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Newmark Local Time Stepping on High-Performance
Computing Architectures

Max Rietmann®3* Marcus Grote?, Daniel Peter'34, Olaf Schenk!

Abstract

In multi-scale complex media, finite element meshes often require areas of local
refinement, creating small elements that can dramatically reduce the global
time-step for wave-propagation problems due to the CFL condition. Local time
stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the
time-step to the element size, allowing near-optimal time-steps everywhere in the
mesh. We develop an efficient multilevel LT'S-Newmark scheme and implement
it in a widely used continuous finite element seismic wave-propagation package.
In particular, we extend the standard LTS formulation with adaptations to
continuous finite element methods that can be implemented very efficiently with
very strong element-size contrasts (more than 100x). Capable of running on
large CPU and GPU clusters, we present both synthetic validation examples
and large scale, realistic application examples to demonstrate the performance
and applicability of the method and implementation on thousands of CPU cores
and hundreds of GPUs.

1. Introduction

Efficiently simulating wave propagation at large scales has many impor-
tant scientific and industrial application domains (for further references see,
e.g., [25, 36, 37, 41]). In the field of seismology, simulating seismic waves re-
sulting from an earthquake or other seismic source is an important modality
used to better understand the Earth’s interior structure and dynamic behav-
ior [11, 38, 40, 42]. Many applications in both forward and inverse modeling
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have been pushing limits of traditional high-performance computing (HPC) re-
sources for many years [21, 2, 34]. Much of the optimization work in this field
is focused on improving the implementation of standard algorithms, which can
have bottlenecks that only better algorithm design can remove. Transforma-
tive improvements to simulation performance will likely require a coupling of
algorithmic, hardware, and software improvements.

In general, the motivating application drives the choice of spatial discretiza-
tion including a handful of comparable methods, including finite differencing,
continuous and discontinuous finite elements, and finite volumes. Finite-element
and volume methods are able to use meshes that easily adapt to the spatial do-
main — some elements can be small where small features are required, and
large where large features are needed. However, when a standard explicit time-
stepping scheme is used, these small elements require a small time step for
stability, enforcing a small time step everywhere in the mesh.

For explicit time-stepping schemes, any local areas of mesh refinement will
reduce the global time step thus reducing the efficiency of the method. There
are many reasons for local-mesh refinement, but to list a few we see in practice:

1. matching complex external and internal 3D geometry/topography;

2. increased resolution for localized small-scale physics (faults/oceans);

3. mesh-generator difficulties (especially for hexahedral elements, mostly due
to sharp angles and/or complicated shapes).

Without a good way to avoid the performance hit of localized refinement, the
application scientist usually reduces the scale of the simulation to fit within a
computational budget. This algorithmic bottleneck thus often limits scientific
work and dictates the computational feasibility of applications. To remedy this
shortcoming, we will focus on a method of local time stepping (LTS) that allows
the time step to be adapted to the mesh-local spatial resolution.

Previous LTS studies for arbitrary high-order schemes using Adams-Bashforth
in time and discontinuous Galerkin (DG) in space (ADER-DG) have been pro-
posed [26] and successfully applied to electromagnetic [39] and elastic wave
propagation [9]. These ADER-DG schemes allow each element to take an opti-
mal time-step set by its element-local Courant-Friedrichs-Lewy (CFL) condition.
Further work using a DG method done by Gédel et al. [13] was able to show an
LTS algorithm working on GPUs for Maxwell’s equations. The LTS-leap—frog
method proposed by [7] was implemented by [28] using a DG discretization for
applications in seismic wave propagation. We note that all of these successful,
high-performance implementations of LTS for wave propagation applications
have utilized a DG discretization, which may not always be desired. Missing
thus far has been an LTS scheme and corresponding high-performance imple-
mentation focused on continuous Galerkin finite elements such as the spectral
element method (SEM) [19, 22, 23, 27, 30].

We derive an LTS method and its high-performance application of an ex-
plicit Newmark time scheme [17], used in some of the most popular community
codes in computational seismology [19, 20, 32]. To simplify the development of
an LTS variant of the Newmark time-stepping scheme for a SEM, we embrace



the framework developed by Diaz and Grote [7]. They were able to prove and
demonstrate optimal convergence and stability properties for second and fourth
order leapfrog methods, with recent extension to multiple refinement levels [8].
We derive an LTS variant of the Newmark time-stepping scheme with additional
considerations for the SEM, absorbing boundary conditions, and multiple refine-
ment levels.

The structure of the paper is as follows. Section 2 will introduce the two-level
LTS-Newmark method, followed by extensions for continuous finite-elements in
Section 3, which were required for an efficient implementation. Section 4 ex-
tends the two-level scheme to multiple-levels, an important performance fea-
ture. In Section 5, we validate the multilevel implementation and introduce the
high-performance implementation in the widely used seismic community code
SPECFEM3D _Cartesian [5]. Section 6 presents the implementation on mas-
sively parallel architectures with details on the load-balancing solution required
by a multilevel LTS scheme running on a multinode cluster. Additionally, it
presents large-scale synthetic and real-world application benchmarks on CPU
and GPU clusters demonstrating the applicability of this new LTS implementa-
tion on realistic, large-scale problems where multinode parallelism is a require-
ment. This is followed by the conclusion in Section 7.

2. Newmark-based Local Time Stepping

Although the LTS-Newmark algorithm can be applied to general wave-
propagation problems, we are particularly interested in the elastic wave equation
to model seismic wave propagation through the Earth’s crust and mantle. The
displacement « with x,y,and z components satisfies

p(@)Tyy -V - T(T,t) = f(Zs,1), TEQt>0, (1)

with a traction-free boundary condition with - T = 0 on the free surface with
outward normal r. At the vertical and lower boundaries we impose absorbing
boundary conditions to keep spurious reflections minimal. The stress tensor
T(#,t) is related to the displacement gradient Vi via Hooke’s constitutive law

T(,t) = C(&) : Vi(i, 1), 2)

where C is the fourth-order elasticity tensor [6].
As a spatial discretization we utilize a high-order SEM. Following [32], the
weak form of (1) — (2) is

/w.p(:z)attd9+/vw;TdQ:/w.f(fs,t)dQ Vi eV (3)
Q Q Q

on the bounded domain €2, where V' C [H!(Q)]® is an appropriately chosen
subspace. Given a shape-regular mesh 7, made of disjoint hexahedral elements
K, we let V}, C V represent the finite dimensional subspace spanned by the



Lagrangian polynomial basis functions ¢; = {¢%, ¢, $7}. Now, we can write (3)
in the following matrix form

Mii+ Ku =F, (4)

where

M; 51 'PKQ;]' dQp, Kij= V(Ei :Ck V(Ej dQy,
(5)

Gi - f(Z, 1) d,

Qp,

F;

and we have assumed, for simplicity, that the physical parameters p(Z) and
C(#) are constant within each element K. The degrees of freedom (DOF) u;
are ordered by nodal values as

u= [uz(fl)?uy(fl)auz(fl)a e "ur(fN)vuy(fN)auZ(fN)] (6)

The choice of Gauss-Lobatto-Legendre (GLL) collocation points in each element
K combined with the appropriate quadrature leads to a diagonal matrix M
without loss of accuracy [19]. Thus, (4) can be rewritten in a form that allows
for an explicit time-stepping scheme

ii=-M }(Ku-F)=Bu+F, (7)

as M~! is computed trivially; hence, B fully represents the spatial discretiza-
tion. Each z,y, z triplet in u represents a GLL point (node) on each element,
where nodes on element-boundaries are shared between elements. To finalize
the discretization of (7), we must choose a time-stepping method.

2.1. Newmark method

The explicit Newmark scheme is a relatively popular method currently used
in several spectral element implementations [20, 29, 10, 32] that is second or-
der accurate and conserves an equivalent energy [24] and is equivalent to the
second-order leap—frog scheme — see Section 2.4. To derive an LTS version
of Newmark, we will first rederive the standard Newmark scheme from first
principles. Starting from (7), with F = 0, for simplicity, we rewrite it as the
first-order system,

u = v, @®)
v = Bu.
The solution of (8) is formally given by
tn+EAL
u(t,) —|—/ v(s)ds,

in

tn+EAL
v(t,) + / Bu(s) ds.
t

n

u(t, + EAL)

V(t, + EAL)



Any numerical scheme must approximate the integrands v(s) and Bu(s) in (9).
In deriving the Newmark scheme from this integral formulation, we advance
u(t) and v(t) on staggered temporal grids, whereby we can utilize the same
midpoint quadrature rule for both integrands:

tn+ 5 At
V(tn + 340 = V(= 340 + /t ,,, Buls)ds
nT3

v(t, — 3At) + At Bu(ty,),

Q

ultn +AD = ulty) + /t tn+Atv(3) ds

n

~ u(t,) + Atv(t, + SA).

Next, we denote by v,4¢ the numerical approximation at time ¢, + £At, and
thus write the above time-marching scheme succinctly as

Vorl = V, 1+ AtBu,, a1)
Uy = un+Atvn+%.

This staggered form will be useful in the derivation of LTS-Newmark.
A more commonly written form takes advantage of an intermediate variable
a,,, such that

a, =Bu,, v,=v, 1+ 3Ata,. (12)
Indeed, we can then rewrite u,4; as
Upt1 = Up+ Atvn,% + %AtzBun + %AtQBun
= u, +Atv, + %AtQan. (13)

Similarly, we can use (11) and (12) to rewrite v, as

Vn+1 = VnJr% + %At ap+1
= Vo1t sAta, + $Ata, + tAta,
= Vp+ %At a, + %At An41, (14)

which yields the more familiar (non-staggered) form [17],

At?
Upt1 = Up+ At Vi + Tana
a1 = Bunpr+Foy, (15)
t
Vp+l1 = Vp + 7 (an + anJrl) 5

Regarding the conservative properties of Newmark, we note that the semi-
discrete form (4) conserves the semi-discrete energy [24]

E = 1u"Mu+ Ju"Ku, (16)
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Figure 1: 2D example mesh with refinement with second-order elements (9 nodes per element).
Coarse-region (I — P) nodes marked in white-filled circles and fine-region (P) nodes marked
in black-filled circles.

if F = 0. Implicit forms of Newmark conserve this quantity, however the explicit
form of Newmark considered here conserves a modified energy,

ENM = %VTMV + %UT(K — iAt2KM_1K)U, (17)

and in the limit At — 0 is equal to the semi-discrete form (16). To ensure the
positive definiteness of (K — iAtzKM’lK) and thereby the stability of the
scheme, the time step At must be chosen to be sufficiently small, and generally
follows the commonly known CFL condition. For acoustic or elastic (1) wave
propagation it is the following inequality,

. - hy
< 1 . L —
At < Copy, Iplel% (hl) , hi = —, (18)

where h; and ¢; denote the element size (or radius) and material velocity inside
element K; € T;,. The element size h; will be dependent on the element type,
and there are many choices of size metric for a variety of element types in 2D and
3D, including shortest element edge or radius of inscribed circle, such that the
choice will affect the final CFL constant Ccr.. Due to this stability condition,
the smallest h; will impose the same (small) At everywhere in the mesh. To
overcome that bottleneck, we will now derive an LTS method, which allows
differently sized time steps in different regions of the mesh.

2.2. LTS-Newmark method

Following the framework in [7, 14, 15], we divide the finite-element mesh into
both fine and coarse element regions and correspondingly we split the DOFs as

u(t) = Pu(t) + (I — P)u(t) = ulfirel(z) 4 uleoarsel(y), (19)

Here the selection matrix P is diagonal: P;; = 1 when the associated DOF w;
is within the fine region, and zero elsewhere. In a continuous finite element
method, such as a SEM, the wavefield u(t) is defined on mesh nodes that are
shared on element boundaries. To resolve the ambiguity of element-boundary
nodes, we assume that all coarse-fine boundary nodes belong to the fine region,
which has been depicted in the 2D example in Fig. 1. Next we approximate, for



fixed t,, the integrand in (9) as
B((I—P)u(t) +Pu(t)) =~ B((I - P)u(t,) + Pu(r)), (20)

where u(7) solves the differential equation

%(7) = (1), —At<r<At,  a0)=u(t,)
fT‘T’(T) = B(I-Pu(t,) +BPu(r), v(0)=v (21)

where v will be specified below.

This “fine-level” subproblem allows us to advance the fine-region values at
a finer time step that satisfies the local CFL condition and frees the coarse-
level elements to take larger steps. Note that u(t,) is a constant within this
subproblem.

Using (20) we now approximate the solution of our original system (8) as:

TAt
vty + 3AL) &~ v(t, — 3AD) + / B(I—-P)u(t,) + BPu(s)ds

1At
IAt
~ v(t, — 3At) + AtB(I—P)u(t,) + / BPu(s) ds,
—1At
tn+AL
u(t, +At) =~ u(ty,) —|—/ v(s)ls=t, , ds
tn 2
~ u(ty) +Atv, 1. (22)
Since u(t,) is constant within (21), we have
IAL
V(iA) = v(-3At) + AtB(I-P)u(t,) +/ BPu(s)ds, (23)
—1At
At
QAf) = ulty) + / (s) ds
0
~ u(t,) + v(3At). (24)
A comparison of (22) with (23) yields
vty + 3AL) — v(t, — A1) = V(3AL) — v(—3AL). (25)

Since v(7)

- ) is independent of v, we may choose v = 0 in (21), which
implies that a(r

.
u(—7) and v(7) = —v(—7). Hence, we can rewrite (25) as

V(—
) =

1

v(t, + $AL) v(t, — AL +2V(3AY)

V(tn — LAE) +2 (W) (26)

1



where v(At) is replaced by the approximation in (24) and a(At) is computed
by applying Newmark to (21) with a smaller and stable time step Ar.
Depending on the relative size of elements in the coarse region, the LTS-
Newmark algorithm will use the maximum stable integer multiple time step
At = p A7 such that
'}'L[coarse]
p= \‘ min

7 fne] eN. (27)

min

The scheme thus takes p steps of size AT = % in the fine region for every larger
At step in the coarse region.

2.3. LTS-algorithm for two levels

With the expression in (26) defining the updates on the global level, we can
write down the LTS-Newmark scheme for two levels in Algorithm 1. The use
of w avoids the re-computation of B(I — P)u,, at every substep, ideally saving
a significant amount of work. All further matrix-vector multiplications by BP
involve only those DOFs associated with the fine region, which take a smaller
time step A7 imposed by the local CFL condition.

Algorithm 1 Two-level LTS-Newmark

Require: uo,v_%,AT = %
forn=20,1,... do
w=B(I-P)u,
vi = s A7(BPu, + w)
u; =u, + AT{’%
form=1,...,(p—1) do
ffm+% = \Nlm‘% + At™w + A7BPu,,
Qa1 = Uy + A’T\N’er%
end for )
Voapl =Vu_1+2 (up;tun)
Wyl = U, + Atvn+%
end for

M

If the coarse region has relatively more elements than the fine region, LTS
will be able to save a large amount of computation, that can be modeled simply
as

x #|fi 1 t
theoretical LTS speedup = p X ##[fine + coarse clements)

p X #[fine elements] + #[coarse elements]’ (28)
where we note that each fine element has to do p-times more work than a coarse
element to reach the final desired elapsed time. Note that for p = 1, Algorithm 1
coincides with the standard Newmark method (11).

Remark: Many applications incorporate some form of damping, be it physi-
cal or due to first-order absorbing boundary conditions (ABC) [4], yielding the



following discrete system
Mi + Cu+ Ku =0,

similar to (4) (with F = 0), however, with the diagonal matrix C representing
damping or a boundary term.

The addition of a term including u requires certain changes to the time-
stepping scheme. For the staggered non-LTS Newmark scheme (11), we have

V.o, 1 = vfl—AtM_l(Kun—i—Cv 7;),
nt3 n—3 n—3

u, = un—i—Aﬁvn+%7

where M = M + %AtC. This formulation allows us to modify the two-level
LTS-Newmark scheme (Algorithm 1) by simply using the modified mass matrix
applied to the spatial operator B = —M~'K and a modified global update

)

+2 (“”A_t“”) ~AIM'Cv,_

=

as the only changes.

When the absorbing boundary is made of only coarse-region elements, there
is no effect on stability or the qualitative nature of the absorption. However,
when fine-region elements are included in the absorbing boundary, the stability
of the scheme is impacted. In 1-D acoustic experiments, the largest stable time
step was reduced by over a third, potentially reducing the effectiveness of LTS
in practice. Further study of this stability reduction and replicating this result
with other LTS schemes goes beyond the scope of this paper, but would be
interesting future work.

2.4. Accuracy, convergence and stability analysis

To rigorously establish the accuracy and conservative properties of our new
LTS-Newmark scheme from Section 2.2, we will rewrite it in a single-step “New-
mark” formulation, which first requires the following technical result:

Lemma 2.1. Forp > 1, G, defined by Algorithm 1 satisfies

j—1
a; =u, + Y ol (A7) (BP) Bu,, 1<j<p, (29)
i=0

where the constants ozg, 0<1i<j—1, are defined by the following recurrences:

ad=2, o=

o

9

|
N‘Q.;:l\)h—t
D=

Shs o se O O

I
[N}
Q
.
L
|
Q
SRS

+

2007l =15 -3, (30)
-1
-3

J
aj_s,

e o o
A
Il
Ky
SRS
o]



The proof is provided in Appendix Appendix A. Therefore, we can rewrite the
LTS algorithm in “Newmark manner”.

Proposition 1. For p > 2, Algorithm 1 is equivalent to

Vatl = Vo1 + AtBpu,,
U,11 = U, —i—Ater%7
where By, is defined as
2 %
B, =B+ 5 Y of(A7)”(BP)'B. (31)
L

and the constants of are given by (30).

Proof: We rewrite v,, 1 from Algorithm 1 using Lemma 2.1 as

2 11 2 = 7 i
Vn—&-% = Vn—% + E (up - un) = Vn—% + E ( E Oéf(AT)Q +2(BP) Bun> .
=0

After pulling out the first term in the sum and using AT = At/p and of, = p?/2,
we obtain

9 271 , .
Vn+% = Vn—% + At <B + —])3 E O‘f(AT)m(BP)ZB) u,,
i=1

which completes the proof. [J
As a consequence of Prop. 1, we can also rewrite LTS-Newmark in “leap—frog
manner” as
Upp1 = 2u, — u,_q + At? B,u,, (32)

which corresponds to the LTS-leap—{rog method from [7] — Proposition 1 coin-
cides with (Proposition 3.3, [7]) with B = —A,B, = —A, and o premultiplied
by (—1)"*!. Hence, the current LTS-Newmark formulation immediately inherits
the properties proved in [7]. In particular, it is also second-order accurate and
conserves a discrete version of the energy like the standard (non-LTS) Newmark
method.

3. LTS-Newmark Formulation for a Continuous FEM

The principle focus of this paper is the derivation and implementation of
a high-performance LTS-Newmark method. The previously defined algorithm
does not make explicit considerations for an efficient implementation with con-
tinuous finite elements that can achieve the LTS speedup predicted by (28).

Algorithm 1 does explicitly provide the precomputation of w = B(I—P)u,,,
which ensures that this expensive operation is only done once per global time

10



step. However it is unclear how to avoid computing updates on coarse-region
nodes (I-P) in a substep (e.g., W41 = W + A7V, 1). To better understand
this, we list the vector additions of LTS-Newmark and the actual and optimal
computational cost in terms of the coarse and fine DOFs. If we let Neoarse
and Nfpe represent the number of coarse and fine elements, one can write the
computational complexity of the operations from Algorithm 1 in terms of their
actual cost and the optimal cost if we consider LTS as an algorithm acting on
each refinement-level locally.

Operation Actual Cost Optimal Cost
(1) W = B(I - P)un O(Ncoarse) O(Ncoarse)
(2) a=BPu, O(Nine) O(NVime)
(3) ‘N/m-i-% = {fm_% + Atw + Ata O(Ncoarse + Nﬁne) O(Nﬁne)
(4) lwlm-‘,-l = U, + AT‘;m_A,_% O(Ncoarse + Nﬁne) O(Nﬁne)
(5) 2 (U‘)A;tu” O<Ncoarse + Nﬁne) O(Nﬁne)

Table 1: Actual vs. optimal LTS-Newmark operations as listed in Algorithm 1.

Several operations from Algorithm 1 are listed in Table 1, along with their
actual and optimal computational costs. For example, the B(I—P)u and BPa
operations on the coarse and fine region already compute the minimal set of
operations necessary, with the reasonable assumption that Pu and (I—P)u can
be implemented efficiently. The operation Bu is typically done in a matrix-free
fashion with a loop over elements, and by restricting the loop to act only on
elements with non-zero P or (I — P), the optimal complexity can be achieved
directly. However, the vector operations (3), (4), and (5) are done on the full
set of nodes and it is not clear how to select the optimal set of nodes, which
are required for the algorithm, in contrast to operations (1) and (2). To achieve
very high efficiency, we have to extract the minimal set of nodes in P and
(I—P) required to initialize, execute, and finalize the fine-region substeps, such
that fine-region operations have a cost of O(Ngye). Thus, we need to carefully
consider the boundaries between coarse and fine elements in the context of a
continuous FEM.

The spatial discretization operator B mixes information across element bound-
aries due to the continuous nature of the finite-element basis functions. To char-
acterize this mixing in the discretized system (7), we define two further selection
matrices:

Coarse-to-Fine contributions: Selection matrix R is a diagonal matrix
with 1 at coarse nodes that are in an element also containing fine nodes
and zero everywhere else, with properties

PBR#0, PBI-P-R)=0. (33)

In other words, R selects coarse nodes that, through B, contribute to the
fine region.

11



Fine-to-Coarse contributions: Selection matrix F is a diagonal matrix
with 1 at fine nodes that are directly bordering coarse nodes and zero
everywhere else, with properties

I-P)BF#0, (I-P)B(P—F)=0. (34)

In other words, F selects fine nodes that, through B, contribute to the
coarse region.

These additional selection matrices are illustrated in Figure 2 with the contin-
uous nodal basis functions that define the DOF's.

I ly
. " coarse element R ’ N, P = nodes {3,4,5}
N R = nodes {1, 2}
,’/ N F = node {3}

Figure 2: A 1D example of the interface between two refinement levels from the perspective of
a fine element. The I;(z) represent a second-order polynomial finite-element basis set on the
GLL points (for N = 2). I3(x), highlighted with a solid line, has support over both elements,
whereas the [;+3, marked with dotted lines, only have support in their respective elements.
Intuitively, the spatial operator B smears values at nodes 1 and 2 into the neighboring fine
element via node 3, and vice versa.

In order to implement LTS-Newmark for a SEM efficiently, the use of the
P,R, and F selection matrices is needed so that the implementation only up-
dates the substep At values of coarse nodes where the fine region requires their
value. Hence, these matrices help define the flow of information across element
boundaries, a crucial element of LTS.

In contrast, other finite-element formulations such as DG [16], can directly
implement LTS without explicitly using these local “communication” matrices
R and F, thereby easing high-performance LTS implementations [9, 13]. As
the element boundaries, and therefore the refinement-level boundaries, are ex-
plicitly coupled via the numerical flux, implementing LTS from the global DG
formulation can be relatively straightforward. As noted in [15], the choice of
spatial discretization does not impact the convergence or stability properties
of the LTS method. Given our desire to use a SEM with its continuous nodal
basis, we examine the terms B(I — P)u,, and BPa,, to alter their structure to
utilize R and F to make the coupling between coarse and fine explicit.

8.1. LTS-algorithm with selection matrices
A closer look at Algorithm 1 yields the coarse region term, which can be
rewritten using selection matrix R and its properties (33) as

w = B(I - P)u=PBRu, + (I- P)B(I- P)u,.

12



This explicitly gives us the contribution of the coarse nodes to fine nodes
(PBRu,,) and the coarse node intermediate step ((I — P)B(I — P)u,,), which
only contributes to coarse nodes. Conversely, the fine-node contribution to the
coarse nodes is determined from the fine-node term using selection matrix F
properties (34),

a,1 = BPa, = PBPi,, + RBFii,.

Similarly, we see the fine-node contribution to other fine nodes in PBPu,, and
the fine-node contribution to the coarse nodes RBFu,,. Because the coarse-
to-coarse contributions (I — P)B(I — P)u,, are simply added at each substep
(without mixing), these can be combined and moved from the fine region to the
final, coarse-region update.

To rewrite the two-level LTS-Newmark scheme such that it can be imple-
mented efficiently, we now introduce the reduced equality operator (2) that
only operates on the set of nodes Q, where Q represents a selection matrix.

Thus, y 8y implies that only entries y; are set to x; where Q;; = 1. This

Algorithm 2 Two-level LTS-Newmark with selection matrices R and F

e _ At
Require: up,v_1,A7r = >

forn=0,1,.. “do
w = PBRu,
~ P+R 1 ~ ~
vi =" 3A7(w+PBPuy + RBFu)
i TR, + Arvy
form=1,...,(p—1) do
a, w4 PBPiu,, + RBFi,,
Vil PLR Vi1 + ATA,,

- P+R - -
Uyl = U_m—l—ATVer%

end for
P+R a,—u,
z =2 T)
Vil =Vp 1 +z+At(I-P)B(I-P)u,
Up+1 = Uy + Atvn+%
end for

rewrite of the two-level scheme is mathematically identical to the original Al-

gorithm 1. However, by taking advantage of the reduced equality operator (2),

: - P+R _ ~ _ PR _ -
operations such as v, 1 "=" v, 1 4+ A7ay and Upp1 = U + ATV, 1

are only active on the set of fine-region nodes plus boundary nodes selected by
R and can be implemented efficiently at a cost of O(NVgpe), the stated goal in
Table 1. In particular, the coarse region term (I—P)B(I—P)u, has been moved
from the precomputed w (in Algorithm 1) to Vgl (in Algorithm 2), that is
after the fine-region subproblem @, = t(At) has been computed. Now w only
precomputes the necessary terms given by R, which are used (and reused) for
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vi and v, 1. These optimizations allow for the efficient implementation of
the two-level version of the scheme, but a multilevel approach will achieve even
higher performance.

4. Multilevel LTS-Newmark Method

For simplicity, we previously limited ourselves to only two levels, but many
applications are able to benefit significantly by adding the ability to step using
an arbitrary number of levels. By allowing multiple levels, we add flexibility to
the time steps, such that more elements are closer to their own optimal time
step.

A move to multiple refinement levels requires further variables, which we
index by level & with k = 1,..., kpax from coarsest to finest; the following
variables are defined:

1. Py is a diagonal matrix with value 1 when the diagonal entry corresponds
to level-k DOF's with the following properties,

N
> Pp=1 PP.=0j#k. (35)
2. uslrf) = Pku,vg,’f) = P,v,and agf) = Pa at step m.
3. m is the step relative to the coarser neighbor (of pf—: steps before this
level is complete).

With two levels, we simply had Ar = %, which gets extended to include

more levels with time steps

(36)

defined by the level k and the refinement p(k). For this current method, we are
restricted to refinements p, = p(k) such that each successive time step is an
even divisor of all previous levels,

D2
—=eN, P2 2 D1

P1

With even divisors, the synchronization between levels happens at every time
step (except the finest level). For instance, two neighboring refinement levels
can have time steps equal to At/2 and At/4, but not At/2 and At/3.

4.1. LTS-algorithm for three levels

For simplicity, we derive only a three-level version, mindful of the many-level
generalization. Following the original two-level derivation, the ODE system used
u(t) = uM (), v(t) = v (t), a(r) = u® (1), and ¥(7) = v(? (1), however, with
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the introduction of the third embedded subproblem with variables u®(s) and
v3)(s), one gets

(2)

T = V),
-

dv(®

y (1) = BPiuM(t) + BPyu®(r) + BPsu® (s).
-

This third variable is governed by the following system,

(3)
T = V),
S
dv®
T (s) = BP,uM (t) + BPou® (1) + BPsu® (s),
S

where uV)(t) and u®(7) are constant, u®(0) = u®(7), and v(®(0) = 0,
precisely as in the definition of @1(7). In a recursive manner, to solve u™ (t;+At),
we must solve u(®)(At), which requires i = At/Ary steps. However, each A7y
step require us to solve u®) (A7), requiring j = A7y /ATy steps of A7, In order
to make this explicit, one can write this three-level scheme in Algorithm 3, where
special care is needed at the intermediate level, when m = 0.

Additionally, the theoretical speedup model (28) is adapted to multiple lev-
els,
Pmax X #{all elements}

theoretical LTS speedup = — .
Dol pr X #{elements level k}

(37)

The multilevel LTS time-stepping algorithm is best understood recursively, such
that each level k is embedded within its coarser level (k — 1), up to the coarsest
level k = 1. For three levels with px, = 1,2,4, one would step with step sizes in
the following order:

At At At At At At

—_— =, —,—, — At .

{ 4 ) 4 ) 2 ) 4 ) 4 ) 2 ) t} (38)
Proposition 1 can be extended for this multilevel case with a multilevel

equivalent B, from (31) with more details available in [33].

5. Multilevel LTS-Newmark Method: Evaluation and Validation

To analyze the new multilevel LTS-Newmark method in 3D, we implemented
the scheme into the community package SPECFEM3D _Cartesian [32] (referred
to as SPECFEM3D from here on). This package is a comprehensive Fortran
code implementing both the (visco)elastic and acoustic wave equation on large
heterogeneous domains, with a focus on local and regional seismology. As a
SEM, it uses hexahedral elements to enable the construction of a diagonal mass
matrix, usually with P? elements. Originally written in Fortran90 and using
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Algorithm 3 Three-level LTS-Newmark

Require: up,v_i, A7y = %7 Aty =47
forn=20,...,7,, do
u® =
Wi = BP1U£L1)
form=1,...,(p2—1) do

) _ (@)

(3
u; Uy,

Wo = BPQ 117(73)

V(f’) = %AT{’) (Wl —+ wo + BPgu(()3))
2
) = of¥ + Ay
2
for s=1,...,(p3s/p2 — 1) do
v, =v®, 1 A (w1 +ws + BPguS‘))
2

s+3
M)
end for ’
(2) {(U(S) —ul))/AT, m=0

m+i 3 2
+3 v _%+2(u1()3)/p2—u£n))/A72, m>0

uflll = ug) + A1 vfj)

end for
v, =v, +a(uff) —ull)/ar

n+i = Tn—1
(1)
un+1

end for

v

=u) + Atv

n+%
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MPI for parallelization, it has been extended to work on GPU clusters using
CUDA [34].

Focusing on applications in seismology, we test the implementation using
localized earthquake sources (usually within a single element) and measure the
resulting solutions at or near the surface at localized stations, modeling a real-
world simulation scenario. Figure 3 illustrates the designed mesh and experi-
mental setup used, with coarse boundaries and refinement in the center. For
a homogeneous, isotropic elastic medium (v, = 2.8km/s, v, = 1.5km/s and
p = 2.3kg/m?), we model an earthquake using a pressure-type moment-tensor
solution with a Gaussian source time function (half-duration of 5 s) near the
center of the mesh at 25 km depth. Two linear arrays of stations to record solu-
tions are placed at the surface, with waves passing through all three refinement
levels.

' 2 60 km

P recording station

Y earthquake

134 km

Figure 3: Cutaway of a block mesh with three local refinement levels (left) and the experi-
mental setup (right). The smallest elements in the middle of the model require an 8x smaller
time step size than the coarsest elements located at the boundary. Experimental setup has
13 surface recording points and an earthquake at 25 km depth.

Figure 4 depicts a recording of the vertical (z — dir) displacement of a cen-
trally located station, with absorbing (ABC) and reflecting (non-ABC) bound-
aries comparing the reference solution to our new LTS-Newmark scheme. As
seen by the overlap of the two solutions, the seismogram recordings match very
well for both absorbing and reflecting boundary conditions. Both panels depict
the arrival of the pulse from the source, where the absorbing boundaries im-
perfectly absorb the incident waves, allowing the wavefield to return to a near
steady state, in contrast to the reflecting condition, where the waves continue
to bounce around the domain. Both the LTS and reference solutions overlap
perfectly, validating the implementation in SPECFEMS3D for this common use
case.

5.1. Performance metrics

Having demonstrated correctness in the previous section, we now demon-
strate the efficiency of our solution. After all, to be practically useful, the LTS
version must provide a useful speedup over the non-LTS reference version as
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Figure 4: Seismogram comparison between LTS (black line) and non-LT'S (red circles) for both
absorbing (left) and nonabsorbing (right) boundaries. Both panels show the initial arrival of a
wave created by the source, where the absorbing boundary solution (left) returns to a steady
state with some spurious reflections due to the imperfect absorption. The non-absorbing case
(right) shows the full reflections from all surfaces. Both LTS and non-LTS solutions in both
panels overlap perfectly, validating this test example.

predicted by the theoretical LTS speedup model (37) for a given mesh. In or-
der to measure the actual speedup, several performance metrics evaluate the
effectiveness of the LTS version. Given that LTS is a work saving feature, we
measure performance as

[simulated time (s)]

Performance = (39)

[elapsed time (s)]
where simulated time = (number of steps) x At and elapsed time measures how
long a simulation took (in elapsed or computation time). Thus, for the ap-
plication scientist, increased performance reduces the elapsed time required to
reach a particular simulation goal. Following this measure of performance, LTS
speedup is simply defined as the ratio of LTS and non-LTS performance,

Perfi
LTS speedup = croTmancewrs) . (40)
Performance non-11s)
It follows then that
tual LT d
LTS efficiency = actual LTS speedup (41)

theoretical LTS speedup’

For example, the validation setup from Figure 3 has a theoretical speedup of
1.3x, and our implementation in SPECFEM3D with LTS runs 1.3x faster giving
it 100% LTS efficiency.

5.2. LTS efficiency in 3D

In the following, we wish to ensure that the desired overhead complexities
from Table 1 are correctly implemented. Given that the mesh used to validate
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LTS Speedup Experiment
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Figure 5: LTS speedup test on a 300,000 element (19M DOFs) mesh with a center refinement
that is scaled from 2x-100x LTS speedup over the non-LTS version. (left) Performance results
showing nearly perfect actual LTS speedup vs. theoretical LTS speedup. (right) A zoom of
the refinement in the approximately 8x-speedup mesh, which has three time-stepping levels:
At, At/4, At/8.

the 3D implementation had only a very modest LTS speedup potential, a series
of meshes (1120km x 1120km x 780km) with approximately 300,000 elements
has been created. The coarsest elements are 15km across. Using CUBIT’s
refine feature we then created elements that are 3x smaller than the original
chosen element, with a surrounding transition radius. By sequentially refining
the center element (and saving each resulting mesh), the element sizes ranged
such that the theoretical LTS speedups (37) ranged from 2x to 100x relative to
the non-LTS version of the code. To create this, the upper surface center was
refined between 1 and 5 times to create time-stepping zones between p = 2 and
p = 256. The final, finest refinement case creates many levels in-between p = 1
and p = 256, making it an ideal test case for the efficiency of the implementation.

Performance experiments for different meshes that compare LTS and non-
LTS single-threaded execution of the code are depicted in Figure 5. One can
see that the actual LTS speedup matches the theoretical LTS speedup per-
fectly. By ensuring that the LTS operations scale with the number of elements
in each LTS level, the algorithm achieved excellent efficiency. For example on
the 100x speedup mesh, the finest level has p = 256 and only 1,136 elements
(compared to 298,000 on the coarsest level with p = 1). Without the anal-
ysis in Section 3, the time-stepping operations for the lowest level would be
performed 256 times per global step on all 19M DOFSs, heavily decreasing the
performance. The near perfect efficiency shown in Figure 5 demonstrates that,
for a single-threaded application, the overhead introduced by an efficient LTS
implementation is minimal.

In our case, for example, SPECFEM3D uses a matrix-free implementa-
tion of the action Ku, which takes advantage of the tensorized Lagrange basis
functions and the corresponding quadrature rule to compute the element-wise
matrix-vector product on the fly, trading arithmetic computation for precom-
puted matrix memory transfers for a performance boost on memory bandwidth
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constrained algorithms and devices. Thus, the selection matrices P, R, and
F for each refinement level must be implemented by restricting loop indexes
and zeroing fields to achieve the same effect without sacrificing the performance
characteristics of the original Ku action. The detailed description of the matrix-
free implementation goes beyond the scope of this paper, and is dependent on
the underlying implementation of the method. We refer interested readers to
the code itself, which is being made available®.

Part of the effectiveness seen in this 2-100x scaling example is due to choices
made about the memory layout. The recursive nature of the LTS scheme ensures
that the work done on finest refinement levels (which should contain a small
number of elements), is repeated several times, which we try to leverage for
additional performance. By organizing the degrees of freedom in memory by
refinement level, the CPU version maintains a higher level of cache usage relative
to the non-LTS version. In fact, this improved cache usage is amplified as more
processors are added to the problem, which we discuss in the next section.

6. Multilevel LTS-Newmark Method on Massively Parallel Architec-
tures

Having validated the 3D implementation in SPECFEM3D in single-threaded
mode, we turn to much larger examples to prove the performance on syn-
thetic and application meshes across a large number of CPU and GPU nodes.
SPECFEMS3D is a highly optimized code for HPC simulations, able to run on
very large parallel architectures. Thus, the implementation of our new multi-
level LTS-Newmark scheme has to perform very efficiently in parallel and be
aware of strong memory constraints on data allocation. We begin with an out-
line on the parallel implementation, followed by strong-scaling experiments on
a relatively large number of CPU and GPU supercomputing nodes.

6.1. Load balancing

We present here an overview of the parallelization of our multilevel LTS
algorithm, providing main results to demonstrate the effectiveness of our par-
allelization solution for LTS on both CPU and GPU clusters for large-scale
problems. A more detailed analysis of the parallelization of our LTS-Newmark
method is beyond the scope of this article, but is examined and compared with
several parallelization methods in a concurrent article [35].

In general, the parallelization is done by spatially partitioning the mesh, giv-
ing one partition to each MPI process. At each time-step, the shared boundary
nodes between partitions are swapped between neighbors to finalize the FEM
assembly. This can be done asynchronously, by computing the update to the
shared partition boundaries first. The SPECFEM3D GPU version additionally
overlaps CPU-GPU memory transfers with the non-boundary updates in order
to hide the required communications with computation [34].

Shttp://github.com/rietmann/specfem3d_lts
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Figure 6: A 1-D mesh with nine elements and three LTS-levels partitioned across three pro-
cesses that compares a worst-case unbalanced partitioning with the optimal case for our LTS
load-balancing strategy. The unbalanced case would run serially because the At/4 level needs
to complete on PROC1 before the At/2 level can begin on PROC2, and so on. Both the
balanced and optimal case would be correctly load balanced, but the optimal case would have
less communication at the (At/4, At/2) and (At/2, At) boundaries.

Unfortunately, an LTS scheme creates a strong load-imbalance across par-
titions. As noted in Section 4, the multilevel LTS algorithm can be viewed
recursively, where the finest levels must complete several steps before upper,
coarser levels can continue. These finer levels are also computationally more
expensive, as they are completing more steps than a coarser level. Thus, the
elements in each refinement level are associated with a different cost, and for
a general, non-constrained partitioning, the distribution of elements in each re-
finement level will not be balanced across partitions (and processors). Fig. 6
demonstrates our partitioning approach, which depicts a 1-D mesh with three
p-levels with time step sizes (At/4, At/2, At) and the partitioning across three
processes (PROC1,PROC2,PROC3) given by colors of gray.

An LTS-unaware partitioning scheme tries to balance the mesh across pro-
cessors (three in this figure), while minimizing cuts between elements (and thus
MPTI communications). The first partitioning shown (Unbalanced) accomplishes
a perfect partitioning for the non-L'T'S case, but represents the worst-case when
LTS is active. The three-level LTS case travels through the levels recursively, as
detailed in Section 4.1 and Eq. 38. In this “Unbalanced” partitioning, PROC1
must finish the finest level before PROC2 can take a step, which repeats un-
til PROC2 finishes the intermediate level and PROC3 can take a step. This
forces the three processes to run one-at-a-time, serializing the operation and
eliminating any parallelism.

In contrast to the unbalanced case, we additionally depict balanced and
optimal partitionings. The balanced case simply ensures that the elements in
each p-level are distributed equally across all three processors, enabling the full
parallelism available. However, a partitioning should also try to minimize cuts
across processors to reduce necessary MPI communications, which the optimal
case achieves. By grouping the (At/4, At/2) and (At/2, At) boundary elements
on a single processor, the required amount communications is less than the
balanced partitioning, which does not take the cost of cuts into account.

The dual requirements to both balance the refinement levels equally and also
minimize communications can be represented as a multi-constraint partitioning
problem. The SCOTCH [31] partitioner traditionally used by SPECFEM3D

21



however, allows only for a single constraint, making it just suitable for a two-
level scheme, without further modifications. More recently, both the MeTiS [18]
graph partitioning library and the PaToH [3] hypergraph partitioning library
can perform multi-constraint partitioning, however, MeTiS is not currently able
to adequately maintain the load-balance across levels as the parallelism is in-
creased. PaToH, a hypergraph partitioning library, was both able to maintain
the load-balance and more accurately model the more complex communications
relationship between elements at different refinement levels. This approach nat-
urally produces partitioning similar to the “Optimal” case shown in Fig. 6.

In contrast to the all-at-once approach of the multi-constraint partitioning
by PaToH, we tested a simpler approach using a single-constraint partitioning
scheme on each level independently. Without additional care, this approach
will create the “Balanced” partitioning in Fig. 6. The assembly of partitions
across refinement levels can be seen as a modified traveling salesman problem,
as one tries to combine the partitions in a communication-optimal way. For-
tunately, a simple greedy, first processor takes its best match, recombination
approach works very well in practice for the examples tested. In fact, it re-
mains our partitioning scheme of choice, performing as well or better than the
multi-constrain approach that uses the PaToH partitioning library, however the
difference was small. The examples shown in the next section’s performance
experiments used the simpler approach, however for more details and a com-
parison of the two schemes, see our concurrent paper focused entirely on the
partitioning problem [35].

6.2. Parallel performance evaluation

We conducted strong-scaling benchmarks on two hybrid CPU-GPU clusters:

Piz Daint — a Cray XC30 system®, with a single 8-core Intel XEON E5
CPU and a single K20X Kepler-generation NVIDIA GPU per node. The
SPECFEM3D CPU version runs 1 process per core (8 per node) and the
GPU version runs 1 process per GPU (1 per node);

T6di — a Cray XKT7 system, with a single 16-core AMD Opteron 6272 CPU
and a single K20X GPU per node. The 16 CPU cores share 8 floating
point modules, so the SPECFEM3D CPU version is run with 8 processes
per node to match 1 process per floating point module.

To evaluate the parallel performance of our implementation, elapsed time
of the LTS and non-LTS (reference) version of the code are measured for a
particular mesh and desired simulation time. Given that LTS is a work saving
feature, we compare the performance (defined in Section 5.1) of the LTS and
non-LTS versions of SPECFEM3D.

646 supercomputer (Top500) worldwide as of June 2015.
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0.2.1. Synthetic example

The mesh used to evaluate the single-threaded LTS speedup was a simple
block with a variable refinement in the middle with around 300,000 elements. In
order to test and optimize LTS performance at large parallelism, we extended
this mesh by a factor of 30x more elements to model a possible real-world
example of localized refinement. This larger mesh has 10M elements with an
element-size distribution that yields a theoretical speedup of 8x.

Normalized Performance

100

10

| | |
64 128 256 512
Number of Nodes (CPUx8,GPUx1)

Figure 7: Synthetic CPU and GPU benchmarks on 10M element mesh with four levels of
refinement (At, At/2, At/4, At/8) localized to a single area at the center, with an element
distribution creating 8x theoretical LTS speedup. Performance is normalized to the CPU
reference (non-LTS) version at 64 nodes. The parallel scaling efficiency is listed to the right
of each scaling curve.

Figure 7 presents strong-scaling experiments conducted on the Piz Daint
cluster where both CPU-only and GPU version with multilevel LTS-Newmark
and non-LTS Newmark schemes were run. Normalized to the performance of
the 64-node CPU non-LTS version, the CPU-LTS version initially achieves over
100% of the theoretical speedup of 8x, and scales to 512 nodes (4096 cores)
with 91% efficiency. We note that the reference version scales superlinearly,
with 102% efficiency at 512 nodes. CPU profiling indicates that this is the
result of better cache utilization as the partition size shrinks. The CPU-LTS
version also benefits from the improved cache performance as the partition size
shrinks. As noted in Section 5.2, our LTS implementation groups the degrees of
freedom by refinement level. Given the recursive nature of the LTS algorithm,
the inefficiencies introduced by having very few elements in the finest levels
are partially offset by cache-utilization improvements as the partitions become
smaller. This helps the CPU-LTS version scale efficiently by hiding the growing
LTS overhead.

We also note that the GPU-LTS version starts at 5.0x speedup over the
non-LTS GPU version at 64 nodes (63% LTS efficiency), which is 4.3x faster
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than the CPU-LTS version (and 34x faster than the non-LTS CPU version). At
higher node counts, the finest levels contain relatively few elements and are not
able to keep the GPU adequately busy to mask the overhead of setting up and
launching the CUDA compute kernels. This means that a strong-scaling roll
off in efficiency occurs earlier than usual, which is an expected weakness of a
multi-constraint partitioning approach.

6.2.2. Application example for the Tohoku-Oki subduction zone
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Figure 8: Tohoku mesh with 7.5M elements and a predicted speedup of 4.1 with the given
element distribution.

With the excellent performance on large synthetic benchmarks, we turn to
a real-world example for further performance validation. For many seismic
applications, a mesh is designed to support a minimum wavelength, which is
usually dependent on the resolution of the velocity structure of the medium.
However, to represent internal or external structures, it is common that lines
or regions of small elements occur due to meshing difficulties or the dimensions
of the structure. Traditionally in SPECFEM3D and other seismic simulation
codes, earthquakes are modeled as point sources, or possibly a collection of
point sources. These sources simply prescribe the slip at static mesh points,
and do not represent the dynamic triggering of a true fault. Seismologists are
now trying to model the earthquake as a dynamic fault rupture, which requires
solving dynamic rupture physics on a static mesh.

Seen in Figure 8, our application mesh is designed to model the fault slip
of the subduction zone in Japan, the source of the Tohoku-Oki magnitude 9.0

24



earthquake in 2011 [12]. SPECFEMS3D readily incorporates dynamic rupture
physics and this mesh honors the internal topography of the fault surface. Note
that when this internal fault reaches the surface of the mesh, some elements are
squeezed and become significantly smaller (the thin dark red stripe of elements),
which are 4-8 times smaller than the largest interior elements. These small
elements along the fault strongly impact the efficiency of a standard explicit
time-stepping scheme and have a predicted speedup of 4.1x.

Figure 9 presents strong-scaling experiments on the Tddi cluster (Cray
XK7), where the LTS-CPU version is 3.9x faster (in runtime) as compared
to the non-LTS CPU version. This corresponds to an LTS efficiency of 95%.
The LTS GPU version managed an additional 7.4x speedup, yielding 28.9x total
speedup against the original CPU version. The high CPU and GPU LTS effi-
ciency indicates that our partitioning solution is working well for this real-world
application example. To put these speedup numbers in perspective, using 40
nodes, the non-LTS CPU version requires more than 57 min to finish a simula-
tion, whereas the LTS GPU version can finish in less than 2 min.

—o— CPU non-LTS
—=— CPU LTS
—— GPU LTS

1,000 |

100

Application Runtime (s)

| |
79 18 40 80 120 160

Number of Nodes (CPUx8,GPUx1)

Figure 9: Runtime scaling (in seconds) comparing reference (non-LTS), LTS CPU, and
LTS GPU versions running on the Tohoku mesh of 7.5M elements (and 4.1x predicted LTS
speedup). The memory constraints limited the GPU version to start at 40 nodes.

7. Conclusion

We have presented a new LTS-Newmark scheme and its high-performance
implementation for large-scale wave propagation simulations. The algorithm is
able to utilize multiple refinement levels, yielding better performance than a
simpler two-level scheme, while still maintaining the properties of the two-level
version. We also provide the algorithmic improvements necessary to efficiently
implement the scheme in a continuous finite-element spatial discretization such
as the SEM.

To validate these improvements for practical purposes, we highlighted the
implementation of our multilevel LTS-Newmark scheme in a widely-used, seis-
mological community code, SPECFEM3D. The algorithm was integrated into
both the CPU and GPU versions of the code, allowing future users to benefit
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from both algorithmic and hardware optimizations. The performance experi-
ments show that LTS-Newmark is able to fully achieve the theoretical speedup
given by meshes traditionally limited by the CFL condition. The implementa-
tion is able to maintain a high LTS efficiency even on meshes with a factor of
100x theoretical speedup. Given that this can be combined with GPU speedup,
the new version of the code is possibly an order of magnitude faster than the
original CPU reference code. Of course, this speedup depends on the mesh in
question, which is generally designed for a particular application or experiment.

We demonstrate the LTS speedup on larger-scale seismic synthetic and ap-
plication examples, with simulations run on a relatively large number of CPUs
and GPUs. Through a multi-constraint partitioning approach, the multilevel
LTS implementation gets effectively load-balanced across hundreds of multicore
CPU and GPU compute nodes. As expected, strong-scaling for the LTS-GPU
version suffers for very small element counts in one of the refinement levels,
whereas as the LTS-CPU version still remains efficient. For more modest paral-
lelism goals, combining LTS with GPU computations still remains very effective,
providing a speedup of nearly 30x over the non-LTS CPU reference version for
a practical example highlighted in Section 6.2.2. Thus, for meshes with local-
ized small elements creating a strong CFL bottleneck, LTS-Newmark provides
an effective algorithmic solution that can be implemented for high-performance
computing architectures.

Finally, we want to emphasize that the multilevel LTS scheme developed
here is not tied to seismic wave propagation simulations, but can certainly be
applied to acoustic and electromagnetic problems as well. It would also be in-
teresting to further investigate the stability behaviour for absorbing boundaries
conditions in contact with fine-region elements in future work, as mentioned
in Section 2.3. Furthermore, combining the LTS scheme with different orders
of interpolation in space and time would be attractive to evaluate, especially
within a discontinuous Galerkin method approach [1]. Although higher-order
conservative time schemes exist, one could investigate how to increase the order
of Newmark schemes as employed here for mixing both spatial and temporal
orders in future LTS studies.
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Appendix A. Proof of Lemma 2.1

The proof is by induction over j. As an intermediate step, we show that

v._1 satisfies
J—3

i=3

j—1
Voo = > B(An)P T (BP)Bu,, j>1, (A1)
1=0

where the constants Bf are also recursively defined. For j = 1, we immediately
obtain from Algorithm 1

1 1
= §AT(BPun +w) = §A7Bun,

Vi
2
which corresponds to (A.1) with 8} = 1. Next, for j = 2, we have from
Algorithm 1 for Vi1
V32 = LA7Bu, + ArBPi, + ArB(I-P)u,

= 2ArBu, + AT*BPBu,,

which corresponds to (A.1) with 82 = %,ﬁ% = % Using that result below, we
have

Uy = + A¥s, = w1 +A7(357Bu, + 27 BPBu,)
= u, + 27 Bu, + 2ZBPBu,, (A.2)
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which corresponds to (A.1) with a2 =2 and o? = 1.

Now, let (29) — (30) and (A.1) hold for j — 1. Then,

V]‘,% = {’j*3/2 + ATw + ATBPﬁj_l
j=2 . 4
= Y B/ (Ar)* " (BP)'Bu, + ArB(I - P)u,
=0
j—2
+ATBP (un +> TN Aan)* P BP) Bun> _
=0

We include the term A7 Bu, into the second sum, shift the sum index by one,
and combine the first and resulting second sum to get
Vioi o= (B +1)ATBu, + Y (ol ) + 87 H)(Ar)* T (BP) Bu,
i=1

+al (A7) U2 (BP) U B,

which corresponds to (A.1) if

By =By 1L,

Bl =BT +all, 1<i<j-2, (A.3)
] 1

1=

Again using Algorithm 1 and the induction hypothesis, we have

j—2
= u,+ Z o1 (AT)* T (BP)'Bu,
i=0

u; =u;—1 + ATV]'_

N

+AT Z BH(AT)* T (BP)'Bu,,.
After combining the two sums, we obtain
i, = u,+ Z '+ 8))(A7)* T (BP)'Bu,

Jrﬁj_l(AT) 2(i-1)+2) (BP)(j_l)Bun,

which corresponds to (29) if o/ satisfies the recursion

(A4)
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ACCEPTED MANUSCRIPT

From (A.3), we replace 85 = #]7' + 1 and 8/ = 877! + a/~} in the above to

yield
oy =a) BT,
ol =al M+ Bl =al T BT +alD), 1<i<j-2,
aj_y =0,

From (A.4), we know that 55—1 = ‘ozg_l - af_z, but only for ¢ < j — 3. For

i = j — 2, we instead use a;:; = BJ-:;. Clearly, we have 3] = j — 1/2 leaving

i b
us with

-1 g2 -1 .
=207 —al " +al7], 1<i<j-2,

Finally, it is trivial to show that ag = %2, which completes the proof of (29)
- (30). O
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