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Stochastic effects are often present in the biochemical systems involving reactions and 
diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction 
diffusion equations require either very small time steps for any explicit schemes or 
solving large nonlinear systems at each time step for the implicit schemes. Here we 
present a class of semi-implicit integration factor methods that treat the diffusion term 
exactly and reaction implicitly for a system of stochastic reaction–diffusion equations. Our 
linear stability analysis shows the advantage of such methods for both small and large 
amplitudes of noise. Direct use of the method to solving several linear and nonlinear 
stochastic reaction–diffusion equations demonstrates good accuracy, efficiency, and stability 
properties. This new class of methods, which are easy to implement, will have broader 
applications in solving stochastic reaction–diffusion equations arising from models in 
biology and physical sciences.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Complex patterns can be extensively found in nature, from the skin of zebrafish to the disposition of feather buds in 
chicks and hair follicles in mice. Often, those patterns are created by biochemical reactions along with diffusions of the 
molecules in a cellular or multi-cellular systems [1]. Such biological systems, which may be described in reaction–diffusion 
equations, are constantly subjected to stochastic effects such as noises and environmental perturbations. The stochastic 
effects on the biochemical reactions at the single-cell level can result in heterogeneous responses of cellular populations 
and influence their behaviors [2]. Previous studies on stochasticity reveal the adaptation of biological systems to noise, 
which can be characterized by the systems’ strategies to combat noise, whether by attenuating or exploiting it [2,3]. For 
example, spatial stochastic effects help to either prompt the tight localization of proteins or enhance the response to the 
directional change of a moving pheromone input, resulting in a more robust cell polarization [4]; and the boundary of 
gene expression domains is sharpened as a result of gene-switching prompted by intracellular noise [5]. It has become 
increasingly important to incorporate these stochastic effects into the reaction–diffusion equations for better understanding 
of biological systems.

One can describe a biological system in terms of the following stochastic reaction–diffusion equations:

∂U

∂t
= a

∂2U

∂x2
+ f (U ) + g(U )Ẇ (x, t) (1)
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where Ẇ (x, t) is a standard two-dimensional Wiener process.
One typical way of solving Eq. (1) numerically is to apply central difference first to the diffusion and then use the 

temporal explicit scheme to solve the subsequent system [6], such as using the explicit Euler method [7] or the two, 
three, and four-stage explicit Runge Kutta schemes for the system containing additive noise and one-dimensional Wiener 
process in [8]. Another common approach is using the Galerkin projection of the stochastic partial differential equation 
(SPDE) and then applying the numerical scheme to a finite-dimensional version of the SPDE. For example, Exponential Time 
Differencing (ETD) scheme may be applied to the Galerkin projection of the SPDE [9,10]. One other such example is the 
Lord and Rougemont scheme, which is derived through Galerkin projection and an integrating factor approach [11]. This 
scheme is most effective for SPDE with Gevrey regularity, and more improvement may be made on such schemes by taking 
advantage of the Itô–Taylor expansion [11].

While explicit temporal schemes may be directly implemented for various spatial discretization, including finite element 
and Galerkin methods [12], to deal with the stability constraint associated with the diffusions, one can treat the diffusion 
term implicitly, while treating other terms explicitly [6] such as implicit Euler and Crank–Nicolson schemes [7]. Higher 
order methods [13] can be achieved using Galerkin projection and the linear-implicit versions of strong Taylor schemes 
[10]. Non-uniform time discretization on Brownian motion can also be obtained for implicit Euler scheme [14].

Stochastic stiffness arises from large differences in the magnitudes of Lyapunov exponents [15], resulting in the presence 
of different time scales. As in the deterministic case, explicit methods face step-size constraint when used to solve stiff 
stochastic systems [16]. The time-step constraint can be improved with the modification of the stochastic term by adding 
more terms from the Itô–Taylor expansion for higher order of accuracy and stability. One of the most well-known schemes 
stemmed from this construction is the Milstein scheme [15]. Treating the stochastic term implicitly is also one of the popular 
approaches [17–20], albeit computationally expensive. Hence, a class of explicit methods known as Chebyshev methods are 
derived, which have better mean-square stability than explicit Euler method and are not as computationally expensive as 
implicit methods [21]. A combination of different numerical schemes into one method can also be seen, such as the case 
of the Composite Euler scheme [22]. For this scheme, at each temporal step, the stochastic differential equation is either 
solved by implicit Euler method or semi-implicit Euler method. The Composite method has similar order of convergence 1/2 
to the Euler Maruyama method but better stability.

Most of the methods mentioned so far are derived to combat the stochastic stiffness through the improvement of the 
stochastic term, which can be costly and not as effective if the stiffness only occurs in the deterministic term. In such case, 
methods that treat the deterministic term implicitly while keeping an explicit treatment of the stochastic term are preferred 
[18]. Here, we propose a new approach to the problem of stiffness caused by the deterministic term, more specifically the 
reaction term in Eq. (1). The approach is based on the semi-Implicit Integration Factor (IIF) methods [23–26], which has 
been found to be effective for the stiff reaction–diffusion equations with better stability constraints imposed on the time 
steps associated with both reaction and diffusion. In this approach, the time-step constraint for the diffusion term arising 
due to the inverse of the eigenvalues of the diffusion matrix, which can be large in magnitude, is resolved by treating the 
linear diffusion term exactly using Integration Factor (IF) methods. Such treatment results in an exponential function of 
the diffusion term and an integral of the nonlinear reaction term, which is then treated using implicit approach through 
the Lagrange interpolation to deal with its stiffness. Appropriate choices of approximation schemes lead to decoupling on 
the treatment for the diffusions and reactions such that one only needs to solve nonlinear systems with the size of the 
original PDEs. The IIF methods also have exceptional stability properties and its second-order version is absolutely stable. 
For higher-dimensional problems, the compact IIF (cIIF) method [24] is a great improvement on computational efficiency 
without altering the stability properties of the IIF methods [23].

In this paper, we exploit the simple structure of the IIF methods as well as their desirable stability properties and 
efficiency for solving the system in Eq. (1). Because of the nice decoupling properties in the IIF method, we will treat the 
deterministic diffusion and reaction terms in a similar fashion [23], while dealing with the stochastic term explicitly as in 
the Euler Maruyama method [27]. We compare this approach with similarly constructed schemes whose main difference 
is in the treatment of the deterministic part of the equation, which can be approximated using ETD, Crank–Nicolson, or 
Implicit Euler methods. When all of the properties such as order of accuracy, mean errors, and stability region are taken 
into consideration, the new approach shows many advantages. We also take advantage of the low computational cost of 
the cIIF methods to similarly construct a stochastic method that can be applied to higher-dimensional problems. The paper 
is organized as followed. We first present the construction of the method for systems with additive noise or multiplicative 
noise, along with linear stability analysis and their comparisons with several other methods. Next, we compare the new 
method with other methods on linear SODEs and SPDEs on their orders of accuracy and stability constraints. Then, we use 
this approach to study a nonlinear activator–substrate system of two diffusion species and lastly, make our conclusion.

2. Implicit integration factor methods

2.1. Construction of general method

We consider the stiff reaction–diffusion equation with spatial white noise below:

∂U = a
∂2U

2
+ f (U ) + g(U )

∂2W
(2)
∂t ∂x ∂x∂t



C. Ta et al. / Journal of Computational Physics 295 (2015) 505–522 507
where a∂2U/∂x2 is the diffusion term and a is a nonnegative constant, f (U ) is the reaction term, and g(U )(∂2 W /∂x∂t)
is the noise term of two possible forms: g(U )(∂2W /∂x∂t) = σ(∂2W /∂x∂t) for additive noise or g(U )(∂2W /∂x∂t) =
σ U (∂2W /∂x∂t) for multiplicative noise. Here, σ is a constant to describe the level of noise. Also, ∂2W /∂x∂t denotes 
the mixed second-order derivative of the Brownian sheet. A one-dimensional Brownian sheet is a 2-parameter, centered 
Gaussian process B = B(s, t); s, t > 0 whose covariance is given by:

E(B(s, t)B(s′, t′)) = min(s, s′) × min(t, t′),∀s, s′, t, t′ ≥ 0. (3)

Before discussing the derivation of the numerical methods to solve Eq. (2), we briefly review the Implicit Integration 
Factor methods (IIF) discussed in [23], which is crucial to the construction of the IIF methods for a stochastic system. Using 
the semi-discretized form dU/dt = aU + f (U ) that is obtained after the discretization of the diffusion operator in space, we 
multiply both sides of the equation by the integrating factor e−at and integrating the equation over one time step from tn
to tn+1 = tn + �t to get

U (tn+1) = U (tn)ea�t + ea�t

�t∫
0

e−aτ f (U (tn + τ ))dτ (4)

Using appropriate approximation of the integrands in 
∫ �t

0 e−aτ f (U (tn + τ ))dτ one derives rth-order IIF scheme [23]:

Un+1 = ea�t Un + �t

(
αn+1 f (Un+1) +

r−2∑
i=0

αn−i f (Un−1)

)
, (5)

with αn+1, αn, αn−1, . . . , αn−r+2 defined as

αn−i = e(i+1)a�t

�t

�t∫
0

r−2∏
j=−1, j �=i

τ + j�t

( j − i)�t
dτ , −1 ≤ i ≤ r − 2. (6)

Similarly for the stochastic reaction–diffusion systems, we first discretize the space using m points with the spatial 
interval �x. Let Ut be a vector whose ith-entry is the value of the solution to Eq. (2) at the ith spatial point. A second-order 
central difference approximation of ∂2U/∂x2 in Eq. (2) with periodic boundary condition U (x0, t) = U (x f , t) on the SPDE as 
in [28], where x0 and x f indicate the endpoints of the spatial interval, leads to

dUt = aMUtdt + f (Ut)dt + g(Ut)
dWt√�x

(7)

where

M = 1

(�x)2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 · · · 1
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

...
. . .

...

0 0 · · · 1 −2 1
1 0 · · · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

Let ḡ(Ut) = g(Ut)/
√�x and multiply both sides of this Eq. (7) by the integrating factor e−aMs . We then have

e−aMsdUtn+s = aMe−aMsUtn+sds + e−aMs f (Utn+s)ds + e−aMs ḡ(Utn+s)dW s (9)

e−aMsdUtn+s − aMe−aMsUtn+sds = e−aMs f (Utn+s)ds + e−aMs ḡ(Utn+s)dW s (10)

�t∫
0

[e−aMsdUtn+s − aMe−aMsUtn+sds] =
�t∫

0

e−aMs f (Utn+s)ds +
�t∫

0

e−aMs ḡ(Utn+s)dW s (11)

�t∫
0

d(e−aMsUtn+s) =
�t∫

0

e−aMs f (Utn+s)ds +
�t∫

0

e−aMs ḡ(Utn+s)dW s (12)

Taking the integral of the left side gives

e−aM�t Utn+1 − Utn =
�t∫

e−aMs f (Utn+s)ds +
�t∫

e−aMs ḡ(Utn+s)dW s (13)
0 0
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Letting �t = tn+1 − tn and with some more simplification, the equation above becomes

Utn+1 = eaM�t
(

Utn +
�t∫

0

e−aMs f (Utn+s)ds +
�t∫

0

e−aMs ḡ(Utn+s)dW s

)
(14)

All we have left is evaluating the right side of Eq. (14). Observe the following numerical approximation of the noise part 
of Eq. (14) [27]

�t∫
0

e−aMs ḡ(Utn+s)dW s = ḡ(Utn )(Wtn+1 − Wtn ) (15)

To approximate the deterministic part of Eq. (14), i.e. eaM�t

(
Utn + ∫ �t

0 e−aMs f (Utn+s)ds

)
, we apply the IIF strategy using 

Eqs. (5) and (6). Coupling this evaluation with Eq. (15), Eq. (14) becomes

Un+1 = eaM�t Un + �t

(
αn+1 f (Un+1) +

r−2∑
i=0

αn−i f (Un−1)

)
+ eaM�t ḡ(Un)�Wn (16)

where �Wn = Wtn+1 − Wtn , Utn = Un , and αn+1, αn, αn−1, . . . , αn−r+2 are as described in Eq. (6).
Let us denote ξ̄n to be a standard normally-distributed random vector and n to be the indices of the temporal discretiza-

tion points. We apply the standard Maruyama method to the noise term along with the first order IIF method, denoted as 
IIF1, or the second order IIF method, denoted as IIF2, to obtain

IIF1–Maruyama method

Un+1 = eaM�t Un + �t f (Un+1) + eaM�t g(Un)

√�tξ̄n√�x
(17)

IIF2–Maruyama method

Un+1 = eaM�t
(

Un + 1

2
�t f (Un)

)
+ 1

2
�t f (Un+1) + eaM�t g(Un)

√�tξ̄n√�x
(18)

When the stochastic integral in Eq. (14) is approximated explicitly as in Eq. (15), the strong order of convergence of the 
overall scheme is dominated by the root mean-square order of the increments �Wn , which is one-half [15]. For this reason, 
the strong order of convergence for both of our methods will be consistent with those of most other methods with the 
same approximation of the stochastic term, i.e. the Euler Maruyama method. Let us illustrate this through approximating an 
SODE of the similar form

dUt = −aUtdt + bUtdt + g(Ut)dWt (19)

using IIF1 and IIF2 methods respectively. By using the standard Maruyama approximation on the noise term, we obtain

IIF1–Maruyama method

Un+1 = e−a�t Un + b�tUn+1 + g(Un)e−a�t�Wn (20)

IIF2–Maruyama method

Un+1 = e−a�t Un + 1

2
e−a�tb�tUn + 1

2
b�tUn+1 + g(Un)e−a�t�Wn (21)

When the noise is additive, i.e.

g(Ut) = σ , (22)

the strong order of convergence for both methods is one, which is consistent with the strong order of convergence of the 
Euler Maruyama method [15].

When the noise is multiplicative, i.e.

g(Ut) = σ Ut (23)

both methods share the same order of convergence of one-half with the Euler Maruyama method [15].
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2.2. Stability analysis

2.2.1. Additive noise

We first analyze the numerical stability of the IIF1–Maruyama and IIF2–Maruyama schemes in Eqs. (20) and (21) when 
the stochastic differential equation has additive noise Eq. (22).

Following a previous study [15], we define U δ
nt

to be a time discrete approximation of the solution U (t) with maximum 
step size δ > 0 starting at time t0 at U δ

0 and Ū δ
nt

to be the corresponding approximation starting at Ū δ
0. Then U δ

nt
is asymp-

totically numerically stable for a given stochastic differential equation if for any finite interval [t0, T ] there exists a positive 
constant �a such that for each ε > 0 and δ ∈ (0, �a) [15]:

lim
|U δ

0−Ū δ
0|→0

sup
t0≤t≤T

P

(
|U δ

nt
− Ū δ

nt
| ≥ ε

)
= 0 (24)

and

lim
|U δ

0−Ū δ
0|→0

lim
T →∞ P

(
sup

t0≤t≤T
|U δ

nt
− Ū δ

nt
| ≥ ε

)
= 0 (25)

with P (A) indicating the probability that event A occurs. We can analyze the asymptotic stability of a numerical stochastic 
scheme as we do for the A-stability of deterministic differential equations by studying the stability of the following class of 
complex-valued linear test equations [15]:

dUt = λUtdt + dWt (26)

where λ is a complex number with R(λ) < 0 and W is a real-valued standard Wiener process.
Suppose that a numerical scheme with equidistant step size �t ≡ δ applied to test Eq. (26) with R(λ) < 0 can be written 

recursively as:

U�t
n+1 = G(λ�t)U�t

n + Z�t
n (27)

where G is a mapping of complex plane C into itself and Z�t
n are random variables that do not depend on U�t

n for 
n = 0, 1, 2, . . ., then the set of complex values λ�t satisfying

R(λ) < 0 and |G(λ�t)| < 1 (28)

is the region of absolute stability of that scheme [15].
Our methods Eqs. (20) and (21) when applied to the linear test equation Eq. (26) are reduced to:

U�t
n+1 = eλ�t U�t

n + σ eλ�t�Wn (29)

Since |G(λ�t)| = |eλ�t | < 1 for any arbitrarily large value �t > 0 given R(λ) < 0, we can claim that both the IIF1–
Maruyama and IIF2–Maruyama methods are absolutely stable when noise is additive.

2.2.2. Multiplicative noise

When the noise is multiplicative Eq. (23), we analyze the stability of each method using mean-square stability anal-
ysis [15]. A method is mean-square stable if limn→∞ E(|Un|2) = 0 where E(.) denotes the expected value. To apply this 
technique to evaluating the stability region of both IIF–Maruyama methods aforementioned, we note that we can rewrite 
each method in the form:

Un+1 = h(a,b,σ ,�t,�Wn)Un (30)

Squaring and then taking expectation of both sides of Eq. (30) coupled with the fact that Wt is a standard Wiener 
process whose increment W (t) − W (s) is normally-distributed with mean 0 and variance t − s, we obtain

E|Un+1|2 = H(a,b,σ ,�t)E|Un|2 (31)

where H(a, b, σ , �t) =E(h(a, b, σ , �t, �Wn))2.
Eq. (31) demonstrates that limn→∞ E(|Un|2) = 0, i.e., the numerical method is mean-square stable if and only if 

H(a, b, σ , �t) < 1 [17].
For the IIF1–Maruyama method, the mean-square stability condition becomes

e−2a�t(1 + σ 2�t) − (1 − b�t)2 < 0 (32)

For the IIF2–Maruyama method, the mean-square stability condition becomes

(2 + b�t)2 − (2 − b�t)2e2a�t + 4σ 2�t < 0 (33)
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Fig. 1. The stability regions of both IIF–Maruyama methods described in Eqs. (17) and (18) for multiplicative noise. The stability region lies below the 
corresponding colored curve. The desired absolute stability region is the region inside the square with dashed-border. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

We plot the stability regions of both IIF–Maruyama schemes on a plane whose axes are a�t and b�t in Fig. 1 and vary 
the value of σ 2�t . Note that the stability region in Fig. 1 for each method is the region under the respective colored curve. 
The desired absolute stability region is the region where the diffusion and reaction coefficients are negative. In terms of 
Eq. (19), this region is described as {(a, b) : a > 0 and b < 0}. In Fig. 1(a) when there is no noise term, both methods are 
unconditionally stable with respect to this absolute stability region which is the inside of the square with dashed border. 
From Fig. 1(b) and (c), we observe that as the value of σ 2�t increases, the stability region of the IIF2–Maruyama method 
shrinks at a faster rate than the stability region of the IIF1–Maruyama method, resulting in the IIF1–Maruyama method 
having a larger stability region when the noise term is large enough. As a result, the IIF1–Maruyama method has a more 
desirable stability than the IIF2–Maruyama method in the case of more dominant noise.

2.2.3. Comparison with other methods in the case of multiplicative noise

For the purpose of stability-region comparison, we present three other methods used to solve Eq. (19) and their con-
structions: The Euler Maruyama method [15], when it is applied to Eq. (19), takes the form

Euler Maruyama method

Un+1 = Un − a�tUn + b�tUn + g(Un)�Wn (34)

The order of accuracy for this method is 1/2 [15] and the mean-square stability analysis when noise is multiplicative, i.e.
Eq. (23) gives the following stability condition:

−2a�t + (a�t)2 − 2(a�t)(b�t) + 2b�t + (b�t)2 + σ 2�t < 0 (35)

The next method is designed in a similar fashion to the construction of the IIF–Maruyama methods with a modification 
on the approximation of the deterministic integral term of Eq. (14). Direct application of the exponential time differencing 
method of order 2 on this term leads to

ETD2–Maruyama method

Un+1 =
(

e−a�t + b

a
(1 − e−a�t)

)
Un + e−a�t g(Un)�Wn (36)

Since the stochastic integral term is approximated explicitly as in the IIF–Maruyama methods, the order of accuracy for 
the overall scheme is 1/2. Mean-square stability analysis gives the following stability condition for the above method:

e−2a�t + 2(e−a�t − e−2a�t)
b�t

a�t
+

(
(1 − e−a�t)

b�t

a�t

)2

+ σ 2�te−2a�t − 1 < 0 (37)

The last scheme mentioned here is constructed similarly to the Euler Maruyama method with the exception of the 
deterministic term being approximated using second-order Runge Kutta method.

RK2–Maruyama method

Un+1 =
(

1 + (b − a)�t + 1

2
(b − a)2�t2

)
Un + g(Un)�Wn (38)

The construction of the RK2–Maruyama scheme also exploits the explicit approximation of the stochastic term as that of 
the Euler Maruyama scheme, so the order of accuracy for the RK2–Maruyama scheme is still 1/2. The scheme’s mean-square 
stability condition is:
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Fig. 2. Comparison of stability regions of the following methods: IIF1–Maruyama, IIF2–Maruyama, Euler Maruyama, RK2–Maruyama, and ETD2–Maruyama 
used to solve Eq. (19) with multiplicative noise. The stability region for each method is shaded. The ideal absolute stability region is the region inside the 
dashed box.

2((a�t)2 + (b�t)2) + 2(b�t − a�t) − 4(ab)(b�t) + (b�t)3 − 3(b�t)2(a�t) + 3(b�t)(a�t)2 − (a�t)3

+ 1

4
(b�t)4 − (b�t)3(a�t) + 3

2
(a�t)2(b�t)2 − (b�t)(a�t)3 + 1

4
(a�t)4 + σ 2�t < 0 (39)

To illustrate the performance of the IIF–Maruyama schemes in terms of stability analysis in comparison with the above 
methods, we plot all the stability regions of each method for different values of σ 2�t on a plane whose axes are a�t and 
b�t (Fig. 2). In the same figure, the region where unconditional stability is achieved for an ideal method is the region inside 
the box with dashed boundary. Fig. 3 is the enlarged version of Fig. 2 so we can observe better the changes in the absolute 
stability region for each method at different values of σ 2�t .

In Fig. 2(a), i.e. when there is no noise term, only the IIF–Maruyama methods are unconditionally stable, which is con-
sistent with the stability of the deterministic IIF methods. For very positive values of the diffusion term and very negative 
values of the reaction terms (in terms of Eq. (19), this means that both a < 0 and b < 0), the Euler Maruyama, RK2–
Maruyama, and ETD2–Maruyama methods achieve better stability than the IIF–Maruyama methods, as seen in the bottom 
left corner of each subplot of Fig. 2(a). However, the overall size of the absolute stability regions of the IIF–Maruyama 
methods is still larger than those of the other methods.

With the increasing size of the multiplicative noise term, the stability region for each method starts to shrink. More 
specifically, the stability regions for the Euler Maruyama and RK2–Maruyama methods start to shrink in width along the 
line b = −a (i.e. along the direction in which the diffusion and reaction terms are equal) and become thin strips in Fig. 2(b) 
and (c). Both of these regions disappear completely in the next plot, i.e Fig. 2(d) when the noise amplitude is high enough.

Meanwhile, the bottom-left corner of the stability region of the ETD2–Maruyama method recedes significantly as the 
noise amplitude increases, resulting in a greater loss of the absolute stability region than those of the IIF–Maruyama meth-
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Fig. 3. Enlarged version of Fig. 2. In this figure, the stability regions are enlarged for the following methods: IIF1–Maruyama, IIF2–Maruyama, and ETD2–
Maruyama. The stability region for each method is shaded. The ideal absolute stability region is the region inside the dashed box.

ods. Size comparison of the absolute stability regions from both Fig. 2(b)–(d) and Fig. 3(b)–(d) indicates that the stability 
region of the ETD2–Maruyama shrinks more than those of the IIF–Maruyama methods as σ 2�t increases from 0 to 1.

From Fig. 2(b)–(d), we observe that the IIF–Maruyama methods have the greatest region of absolute stability for any 
positive values of σ 2�t . Also, from Fig. 3(b)–(d), we observe that the stability regions for both IIF–Maruyama methods 
shrink at a slower rate than those of the other methods. As a result, both methods have the best absolute stability region 
for large noise amplitude, as demonstrated by Fig. 2(d), when σ 2�t = 1. In addition, the absolute stability region of the 
IIF1–Maruyama method shrinks more slowly than the IIF2–Maruyama, as evidenced by Fig. 3(b)–(d) where the dashed 
box indicates the ideal absolute stability region. For this reason, the IIF1–Maruyama method achieves the largest absolute 
stability region for large noise amplitude out of all the methods.

We conclude that at different values of the noise term, the IIF–Maruyama methods outperform the other methods in 
terms of the region of absolute stability. In particular, at σ 2�t = 1, both the IIF–Maruyama methods have a much greater 
region of absolute stability than the rest of the methods.

3. Numerical simulations

First, we compare the two IIF–Maruyama methods with the other methods when they are applied to Eq. (2) for both 
cases of additive noise and multiplicative noise. Through choosing different values of a, which corresponds to the size of 
diffusion, and different values of b, which corresponds to the strength and stiffness of reactions, we evaluate the convergence 
and stability of IIF–Maruyama methods.

3.1. Tests on stochastic ordinary differential equations

Here, we implement various methods to solve the linear stochastic ODE equation (19). Comparisons will be made be-
tween the two IIF methods, the Euler Maruyama, and the ETD2–Maruyama methods. The comparisons concern the accuracy 
of these methods in situations where the degree of stiffness is high or the noise amplitude is great. All the simulations 
are done over 1000 independent paths with a time frame from 0 to 1 unless specified otherwise. Numerical experiments 
were needed in order to decide on a sufficiently large number of Brownian paths that will yield the desirable orders of 
convergence. All the results obtained in this sub-section remain consistent for a greater number of Brownian paths. This 
notion is confirmed when we increase the number of paths from 1000 to 2000 and subsequently 10 000.
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Fig. 4. Comparison of the mean errors E|U�t − U�t/2| of the numerical solutions to Eq. (19) with additive noise obtained from the following methods: 
IIF1–Maruyama, IIF2–Maruyama, Euler Maruyama, and ETD2–Maruyama, when the reaction term is heavily stiff. The inserted figure shows the mean error 
comparison between different methods in more detail. The parameter values are as followed: a = 1, b = −10, and σ = 0.1.

3.1.1. Additive noise

Denote U�t to be the solution obtained numerically from using time step �t . The order of convergence for additive noise 
is the value γ such that there exists a constant C where

E|U�t − U�t/2| ≤ C�tγ (40)

for �t sufficiently small. The order of convergence for this case, in which the explicit solution (e.g. to Eq. (19) with additive 
noise Eq. (22)) is unknown, is estimated by

Order of Convergence =
log

(
E|U�t − U�t/2|

/
E|U�t/2 − U�t/4|

)
log 2

. (41)

In our simulations, we start with �t = 2−5 and decrease �t by half for a total of 6 times. 1000 independent Brownian 
paths are generated and the final solution U�t on each path for each time step �t is calculated.

Next, we study the accuracy and stability for both IIF–Maruyama methods and compare them with the Euler Maruyama 
and ETD2–Maruyama methods in different scenarios, especially, in the case in which the reaction term is dominant and the 
system becomes stiff.

In Fig. 4, we plot all the mean errors of the numerical solutions obtained from the IIF–Maruyama, Euler Maruyama, and 
ETD2–Maruyama methods while using different time steps in the scenario where the reaction term is heavily stiff, i.e. when 
the magnitude of the reaction term is relatively large compared to the magnitudes of the diffusion and noise terms. Here, 
the mean error is defined to be E|U�t − U�t/2| where U�t is the numerical solution resulted from using each of the above 
methods with the time step �t . From this figure, we observe that both IIF–Maruyama methods maintain a low mean error 
as the time step �t increases in size. When �t becomes too large, i.e. when �t = 1/4, the mean errors of the solutions 
from using Euler Maruyama and ETD2–Maruyama methods explode out of reasonable bounds. Meanwhile, at the same time 
step, the mean errors of the numerical solutions resulted from the two IIF–Maruyama methods remain consistently small 
when larger step size �t is used. This figure demonstrates that the IIF–Maruyama methods are highly effective whenever 
the reaction–diffusion system has a dominant reaction term.

Fig. 5 shows the orders of convergence for IIF1–Maruyama, IIF2–Maruyama, Euler Maruyama, and ETD2–Maruyama meth-
ods in different scenarios. Fig. 5(a) and (b) represent the scenario where the noise amplitude is great compared to the 
magnitudes of the diffusion and reaction terms. Fig. 5(c) and (d) represent the scenario where the magnitude of diffusion 
term is relatively large compared to those of the reaction and noise terms. In both scenarios, all the methods share an order 
of convergence of one as expected and no single method outperform the others. Fig. 5 shows that both the IIF–Maruyama 
methods are comparable to other methods in terms of accuracy in the additive-noise case.

3.1.2. Multiplicative noise

For SODE with multiplicative noise, because the explicit solution for the linear stochastic ODE is known, the strong order 
of convergence can be estimated by the value γ if there exists a constant C such that:

E|Un − U (τ )| ≤ C�tγ (42)

for any fixed τ = n�t ∈ [0, T ] where T is the final time and for �t sufficiently small. Let T = L�t for some time step 
�t [27]. At τ = T , the order of convergence is calculated as the following
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Fig. 5. Comparison of the orders of convergence of the following methods: IIF1–Maruyama, IIF2–Maruyama, Euler Maruyama, and ETD2–Maruyama used 
to solve Eq. (19) with additive noise. Subplots (a) and (b) represent the orders of convergence of all the methods in the scenario that the noise amplitude 
is relatively large compared to the magnitudes of the diffusion and reaction terms, whose values are fixed to be a = 0.1 and b = −1. Subplots (c) and (d) 
represent the scenario where the magnitude of the diffusion term is great compared to those of the reaction and noise terms, whose values are fixed to be 
σ = 0.1 and b = −1.

Order of Convergence =
log

(
E|U L,�t − U (T )|/E|U L,�t/2 − U (T )|

)
log 2

(43)

where we denote U L,�t to be the numerical solution at t = T using time steps of size �t each and U L,�t/2 the numerical 
solution at time T using time steps of size �t/2 each. To acquire the value for E|U L,�t − U (T )|, we take the mean of 
|U L,�t − U (T )| over 1000 independent Brownian paths, hence we call E|U L,�t − U (T )| the mean error of the numerical 
solution.

First, we test the accuracy of the IIF–Maruyama, Euler Maruyama, and ETD2–Maruyama methods when the magnitude of 
the reaction term is large and plot the mean errors of the numerical solutions for each method in Fig. 6(a). The mean error 
for the multiplicative case is defined to be E|Un − U (τ )| from Eq. (42). As in the additive case, when the reaction term 
is highly dominant, the IIF–Maruyama methods maintain low mean errors even when the time step �t is relatively large. 
From this figure, we observe that when �t is large enough, i.e. �t = 1/8, the mean errors of the solutions obtained from 
using Euler Maruyama and ETD2–Maruyama methods assume unreasonably large values and these two methods become 
unstable. At the same time step, both the IIF–Maruyama methods still maintain stability, as evidenced by the reasonable 
mean errors resulted from the numerical solutions. We conclude that the IIF–Maruyama methods give reliable results in the 
case where the reaction–diffusion system is highly stiff in the reaction term.

Fig. 6(b) shows that the orders of convergence for the IIF–Maruyama, Euler Maruyama, and ETD2–Maruyama methods 
are consistently one-half when the noise term is dominant. There is no real advantage of choosing one method over another 
in this scenario.

When the magnitude of the diffusion term is relatively large compared to those of the reaction and the noise terms, 
we notice that the mean errors E|Un − U (τ )| obtained from the IIF–Maruyama methods take much smaller values than 
those of the Euler Maruyama and ETD2–Maruyama methods, as evidenced by Fig. 6(c) and (d). Although all the methods 
have relatively small mean errors, the IIF–Maruyama methods have the smallest mean error values and therefore are more 
accurate than the other methods.

3.2. Tests on stochastic partial differential equations

Now we apply IIF–Maruyama methods to the following stochastic PDE and compare the IIF methods with two other 
methods

∂U

∂t
= a

∂2U

∂x2
+ bU + g(U )

∂2W

∂x∂t
, (44)

where 0 ≤ x ≤ 1 and t ∈ [0, 0.125] along with a periodic boundary condition U (0, t) = U (1, t).
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Fig. 6. Comparison of the mean errors and orders of convergence between the following methods: IIF1–Maruyama, IIF2–Maruyama, Euler Maruyama, and 
ETD2–Maruyama, used to solve Eq. (19) with multiplicative noise. Subplot (a) is the comparison of the mean errors E|Un − U (τ )| of the numerical solutions 
when the reaction term is heavily stiff. The parameters used here are a = 1, b = −20, and σ = 0.1. In the scenario that the noise amplitude is relatively large 
compared to the magnitudes of the diffusion and reaction term, all methods display similar orders of convergence, as seen in subplot (b). The parameter 
values for this subplot are a = 0.1, b = −0.02, and σ = 1. Finally, subplots (c) and (d) compare the mean errors E|Un − U (τ )| of the numerical solutions 
when the diffusion term is dominant using fixed parameters σ = 0.1 and b = −2. The time span for the simulations in subplot (a) is one and the time 
span used in subplots (b)–(d) is one-half. For subplots (a) and (d), the inserted images show the mean errors of each method in more detail.

We compare the orders of convergence from solving Eq. (44) in different scenarios among the following schemes: 
First-Order IIF–Maruyama method (17), Second-Order IIF–Maruyama method (18), Implicit-Euler Maruyama method, and 
Crank–Nicolson Maruyama method. The Implicit-Euler Maruyama method is constructed in the same way as the Euler 
Maruyama method with the deterministic term being approximated using the backward-Euler method of order one. The 
overall order of convergence for this method is 1/2 due to the explicit approximation of the stochastic term as in the case 
of the Euler Maruyama method. Letting M denote the diffusion matrix after applying finite difference to Eq. (44), the method 
takes the following form,

Implicit-Euler Maruyama method

U j+1 = U j + aM�tU j+1 + �t f (U j+1) + g(U j)

√�tξ̄ j√�x
. (45)

The construction of Crank–Nicolson method is also similar to that of the Euler Maruyama method, with the exception of 
the approximation of the deterministic term using the Crank–Nicolson method. For the same reason as the implicit-Euler 
Maruyama method, the overall order of convergence remains 1/2 for this method:

Crank–Nicolson Maruyama method

U j+1 = U j + aM�t

2
(U j + U j+1) + 1

2
�t( f (U j) + f (U j+1)) + g(U j)

√�tξ̄ j√�x
. (46)

We do not show the numerical results of the explicit Euler Maruyama scheme Eq. (34) and ETD2–Maruyama scheme 
Eq. (36) due to their disadvantages in stability and the associated computational cost.

To compute the order of convergence for each scheme mentioned, we use five different values of the number of spatial 
steps: N1, N2, . . . , N5 where N1 is a power of 2 and Ni+1 = 2Ni for i = 1, . . . , 4, and let the time step �t = 1/(4Ni). The 
solutions are numerically calculated over the time frame [t0, t f ] and generated over m different realizations of the Brownian 
sheet W (t, x). More information on how the Brownian sheet is generated can be found in [28]. We record the difference at 
the final time between two solutions obtained using Ni and Ni+1 spatial steps and store this difference under the variable 
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Fig. 7. Comparison of the values {Si}4
i=1 from Eq. (47) and orders of convergence of the following methods: IIF1–Maruyama, IIF2–Maruyama, Implicit-Euler 

Maruyama, and Crank–Nicolson Maruyama used to solve Eq. (44) with both additive and multiplicative noises in the scenario where the reaction term is 
heavily stiff. Subplots (a) and (b) show the plots of {Si}4

i=1 of all the methods when the reaction term b = −10. Subplots (c) and (d) display plots of {Si}4
i=1

of all the methods when b = −50. For all the subplots, the values of the reaction and noise terms are fixed to be a = 1 and σ = 0.1. In subplots (a) and (b), 
the time frame is chosen to be t ∈ [0, 0.125] and for the remaining two subplots, t ∈ [0, 0.025]. Also, each plot contains the reference line of slope one-half 
for the purpose of order of convergence comparison.

Si for i = 1, . . . , 4. The difference is the sum over m realizations of the sum of squared differences of the approximated 
solutions over N1 spatial points, which are common to all solutions. Therefore, we obtain

Si =
m∑

j=1

N1∑
k=1

(
U i

j,k − U i+1
j,k

)2
, (47)

which offers a mean to calculate the numerical error of the scheme. Note that U i
j,k indicates the approximated solution at 

space step xk = k/N1 and at final time, which is obtained from using Ni spatial steps and jth independent realization of 
the Brownian sheet [7]. Then the order of convergence can be estimated by log2 R where the ratio R = Si/Si+1. When using 
this method of computing the order of convergence, both Implicit-Euler Maruyama and Crank–Nicolson Maruyama schemes 
converge with an order of 1/2 for both additive and multiplicative noises [7]. As a result, we will use 1/2 as the standard 
value of the order of convergence in the subsequent numerical comparisons. In this sub-section, we fix m = 100. From our 
experimentation, increasing the value of m has no effects on the orders of the convergence of each scheme. However, the 
values of {Si}4

i=1 will increase since these quantities depend on the value of m. In our tests, when m = 500, the values of 
{Si}4

i=1 are roughly five times larger than those obtained with m = 100. Similarly, if we increase m to 1000, {Si}4
i=1 are 

about ten times larger than their corresponding values when m = 100.
To compare the orders of convergence, we observe the following scenarios with both noises: how the order of con-

vergence for each scheme is affected when the degree of stiffness increases, and whether each method still performs 
satisfactorily with large noise amplitude.

3.2.1. Stiff reaction

Fig. 7(a) and (b) plots the values {Si}4
i=1 obtained from the numerical solutions of Eq. (44) with both additive and 

multiplicative noises versus the size of the space step when the reaction term is stiff with respect to the diffusion and noise 
terms. The numerical methods that are applied here are the IIF1–Maruyama, IIF2–Maruyama, Implicit-Euler Maruyama, and 
Crank–Nicolson Maruyama methods. For both types of noise, all methods converge with a rate of approximately 1/2. The 
Implicit-Euler Maruyama scheme along with the two IIF–Maruyama schemes have an advantage over the Crank–Nicolson 
Maruyama scheme when the values {Si}4

i=1 are considered.
In the interest of demonstrating the effectiveness of the IIF–Maruyama methods, we compare the orders of convergence 

between all of the aforementioned methods Eqs. (17), (18), (45), and (46) when the reaction term is extremely stiff for 
both additive and multiplicative noises. When noise is additive, all methods have an order of convergence of 1/2. However, 
the Implicit-Euler Maruyama and the two IIF–Maruyama methods perform much better than the Crank–Nicolson Maruyama 
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Fig. 8. Comparison of the values {Si}4
i=1 from Eq. (47) and orders of convergence of the following methods: IIF1–Maruyama, IIF2–Maruyama, Implicit-Euler 

Maruyama, and Crank–Nicolson Maruyama used to solve Eq. (44). Subplots (a) and (b) are the plots of {Si}4
i=1 of all the methods when the diffusion term 

is stiff. The values of the diffusion, reaction, and noise terms are fixed to be a = 20, b = −1, and σ = 0.1 for all subplots. Subplots (c) and (d) display plots 
of {Si}4

i=1 of all the methods when the noise term assumes a large value. For these subplots, the values of the diffusion, reaction, and noise terms are fixed 
to be a = 2, b = −1, and σ = 1. In this figure, all the simulations are run for 0.125 time units. Also, each plot contains the reference line of slope one-half 
for the purpose of order of convergence comparison.

method in terms of the mean errors {Si}4
i=1, as seen in Fig. 7(c). In Fig. 7(d), for multiplicative noise, the Implicit-Euler 

Maruyama and the IIF1–Maruyama methods converge at a much faster rate than 1/2 while the Crank–Nicolson Maruyama 
and the IIF2–Maruyama schemes maintain the 1/2 order of convergence. When using fewer number of space steps, the 
values Si obtained from the Implicit-Euler Maruyama and IIF1–Maruyama methods are not as good as those of the other 
methods due to the large convergence rate. For example, when the spatial step sizes are 1/64, 1/128, and 1/256, the 
values S1 and S2 obtained from the IIF1–Maruyama and Implicit-Euler Maruyama methods are larger than those of the 
IIF2–Maruyama and Crank–Nicolson Maruyama methods. On the other hand, the IIF2–Maruyama method consistently has 
the smallest values for {Si}4

i=1, making it the most desirable method for solving a stochastic partial differential equation 
with an extremely stiff reaction term whose noise term can be either additive or multiplicative.

3.2.2. Strong diffusion

We obtain the numerical solutions for Eq. (44) using the four methods when the diffusion coefficient is large. Then 
we compare the values {Si}4

i=1 from Eq. (47) and the orders of convergence of all methods by plotting {Si}4
i=1 versus the 

size of the space step along with a reference line of slope one-half in Fig. 8(a) and (b). The Crank–Nicolson Maruyama 
method is slightly more stable than the other methods for some large values of spatial step size but does not maintain 
this stability if the space step assumes a larger value than those shown in this figure. Both the IIF–Maruyama methods and 
the Implicit-Euler Maruyama method achieve the best values for {Si}4

i=1, while the Crank–Nicolson Maruyama method has 
significantly larger {Si}4

i=1 compared to them. When the spatial step size assumes a small-enough value, the IIF–Maruyama 
schemes and the Implicit-Euler Maruyama schemes have comparable orders of convergence with that of the Crank–Nicolson 
Maruyama scheme. With both the mean errors and orders of convergence taken into consideration, it is more advantageous 
to choose the IIF–Maruyama methods and the Implicit-Euler Maruyama method over the Crank–Nicolson Maruyama scheme.

3.2.3. Large noise amplitude

Fig. 8(c) and (d) contains similar plots to Fig. 8(a) and (b) in the case where Eq. (44) has a large noise term. For both 
additive and multiplicative noises, all methods have an order of convergence of one-half. Also, for all methods, the values 
of {Si}4

i=1 are slightly larger than the corresponding values obtained when the reaction term or diffusion term is stiff. 
Since the calculation of {Si}4

i=1 contains a double sum, the magnitude of {Si}4
i=1 could become quite large. Taking this 

into consideration, when the noise term has large magnitude, the IIF–Maruyama methods and the Implicit-Euler Maruyama 
method outperform the Crank–Nicolson Maruyama method significantly in terms of mean errors and thus are preferred.
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4. A Turing patterning system with noise

4.1. 1-dimensional activator–substrate system

Finally we apply the IIF2–Maruyama scheme to a Turing patterning system that contains noise to study how noise may 
affect the formation of patterns. We use the activator–substrate system as an example, whose non-dimensional form is as 
followed [29,30]:

∂ A

∂t
= D

∂2 A

∂x2
+ S A2 − A + ρ (48)

∂ S

∂t
= ∂2 S

∂x2
+ μ(1 − S A2). (49)

The boundary conditions are no-flux. The constant D measures the diffusion coefficient ratio of activator to substrate. 
The parameters ρ and μ measure the production rates of activator and substrate, respectively. This system has known 
homogeneous solutions:

A∗ = 1 + ρ, S∗ = (1 + ρ)−2 (50)

One of the features of the activator-substrate system Eqs. (48) and (49) is that the substrate S can be consumed during 
the autocatalysis of activator A and the interactions between the activator and substrate of this system lead to the formation 
of spatially inhomogeneous patterns [29,30]. Without noise, the inhomogeneous steady state patterns may be obtained in 
the parameter ranges

ρ ∈ (0,1), μ ∈
(

2

1 + ρ
− 1,2

)
, D ∈

(
0.001,

1

μ

(√
2

1 + ρ
− 1

))
. (51)

The initial guesses for the pattern (A0, S0) are chosen as [29]

A0 = A∗(1 + γ δA(x)), S0 = S∗(1 + γ δS(x)) (52)

where δA(x) and δS (x) are standard normally-distributed random variables with zero mean and variance one. Different 
patterns can arise from a slight variations in initial conditions [31]. If we choose the following parameters,

t ∈ [0,101], x ∈ (0,10), ρ = 0.01, μ = 1, D = 0.1, γ = 0.02, dx = 10/27, dt = dx/4, (53)

the different permutations of our initial conditions in Eq. (52) result in six distinct combinations of inhomogeneous steady 
state patterns for solutions A and S , similar to those in Fig. 9.

Now, we add multiplicative noise to Eqs. (48), (49) to obtain:

∂ A

∂t
= D

∂2 A

∂x2
+ S A2 − A + ρ + εA A

∂2W

∂x∂t
, (54)

∂ S

∂t
= ∂2 S

∂x2
+ μ(1 − S A2) + εS S

∂2W

∂x∂t
. (55)

4.1.1. Results

We implement the IIF2–Maruyama method described in Eq. (16) to Eqs. (54) and (55) and examine the changes to the 
deterministic steady-state patterns when a multiplicative noise is added to both Eqs. (48) and (49). For our implementation, 
the parameters from Eq. (53) are selected.

We want the time span for our simulations to be sufficiently long so that we can observe the long term behaviors of 
the solutions A and S . More specifically, in our cases, we want to see whether the long-term solutions assume any patterns 
observed in their deterministic steady-state counterparts. Unlike the previous study for the deterministic equations [29] in 
which fluctuations in the initial conditions are critically important in generating the patterns, we fix the initial conditions 
A0 = A∗ and S0 = S∗ defined in Eq. (50).

Interestingly, we obtain similar patterns in spite of the uniform initial conditions when the relatively small values to 
the noise coefficients, i.e. εA = 0.005 and εS = 0.01, are given. The six different combinations of patterns for the long time 
solutions A and S that exist can be seen in Fig. 9. We note that these six different combinations of patterns are the same 
inhomogeneous steady state patterns obtained from solving the deterministic equations (48) and (49) [29]. Hence, adding 
multiplicative noise to the activator–substrate system enables us to obtain the inhomogeneous steady-state patterns that 
are otherwise obtained through the fluctuations of the initial conditions, as previously predicted [31].

Because each stochastic solution may reach a different steady state even with the same initial conditions in a determin-
istic form, we perform 100, 500, and 1000 simulations to see which combination of patterns shows up more frequently. In 
Table 1, we fix the initial conditions as in Eq. (50) and choose the spatial step size to be dx = 10/26 and dx = 10/27. This 
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Fig. 9. The six different combinations of steady-state patterns for long-term solutions A and S to the one-dimensional stochastic system in Eqs. (54)
and (55). The values for the noise coefficients are εS = 0.01 and εA = 0.005.

Table 1
Percentage of occurrence of each combination patterns for 100, 500, and 1000 different simulations. The initial conditions are uniformly fixed as in Eq. (50).

Percentage of appearance

Spatial step size dx = 10/26 dx = 10/27

No. simulations 100 500 1000 100 500 1000

Pattern 1 35% 33.4% 34.4% 39% 35.8% 36.7%
Pattern 2 28% 26.4% 29% 25% 22.8% 26.1%
Patterns 3 and 5 23% 19.8% 18.9% 15% 20.2% 18.8%
Patterns 4 and 6 14% 20.4% 17.7% 21% 21.2% 18.4%

Table 2
Percentage of occurrence of each combination patterns for 100, 500, and 1000 different simulations. In this table, 
dx = 2−7 and the initial conditions are permuted as in Eq. (52).

Percentage of appearance

No. simulations 100 500 1000

Pattern 1 41% 40.2% 37%
Pattern 2 30% 26.4% 26.7%
Patterns 3 and 5 15% 15.2% 18.1%
Patterns 4 and 6 14% 18.2% 18.2%

change in dx does not affect the frequency of presence of each combination of patterns. For Table 2, the values of the initial 
conditions are randomly permuted as in Eq. (52) for each independent path, while dx is fixed at 10/27. From these two 
tables, we see that the first combination of patterns is consistently the most favored type of patterns, with a >30% chance 
of occurrence, with the second combination of patterns being the second most typical combination of patterns. In addition, 
the frequency of appearance of each type of patterns is independent of the effects of extra fluctuations on the initial con-
ditions, as evidenced by Table 2. This implies that the first combination of patterns is likely to make up the standard type 
of patterns that the long-term activator and substrate solutions are supposed to assume. The lack of robustness in pattern 
formation of the activator and substrate levels can be improved by adding growth factor to the system, in particular apical 
growth in the case of intrinsic noise [31]. As the domain grows, the space between the activated regions (characterized 
by the activator maxima or the substrate minima) is enlarged while the substrate concentration is quickly diffusing and 
increasing. This increase in substrate prompts a higher production of the activator at the side of the maxima in comparison 
to its center, resulting in the movement of the activator maxima to regions with higher substrate concentration [30]. At-
tributing the appropriate type of growth to the system can help stabilize the pattern formation over time where the robust 
patterns for both activator and substrate levels are the first combination of patterns.
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Table 3
The mean errors S defined in Eq. (47), orders of convergence, and computational cost when solving the activator–substrate system with noise described 
in Eqs. (54) and (55) obtained by each method: IIF1–Maruyama, IIF2–Maruyama, and Euler Maruyama. The results are computed over 100 Brownian paths 
with N denoting the number of spatial grid points that partition the interval (0, 10).

N IIF1–Maruyama IIF2–Maruyama Euler Maruyama

dt = dx/2 dt = dx dt = (dx)2/3

S Order Time(s) S Order Time(s) S Order Time(s)

23 3.52e−2 2.36 0.158 1.27e−2 0.61 0.014 1.41e−2 0.28 0.009
24 6.88e−3 0.65 0.154 8.35e−3 0.62 0.101 1.02e−2 0.47 0.051
25 4.38e−3 0.37 0.233 5.42e−3 0.69 0.194 6.74e−3 0.60 0.230
26 3.38e−3 0.93 0.614 3.35e−3 0.86 0.481 3.70e−3 0.86 1.093
27 1.77e−3 0.58 2.019 1.84e−3 0.68 1.208 2.14e−3 0.79 4.431

4.1.2. Computational efficiency

Next, we discuss the computational efficiency of the two IIF–Maruyama methods used to solve the Activator–Substrate 
system with multiplicative noise, Eqs. (54) and (55), by comparing their performances with that of an explicit method, 
which we choose to be the Euler Maruyama method. We keep all the parameter values as described previously in Eq. (53)
with the exception of time, which is changed to t ∈ [0, 1]. In Table 3, the mean errors, the order of convergence, and the 
computational time for each method are recorded. To calculate the mean errors and the order of convergence, we carry 
out 100 different simulations and apply Eq. (47). We choose dt = dx/2 for the IIF1–Maruyama method, dt = dx for the 
IIF2–Maruyama method, and dt = (dx)2/3 for the Euler Maruyama method to ensure convergence. In this table, we denote 
N to be the number of spatial grid points that partition the interval (0, 10). Besides N = 23, all methods display similar 
orders of convergence and mean errors of similar magnitude. Next, we discuss the computational time in seconds of each 
method. Each time listed in our table is the total time each method takes to compute the solution over 100 different 
Brownian paths. For the computational time of both IIF–Maruyama methods, we include the time it takes to calculate 
the exponential matrix using the Matlab function expm. We observe that with coarser spatial grids, i.e. when N = 23 and 
N = 24, the Euler Maruyama method surpasses both IIF–Maruyama methods in terms of computational effort. With finer 
grids, i.e. N = 26 and 27, it takes the Euler Maruyama method twice as long as it takes the IIF2–Maruyama method in 
computing the solutions over 100 Brownian paths. Similarly, the IIF1–Maruyama method is put at a disadvantage with 
respect to computational speed when the grids are coarse but quickly catches up to the Euler Maruyama method with 
refined grids. We note that the second-order IIF–Maruyama method is more efficient than the first-order IIF–Maruyama 
method. In addition, the second-order IIF–Maruyama method catches up to the Euler Maruyama method much faster in 
improving its computational speed, which is demonstrated by the similar speeds between these two methods when N = 24. 
Meanwhile, the computational speed of the IIF1–Maruyama method does not catch up to that of the Euler Maruyama 
method until N = 25. In short, due to the restriction of the temporal step size that is required to maintain numerical 
stability, the Euler Maruyama scheme is less computationally efficient than the IIF1–Maruyama and the IIF2–Maruyama 
schemes when a finer spatial grid is required. Between the two IIF–Maruyama methods, the second-order IIF–Maruyama 
method is more desirable for its computational efficiency than the first-order IIF–Maruyama method.

4.2. 2-Dimensional activator–substrate system

For two or three-dimensional systems, direct application of IIF is costly because the storage and computation of the 
exponential matrix eaM�t in the IIF methods may become very large. Similarly to solving the deterministic systems in two 
or three dimensions, here we use the compact integration factor methods (cIIF) [24], in which the discretized diffusion 
operator is represented in a compact form that requires storage only proportional to the number of unknowns instead 
of the square of the number of unknowns in the case of non-compact IIF methods for the exponentials of matrices. cIIF 
methods can be combined with the Maruyama method in the same manner as the integration of the IIF methods with the 
Maruyama method, and both the cIIF and the IIF methods share the same desirable stability properties [24].

Here we construct the cIIF–Maruyama methods by estimating the deterministic diffusion and reaction terms using the 
cIIF methods and the stochastic term using the explicit Maruyama approximation. To demonstrate the efficiency of the 
cIIF–Maruyama methods, we apply the cIIF2–Maruyama method to the two-dimensional version of the activator–substrate 
system with no-flux boundary conditions Eqs. (54) and (55) presented in the previous section. Similarly to the one-
dimensional case, we compute the solutions over the space (0, 10) × (0, 10) using the steady states in Eq. (50) as the 
initial conditions. The time window for the simulation is set to be t ∈ [0, 200] and dt = dx where dx = dy = 2−7 × 10. The 
rest of the parameter values in Eq. (53) remain the same. Fig. 10 displays the contour plot of one of the final patterns of 
the solutions A and S .

The computational time it takes for the cIIF2–Maruyama method to compute one stochastic solution to the two-
dimensional activator–substrate system is 126.789 seconds for this case. If we use the Euler–Maruyama method to solve 
this system using the same spatial step size, it takes 206.740 seconds due to the restriction on the temporal step size, 
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Fig. 10. One of the final patterns obtained for long-term solutions A and S when solving the two-dimensional stochastic system in Eqs. (54) and (55). The 
values for the noise coefficients are εS = 0.01 and εA = 0.005.

which we set to be dt = (dx)2/5. In summary, due to the stability property, the cIIF–Maruyama methods are as efficient in 
solving two dimensional stochastic reaction–diffusion systems as the one-dimensional systems.

5. Conclusions and discussion

By convention, stochastic stiffness is defined to be the result of the different time scales caused by the large discrepancies 
in the magnitudes of the Lyapunov exponents [15,18]. For that reason, stochastic stiffness can occur in the deterministic 
term, stochastic term, or both. When solving a stochastic differential equation, the problem of stiffness that stems from the 
stochastic term has been studied previously [15–22]. Here, we have focused on the treatment of stiffness of the reaction 
term for a stochastic reaction–diffusion system. By taking advantage of the existing semi-implicit integrating factor method 
that is both computationally efficient and absolutely stable at solving stiff deterministic reaction–diffusion systems, we have 
developed a new class of temporal schemes for reaction–diffusion systems with both additive and multiplicative noises. 
Similarly to the deterministic case, the new numerical schemes presented remove the restriction imposed on the temporal 
step size by the linear diffusion term by treating this term exactly while dealing with the stiff reaction term through 
an implicit approximation. Numerical comparisons show that the construction using the IIF technique to approximate the 
deterministic term allows the new methods to achieve better stability and good efficiency. While the explicit treatment of 
the diffusion in IIF naturally leads to good approximations on strong diffusion, the new IIF–Maruyama methods mainly offer 
an efficient approach to deal with stiff reactions in a reaction–diffusion systems. In general, this method is mostly effective 
when the reactions are very stiff while diffusion is still important in a stochastic reaction–diffusion system.

The approach used here in combining IIF for reaction and diffusion and Maruyama for the stochastic terms can be 
adapted in a straightforward fashion for compact IIF (cIIF) methods [24], which is effective for systems in two or three 
dimensions. With the compact representation for the differential operators, it would be more efficient in simulating 2D and 
3D systems using cIIF than IIF–Maruyama. Another improvement on IIF–Maruyama is its order of convergence.

In the case of multiplicative noise, the order of convergence of the IIF–Maruyama methods is confined to a value of 
one-half. With the Euler Maruyama method, the order of convergence can be improved by adding more terms from the 
Ito-Taylor expansion to construct methods with higher order of accuracy such as the Milstein method [15]. Integrating 
such approach with IIF method might lead to higher order of accuracy with similar stability property of IIF–Maruyama. 
However, because the diffusion term is not well-defined for the Brownian sheet due to a lack of a well-defined spatial 
derivative for the Wiener process, a direct application of the Milstein method to stochastic PDEs may only lead to half-order 
of convergence. To deal with this difficulty, one might need to use the Q-Wiener process instead of the Brownian sheet to 
approximate the diffusion [32]. Similarly to the IIF methods, which can be used for the deterministic systems in various 
forms, spatial dimensions, and in combination with other approaches for treating additional terms such as convections, 
IIF–Maruyama methods may have broad applications in simulating stochastic partial differential equations in various forms 
and containing stiff reactions.
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