . . . ;wNÞ
T ð27Þ
and the source vector
F ¼ ðfvs ; f w; f r; f p; f w; . . . ; f wÞ
T
; ð28Þ
the system (26) can be written
@U
@ t
þ A

@U
@ x
¼ �SUþ F; ð29Þ
where A is the ðN þ 4Þ2 propagation matrix
ð30Þ
and S is the ðN þ 4Þ2 dissipation matrix
ð31Þ
The size of the system increases linearly with the number N of diffusive variables.

3.2. Properties

Four properties of system (29) are specified:

� the eigenvalues of A (30) are real: 0 with multiplicity N;�c1pf and �c1ps , where the latter satisfies (23). The system (29) is
therefore hyperbolic;
� since the eigenvalues and eigenvectors do not depend on the diffusive coefficients, they are the same in both the Biot-DA

and Biot-LF or Biot-JKD models. This is not so in the case of the method presented in [27], where the propagation matrix is
modified to account for the fractional derivative;
� the dispersion analysis is obtained in the case of the Biot-DA model by replacing bF by
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bF DAðxÞ ¼
Xþ ixffiffiffiffi

X
p

XN

‘¼1

a‘
h‘ þXþ ix

ð32Þ

in Eqs. (20), (21);
� in line with Proposition 1, an energy analysis of (26) is performed.

Proposition 2. Let
E ¼ E1 þ E2 þ E3;
with
E1 ¼
1
2

Z
R

qv2 þ qw w2 þ 2qf v w
� �

dx;

E2 ¼
1
2

Z
R

1
C

rþ bpð Þ2 þ 1
m

p2

� �
dx;

E3 ¼
1
2

Z
R

XN

‘¼1

g
j

1ffiffiffiffi
X
p a‘

h‘ þ 2X
ðw� w‘Þ

2 dx:

ð33Þ
Then E satisfies
dE
dt
¼ �

Z
R

XN

‘¼1

g
j

1ffiffiffiffi
X
p a‘

h‘ þ 2X
Xw2 þ ðh‘ þXÞw2

‘

� �
dx: ð34Þ
Since the proof is very similar in this case, it will not be repeated. The terms E1 and E2 are the same in both the Biot-DA
and Biot-JKD models, whereas E3 and the time evolution of E differ; in Biot-DA, the sign depends on the coefficients intro-
duced into the diffusive approximation. The abscissas h‘ of the quadrature formula are positive, but no sign criterion is given
a priori for the weights a‘. E therefore cannot be said to be a decreasing energy, except in the obvious case where all the a‘ are
positive.
3.3. Determination of the Biot-DA parameters

The a‘ and h‘ in (24) now have to be determined. In [25], the authors used a general Laguerre quadrature formulas. We
have tried using this approach, but it gave poor results. Very large numbers of diffusive variables were required to approx-
imate the Biot-JKD model accurately, resulting in a huge computational cost. In addition, the Biot-DA model based on La-
guerre functions does not converge by construction towards Biot-LF when the frequency tends towards 0, which is
neither satisfactory nor physically realistic. Lastly, the involved coefficients do not depend on the physical factors (param-
eters, source) involved, which partly explains the above two weaknesses.

A different method of determining the 2N coefficients a‘ and h‘ in the diffusive approximation (26) is therefore used, in
order to approach bF JKDðxÞ (22) by bF DAðxÞ (32) in a given frequency range of interest. Let QðxÞ be the optimized quantity and
Qref ðxÞ be the desired quantity
QðxÞ ¼
bF DAðxÞbF JKDðxÞ

¼
XN

‘¼1

a‘
ðXþ ixÞ1=2

h‘ þXþ ix
¼
XN

‘¼1

a‘ q‘ðxÞ; ð35aÞ

Qref ðxÞ ¼ 1: ð35bÞ
We implement a linear optimization procedure [11,16,24] in order to minimize the distance between QðxÞ and Q ref ðxÞ in
the interval ½xmin;xmax	 centered on x0 ¼ 2p f 0, where f0 is the central frequency of the source. The abscissas h‘ are fixed
and distributed linearly on a logarithmic scale
h‘ ¼ xmin
xmax

xmin

� � ‘�1
N�1

; ‘ ¼ 1; . . . ;N: ð36Þ
The weights a‘ are obtained by solving the system
XN

‘¼1

a‘ q‘ð ~xkÞ ¼ 1; k ¼ 1; . . . ;K; ð37Þ
where the ~xk are also distributed linearly on a logarithmic scale of K points
~xk ¼ xmin
xmax

xmin

� �k�1
K�1

; k ¼ 1; . . . ;K: ð38Þ
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Since the q‘ðxÞ are complex functions, optimization is performed simultaneously on the real and imaginary parts
XN

‘¼1

a‘Reðq‘ð ~xkÞÞ ¼ 1;

XN

‘¼1

a‘ Imðq‘ð ~xkÞÞ ¼ 0; k ¼ 1; . . . ;K:

8>>>><>>>>: ð39Þ
A square system is obtained when 2K ¼ N, whereas 2K > N yields an overdetermined system, which can be solved by writ-
ing normal equations [14]. For practical purposes, we use xmin ¼ x0=10 and xmax ¼ 10x0, as in [24].

Fig. 2 illustrates the influence of N and K on the accuracy of the optimization procedure. As can be observed in this figure,
the errors are smaller with the overdeterminated system (K ¼ N;2N;3N) than with the square one. However, increasing the
size of the system does not really improve the accuracy. In what follows, we will therefore always use the values K ¼ N. The
influence of the number of diffusive variables on the physical properties of the system is presented in Fig. 3. We focus here on
the slow wave, since it is more sensitive to the frequency correction. As was to be expected, the accuracy of the approxima-
tion of the Biot-JKD phase velocity and attenuation given by the Biot-DA model increases with N.

To determine N in terms of the required accuracy, em ¼ jjQðxÞ � 1jjL2
is measured in the frequency range of interest

½f0=10;10f 0	. This norm amounts to the relative error between bF DAðxÞ and bF JKDðxÞ. With N 6 20, this error is proportional
to N�1, as can be seen from Fig. 4(a). At larger values of N, the system is poorly conditioned and the order of convergence
deteriorates (not shown here); in practice, this is not penalizing, however, since large values of N are of no use. An example
of the parametric determination of N in terms of the frequency range and the desired accuracy is also given in Fig. 4(b). In the
following numerical tests, N ¼ 6 variables are used, giving the modeling error em ’ 5:5%.

Lastly, the sign of weights a‘ was examined in a large number of configurations. In each case, some negative values were
obtained with the linear optimization process (39). As stated in Proposition 2, the well-possedness of Biot-DA could not
therefore be proved. A nonlinear optimization procedure with a positivity constraint was then applied [31], but almost all
the a‘ obtained were equal to zero. In the numerical experiments, the negativity of some a‘ has never raised any problems.
This question is addressed in detail at the end of Section 5.2.
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4. Numerical modeling

4.1. Splitting

In order to integrate the Biot-DA system (29), a uniform grid is introduced, with mesh size Dx and time step D t. The
approximation of the exact solution Uðxj ¼ jDx; tn ¼ nD tÞ is denoted by Un

j . If an unsplit integration of (29) is performed,
Von-Neumann analysis typically yields the stability condition
D t 6min !
Dx
c1pf

;
2

RðSÞ

 !
; ð40Þ
where RðSÞ is the spectral radius of S, and ! > 0 depends on the numerical scheme. We have no theoretical estimate of RðSÞ,
but numerical studies have shown that this value is similar to that of the spectral radius in LF: g

j
q
v, which can be very large

[7]. The time step can therefore be highly penalized in this case (40).
A more efficient strategy is adopted here, which consists in splitting the original system (29) into a propagative part and a

diffusive part (42)
@U
@ t
þ A

@U
@ x
¼ 0; ð41Þ

@U
@ t
¼ �SU: ð42Þ



Table 1
Coefficients of the ADER 4 scheme.

cm;s m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4

s ¼ �2 1=12 1=24 �1=12 �1=24
s ¼ �1 �2=3 �2=3 1=6 1=6
s ¼ 0 0 5=4 0 �1=4
s ¼ þ1 2=3 �2=3 �1=6 1=6
s ¼ þ2 �1=12 1=24 1=12 �1=24
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For the sake of simplicity, the source term F has been omitted here. The discrete operators associated with steps (41) and
(42) are denoted by Ha and Hb, respectively. The second-order Strang splitting [22] is then used to integrate (29) between
tn ant tnþ1, giving the time-marching

� Uð1Þj ¼ HbðD t
2 ÞU

n
j ;

� Uð2Þj ¼ HaðD tÞUð1Þj ; ð43Þ
� Unþ1

j ¼ HbðD t
2 ÞU

ð2Þ
j :

The discrete operator Ha associated with the propagative part (41) is an ADER 4 (Arbitrary DERivatives) scheme [33]. This
scheme is fourth-order accurate in space and time, is dispersive of order 4 and dissipative of order 6, and has a stability limit
! ¼ 1. On Cartesian grids, ADER 4 amounts to a fourth-order Lax-Wendroff scheme, and can be written
HaðD tÞUð1Þj ¼ Uð1Þj �
Xþ2

s¼�2

Cs Uð1Þjþs;

Cs ¼ �
X4

m¼1

cm;s �A D t
D x

� �m
;

8>>>><>>>>: ð44Þ
where the coefficients cm;s are given in Table 1.
Since the physical parameters do not vary with time, the diffusive part (42) can be solved exactly. This gives
Hb
D t
2

� �
Uj ¼ e�

D t
2 S Uj: ð45Þ
The matrix e�
D t
2 S is computed numerically using the ðr=qÞ Padé approximation in the ‘‘scaling and squaring method’’ [28],

which is given by the expression
e�
D t
2 S � Rrq � D t

2 S
� �

¼ Nrqð�D t
2 SÞ

Drq �D t
2 Sð Þ ;

Nrq � D t
2 S

� �
¼
Xr

k¼0

ðrþq�kÞ ! r !
ðrþqÞ ! k ! ðr�kÞ ! � D t

2 S
� �k

;

Drq � D t
2 S

� �
¼
Xq

k¼0

ðrþq�kÞ ! q !
ðrþqÞ ! k ! ðr�kÞ !

D t
2 S
� �k

:

8>>>>>>>><>>>>>>>>:
ð46Þ
In the following numerical experiments, the parameters r ¼ q ¼ 6 are used.
It remains to verify that the numerical integration of the diffusive step (45) is unconditionally stable. This is achieved as

follows.

Proposition 3. The diffusive part of the splitting (42) is well-posed whatever the weights a‘ in the diffusive approximation (24).
Proposition 3 is proven in appendix 2. It follows that the solution of system (B.1) is bounded and that the eigenvalues of

� D t
2 S are then in the left half space. As a consequence, the Rqq Padé approximation is always stable [28]. The full algorithm

(43) is therefore stable under the optimum stability condition
D t 6 !
Dx
c1pf

; ð47Þ
which is always independent of the Biot-DA model coefficients.

5. Numerical experiments

5.1. General configuration

The physical parameters used in all the numerical experiments, which are given in Table 2, correspond to Berea sandstone
saturated with water. Truncated values of the parameters are given: in particular, the viscous characteristic length K corre-



Table 2
Physical parameters used in numerical experiments.

Saturating fluid qf (kg/m3) 1000

g (Pa s) 10�3

Grain qs (kg/m3) 2644
l (Pa) 7:04
 109

Matrix / 0:2
a 2:4
j (m2) 3:6
 10�13

kf (Pa) 1:06
 1010

m (Pa) 9:70
 109

b 0:720
K (m) 5:88
 10�6

Phase velocities c1pf (m/s) 3269:89

c1ps (m/s) 814:95
c1pf =c1ps 4:01

fc (Hz) 3:68
 104
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sponds rigorously to a Pride number P ¼ 0:5 (6). The unbounded medium is excited by a point source fr ¼ gðtÞhðxÞ, with
hðxÞ ¼ dðxÞ in Eq. (11c). The time-dependent evolution of the source, gðtÞ in (11c), is a C6 combination of truncated sinusoids
gðtÞ ¼
sinðx0tÞ � 21

32 sinð2x0tÞ þ 63
768 sin ð4x0tÞ � 1

512 sin ð8x0tÞif 0 6 t 6 1
f0
;

0 otherwise;

(
ð48Þ
with a central frequency f0 ¼ x0
2 p ¼ 200 kHz. Adopting the high-frequency regime is therefore completely justified since

f0 ’ 5
 fc. Fig. 5 shows the time-dependent evolution and spectrum of the source.
The computational domain ½�0:04;0:04	m is discretized with Nx grid points, and the time step is deduced from (47), tak-

ing ! ¼ 0:9. No special care is applied to simulate outgoing waves (with PML, for instance), since the simulations are stopped
before the waves have reached the edges of the computational domain. The numerical experiments are performed on an Intel
Core i7 processor at 2.80 GHz.

Exact solutions of time-domain Biot-JKD equations have been derived in the literature [13], but not for Biot-DA. Therefore,
we compute reference solutions of both Biot-JKD and Biot-DA thanks to standard tools of Fourier analysis: the Green func-
tions of (11) or (26) are determined in the harmonic regime. Then, the Cauchy residue theorem and numerical inverse Fou-
rier transforms (Nf ¼ 9:6105 modes and a frequency step D f ’ 13 Hz) yield the semi-analytical solutions.
5.2. Test 1: Biot-DA

The aim of this first test is to check the validity of the numerical method presented above using Biot-DA model. The do-
main is discretized with Nx ¼ 700 which amounts to 32 points per slow wavelength and 142 points per fast wavelength, and
N ¼ 6 diffusive variables are used. The source point emits symmetrically rightward and leftward moving fast and slow com-
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Fig. 5. Time-dependent evolution (left) and spectrum (right) of the source.
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pressional waves, which are denoted Pf and Ps, respectively, in Fig. 6. It can be seen from this figure that the numerical and
analytical values of the pressure after 200 time steps show excellent agreement.

The error between the exact and numerical solutions will be measured in the L2 norm in the domain ½�0:04;0:04	 m at
time t1 ’ 6:2910�6 s. Numerical values of the relative error and convergence order are summed up in Table 3 at various val-
ues of Nx and given in Fig. 7(a). The convergence rate obtained by performing a linear regression is 1.97818, which is very
similar to the theoretical second-order of the global algorithm.
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Table 3
Test 1: error measurements and convergence orders.

Nx Error L2 Order

1000 1:660
 10�1 –

2000 1:554
 10�2 3:417

3000 5:939
 10�3 2:372

4000 3:300
 10�3 2:043

5000 2:121
 10�3 1:981

6000 1:482
 10�3 1:968

7000 1:095
 10�3 1:963

8000 8:428
 10�4 1:958

9000 6:699
 10�4 1:950

10000 5:462
 10�4 1:937
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x .

CPU time (right) in terms of the number of diffusive variables N.
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Fig. 7(b) shows the computational time in terms of the number of diffusive variables N, with Nx ¼ 700. The complexity of
the scheme in term of diffusive variables is found to be in OðN2Þ.

With N ¼ 6 diffusive variables, the linear optimization procedure described in Section 3.3 yields: a1 ¼ �371:44; a2 ¼
2332:78; a3 ¼ �3109:17; a4 ¼ 4506:03; a5 ¼ �4524:14 and a6 ¼ 7096:95. Since some of the coefficients are negative, one
cannot confirm that E is a decreasing energy in Proposition 2. To examine this question numerically, the time evolution
of E3 in (33) and �dE=dt in (34) is shown in Fig. 8, where it can be seen that E3 > 0, hence E > 0, and that dE=dt < 0. Despite
the negativity of some a‘, Fig. 8 indicates that E is a decreasing energy and that Biot-DA is a well-posed problem.
5.3. Test 2: Biot-JKD

The aim of the second test is to check the validity of the mathematical and numerical methods used to approximate the
physical Biot-JKD model. Fig. 9 compares the numerical pressure obtained with the Biot-DA model with the analytical pres-
sure obtained with the Biot-JKD model, at times t1 and t2 > t1. The dispersion and attenuation of the slow wave can be
clearly observed. Excellent agreement is found to exist between the two solutions.

Two errors should be mentioned here: the modeling error em, defined as the difference between the Biot-DA and Biot-JKD
models; and the numerical error, en, resulting from the numerical discretization of the Biot-DA model. The total error et obvi-
ously satisfies:
et 6 em þ en: ð49Þ
Based on Section 3.3, taking N ¼ 6 yields em ¼ 5:48%. In test 1, en ’ 1:70% was measured. At t1, the total error et ¼ 1:95%,
which means that the inequality (49) is satisfied but not optimally: the overall results are more accurate than those pre-
dicted on the basis of the bound (49). The results of this test confirm that the method presented above efficiently approx-
imates the transient waves modeled by the Biot-JKD model.
5.4. Test 3: variable medium

The aim of the third test is to establish whether the numerical methods presented in this paper can be used to handle
more complex media. As an example, we took the porous medium with the parameters defined in Table 2, except for the
ratio g=j, which varies linearly from 1:5
 104 Pa s m�2 at x ¼ �0:04 m to 5
 109 Pa s m�2 at x ¼ 0:04 m. These values are
purely numerical and are not based on real data. Some changes had to be made to the method in comparison with that used
in the homogeneous case:

� at a given level of accuracy em, the most-penalizing number of diffusive variables N has to be determined;
� the coefficients a‘ have to be computed and stored at each grid point.

In (29), the diffusive matrix S therefore differs between the grid points. In this example, the propagation matrix A remains
unchanged since only the diffusive part is modified. When dealing with a real continuously variable medium, which occurs
in the case of many applications [15], the present ADER scheme would also have to be modified in order to handle the spatial
changes in the matrix A accurately.

Fig. (10) shows the pressure p at t1 ’ 6:2910�6 s. As was to be expected, the rightward-moving slow wave is more
strongly attenuated than the leftward-moving one, because the values of g=j are higher in the right part of the domain.
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The present numerical tool therefore provides useful means for computing solutions of this kind, where no analytical expres-
sions are available.
5.5. Test 4: a 2-D example

The one-dimensional method presented here can easily be extended to other dimensions. As a preliminary example, we
take a two-dimensional medium with the parameters given in Table 2. The number of physical unknowns increase in this
case from 4 to 8, and the equations of motion are also written in the form of a first-order hyperbolic linear system. The prop-



Fig. 11. Test 4. Graph of the pressure (left) and the stress component rxx (right) emitted by a source point, at time t ¼ 2:32
 10�5 s.
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agative part is solved with the ADER 4 numerical scheme. The diffusive part involves an order 1=2 fractional derivative for
each component of the filtration velocity. The computational domain is set at ½�0:08; 0:08	2 m. A Ricker source point, with a
central frequency of 200 kHz and a time shift 10�5 s, is localized at point ð0;0Þ and applied to the rxy component of the stress
tensor. Applying our method with N ¼ 6 diffusive variables to a grid of Nx ¼ Ny ¼ 1400 points gives the results presented in
Fig. 11. Fast and slow compressional waves are observed as regards the pressure, while the additional shear wave is present
in the rxx component of the stress tensor. It is proposed in future studies to address the analytical solution of the 2D Biot-JKD
model and to perform an error analysis of the results obtained with the Biot-DA model.
6. Conclusion

A numerical method is presented here for simulating transient poroelastic waves in the high-frequency range. The Biot-
JKD model, which involves order 1/2 fractional derivatives, was replaced here by an approximate Biot-DA model, which is
much more tractable numerically. Contrary to the approach used in [25], the Biot-DA coefficients are determined here using
an optimization procedure, which depends on the frequency range of interest. The number of parameters and the accuracy of
the model were quantified. The hyperbolic system of partial differential equations was discretized using efficient tools
(Strang splitting and the fourth-order ADER scheme). The stability condition of the numerical scheme is always independent
of the parameters involved in the approximate Biot-DA model. Numerical experiments performed in some academic cases
(1-D homogeneous media) confirmed the reliability of this approach, and some preliminary simulations (with variable med-
ia, or in the 2-D context) show that the method is applicable to complex media.

Some suggestions for future lines of research:

� Thermic boundary-layer. In cases where the saturating fluid is a gas, thermo-mechanical effects have to be taken into
account. Extended versions of the Biot-JKD have been developed [20], involving additional order 1/2 fractional deriva-
tives. The numerical method developed in this paper should lend itself well to working with this model.
� Slow shear wave. A poroelastic theory that accounts properly for the fluid shear stress relaxation has been recently pro-

posed [29,30], predicting the existence of a slow shear wave. This additional mode is heavily damped far from the source,
but it can play a key role in balance equations near interfaces, as the slow compressional wave. To our knowledge, no
time-domain simulations of this model have been proposed so far.
� Heterogeneous porous media. Methods of modeling material interfaces in the context of Cartesian grids have been previ-

ously developed, based on an immersed interface method [23]. The possibility of applying this method to porous media in
the low frequency range was studied in [6–8,21]. Work on means of extending this method to the Biot-JKD model is cur-
rently in progress.
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Appendix A. Proof of Proposition 1

The Eq. (9a) is multiplied by v s and integrated
Z
R

qvs
@ v s

@ t
þ qf v s

@w
@ t
� v s

@r
@ x

� �
dx ¼ 0: ðA:1Þ
The first term in (A.1) is written
Z
R

qvs
@ vs

@ t
dx ¼ d

dt
1
2

Z
R

qv2
s dx: ðA:2Þ
Integrating by part and using (9d), we obtain
�
Z

R

vs
@r
@ x

dx ¼
Z

R

@ v s

@ x
rdx;

¼
Z

R

@ e
@ t

C e� bpð Þdx;

¼
Z

R

C e
@ e
@ t

dx�
Z

R

bp
@ e
@ t

dx;

¼ d
dt

1
2

Z
R

C e2 dx�
Z

R

bp
@ e
@ t

dx;

¼ d
dt

1
2

Z
R

1
C

rþ bpð Þ2 dx
� �

�
Z

R

bp
@ e
@ t

dx:

ðA:3Þ
The Eq. (9b) is multiplied by w and integrated
Z
R

qf w
@ v s

@ t
þ qw w

@w
@ t
þ g

j
1ffiffiffiffi
X
p w ðDþXÞ1=2wþw

@ p
@ x

� �
dx ¼ 0: ðA:4Þ
The second term in (A.4) can be written
Z
R

qw w
@w
@ t

dx ¼ d
dt

1
2

Z
R

qw w2 dx: ðA:5Þ
Integrating by part and using (9d), we obtain
Z
R

w
@ p
@ x

dx ¼ �
Z

R

p
@w
@ x

dx;

¼
Z

R

p
@ n
@ t

dx;

¼
Z

R

p
@

@ t
1
m

pþ be
� �

dx;
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Z

R
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m

p
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dxþ
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R
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dx;

¼ d
dt

1
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R

1
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p2 dx
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Z

R

bp
@ e
@ t

dx:

ðA:6Þ
After adding (A.1) and the first term in (A.4), there remains
Z
R

qf v s
@w
@ t
þw

@ v s

@ t

� �
dx ¼ d

dt

Z
R

qf v s wdx: ðA:7Þ
Eqs. (A.1)–(A.4) and the diffusive representation (15) yield
d
dt
ðE1 þ E2Þ ¼ �

Z
R

Z
h2Rþ

g
j

1
p

1ffiffiffiffiffiffiffi
Xh
p wwdhdx: ðA:8Þ
To calculate the right-hand side of (A.8), Eq. (17) is multiplied by w or w
w
@w
@t
�w

@w
@t
þ ðhþXÞww�Xw2 ¼ 0; ðA:9aÞ

w
@w
@t
� w

@w
@t
þ ðhþXÞw2 �Xww ¼ 0: ðA:9bÞ
After performing some algebraic operations on (A.9b), (A.9a) and (A.8), one easily obtains the relation (19). It remains to
prove that E is a positive definite quadratic form. This is obviously so for E2 and E3. Concerning E1, we write
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D ¼ 1
2
qv2

s þ
1
2

qw w2 þ qf v s w;

¼ 1
2

XT HX;
ðA:10Þ
where
X ¼
v s

w

� �
H ¼

q qf

qf qw

 !
: ðA:11Þ
Taking S and P to denote the sum and the product of the eigenvalues of matrix H, we obtain
P ¼ det H ¼ qqw � q2
f ¼ v > 0;

S ¼ TrH ¼ qþ qw > 0:
ðA:12Þ
The two eigenvalues of H are therefore positive, which proves that D is definite positive and completes the proof.
Appendix B. Proof of Proposition 3

From (26), the system of diffusive evolution equations writes
@vs

@t
¼

qf

q
c
XN

‘¼1

a‘w‘; ðB:1aÞ

@w
@t
¼ �c

XN

‘¼1

a‘w‘; ðB:1bÞ

@r
@t
¼ 0; ðB:1cÞ

@p
@t
¼ 0; ðB:1dÞ

@wj

@t
¼ Xw� c

XN

‘¼1

a‘w‘ � ðhj þXÞwj; j ¼ 1; . . . ;N: ðB:1eÞ
Eq. (B.1b) is multiplied by w and (B.1e) is multiplied by wj
w
@w
@ t
¼ �cw

XN

‘¼1

a‘w‘; ðB:2aÞ

wj

@wj

@ t
¼ Xwwj � cwj

XN

‘¼1

a‘w‘ � ðhj þXÞw2
j ; j ¼ 1; . . . ;N: ðB:2bÞ
Summing (B.2a) and (B.2b) gives
w
@w
@ t
þ wj

@wj

@ t
¼ Xwwj � ðhj þXÞw2

j � c ðwþ wjÞ
XN

‘¼1

a‘w‘; j ¼ 1; . . . ;N: ðB:3Þ
The left-hand-side of (B.3) is equal to d
dt

1
2 ðw2 þ w2

j Þ. Then (B.1b) is multiplied by wj and (B.1e) is multiplied by w
wj
@w
@ t
¼ �cwj

XN

‘¼1

a‘w‘; j ¼ 1; . . . ;N; ðB:4aÞ

w
@wj

@ t
¼ Xw2 � cw

XN

‘¼1

a‘w‘ � ðhj þXÞwwj; j ¼ 1; . . . ;N: ðB:4bÞ
Summing (B.4a) and (B.4b) gives
w
@wj

@ t
þ wj

@w
@ t
¼ Xw2 � ðhj þXÞwwj � c ðwþ wjÞ

XN

‘¼1

a‘w‘; j ¼ 1; . . . ;N: ðB:5Þ
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The left-hand-side of (B.5) writes @
@ t ðwwjÞ. Elementary calculations on (B.5) and (B.3) yield (j ¼ 1; . . . ;N)
d
dt

1
2
ðw2 þ w2

j Þ �wwj

� �
¼ � Xw2 � ðhj þ 2XÞwwj þ ðhj þXÞw2

j

� �
: ðB:6Þ
Taking
Ej ¼ 1
2 ðw� wjÞ

2
> 0;

E ¼
XN

j¼1

Ej > 0;

Xj ¼
w

wj

 !

Hj ¼
X �ðhj þ 2XÞ
0 hj þX;

 !
;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ðB:7Þ
and summing the relations (B.6) for j ¼ 1; � � � ;N yields
dE
dt
¼ �

XN

j¼1

XT
j Hj Xj: ðB:8Þ
Since the matrix Hj is triangular, its two eigenvalues are X > 0 and hj þX > 0. The quadratic form XT
j Hj Xj is therefore def-

inite and positive, which means that the left-hand-side of (B.8) is strictly negative. The energy E derived from system (B.1) is
therefore decreasing, and hence the system (B.1) is well-posed.
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