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This work proposes a method for model reduction of finite-volume models that guarantees 
the resulting reduced-order model is conservative, thereby preserving the structure 
intrinsic to finite-volume discretizations. The proposed reduced-order models associate 
with optimization problems characterized by a minimum-residual objective function 
and nonlinear equality constraints that explicitly enforce conservation over subdomains. 
Conservative Galerkin projection arises from formulating this optimization problem at the 
time-continuous level, while conservative least-squares Petrov–Galerkin (LSPG) projection 
associates with a time-discrete formulation. We equip these approaches with hyper-
reduction techniques in the case of nonlinear flux and source terms, and also provide 
approaches for handling infeasibility. In addition, we perform analyses that include deriving 
conditions under which conservative Galerkin and conservative LSPG are equivalent, as well 
as deriving a posteriori error bounds. Numerical experiments performed on a parameterized 
quasi-1D Euler equation demonstrate the ability of the proposed method to ensure not only 
global conservation, but also significantly lower state-space errors than nonconservative 
reduced-order models such as standard Galerkin and LSPG projection.

© 2018 Published by Elsevier Inc.

1. Introduction

The finite-volume method is commonly employed for discretizing systems of partial differential equations (PDEs) that 
associate with conservation laws, especially those in fluid dynamics. Rather than operating on the strong form of the PDE, 
the finite-volume method operates on the integral form of the PDE to numerically enforce conservation over each control 
volume comprising the computational mesh. Thus, conservation is the primary problem structure imposed by finite-volume 
discretizations; this contrasts with other discretization techniques that aim to preserve other properties, e.g., variational 
principles in the case of the finite-element discretizations.

Unfortunately, the computational burden imposed by high-fidelity finite-volume models is often prohibitive, as (1) the 
fine spatiotemporal resolution typically needed to ensure a verified, validated computational model can lead to extremely 
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large-scale models whose simulations consume months on supercomputers, and (2) many engineering problems are real time
or many queries in nature. Such problems require the (parameterized) computational model to be simulated rapidly either 
due to a strict time-to-solution constraint in the case of real-time problems (e.g., model predictive control) or due to the 
need for hundreds or thousands of simulations in the case of many-query problems (e.g., statistical inversion).

Reduced-order models (ROMs) have been developed to mitigate this burden. These techniques first perform an offline
stage during which they execute computationally costly training tasks (e.g., simulating the high-fidelity model for several 
parameter instances) to compute a low-dimensional ‘trial’ basis for the state. Next, these methods execute a computation-
ally inexpensive online stage during which they rapidly compute approximate solutions for different points in the parameter 
space by projection: they compute solutions in the span of the trial basis while enforcing the high-fidelity model resid-
ual to be orthogonal to the subspace spanned by a low-dimensional ‘test’ basis. In the presence of nonlinearities, these 
techniques also introduce ‘hyper-reduction’ approximations to ensure the cost of simulating the ROM is independent of the 
high-fidelity-model dimension.

The most popular model-reduction approach for nonlinear dynamical systems such as those arising from finite-volume 
discretizations is Galerkin projection [52,21,39], wherein the test basis is set to be equal to the trial basis. The trial ba-
sis is often computed via proper orthogonal decomposition (POD) [33], but it can also be computed via the reduced-basis 
method; see Refs. [31,32,30], which apply the classical reduced-basis method to finite-volume problems. More recently, the 
least-squares Petrov–Galerkin (LSPG) projection method [16,17,15] was proposed, which has been computationally demon-
strated to generate accurate and stable responses for turbulent, compressible flow problems on which Galerkin projection 
yielded unstable responses. Unfortunately, neither Galerkin nor LSPG projection directly preserves important problem struc-
ture related to conservation laws or finite-volume models.

To address this, alternative projection techniques have been developed for improving the performance of reduced-order 
models when applied to conservation laws, particularly those appearing in fluid dynamics. These include stabilizing inner 
products applied to finite-difference [46] and finite-element discretizations [9,36]; introducing dissipation via closure mod-
els [6,51,12,57,49] or numerical dissipation [34]; performing nonlinear Galerkin projection based on approximate inertial 
manifolds [41,50,35]; including a pressure-term representation [42,28]; modifying the POD basis by including many modes 
(such that dissipative modes are captured), changing the norm [34], enabling adaptivity [12,14], or including basis functions 
that resolve a range of scales [7] or respect the attractor’s power balance [8]; modifying the projection by adopting a con-
strained Galerkin [45,26], constrained Petrov–Galerkin [24], or L1-norm minimizing projection [1]; developing approaches 
tailored to the incompressible Navier–Stokes equations by introducing stabilizations based on supremizer-enriched velocity 
spaces and a pressure Poisson equation [54,53] or by modifying the Galerkin projection [38]; and improving the ROM’s abil-
ity to capture shocks [43,29,14,55]. Among these contributions, only a subset is applicable to finite-volume discretizations. 
Further, no model-reduction method to date has been developed to preserve the structure intrinsic to finite-volume models: 
conservation. In particular, none of the above methods ensures that conservation holds over any subset of the computational 
domain, which can lead to spurious growth or dissipation of quantities that should be conserved in principle.

To this end, this work proposes a novel projection scheme for finite-volume models that ensures the reduced-order model 
is conservative over subdomains of the problem. The approach leverages the minimum-residual formulation of both Galerkin 
and least-squares Petrov–Galerkin projection by equipping their associated optimization problems with (generally nonlinear) 
equality constraints that explicitly enforce conservation over subdomains. The resulting conservative reduced-order models 
can be expressed as the solution to time-dependent saddle-point problems. The approach does not rely on a particular 
choice of reduced basis, although the reduced basis can affect feasibility of the associated optimization problems. New 
contributions in this work include:

1. Conservative Galerkin (Section 4.2) and conservative LSPG (Section 4.3) projection techniques, which ensure that 
the reduced-order models are conservative over subdomains of the original computational mesh. These methods are 
equipped with
(a) techniques for handling infeasible constraints (Section 4.4), and
(b) hyper-reduction techniques that respect the underlying finite-volume discretization to handle nonlinearities in the 

flux and source terms (Section 4.5).
2. Analysis, which includes:

(a) demonstration that conservative Galerkin projection and time discretization are commutative (Theorem 4.3),
(b) sufficient conditions for feasibility of conservative Galerkin (Proposition 5.1) and conservative LSPG (Proposition 5.2) 

projection,
(c) conditions under which conservative Galerkin and conservative LSPG projection are equivalent (Theorem 5.1), and
(d) a posteriori bounds (Section 5.3) for the error in the quantities conserved over subdomains (Theorem 5.3), in the 

null space (Lemma 5.1) and row space (Lemma 5.2) of the constraints, in the full state (Theorem 5.2), and in the 
conserved quantities (Lemma 5.3 and Theorem 5.3).

3. Numerical experiments on a parameterized quasi-1D Euler equation associated with modeling inviscid compressible 
flow in a converging–diverging nozzle (Section 6). These experiments demonstrate the merits of the proposed method 
and illustrate the importance of ensuring reduced-order models are globally conservative.
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We remark that this work was first presented publically at the “Recent Developments in Numerical Methods for Model 
Reduction” workshop at the Institut Henri Poincaré on November 10, 2016.

Other works have also explored formulating reduced-order models that associate with constrained optimization prob-
lems. Zimmermann et al. [59] equip equality ‘aerodynamic constraints’ to ROMs applied to steady-state external flows, 
where the constraints associate with matching experimental data or target performance metrics in a design setting. Re-
cently, Reddy et al. [45] propose equipping the time-discrete Galerkin ROM with inequality constraints that enforce solution 
positivity or a bound on the gas-void fraction. Relatedly, Fick et al. [26] proposed a modified Galerkin optimization problem 
applicable to the incompressible Navier–Stokes equations, where the inequality constraints associate with bounds on the 
generalized coordinates; these bounds correspond to the extreme values of the generalized coordinates arising during the 
training simulations.

The remainder of this paper is organized as follows. Section 2 describes finite-volume discretizations of conservation laws 
(Section 2.1) discretized in time with a linear multistep scheme (Section 2.2). Section 3 describes the (standard) nonlinear 
model-reduction methods of Galerkin (Section 3.1) and LSPG (Section 3.2) projection, as well as their hyper-reduced vari-
ants (Section 3.3) and interpretations when applied to finite-volume models (Section 3.4). Section 4 describes the proposed 
methodology, which is based on enforcing conservation over decompositions (Section 4.1) of the computational mesh. Here, 
Section 4.2 describes the proposed conservative Galerkin projection technique, Section 4.3 describes the proposed conserva-
tive LSPG projection method, Section 4.4 describes approaches for handling constraint infeasibility, Section 4.5 describes the 
application of hyper-reduction to the constraints that respects the underlying finite-volume discretization, and Section 4.6
describes briefly how the quantities required for the proposed ROMs can be constructed from training data. Next, Section 5
performs analysis, including proving sufficient conditions for feasibility (Section 5.1), providing conditions under with the 
conservative Galerkin and conservative LSPG models are equivalent (Section 5.2), and deriving local a posteriori error analysis 
(Section 5.3). Section 6 demonstrates the benefits off the proposed method on a parameterization of the one-dimensional 
(compressible) Euler equations applied to a converging–diverging nozzle. Finally, Section 7 concludes the paper.

In this work, matrices are denoted by capitalized bold letters, vectors by lowercase bold letters, and scalars by un-
bolded letters. The columns of a matrix A ∈ R

m×n are denoted by ai ∈ R
m , i ∈ N(n) with N(a) := {1, . . . , a} such that 

A ≡ [a1 · · · an]. The scalar-valued matrix elements are denoted by aij ∈ R such that a j ≡ [a1 j · · · amj
]T

, j ∈ N(n). A su-
perscript denotes the value of a variable at that time instance, e.g., xn is the value of x at time n�t , where �t is the time 
step.

2. Finite-volume discretization

This work considers parameterized systems of conservation laws. In integral form, the associated governing equations 
correspond to

d

dt

∫
ω

ui(�x, t;μ)d�x +
∫
γ

g i(�x, t;μ) · n(�x)d�s(�x) =
∫
ω

si(�x, t;μ)d�x, i ∈N(nu), ∀ω ⊆ �, (2.1)

which is solved in time domain [0, T ] with final time T ∈ R+ , and a (parameterized) initial condition denoted by u0
i : � ×

D → R such that ui(�x, 0; μ) = u0
i (�x; μ). Here, ω with γ := ∂ω denotes any subset of the spatial domain of interest � ⊂ R

d

with d ≤ 3, whose boundary is � := ∂�, d�s(�x) denotes integration with respect to the boundary, ui : � × [0, T ] × D → R , 
i ∈ N(nu) denotes the ith conserved variable (per unit volume); g i : � × [0, T ] × D → R

d , i ∈ N(nu), denotes the flux 
associated with the ith conserved variable (per unit area per unit time); n : γ → R

d denotes the outward unit normal to ω; 
si : � × [0, T ] ×D → R , i ∈ N(nu) denotes the source associated with the ith conserved variable (per unit volume per unit 
time); and D ⊆ R

nμ denotes the parameter domain. We assume the domain � is independent of the parameters μ for 
notational simplicity.

2.1. Spatial discretization

We consider the particular case where the governing equations (2.1) have been discretized in space by a finite-volume 
method. This implies that the spatial domain has been partitioned into a mesh M of N� ∈ N non-overlapping (closed, 
connected) control volumes �i ⊆ �, i ∈ N(N�) such that � = ∪N�

i=1�i , which intersect only on their (d − 1)-dimensional 
interface, i.e., meas(�i ∩ � j) = 0 for i 
= j, where meas(ω) := ∫ω d�x, ∀ω ⊆ �. We define the mesh as M := {�i}N�

i=1, and 
we denote the boundary of the ith control volume by �i := ∂�i . The ith control-volume boundary is partitioned into a 
set of faces4 denoted by Ei such that �i = {�x | �x ∈ e, ∀e ∈ Ei, i ∈ N(|Ei |)}. Then the full set of Ne faces within the mesh is 
E ≡ {ei}Ne

i=1 := ∪N�

i=1Ei . Applying Eq. (2.1) to each control volume in the mesh yields

4 We note that this is a set of faces for d = 3, faces for d = 2, or simply extremities for d = 1.
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d

dt

∫
� j

ui(�x, t;μ)d�x +
∫
� j

g i(�x, t;μ) · n j(�x)d�s(�x) =
∫
� j

si(�x, t;μ)d�x, i ∈ N(nu), j ∈N(N�), (2.2)

where u ≡ (u1, . . . , unu

)
and n j : � j → R

d denotes the unit normal to control volume � j . Finite-volume schemes complete 
the spatial discretization by introducing a state vector x : [0, T ] ×D → R

N with N = N�nu whose elements comprise

xI(i, j)(t;μ) = 1

|� j|
∫
� j

ui(�x, t;μ)d�x, i ∈ N(nu), j ∈N(N�), (2.3)

where I : N(nu) × N(N�) → N(N) denotes a mapping from conservation-law index and control-volume index to degree of 
freedom, and a velocity vector f : (ξ , τ ; ν) �→ f g(ξ , τ ; ν) + f s(ξ , τ ; ν) with f g, f s : RN ×[0, T ] ×D →R

N whose elements 
consist of

f g
I(i, j)(x, t;μ) = − 1

|� j|
∫
� j

gFV
i (x; �x, t;μ) · n j(�x)d�s(�x)

f s
I(i, j)(x, t;μ) = 1

|� j|
∫
� j

sFV
i (x; �x, t;μ)d�x

(2.4)

for i ∈ N(nu), j ∈ N(N�). Here, gFV
i : RN × � × [0, T ] × D → R

d , i ∈ N(nu) denotes the approximated (or reconstructed) 
flux associated with the ith conserved variable (per unit area per unit time); and sFV

i : RN × � × [0, T ] ×D → R , i ∈ N(nu)

denotes the approximated source associated with the ith conserved variable (per unit volume per unit time), which may 
arise, e.g., from applying a quadrature rule to evaluate the integral. We emphasize that both the approximated flux gFV

i and 
approximated source sFV

i will in general depend on the entire state vector x, e.g., due to high-order flux reconstructions or 
reactions, respectively.

Substituting 
∫
� j

ui(�x, t; μ) d�x ← |� j|xI(i, j)(t; μ), g i ← gFV
i , and si ← sFV

i in Eq. (2.2) and dividing by |� j | yields

dx

dt
= f (x, t;μ), x(0;μ) = x0(μ), (2.5)

where x0
I(i, j)(μ) := 1

|�i |
∫
� j

u0
i (�x; μ) d�x. This is a parameterized system of nonlinear ordinary differential equations (ODEs) 

characterizing an initial value problem, which we consider to be our full-order model (FOM).

Remark 1 (Full-order model ODE: finite-volume interpretation). From the definitions of the state (2.3) and velocity (2.4), the 
full-order-model ODE residual element dxI(i, j)/dt − fI(i, j) can be interpreted as the (normalized) rate of violation of con-
servation in variable ui in control volume � j at time instance t under one approximation: the flux and source terms are 
approximated using the finite-volume discretization (i.e., g i ← gFV

i , and si ← sFV
i ).

Remark 2 (Flux velocity from face fluxes). The elements of the flux velocity can be computed from a vector of face fluxes 
h :RN × [0, T ] ×D → R

nu Ne , whose elements are

hJ (i, j)(x, t;μ) =
∫
e j

gFV
i (x; �x, t;μ) · ne

j(�x)d�s(�x), i ∈N(nu), j ∈N(Ne), (2.6)

where ne
j : e j → R

d denotes the unit normal assigned to face e j (using any convention) and J : N(nu) ×N(Ne) → N(nu Ne)

denotes a mapping from conservation-law index and face index to degrees of freedom defined on the faces. This mapping 
is provided by

f g
I(i, j)(x, t;μ) =

∑
k | ek∈� j

bI(i, j),J (i,k)hJ (i,k)(x, t;μ), (2.7)

where the elements of B ∈ R
N×nu Ne are

bI(i, j),J (	,k) =

⎧⎪⎨
⎪⎩

−δi	/|� j|, ek ∈ � j; n j(�x) = ne
k(�x), �x ∈ ek

δi	/|� j|, ek ∈ � j; n j(�x) = −ne
k(�x), �x ∈ ek

0, otherwise,

(2.8)

where δi j denotes the Kronecker delta. In matrix form, Eq. (2.7) becomes

f g(x, t;μ) = Bh(x, t;μ). (2.9)

This formulation will be exploited in Section 4, where we introduce the proposed method.
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The full-order model ODE (2.5) is typically the starting point for developing reduced-order models for nonlinear dynam-
ical systems. In this work, we exploit the particular structure underlying the dynamical system arising from the definitions 
of the state (2.3) and velocity (2.4).

2.2. Time discretization

A time discretization is required to solve (2.5) numerically. For simplicity, we restrict the focus in this work to linear 
multistep schemes, although other time integrators could be considered; see, e.g., Ref. [15], which develops LSPG reduced-
order models for explicit, fully implicit, and diagonally implicit Runge–Kutta schemes. Applying a linear k-step method to 
numerically solve Eq. (2.5) at a given parameter instance μ ∈D can be written as

k∑
j=0

α jx
n− j = �t

k∑
j=0

β j f (xn− j, tn− j;μ), (2.10)

where �t ∈ R+ denotes the time step, xk denotes the numerical approximation to x(tk), i.e.,

xk
I(i, j) = 1

|� j|
∫
� j

uk
i (�x)d�x, (2.11)

where uk
i (�x) denotes the numerical approximation to ui(�x, tk). The coefficients α j and β j define a particular linear multistep 

scheme, α0 
= 0 and 
∑k

j=0 α j = 0 is necessary for consistency, and the method is implicit if β0 
= 0. For notational simplicity, 
we employ a uniform time grid tk = tk−1 + �t , k ∈ N(NT ) with t0 = 0 and NT := T /�t . The fully discrete full-order model, 
which is sometimes denoted as the FOM O�E, is characterized by the following system of algebraic equations to be solved 
at each time instance n ∈ N(NT ):

rn(xn;μ) = 0, (2.12)

where rn :RN →R
N denotes the linear multistep residual, which is defined as

rn(w;ν) := α0 w − �tβ0 f (w, tn;ν) +
k∑

j=1

α jx
n− j(ν) − �t

k∑
j=1

β j f (xn− j, tn− j;ν). (2.13)

The unknown vector w ∈ R
N can be interpreted as

wI(i, j) = 1

|� j|
∫
� j

ũi(�x)d�x, (2.14)

and ũi denotes an approximation to the ith conserved variable ui(�x, tn) when evaluating the residual (2.13) at the nth time 
instance.

Adams methods. Adams methods consider the integrated form of Eq. (2.5)

xn = xn−1 +
tn∫

tn−1

f (x, t;μ)dt, n = 1, . . . , NT , (2.15)

and apply a polynomial approximation to the integrand. In particular, the pth-order Adams scheme employs coefficients 
α0 = 1, α1 = −1, and α j = 0, j > 1 and coefficients β j that associate with a polynomial interpolation of the integrand. In 
the explicit (β0 = 0) case, these are Adams–Bashforth methods with

�t
k∑

j=1

β j f (xn− j, tn− j;μ) =
tn∫

tn−1

In−1
k ( f (μ); t)dt, (2.16)

where f (μ) := ( f (x0, t0; μ), . . . f (xNT , tNT ; μ)) and the polynomial approximation (in time) of any time-grid-dependent 
quantity ξ := (ξ1, . . . , ξk) using data at (tn, . . . , tn+1−k) (with k ≥ 1) is

In
k (ξ ; t) :=

k∑
ξn+1−i

k∏ t − tn+1− j

tn+1−i − tn+1− j
. (2.17)
i=1 j=1, j 
=i
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In the implicit case (with β0 
= 0), these are Adams–Moulton methods with coefficients β j satisfying

�t
k∑

j=0

β j f (xn− j, tn− j;μ) =
tn∫

tn−1

In
k+1( f (μ); t)dt, (2.18)

Thus, the time-discrete residual (2.13) becomes

rn(xn;μ) = xn − xn−1 −
tn∫

tn−1

I( f (μ); t)dt, (2.19)

where I = In−1
k in the explicit case and I = In

k+1 in the implicit case. Substituting the definitions of the time-discrete state 
(2.11) and velocity (2.4) in (2.19) yields

rn
I(i, j)(xn;μ) = 1

|� j|
∫
� j

un
i (�x)d�x − 1

|� j|
∫
� j

un−1
i (�x)d�x

+ 1

|� j|
tn∫

tn−1

∫
� j

I(gFV
i (�x;μ); t) · n j(�x)d�s(�x)dt− 1

|� j|
tn∫

tn−1

∫
� j

I(sFV
i (�x;μ); t)d�xdt,

(2.20)

where

gFV
i (�x;μ) := (gFV

i (x0; �x, t0;μ), . . . , gFV
i (xNT ; �x, tNT ;μ))

sFV
i (�x;μ) := (sFV

i (x0; �x, t0;μ), . . . , sFV
i (xNT ; �x, tNT ;μ)).

(2.21)

Remark 3 (Full-order model O�E: finite-volume interpretation for Adams methods). Eq. (2.20) shows that the full-order-model 
O�E residual element rn

I(i, j) in the case of Adams methods can be interpreted as the (normalized) violation of conservation

in variable ui in control volume � j over time interval [tn−1, tn] under two approximations: (1) the flux and source terms 
are approximated using the finite-volume discretization (i.e., g i ← gFV

i , and si ← sFV
i ), and (2) a polynomial interpolation is 

used to approximate the integrand for time integration.

3. Reduced-order models

During the online stage, projection-based reduced-order models compute an approximate solution x̃ ≈ x that lies in a 
low-dimensional affine trial subspace x̃(t; μ) ∈ x0(μ) + Ran (�), i.e.,

x̃(t;μ) = x0(μ) + �x̂(t;μ), (3.1)

where � ∈ R
N×p is the reduced-basis matrix of dimension p ≤ N , which we assume without loss of generality satisfies 

�T � = I , x̂ : [0, T ] ×D → R
p denotes the generalized coordinates, and Ran (A) denotes the range of a matrix A. This basis 

can be computed in a variety of ways during the offline stage, e.g., eigenmode analysis, POD [33], or the reduced-basis 
method [44,47]. Substituting the approximation x ← x̃ into governing equations (2.5) yields an overdetermined system of N
equations in p unknowns. To compute a unique solution, reduced-order models must enforce the residual to be orthogonal 
to a p-dimensional test subspace. Galerkin and LSPG projection differ in their choices of this subspace; each choice leads to 
an approximate solution that exhibits a particular notion of optimality.

3.1. Galerkin projection

Galerkin projection employs a test subspace of Ran (�) and thus enforces the residual to be orthogonal to Ran (�), i.e., 
the Galerkin ODE is

dx̂

dt
= �T f (x0(μ) + �x̂, t;μ), x̂(0) = 0. (3.2)

Applying a linear multistep scheme to integrate Eq. (3.2) in time yields the Galerkin O�E

�T rn(x0(μ) + �x̂n
(μ);μ) = 0. (3.3)

As demonstrated, e.g., in Ref. [15], Galerkin projection exhibits continuous optimality if the reduced basis is orthogonal, 
i.e., �T � = I , as the Galerkin ROM computes the approximated velocity that minimizes the 	2-norm of the FOM ODE 
residual (2.5) over Ran (�), i.e.,
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dx̃

dt

(
x0(μ) + �x̂, t;μ

)
= arg min

v∈Ran(�)

‖r(v, x0 + �x̂, t;μ)‖2 (3.4)

or equivalently

dx̂

dt

(
x0(μ) + �x̂, t;μ

)
= arg min

v̂∈Rp
‖r(�v̂, x0 + �x̂, t;μ)‖2, (3.5)

where

r(v, ξ , τ ;ν) := v − f (ξ , τ ;ν) (3.6)

denotes the FOM ODE residual.

Remark 4 (Galerkin ROM ODE: finite-volume interpretation). From the time-continuous optimality of the Galerkin ROM ODE 
(3.5) and the finite-volume interpretation of the FOM ODE in Remark 1, the Galerkin ROM ODE (3.2) can be interpreted as 
minimizing the sum of squared (normalized) rates of violation of conservation across all variables ui , i ∈ N(nu) and control 
volumes � j , j ∈ N(N�) at time instance t under one approximation: the flux and source terms are approximated using the 
finite-volume discretization (i.e., g i ← gFV

i , and si ← sFV
i ).

3.2. LSPG projection

In contrast, LSPG projection associates with a minimum-residual formulation applied to the (time-discrete) O�E (2.12), 
i.e.,

x̃n = arg min
z∈x0(μ)+Ran(�)

‖rn(z;μ)‖2 (3.7)

or equivalently

x̂n = arg min
ẑ∈Rp

‖rn(x0(μ) + �ẑ;μ)‖2. (3.8)

The necessary optimality conditions for problem (3.8) associate with stationarity of the objective function, i.e., the solution 
x̂n satisfies

�n(x̂n;μ)T rn(x0(μ) + �x̂n;μ) = 0, (3.9)

where the LSPG test basis �n : Rp ×D → R
N×p is

�n(ŵ;ν) := ∂rn

∂ w
(x0(μ) + �ŵ;μ)� =

(
α0 I + β0�t

∂ f

∂ξ
(x0(μ) + �ŵ, tn;μ)

)
�. (3.10)

Eq. (3.10) reveals that LSPG projection adds the term β0�t
α0

∂ f
∂ξ (x0(μ) + �ŵ, tn; μ)� to the test basis employed by Galerkin 

projection.

Remark 5 (LSPG ROM O�E: finite-volume interpretation for Adams methods). From the time-discrete optimality of the LSPG ROM 
O�E (3.8) and the finite-volume interpretation of the FOM O�E for Adams methods in Remark 3, the LSPG ROM O�E (3.8)
can be interpreted as minimizing the sum of squared (normalized) violation of conservation across all variables ui , i ∈ N(nu)

and control volumes � j , j ∈ N(nu) over time interval [tn−1, tn] under two approximations: (1) the flux and source terms 
are approximated using the finite-volume discretization (i.e., g i ← gFV

i , and si ← sFV
i ), and (2) a polynomial interpolation is 

used to approximate the integrand for time integration.

3.3. Hyper-reduction

In the case of nonlinear dynamical systems, projection is insufficient to yield computational savings, as high-dimensional 
nonlinear quantities r and rn must be repeatedly computed, projected as �T r and (�n)T rn , and differentiated (in the 
case of implicit time integrators) for Galerkin and LSPG ROMs, respectively. To reduce this computational bottleneck, sev-
eral ‘hyper-reduction’ techniques have been developed that require computing only a sample of the elements of these 
nonlinear vector-valued functions. These techniques include collocation [5,48,37], gappy POD [23,13,5,16,17], the empirical 
interpolation method (EIM) [10,19,27,22,4], reduced-order quadrature [3], finite-element subassembly methods [2,25], and 
reduced-basis-sparsification techniques [18].

In the present context, hyper-reduction can be achieved by replacing the residuals appearing in the objective functions 
of (3.5) and (3.8) by r̃(≈ r) and r̃n

(≈ rn), respectively, such that the hyper-reduced optimization problems for Galerkin and 
LSPG projection become
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dx̂

dt

(
x0(μ) + �x̂, t;μ

)
= arg min

v̂∈Rp
‖r̃(�v̂, x0 + �x̂, t;μ)‖2, (3.11)

and

x̂n
(μ) = arg min

ẑ∈Rp
‖r̃n

(x0(μ) + �ẑ;μ)‖2, (3.12)

respectively. These residual approximations are typically constructed in one of two ways. Later, Section 4.5 proposes a third 
technique tailored to finite-volume discretizations.

1. Residual hyper-reduction. This approach amounts to

r̃ = �r(P r�r)
+ P rr, r̃n = �r(P r�r)

+ P rrn (3.13)

in the case of gappy POD hyper-reduction, or simply

r̃ = P T
r P rr, r̃n = P T

r P rrn (3.14)

in the case of collocation. Here, P r ∈ {0, 1}np,r×N denotes a sampling matrix comprising selected rows of the N × N
identity matrix, while �r ∈ R

N×pr

 denotes a pr(≤ N)-dimensional reduced-basis matrix constructed for the residual, 

a superscript + denotes the Moore–Penrose pseudoinverse, and Rm×n

 denotes the set of full-column rank m × n ma-

trices (the non-compact Stiefel manifold). This approach has the advantage of associating hyper-reduced optimization 
problems (3.11) and (3.12) with a weighted-norm variant of the original optimization problems (3.5) and (3.8), i.e.,

dx̂

dt

(
x0(μ) + �x̂

)
= arg min

v̂∈Rp
‖Ar(�v̂, x0 + �x̂, t;μ)‖2, x̂n = arg min

ẑ∈Rp
‖Arn(x0(μ) + �ẑ;μ)‖2, (3.15)

where A = (P r�r)
+ P r and A = P r in the case of gappy POD and collocation, respectively.

2. Velocity hyper-reduction. This approach employs an approximated residual constructed from hyper-reduction per-
formed on the velocity vector only, i.e.,

r̃(v, ξ , τ ;ν) = v − f̃ (ξ , τ ;ν) (3.16)

r̃n
(w;ν) = α0 w − �tβ0 f̃ (w, tn;ν) +

k∑
j=1

α jx
n− j(ν) − �t

k∑
j=1

β j f̃ (xn− j, tn− j;ν), (3.17)

where

f̃ = � f (P f � f )
+ P f f or f̃ = P T

f P f f (3.18)

in the case of gappy POD or collocation, respectively. Here, P f ∈ {0, 1}np, f ×N denotes a sampling matrix comprising se-

lected rows of the identity matrix, while � f ∈ R
N×p f

 denotes a p f (≤ N)-dimensional reduced-basis matrix constructed 

for the velocity. This approach has the advantage of limiting the hyper-reduction approximation to the nonlinear com-
ponent of the residual.

We note that the gappy POD approximations are equivalent to empirical interpolation when the number of samples is 
equal to the number of reduced-basis elements (i.e., np,r = pr , np, f = p f ), as the pseudo-inverse is equal to the inverse 
and the approximation interpolates the nonlinear function at the sampled elements in this case. Further, the POD–(D)EIM 
method [19] corresponds to Galerkin projection with gappy POD velocity hyper-reduction and np, f = p f , in which case the 
hyper-reduced Galerkin ODE becomes

dx̂

dt
= �T � f (P f � f )

−1 P f f (x0(μ) + �x̂, t;μ), x̂(0) = 0. (3.19)

In addition, the GNAT method [16,17] corresponds to LSPG projection with gappy POD residual hyper-reduction. In principle, 
the two projection techniques and two hyper-reduction approaches above yield four possible (hyper-reduced) reduced-order 
models that could be constructed.
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Fig. 1. Examples of decomposed meshes M̄ for a vertex-centered finite-volume model. Solid lines denote the primal mesh, and dashed lines the control-
volume interfaces � j defining the dual mesh, and colors denote separate subdomains �̄i . (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

3.4. Lack of conservation

Remarks 4 and 5 demonstrated that Galerkin and LSPG ROMs minimize the violation of conservation in the case of 
finite-volume models in particular senses; Galerkin performs this minimization at the time-continuous level, while LSPG 
does so at the time-discrete level. While this is an attractive property, it does not guarantee that the model is conservative 
in any sense: because the minimum value of the objective functions in Eqs. (3.4) and (3.7) may be non-zero, conservation 
is generally violated by each of these approaches. We interpret this as violating the structure intrinsic to finite-volume 
models. This provides the motivation for this work: we aim to develop reduced-order models that ensure the resulting 
model is conservative globally and—more generally—over subdomains.

4. Proposed method

This section describes the proposed method, which equips the optimization problems characterizing the online ROM so-
lution with equality constraints that explicitly enforce conservation over subdomains. The approach requires no modification 
to the offline stage except when hyper-reduction is applied to the nonlinear terms appearing in the constraints. Section 4.1
introduces the concept of conservation over subdomains, Section 4.2 introduces conservative Galerkin projection, Section 4.3
describes conservative LSPG projection, Section 4.4 described approaches for handling infeasibility, and Section 4.5 describes 
hyper-reduction techniques applicable to objective function and constraint, and Section 4.6 describes snapshot-based (of-
fline) training procedures that may be used for generating the reduced-basis matrices required by the method.

4.1. Domain decomposition

To begin, we decompose the mesh M into subdomains, each of which comprises the union of control volumes. That 
is, we define a decomposed mesh M̄ of N�̄(≤ N�) subdomains �̄i = ∪ j∈K⊆N(N�)� j , i ∈ N(N�̄) with M̄ := {�̄i}N�̄

i=1. We 
note that the subdomains need not be non-overlapping, closed, or connected. Denoting the boundary of the ith subdomain 
by �̄i := ∂�̄i , we have �̄i = {�x | �x ∈ e, ∀e ∈ Ēi, i ∈ N(|Ēi |)} ⊆ ∪N�

j=1� j , i ∈ N(N�̄) with Ēi ⊆ E representing the set of faces 

belonging to the ith subdomain. We denote the full set of faces within the decomposed mesh by Ē := ∪N�̄

i=1Ēi ⊆ E . Fig. 1
depicts several decompositions that satisfy the above conditions. We emphasize that the subdomains can overlap, their 
union need not correspond to the global domain, and the global domain can be considered by employing M̄ = M̄global, 
which is characterized by N�̄ = 1 subdomain that corresponds to the global domain, i.e., �̄1 = � and �̄1 = �, as depicted 
in Fig. 1c.

Enforcing conservation (2.1) on each subdomain in the decomposed mesh yields

d

dt

∫
�̄ j

ui(�x, t;μ)d�x +
∫
�̄ j

g i(�x, t;μ) · n̄ j(�x)d�s(�x) =
∫
�̄ j

si(�x, t;μ)d�x, i ∈N(nu), j ∈N(N�̄), (4.1)

where n̄ j : � j → R
d denotes the unit normal to subdomain �̄ j . We propose applying a finite-volume discretization to 

Eq. (4.1) that operates on the decomposed mesh M̄. That is, we introduce a ‘decomposed’ state vector x̄ : RN × [0, T ] ×
D →R

N̄ with N̄ = N�̄nu and elements

x̄Ī(i, j)(x, t;μ) = 1

|�̄ j|
∫
�̄ j

ui(�x, t;μ)d�x, i ∈N(nu), j ∈ N(N�̄), (4.2)

where Ī : N(nu) × N(N�̄) → N(N̄) denotes a mapping from conservation-law index and subdomain index to decomposed 
degree of freedom. The decomposed state vector can be computed from the state vector x as
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x̄Ī(i, j)(x, t;μ) = 1

|�̄ j|
∑

k | �k⊆�̄ j

|�k|xI(i,k)(t;μ) (4.3)

or equivalently

x̄(x) = C̄ x, (4.4)

where C̄ ∈ R
N̄×N+ has elements c̄Ī(i, j),I(	,k) = |�k|/|�̄ j|δi	 I(�k ⊆ �̄ j), where I is the indicator function, which evaluates to 

one if its argument is true, and zero if its argument is false. We note that this matrix can be decomposed as C̄ = V̄
−1

Ē V , 
where the elements of the volumetic matrices V ∈R

N×N , V̄ ∈R
N̄×N̄ and aggregation matrix Ē ∈ {0, 1}N̄×N comprise

vI(i, j),I(	,k) = δi	δ jk�k, v̄Ī(i, j),Ī(	,k) = δi	δ jk�̄k, ēĪ(i, j),I(	,k) = δi	 I(�k ⊆ �̄ j). (4.5)

Similarly, we write the velocity vector f̄ : (ξ , τ ; ν) �→ f̄
g
(ξ , τ ; ν) + f̄

s
(ξ , τ ; ν) with f̄

g
, f̄

s : RN × [0, T ] × D → R
N̄ whose 

elements consist of

f̄ g
Ī(i, j)

(x, t;μ) = − 1

|�̄ j|
∫
�̄ j

gFV
i (x; �x, t;μ) · n̄ j(�x)d�s(�x) (4.6)

f̄ s
Ī(i, j)

(x, t;μ) = 1

|�̄ j|
∫
�̄ j

sFV
i (x; �x, t;μ)d�x, (4.7)

for i ∈N(nu), j ∈N(N�̄), which can be computed from the underlying finite-volume model as

f̄
s
(x, t;μ) = C̄ f s(x, t;μ), f̄

g
(x, t;μ) = B̄h(x, t;μ) (4.8)

where the elements of B̄ ∈ R
N̄×nu Ne are

b̄Ī(i, j),J (	,k) =

⎧⎪⎨
⎪⎩

−δi	/|�̄ j|, ek ∈ �̄ j; n̄ j(�x) = ne
k(�x), �x ∈ ek

δi	/|�̄ j|, ek ∈ �̄ j; n̄ j(�x) = −ne
k(�x), �x ∈ ek

0, otherwise.

(4.9)

Critically, noting that B̄ = C̄ B due to the fact that neighboring control volumes have outward unit normals of opposite sign 
along a shared face, we have

f̄
g
(x, t;μ) = C̄ f g(x, t;μ) (4.10)

such that

f̄ (x, t;μ) = C̄ f (x, t;μ). (4.11)

Thus, conservation on the decomposed mesh M̄ given an underlying finite-volume discretization on mesh M can be 
expressed as

C̄
dx

dt
= C̄ f (x, t;μ) (4.12)

or equivalently

C̄ r(
dx

dt
, x, t;μ) = 0. (4.13)

Applying a linear multistep scheme to discretize (4.12) in time yields

C̄ rn(xn;μ) = 0. (4.14)

Note that the decomposed ODE (4.12) and decomposed O�E (4.14) are underdetermined, as they comprise N̄ equations in 
N(≥ N̄) unknowns.

We now demonstrate that conservation that is enforced over a decomposed mesh automatically leads to conservation 
over a coarser mesh that embeds the decomposed mesh.
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Theorem 4.1 (Conservation over coarser decompositions). Define a decomposed mesh ¯̄M as a decomposition of a non-overlapping 
decomposed mesh M̄ satisfying meas(�̄i ∩ �̄ j) = 0 for i 
= j such that ¯̄�i = ∪ j∈K̄⊆N(N�̄)�̄ j , i ∈ N(N ¯̄�), with ¯̄M := { ¯̄�i}N ¯̄�

i=1 and 
N ¯̄� ≤ N�̄(≤ N�). Then, satisfaction of time-continuous conservation on M̄ (i.e., Eq. (4.12)) implies satisfaction of time-continuous 

conservation on ¯̄M, i.e.,

¯̄C dx

dt
= ¯̄C f (x, t;μ) (4.15)

and satisfaction of time-discrete conservation on M̄ (i.e., Eq. (4.14)) implies satisfaction of time-discrete conservation on ¯̄M, i.e.,

¯̄Crn(xn;μ) = 0, (4.16)

where ¯̄C := ¯̄V −1 ¯̄E V ∈ R
¯̄N×N+ , the elements of ¯̄V ∈ R

¯̄N× ¯̄N are ¯̄v ¯̄I(i, j), ¯̄I(	,k)
= δi	δ jk

¯̄�k, and the elements of ¯̄E are ¯̄e ¯̄I(i, j),I(	,k)
=

δi	 I(�k ⊆ ¯̄� j).

Proof. The conditions ¯̄�i = ∪ j∈K̄⊆N(N�̄)�̄ j , i ∈ N(N ¯̄�); �̄i = ∪ j∈K⊆N(N�)� j , i ∈ N(N�̄); and meas(�̄i ∩ �̄ j) = 0 for i 
= j

imply that the aggregation operator characterizing the mesh ¯̄M can be applied in two stages, i.e.,

¯̄e ¯̄I(i, j),I(	,k)
= δi	 I(�k ⊆ ¯̄� j) = δi	

N�̄∑
m=1

I(�̄m ⊆ ¯̄� j)I(�k ⊆ �̄m) = δi	δ	h

N�̄∑
m=1

nu∑
	=1

¯̄e′̄
Ī(i, j),Ī(	,m)

ēĪ(	,m),I(h,k)

and thus ¯̄E = ¯̄E ′ Ē , where the elements of ¯̄E ′ are ¯̄e′¯̄I(i, j),Ī(	,k)
= δi	 I(�̄k ⊆ ¯̄� j). Substituting ¯̄E = ¯̄E ′ Ē in the definition of ¯̄C

yields

¯̄C = ¯̄V −1 ¯̄E ′ Ē V = ¯̄V −1 ¯̄E ′ V̄ C̄ . (4.17)

Thus, Eqs. (4.15) and (4.16) can be rewritten as

¯̄V −1 ¯̄E ′ V̄ C̄
dx

dt
= ¯̄V −1 ¯̄E ′ V̄ C̄ f (x, t;μ) (4.18)

¯̄V −1 ¯̄E ′ V̄ C̄ rn(xn;μ) = 0, (4.19)

which are clearly satisfied if Eqs. (4.12) and (4.14) are satisfied, respectively. �
Corollary 4.1 (Full-order model conservation). The full-order model satisfies time-continuous and time-discrete conservation over any 
decomposed mesh.

Proof. This corresponds to a particular case of Theorem 4.1 with M̄ = M, as any decomposed mesh ¯̄M must satisfy 
¯̄�i = ∪ j∈K⊆N(nu)� j , i ∈N(N ¯̄�) and the original mesh is non-overlapping, i.e., meas(�i ∩ � j) = 0 for i 
= j. �
Corollary 4.2 (Global conservation). If the decomposed mesh M̄ satisfies ∪N�̄

i=1�̄i = � and is non-overlapping, i.e., meas(�̄i ∩�̄ j) = 0
for i 
= j, then satisfaction of time-continuous conservation on M̄ implies satisfaction of time-continuous (global) conservation on 
M̄global := {�}, and satisfaction of time-discrete conservation on M̄ implies satisfaction of time-discrete (global) conservation on 
M̄global.

Proof. This corresponds to a particular case of Theorem 4.1 with ¯̄M = M̄global, as the required condition ¯̄�i =
∪ j∈K̄⊆N(N�̄)�̄ j , i ∈N(N ¯̄�) is satisfied for N ¯̄� = 1, ¯̄�1 = �, and K̄ = N(N�̄) under the stated assumptions. �

We now derive the proposed conservative Galerkin and conservative LSPG projection techniques, which equip their 
associated optimization problems with equality constraints that enforce conservation over the decomposed mesh M̄.

4.2. Conservative Galerkin projection

To enable a Galerkin-like projection scheme that enforces conservation, we equip the unconstrained optimiza-
tion problems (3.4)–(3.5)—which are defined at the time-continuous level—with equality constraints corresponding to 
(time-continuous) conservation (4.13) over the decomposed mesh M̄. The resulting conservative Galerkin solution 
dx̃ (x0(μ) + �x̂, t;μ) satisfies
dt
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minimize
v∈Ran(�)

‖r(v, x0 + �x̂, t;μ)‖2

subject to C̄ r(v, x0 + �x̂, t;μ) = 0.

(4.20)

Equivalently, the conservative Galerkin generalized coordinates dx̂
dt

(
x0(μ) + �x̂, t;μ) satisfy

minimize
v̂∈Rp

‖r(�v̂, x0 + �x̂, t;μ)‖2

subject to C̄ r(�v̂, x0 + �x̂, t;μ) = 0.

(4.21)

We now provide a finite-volume interpretation of the conservative Galerkin model, define the feasible set, and provide 
an algebraic description of the solution.

Remark 6 (Conservative Galerkin ROM ODE: interpretation). From Remark 4, the conservative Galerkin ROM ODE (4.20) can be 
interpreted as minimizing the sum of squared (normalized) rates of violation of conservation across all variables ui , i ∈ N(nu)

and control volumes � j , j ∈ N(N�) at time instance t subject to the enforcement of conservation of all variables ui , 
i ∈ N(nu) over subdomains �̄ j , j ∈ N(N�̄) at time instance t under one approximation: the flux and source terms are 
approximated using the finite-volume discretization (i.e., g i ← gFV

i , and si ← sFV
i ).

Definition 1 (Feasibility of conservative Galerkin projection). Problem (4.21) is feasible if the Galerkin feasible set FG(x0(μ) +
�x̂, t; μ), defined as

FG(ξ , τ ;ν) := {w ∈R
p | C̄ r(�w, ξ , τ ;ν) = 0}, (4.22)

is non-empty.

Theorem 4.2. If Problem (4.21) is feasible, then the solution is unique and satisfies the time-dependent saddle-point problem[
I �T C̄

T

C̄� 0

][
dx̂
dt

dλG
dt

]
=
[

�T f (x0(μ) + �x̂, t;μ)

C̄ f (x0(μ) + �x̂, t;μ)

]
, x̂(0) = 0, (4.23)

which can be expressed equivalently as

dx̂

dt
= �T f (x0(μ) + �x̂, t;μ) + δ f G(x0(μ) + �x̂, t;μ), x̂(0) = 0 (4.24)

with

δ f G(ξ , τ ;ν) := (C̄�)+[C̄ f (ξ , τ ;ν) − C̄��T f (ξ , τ ;ν)] (4.25)

and Lagrange multipliers

dλG

dt
= −(C̄�)+T (C̄�)+[C̄ f (ξ , τ ;ν) − C̄��T f (ξ , τ ;ν)]. (4.26)

Proof. The Lagrangian associated with problem (4.21) can be written as

LG(v̂,γ , t;μ) := 1

2
‖�v̂ − f (x0(μ) + �x̂, t;μ)‖2

2 + γ T
[

C̄�v̂ − C̄ f (x0(μ) + �x̂, t;μ)
]
. (4.27)

We note that problem (4.21) corresponds to a convex linear least-squares problem with linear equality constraints; thus, 
( dx̂

dt , dλG
dt ) is a unique solution if and only if it satisfies the stationarity conditions

∂LG

∂ v̂

(
dx̂

dt
,

dλG

dt
, t;μ

)
= 0,

∂LG

∂γ

(
dx̂

dt
,

dλG

dt
, t;μ

)
= 0.

Noting that �T � = I , these conditions are equivalent to Eq. (4.23). The proof of Eqs. (4.24)–(4.26) follows the null-
space method for solving optimization problems with linear equality constraints. Feasibility implies that the feasible 
set FG(x0(μ) + �x̂, t; μ) is non-empty, which in turn implies that the second block of Eqs. (4.23) is consistent and 
C̄ f (ξ , τ ; ν) ∈ Ran

(
C̄�
)

or equivalently

C̄ f (ξ , τ ;ν) = U G
ˆ̄f (ξ , τ ;ν), (4.28)

with ˆ̄f : RN × [0, T ] ×D →R
rank
(
C̄�
)
, where

C̄� = U G�G V T (4.29)
G
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is the singular value decomposition with U G ∈ R
N̄×rank

(
C̄�
)

and U T
GU G = I , �G ≡ diag

(
σ1, . . . , σrank

(
C̄�
)) and σ1 ≥ · · · ≥

σrank
(
C̄�
) > 0, and V G ∈ R

p×rank
(
C̄�
)

with V T
G V G = I . Because Ran (V G) ⊕ Ran (Z G) = R

p with Z G ∈ R
p×(p−rank

(
C̄�
))

an 
orthogonal basis for the null space of C̄�, we can decompose the unknown vector v̂ ∈ R

p appearing in optimization problem 
(4.21) as

v̂ = V G v̂1 + Z G v̂2 (4.30)

with v̂1 ∈ R
rank
(
C̄�
)

and v̂2 ∈ R
p−rank

(
C̄�
)
. Substituting Eqs. (4.28), (4.29), and (4.30) into the constraints of Problem (4.21)

and noting that V T
G Z G = 0 yields

v̂1 = �−1
G U T

G C̄ f (x0(μ) + �x̂, t;μ). (4.31)

Pre-multiplying (4.31) by V G, substituting (C̄�)+ = V G�−1
G U T

G, and using (4.28) yields

V G v̂1 = (C̄�)+C̄ f (x0(μ) + �x̂, t;μ). (4.32)

Thus, decomposing the solution as

dx̂

dt
= V G

[
dx̂

dt

]
1
+ Z G

[
dx̂

dt

]
2
, (4.33)

we have

V G

[
dx̂

dt

]
1

= (C̄�)+C̄ f (x0(μ) + �x̂, t;μ). (4.34)

Now, substituting Eqs. (4.30) with v̂1 defined in (4.32) into Problem (4.21) yields an unconstrained optimization problem in 
v̂2 only, i.e., 

[
dx̂
dt

]
2

is the solution to

minimize
v̂2∈Rp−rank

(
C̄�
) ‖�[(C̄�)+ C̄ f (x0(μ) + �x̂, t;μ) + Z G v̂2] − f (x0(μ) + �x̂, t;μ)‖2, (4.35)

which—using orthogonality of �Z G—is simply[
dx̂

dt

]
2
= Z T

G�T [ f (x0(μ) + �x̂, t;μ) − �(C̄�)+ C̄ f (x0(μ) + �x̂, t;μ)]. (4.36)

Applying Eqs. (4.34), and (4.36) to Eq. (4.33) yields

dx̂

dt
= (C̄�)+ C̄ f (x0(μ) + �x̂, t;μ) + Z G Z T

G[�T f (x0(μ) + �x̂, t;μ) − (C̄�)+ C̄ f (x0(μ) + �x̂, t;μ)]. (4.37)

Applying Z T
G(C̄�)+ = 0 to Eq. (4.37) and observing that Z G Z T

G v̂ = (I − V G V T
G)v̂ = (I − (C̄�)+ C̄�)v̂ yields Eq. (4.24). 

Finally, Eq. (4.26) arises from substituting (4.24) into (4.23). �
Comparing Eqs. (3.2) and (4.24) reveals that equipping the Galerkin-ROM optimization problem with equality constraints 

associated with conservation has the effect of modifying the velocity vector through the addition of the term δ f G defined 
in Eq. (4.25). Note that Eq. (4.24) corresponds to an initial-value problem that can be integrated in time, e.g., using a linear 
multistep method.

We now show that the conservative Galerkin velocity can be expressed as the orthogonal projection of the standard 
Galerkin velocity onto the feasible set.

Corollary 4.3. If Problem (4.20) is feasible, then the solution corresponds to the orthogonal projection of the standard Galerkin velocity 
(3.2) onto the feasible set, i.e.,

dx̂

dt

(
x0(μ) + �x̂, t;μ

)
= arg min

v∈FG(x0(μ)+�x̂,t;μ)

‖v − �T f (x0(μ) + �x̂, t;μ)‖2. (4.38)

Proof. We first identify the feasible set from Eqs. (4.33) and (4.34) as

FG(x0(μ) + �x̂, t;μ) = (C̄�)+C̄ f (x0(μ) + �x̂, t;μ) + Ran (Z G) . (4.39)

Noting that the orthogonal projection of a vector ξ onto an affine subspace ξ̄ + Ran ( Q ) with Q an orthogonal matrix with 
more rows than columns is simply ξ̄ + Q Q T (ξ − ξ̄), we identify dx̂

dt as the orthogonal projection of the standard Galerkin 
velocity �T f (x0(μ) + �x̂, t; μ) onto the affine subspace corresponding to the feasible set FG(x0(μ) + �x̂, t; μ); Eq. (4.38)
derives from this result and the optimality property of orthogonal projectors. �
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Of course, numerically solving the conservative Galerkin ROM ODE, requires introducing a time integrator. Applying a 
linear multistep scheme to solve Eq. (4.23) characterizing the conservative Galerkin ROM ODE yields at time instance n
yields the conservative Galerkin ROM O�E

k∑
j=0

α j x̂
n− j +

k∑
j=0

α j�
T C̄

T
λ

n− j
G = �t

k∑
j=0

β j�
T f (x0(μ) + �x̂n− j

, t;μ)

k∑
j=0

α j C̄�x̂n− j = �t
k∑

j=0

β j C̄ f (x0(μ) + �x̂n− j
, t;μ).

(4.40)

We now demonstrate that conservative Galerkin projection and time discretization are commutative.

Theorem 4.3 (Commutativity of conservative Galerkin projection and time discretization). Conservative Galerkin projection is equiva-
lent to computing an approximate solution (x̃(t; μ), λG(t; μ)) ∈ x0(μ) + Ran (�) ×R

N̄ via Galerkin projection applied to the system[
I C̄

T

C̄ 0

][
dx
dt

dλG
dt

]
=
[

f (x, t;μ)

C̄ f (x, t;μ)

]
. (4.41)

Further, performing conservative Galerkin projection on Eq. (4.41) and subsequently applying time discretization yields the same model 
as first applying time discretization on Eq. (4.41) and subsequently performing conservative Galerkin projection.

Proof. The first part of the theorem can be derived by noticing that substituting Eq. (3.1) in (4.41) and premultiplying 

by 
[
� 0
0 I

]
yields the conservative Galerkin saddle-point system (4.23). Then, applying a linear multistep scheme to solve 

Eq. (4.23) yields the conservative Galerkin ROM O�E (4.40) above. Now, applying a linear multistep scheme to integrate 
(4.41) in time yields

k∑
j=0

α jx
n− j +

k∑
j=0

α j C̄
T
λ

n− j
G = �t

k∑
j=0

β j f (xn− j, t;μ)

k∑
j=0

α j C̄ xn− j = �t
k∑

j=0

β j C̄ f (xn− j, t;μ).

(4.42)

Because applying conservative Galerkin projection to Eq. (4.42) yields Eq. (4.40), we conclude that conservative Galerkin 
projection and time discretization are commutative. �
4.3. Conservative LSPG projection

Analogously to the procedure employed to derive the conservative Galerkin ROM, we now equip the unconstrained 
optimization problem (3.7)–(3.8)—which is defined at the time-discrete level—with equality constraints corresponding to 
(time-discrete) conservation (4.14) over the decomposed mesh M̄. The resulting conservative LSPG solution x̃n satisfies

minimize
z∈x0(μ)+Ran(�)

‖rn(z;μ)‖2

subject to C̄ rn(z;μ) = 0.

(4.43)

Equivalently, the conservative LSPG generalized coordinates x̂n satisfy

minimize
ẑ∈Rp

‖rn(x0(μ) + �ẑ;μ)‖2

subject to C̄ rn(x0(μ) + �ẑ;μ) = 0.

(4.44)

We now provide a finite-volume interpretation of the proposed model, define the feasible set, and provide an algebraic 
description of the solution.

Remark 7 (Conservative LSPG ROM O�E: interpretation for Adams methods). From Remark 5, the conservative LSPG ROM O�E 
(4.43) can be interpreted as minimizing the sum of squared (normalized) violation of conservation across all variables ui , 
i ∈ N(nu) and control volumes � j , j ∈ N(nu) over time interval [tn−1, tn] subject to the enforcement of conservation of all 
variables ui , i ∈ N(nu) over subdomains �̄ j , j ∈ N(N�̄) and time interval [tn−1, tn] under two approximations: (1) the flux 
and source terms are approximated using the finite-volume discretization (i.e., g i ← gFV

i , and si ← sFV
i ), and (2) a polynomial 

interpolation is used to approximate the integrand for time integration.



294 K. Carlberg et al. / Journal of Computational Physics 371 (2018) 280–314
Definition 2 (Feasibility of conservative LSPG projection). Problem (4.44) is feasible if the LSPG feasible set Fn
P (μ), defined as

Fn
P (ν) := {w ∈ R

p | C̄ rn(x0(μ) + �w;μ) = 0}, (4.45)

is non-empty.

Proposition 4.1. If Problem (4.44) is feasible, then a solution exists and satisfies the nonlinear saddle-point problem

�n(x̂n;μ)T
[

rn(x0(μ) + �x̂n;μ) + C̄
T
λn

P

]
= 0

C̄ rn(x0(μ) + �x̂n;μ) = 0,

(4.46)

where λn
P ∈R

N̄ denote Lagrange multipliers.

Proof. Defining the Lagrangian associated with problem (4.43) as

Ln
L(ẑ,γ ;μ) := 1

2
‖rn(x0(μ) + �ẑ;μ)‖2

2 + γ T C̄ rn(x0(μ) + �ẑ;μ), (4.47)

the solution (x̂n
, λn

P) satisfies the first-order necessary optimality conditions associated with problem (4.43), i.e., ∂Ln
L/∂ ẑ(x̂n

,

λn
P; μ) = 0 and ∂Ln

L/∂γ (x̂n
, λn

P; μ) = 0, which—using the definition of the test basis in Eq. (3.10)—are equivalent to 
Eqs. (4.46). �

Any appropriate optimization algorithm could be applied to solve minimization problem (4.43) characterizing the con-
servative LSPG ROM at each time instance. In this work, we propose solving problem (4.43) using the sequential quadratic 
programming (SQP) method with the Gauss–Newton Hessian approximation. This amounts to applying Newton’s method 
(with globalization) to the first-order necessary optimality conditions (4.46) and neglecting the term involving differenti-
ation of the test basis �n(x̂n; μ). After choosing an initial guess x̂n(0) , this approach leads to the following iterations for 
k = 0, . . . , K[

�n(x̂n(k);μ)T �n(x̂n(k);μ) �n(x̂n(k);μ)T C̄
T

C̄�n(x̂n(k);μ) 0

][
δx̂n(k)

δλ
n(k)
P

]

= −
[

�n(x̂n(k);μ)T
(

rn(x0(μ) + �x̂n(k);μ) + C̄
T
λ

n(k)
P

)
C̄ rn(x0(μ) + �x̂n(k);μ)

]
.

(4.48)

[
x̂n(k+1)

λ
n(k+1)
P

]
=
[

x̂n(k)

λ
n(k)
P

]
+ ηn(k)

[
δx̂n(k)

δλ
n(k)
P

]
, (4.49)

where ηn(k) ∈ R is the step length that can be chosen, e.g., to satisfy the strong Wolfe conditions to ensure global conver-
gence to a local solution of (4.44).

4.4. Handling infeasibility

Of course, the optimization problems characterizing conservative Galerkin projection (i.e., problems (4.20)–(4.21)) and 
conservative LSPG projection (i.e., problems (4.43)–(4.44)) may not be feasible for arbitrary decomposed meshes M̄ and 
reduced basis matrices �. For example, if the decomposed mesh corresponds to the original mesh (i.e., M̄ = M) and the 
reduced basis is low-dimensional (i.e., p � N), then the constraints in these problems correspond to exactly satisfying the 
full-order-model equations over a low-dimensional subspace; it is likely impossible to do so.

In practice, infeasibility of a given model can be detected by identifying that the feasible set is empty. In the case of con-
servative Galerkin projection, this occurs at a given time instance tn and parameter instance μ if FG(x0(μ) +�x̂n

, tn; μ) = ∅, 
which implies that C̄ f (x0(μ) +�x̂n

, tn; μ) /∈ Ran
(
C̄�
)
. Similarly, in the case of conservation-preserving LSPG projection, in-

feasibility is detected if a given time instance tn and parameter instance μ yield Fn
P (μ) = ∅, which implies that no value 

of w can set C̄ rn(x0(μ) + �w; μ) to zero. We now describe two approaches for handling the case where infeasibility is 
detected.

1. Coarsen the decomposed mesh. First, the number of constraints can be reduced by coarsening the decomposed mesh, 
i.e., replace M̄ by another decomposed mesh characterized by fewer subdomains N�̄ . As this reduces the number of 
constraints, the likelihood of feasibility increases, although feasibility remains not guaranteed. This procedure can be 
repeated until the decomposed mesh leads to a nonempty feasible set or a decomposed mesh characterized by one 
subdomain (N ¯ = 1) is infeasible.
�
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If a decomposed mesh leading to feasibility is constructed via coarsening, the conservative reduced-order model can 
be redefined using the new decomposed mesh and the reduced-order-model simulation can be either (1) reinitialized 
and restarted from t = 0, or (2) resumed from the time instance tn where infeasibility was detected. The first approach 
facilitates analysis, as the reduced-order-model trajectory association with a fixed decomposed mesh, while the latter 
precludes the need to re-simulate any part of the time interval. Further, if the new decomposed mesh is a decomposition 
of the previous decomposed mesh, and the previous decomposed mesh is non-overlapping, then conservation over the 
new decomposed mesh holds over the first part of the time interval (see Theorem 4.1). We note that this approach is 
not guaranteed to ensure feasibility, as it is possible for infeasibility to exist even in the case of N�̄ = 1.

2. Penalty formulation. Alternatively, infeasibility can be addressed by including the constraints in the objective function 
via penalization. In the case of conservative Galerkin projection, problem (4.21) is reformulated as

minimize
v̂∈Rp

‖r(�v̂, x0 + �x̂, t;μ)‖2
2 + ρ‖C̄ r(�v̂, x0 + �x̂, t;μ)‖2

2, (4.50)

while the conservative LSPG projection problem (4.44) is reformulated as

minimize
ẑ∈Rp

‖rn(x0(μ) + �ẑ;μ)‖2
2 + ρ‖C̄ rn(x0(μ) + �ẑ;μ)‖2

2, (4.51)

where ρ ∈R+ is a penalty parameter. This approach does not enforce conservation over any subdomain of the problem.

4.5. Hyper-reduction

To enable hyper-reduction for the proposed conservative reduced-order models, in addition to approximating the non-
linear objective functions that appear in optimization problems (4.21) and (4.44) as previously described in Section 3.3, we 
must also approximate the nonlinear constraints C̄ r(�v̂, x0 +�x̂, t; μ) = 0 and C̄ rn(x0(μ) +�ẑ; μ) = 0. To accomplish this, 
we propose applying hyper-reduction to the nonlinear residuals that appears in the constraints, i.e., the constraints become

C̄ ˜̃r(�v̂, x0 + �x̂, t;μ) = 0 and C̄ ˜̃rn(x0(μ) + �ẑ;μ) = 0 (4.52)

for conservative Galerkin and LSPG projection, respectively. Here, approximations ˜̃r(≈ r) and ˜̃rn(≈ rn) can be constructed 
using any of the approaches described in Section 3.3; we note that, in general, different approximations can be employed 
for the objective and constraints such that ˜̃r 
= r̃ and ˜̃rn 
= r̃n .

In addition to the two forms of hyper-reduction introduced in Section 3.3, we also propose a third type that leverages 
the underlying finite-volume discretization of the governing equations:

3. Flux and source hyper-reduction. This approach respects the underlying decomposition of the velocity vector. It adopts 
the same residual approximation (3.16)–(3.17) as velocity hyper-reduction (approach 2 in Section 3.3), but employs 
separate approximations for each term comprising the velocity, i.e.,

f̃ = f̃
s + f̃

g
, f̃

g = Bh̃ (4.53)

where

f̃
s = �s(P s�s)

+ P s f s, h̃ = �h(P h�h)
+ P hh (4.54)

in the case of gappy POD, or

f̃
s = P T

s P s f s, h̃ = P T
h P hh (4.55)

in the case of collocation. Here, P s ∈ {0, 1}np,s×N and P h ∈ {0, 1}np,h×nu Ne denote sampling matrices comprising selected 
rows of the identity matrix, while �s ∈ R

N×ps

 and �h ∈ R

nu Ne×ph

 denote reduced-basis matrices constructed for the 

source and flux, respectively.

One can consider a hierarchy of models that employ objective functions and constraints, each of which may or may not 
employ one of the three proposed hyper-reduction techniques. For this purpose, we define the Tier-1 and Tier-2 Galerkin 
and LSPG objective functions as

fG,I(v̂, t;μ) := ‖r(�v̂, x0 + �x̂, t;μ)‖2
2, fG,II(v̂, t;μ) := ‖r̃(�v̂, x0 + �x̂, t;μ)‖2

2, (4.56)

f n
P,I(ẑ;μ) := ‖rn(x0(μ) + �ẑ;μ)‖2

2, f n
P,II(ẑ;μ) := ‖r̃n

(x0(μ) + �ẑ;μ)‖2
2, (4.57)

and the Tier-0 (unconstrained), Tier-1, and Tier-2 Galerkin and LSPG constraints as

cG,0(v̂, t;μ) := 0, cG,I(v̂, t;μ) := C̄ r(�v̂, x0 + �x̂, t;μ), cG,II(v̂, t;μ) := C̄ ˜̃r(�v̂, x0 + �x̂, t;μ) (4.58)

cn
P,0(ẑ;μ) := 0, cn

P,I(ẑ;μ) := C̄ rn(x0(μ) + �ẑ;μ), cn
P,II(ẑ;μ) := C̄ ˜̃rn(x0(μ) + �ẑ;μ). (4.59)
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Then, we say the Tier A-B Galerkin ROM solution dx̂
dt is the solution to

minimize
v̂∈Rp

fG,A(v̂, t;μ) subject to cG,B(v̂, t;μ) = 0 (4.60)

and the Tier A-B LSPG ROM solution x̂n is the solution to

minimize
ẑ∈Rp

f n
P,A(ẑ;μ) subject to cn

P,B(ẑ;μ) = 0. (4.61)

Note that Tier i-0 models correspond to the (original) unconstrained models, Tier i-1 models enforce conservation over 
subdomains, and Tier i-2 models enforce approximate conservation over subdomains. The penalty-method variants of the 
Tier A-B Galerkin and LSPG ROMs are, respectively,

minimize
v̂∈Rp

fG,A(v̂, t;μ) + ρ‖cG,B(v̂, t;μ)‖2
2 (4.62)

minimize
ẑ∈Rp

f n
P,A(ẑ;μ) + ρ‖cn

P,B(ẑ;μ)‖2
2. (4.63)

Remark 8 (Computational cost of evaluating the objective function and constraints). We note that the computational cost in-
curred by evaluating the constraints is often significantly lower than the cost of evaluating the objective function. For 
example, for a linear or zero source term, the only nonlinear contribution to the constraints arises from the face flux along 
the boundary of the subdomains comprising the decomposed mesh. For a small number of subdomains (e.g., global conser-
vation with N�̄ = 1), this requires computing only a small number of the elements of the face-flux vector h, even without 
hyper-reduction. Thus, applying hyper-reduction to the objective function is generally more important for computational-
cost reduction than applying hyper-reduction to the constraints, i.e., Tier 2–1 ROMs may be preferable to Tier 2–2 ROMs, as 
their cost is often similar and the former strictly enforces conservation.

4.6. Snapshot-based training

Here, we propose to construct the reduced-basis matrices �, �r , � f , �h , and �s during the offline stage using proper 
orthogonal decomposition (POD). In particular, given a set of training parameter instances Dtrain := {μ1

train, . . . , μntrain
train } ⊂ D, 

we execute training simulations from which we compute ‘data tensors’

Xi jk := xi(t
j;μk

train) − x0
i (μ

k
train), i ∈N(N), j ∈ N(NT ), k ∈N(ntrain) (4.64)

Ri jk	(ξ) := r j
i (ξ

j(	);μk
train), i ∈N(N), j ∈N(NT ), k ∈N(ntrain), 	 ∈ N(kmax(ξ , t j;μk

train)) (4.65)

Fi jk(ξ) := f i(ξ
j, t j;μk

train), i ∈ N(N), j ∈N(NT ), k ∈ N(ntrain) (4.66)

Hi jk(ξ) := hi(ξ
j, t j;μk

train), i ∈N(nu Ne), j ∈ N(NT ), k ∈N(ntrain) (4.67)

Si jk(ξ) := f g
i (ξ j, t j;μk

train), i ∈N(N), j ∈N(NT ), k ∈N(ntrain). (4.68)

Here, a superscript j(	) denotes the value of a variable at the 	th Newton(-like) iteration during the solution of its nonlinear 
O�E at time instance t j and kmax(ξ , t j; μ) denotes the maximum number of Newton(-like) iterations taken during the 
simulation of solution ξ at time instance t j and parameter instance μ.

Note that constructing the state tensor X requires solving the full-order model (2.5) at training instances μ ∈ Dtrain, 
while constructing the other tensors requires computing the solution ξ at these parameter instances; ξ can correspond 
to the full-order model state (i.e., ξ = x) or Tier A-B reduced-order model states (i.e., ξ = x̃) for A ∈ {1, 2} and B ∈ {0, 1}. 
Clearly, the least computationally expensive approach is to employ either ξ = x—as the training full-order-model simulations 
are already required to construct the state tensor X—or ξ = x̃ corresponding to the Tier 2-B model for B ∈ {0, 1}, as the 
hyper-reduced objective function reduces the simulation cost significantly.

The reduced-basis matrix associated with each data tensor can be computed as the dominant left singular vectors of its 
mode-1 unfolding; for example, the state basis � ≡ [φ1 · · · φp] is computed as

X (1) := [ X(μ1
train) . . . X(μntrain

train )
]= U�V T ∈R

N×NT ntrain (4.69)

φi = ui, i ∈N(p), (4.70)

where X(μ) := [x1(μ) · · · xNT (μ)] is often referred to as the ‘snapshot matrix’.
Further, we propose to construct the sampling matrices P r , P f , P h , and P s using the sample-mesh greedy method 

presented in Ref. [17], which allows for oversampling to enable least-squares regression via gappy POD and also constructs 
a ‘sample mesh’ wherein all residual elements associated with a given control volume are sampled. However, rather than 
constructing each of these sampling matrices independently, we propose to construct P r according to the greedy method 
executed with basis �r and subsequently set P f = P s = P r . Further, we construct P h to select the faces associated with 
the control volumes sampled by P r ; this corresponds to selecting the sampling matrix P h with the maximum number of 
rows such that P r B = P r B P T P h .
h
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5. Analysis

This section performs analysis of the proposed conservative Galerkin and conservative LSPG techniques. For simplicity, 
we focus on the models without hyper-reduction; the hyper-reduced variants of the results can be derived in a similar 
manner by making the obvious substitutions.

5.1. Feasibility conditions

We first derive sufficient conditions under which the optimization problems characterizing conservative Galerkin and 
conservative LSPG projection are feasible.

Proposition 5.1 (Sufficient conditions for feasibility of conservative Galerkin projection). Problem (4.21) is feasible if rank
(
C̄�
)= N̄ , 

which in turn requires p ≥ N̄ , i.e., the number of reduced basis vectors exceeds the number of constraints.

Proof. If rank
(
C̄�
)= N̄ , then Ran

(
C̄�
)= R

N̄ and thus C̄ f (ξ , τ ; ν) ∈ Ran
(
C̄�
)

regardless of its arguments. �
Proposition 5.2 (Sufficient conditions for feasibility of conservative LSPG projection). Problem (4.44) is feasible if (1) an explicit 
scheme is employed and rank

(
C̄�
) = N̄ , (2) the limit �t → 0 is taken, or (3) the velocity f is linear in its first argument and 

rank
(
C̄ [α0 I − �tβ0∂ f /∂ξ (·, tn;μ)]�)= N̄ .

Proof. Case 1. If an explicit scheme is employed, then β0 = 0 and the feasible set becomes

Fn
P (ν) = {w ∈ R

p |α0 C̄�w = −
k∑

j=1

α j C̄�x̂n− j
(μ) + �t

k∑
j=1

β j C̄ f (x0(μ) + �x̂n− j
, tn− j;μ)}. (5.1)

If rank
(
C̄�
)= N̄ , then Ran

(
C̄�
)= R

N̄ and right-hand-side of the constraints in (5.1) must lie in Ran
(
C̄�
)
.

Case 2. If the limit �t → 0 is taken, then the feasible set becomes

Fn
P (ν) = {w ∈ R

p |α0 C̄�w = −
k∑

j=1

α j C̄�x̂n− j
(μ)} (5.2)

and the right-hand-side of the constraints in (5.2) will lie in Ran
(
C̄�
)

regardless of its rank.

Case 3. If the velocity is linear in the state, the feasible set becomes

Fn
P (ν) = {w ∈ R

p | C̄ [α0� − �tβ0∂ f /∂ξ(·, tn;μ)�]w =

−
k∑

j=1

α j C̄�x̂n− j
(μ) + �t

k∑
j=1

β j C̄ f (x0(μ) + �x̂n− j
, tn− j;μ)} (5.3)

and (as above) rank
(
C̄ [α0 I − �tβ0∂ f /∂ξ(·, tn;μ)]�)= N̄ ensures the right-hand-side of the constraints in (5.1) will lie in 

Ran
(
C̄�
)
. �

5.2. Equivalence conditions

We now derive conditions under which conservative Galerkin and conservative LSPG projection are equivalent.

Theorem 5.1 (Equivalence). The discrete-time conservative Galerkin ROM solution is equivalent to the conservative LSPG solution if 
either (1) an explicit scheme is employed or (2) the limit �t → 0 is taken. Further, under these conditions, the Lagrange multipliers are 
related as

λn
P =

k∑
j=0

α jλ
n− j
G . (5.4)

Proof. We first note that the discrete-time conservative Galerkin ROM solution x̂n
G satisfies Eqs. (4.40), which can be re-

written as
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�T

⎡
⎣rn(x0(μ) + �x̂n

G;μ) +
k∑

j=0

α j C̄
T
λ

n− j
G

⎤
⎦= 0

C̄ rn(x0(μ) + �x̂n
G;μ) = 0.

(5.5)

Comparing Eqs. (4.46) and (5.5) reveals that the discrete-time conservative LSPG and conservative Galerkin solutions are 
equivalent if (1) �n(x̂n; μ) = a� and (2) �n(x̂n; μ)T C̄

T
λn

P = a 
∑k

j=0 α j�
T C̄

T
λ

n− j
G for any constant a ∈ R . As was shown in 

Ref. [15], the first condition holds for a = α0 if either the scheme is explicit (i.e., β0 = 0) or the limit �t → 0 is taken. The 
same conditions apply to the second condition above. To see this, note that

C̄�n(x̂n;μ) = α0C̄� − �tβ0C̄
∂ f

∂ξ
(w, tn;μ)�. (5.6)

If either β0 = 0 or the limit �t → 0 is taken, the second term vanishes such that we have

�n(x̂n;μ)T C̄
T
λn

P = α0�
T C̄

T
λn

P. (5.7)

This expression is equivalent to a 
∑k

j=0 α j�
T C̄

T
λ

n− j
G with a = α0 if Eq. (5.4) holds. �

5.3. Error analysis

We now derive several a posteriori error bounds for (components of) the solution computed by the proposed conservative 
model-reduction methods. We employ some of the same techniques used for error analysis in Ref. [15]. For notational 
simplicity, we drop dependence of the operators on the parameters μ.

We begin by writing the discrete equations characterizing the full-order, Galerkin, and LSPG models as

αn
0xn


 = βn
0�t f (x0 + xn


, tn) + r̄n[xn−k

 , . . . , xn−1


 ] (5.8)

αn
0 x̂n

G = βn
0�t�T f (x0 + �x̂n

G, tn) + �T r̄n[�x̂n−k
G , . . . ,�x̂n−1

G ] −
k∑

j=0

αn
j �

T C̄
T
λ

n− j
G , (5.9)

αn
0 x̂n

P = βn
0�t((�n)T �)−1(�n)T f (x0 + �x̂n

P, tn) + ((�n)T �)−1(�n)T r̄n[�x̂n−k
P , . . . ,�x̂n−1

P ]
− ((�n)T �)−1(�n)T C̄

T
λn

P,
(5.10)

respectively, where �n := �n(x̂n
P), as well as

αn
0 C̄�x̂n

G = βn
0�t C̄ f (x0 + �x̂n

G, tn) + C̄ r̄n[�x̂n−k
G , . . . ,�x̂n−1

G ] (5.11)

αn
0 C̄�x̂n

P = βn
0�t C̄ f (x0 + �x̂n

P, tn) + C̄ r̄n[�x̂n−k
P , . . . ,�x̂n−1

P ] (5.12)

with x0

 = 0 and x̂0

G = x̂0
P = 0. Here, we have defined

r̄n[xn−k, . . . , xn−1] :=
k∑

	=1

(
βn

	 �t f (x0 + xn−	, tn−	) − αn
	 xn−	

)
. (5.13)

We also assume Lipschitz continuity of f in its first argument:

A1 There exists a constant κ > 0 such that for x, y ∈ R
N

‖ f (x, t) − f (y, t)‖2 ≤ κ‖x − y‖2, ∀t ∈ [0, T ].
To simplify notation, we define the Galerkin and LSPG operators as

V := ��T , P
n := �((�n)T �)−1(�n)T , (5.14)

respectively, and the Galerkin and LSPG state-space errors at time instance n as

δx̂n
G := xn


 − �x̂n
G, δx̂n

P := xn

 − �x̂n

P, (5.15)

respectively. Because the time instance of the first and second arguments of f always match for linear multistep schemes, 
we omit the second argument (time) from f in the remainder of this section. All norms in this section correspond to the 
Euclidean norm, i.e., ‖ · ‖ = ‖ · ‖2.
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We proceed by deriving a posteriori error bounds for the proposed conservative techniques. We remark that derivation 
of state-space error bounds for the proposed constrained ROMs is complicated by the presence of Lagrange multipliers in 
the discrete equations (5.9)–(5.10). Thus, we derive bounds that relate to the null-space and row-space of the associated 
constraint matrices, which enables elimination of these Lagrange multipliers from the analysis. To accomplish this, we make 
use of three decompositions of RN . The first is RN = Ran

(
V̄ G
)⊕Ran

(
Z̄ G
)
, where V̄ G ∈ R

N×rank
(
C̄�
)

and Z̄ G ∈R
N×N−rank

(
C̄�
)

are orthogonal matrices satisfying

C̄� = U G�G V T
G, V̄ G = �V G, Z̄

T
G V̄ G = 0. (5.16)

The second is RN = Ran
(

V̄
n
P

)
⊕ Ran

(
Z̄

n
P

)
, where V̄

n
P ∈ R

N×rank
(
C̄�n
)

and Z̄
n
P ∈ R

N×N−rank
(
C̄�n
)

are orthogonal matrices 
satisfying

C̄�n(�T �n)−1 = U n
P�

n
P[V n

P]T , V̄
n
P = �V n

P, [ Z̄
n
P]T V̄

n
P = 0. (5.17)

Finally, we consider RN = Ran
(
V C̄

) ⊕ Ran
(

Z C̄

)
, where V C̄ ∈ R

N×rank
(
C̄
)

and Z C̄ ∈ R
N×N−rank

(
C̄
)

are orthogonal matrices 
satisfying

C̄ = U C̄ �C̄ V T
C̄
, Z T

C̄
V C̄ = 0. (5.18)

Note that C̄
+

C̄ = V C̄ V T
C̄

.

Lemma 5.1 (Local a posteriori error bounds: null-space error). If A1 holds and �t < |αn
0 |/(|βn

0 |κ), then

‖ Z̄
T
Gδx̂n

G‖ ≤
k∑

	=0

εn
	

(
κ‖V̄

T
Gδx̂n−	

G ‖ + ‖(I −V) f (x0 + �x̂n−	
G )‖

)
+

k∑
	=1

γ n
	 ‖ Z̄

T
Gδx̂n−	

G ‖ (5.19)

‖[ Z̄
n
P]T δx̂n

P‖ ≤
k∑

	=0

εn
	

(
κ‖[V̄

n
P]T δx̂n−	

P ‖ + ‖(I − P
n) f (x0 + �x̂n−	

P )‖
)

+
k∑

	=1

γ n
	 ‖[ Z̄

n
P]T δx̂n−	

P ‖, (5.20)

where εm
	 := |βm

	 |�t/hm, γ m
	 := (|αm

	 | + |βm
	 |κ�t)/hm, and hm := |αm

0 | − |βm
0 |κ�t.

Proof. Subtracting the premultiplication of Eq. (5.10) by [ Z̄
n
P]T � from the premultiplication of Eq. (5.8) by [ Z̄

n
P]T yields

αn
0[ Z̄

n
P]T δx̂n

P = βn
0�t[ Z̄

n
P]T
(

f (x0 + xn

) − P

n f (x0 + �x̂n
P)
)

+ [ Z̄
n
P]T δrn−1

P , (5.21)

where δrn−1
P := r̄n[xn−k


 , . . . , xn−1

 ] −P

n r̄n[�x̂n−k
P , . . . , �x̂n−1

P ]. Adding and subtracting βn
0�t[ Z̄

n
P]T f (x0 +�x̂n

P) from Eq. (5.21)
yields

αn
0[ Z̄

n
P]T δx̂n

P =βn
0�t[ Z̄

n
P]T [ f (x0 + xn


) − f (x0 + �x̂n
P) + f (x0 + �x̂n

P) − P
n f (x0 + �x̂n

P)] + [ Z̄
n
P]T δrn−1

P . (5.22)

Applying the triangle inequality yields

|αn
0 |‖[ Z̄

n
P]T δx̂n

P‖ ≤ |βn
0 |�t

(
‖ f (x0 + xn


) − f (x0 + �x̂n
P)‖ + ‖(I − P

n) f (x0 + �x̂n
P)‖
)

+ ‖[ Z̄
n
P]T δrn−1

P ‖. (5.23)

Now, using Lipschitz continuity and y = V̄
n
P[V̄

n
P]T y + Z̄

n
P[ Z̄

n
P]T y for all y ∈R

N , we have

|αn
0 |‖[ Z̄

n
P]T δx̂n

P‖ ≤ |βn
0 |�t

(
κ‖[ Z̄

n
P]T δx̂n

P‖ + κ‖[V̄
n
P]T δx̂n

P‖ + ‖(I − P
n) f (x0 + �x̂n

P)‖
)

+ ‖[ Z̄
n
P]T δrn−1

P ‖. (5.24)

Using �t < |αn
0 |/(|βn

0 |κ), we have

‖[ Z̄
n
P]T δx̂n

P‖ ≤ |βn
0 |�t

hn

(
κ‖[V̄

n
P]T δx̂n

P‖ + ‖(I − P
n) f (x0 + �x̂n

P)‖
)

+ 1

hn
‖[ Z̄

n
P]T δrn−1

P ‖. (5.25)

Next, we estimate ‖[ Z̄
n
P]T δrn−1

P ‖. First, we have

[ Z̄
n
P]T δrn−1

P =
k∑

	=1

βn
	 �t[ Z̄

n
P]T
(

f (x0 + xn−	

 ) − P

n f (x0 + �x̂n−	
P )
)

−
k∑

	=1

αn
	 [ Z̄

n
P]T
(

xn−	

 − �x̂n−	

P

)
. (5.26)

Following similar steps to those above, adding and subtracting 
∑k

	=1 βn
	 �t[ Z̄

n
P]T f (x0 + �x̂n−	

P ) and applying the triangle 
inequality yields
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‖[ Z̄
n
P]T δrn−1

P ‖ ≤
k∑

	=1

|βn
	 |�t

(
κ‖[V̄

n
P]T δx̂n−	

P ‖ + ‖(I − P
n) f (x0 + �x̂n−	

P )‖
)

+
k∑

	=1

(|βn
	 |κ�t + |αn

	 |)‖[ Z̄
n
P]T δx̂n−	

P ‖.

(5.27)

Combining inequalities (5.25) and (5.27) yields the final result (5.20). The Galerkin counterpart (5.19) can be derived by 
following the same steps with the Galerkin operators. �

Lemma 5.1 shows that the component of the error in the null space of the constraints behaves very similarly to the 
full-space error in the case of standard, unconstrained ROMs as reported in [15, Theorem 6.1]; the only difference is the 
addition of the terms arising from the row-space errors, which is 

∑k
	=0 εn

	κ‖V̄
T
Gδx̂n−	

G ‖ and 
∑k

	=0 εn
	κ‖[V̄

n
P]T δx̂n−	

P ‖ for 
conservative Galerkin and conservative LSPG projection, respectively.

Lemma 5.2 (Local a posteriori error bounds: row-space error). If A1 holds and �t < |αn
0 |/(|βn

0 |κ), then

‖V̄
T
Gδx̂n

G‖ ≤
k∑

	=0

εn
	

(
κ‖ Z̄

T
Gδx̂n−	

G ‖ + ζG‖(I −V) f (x0 + �x̂n−	
G )‖

)
+

k∑
	=1

γ n
	 ‖V̄

T
Gδx̂n−	

G ‖ (5.28)

‖[V̄
n
P]T δx̂n

P‖ ≤
k∑

	=0

εn
	

(
κ‖[ Z̄

n
P]T δx̂n−	

P ‖ + ζn
P ‖(I − [Pn]T ) f (x0 + �x̂n−	

P )‖
)

+
k∑

	=1

γ n
	 ‖[V̄

n
P]T δx̂n−	

P ‖

+ ζn
P

hn
‖�n‖

k∑
	=0

|αn
	 |‖x̂n−	

P ‖,
(5.29)

where ζG := ‖�−1
G U T

G C̄‖, ζn
P := ‖[�n

P]−1[U n
P]T C̄‖, and �n := �n(�T �n)−1 − �.

Proof. Noting that [V̄
n
P]T �x̂n

P = [V n
P]T x̂n

P, we have from adding and subtracting αn
0 C̄ [�n(�T �n)−1]x̂n

P to Eq. (5.12) and pre-
multiplying by [�n

P]−1[U n
P]T

αn
0[V̄

n
P]T �x̂n

P = βn
0�t[�n

P]−1[U n
P]T C̄ f (x0 + x̂n

P) + αn
0[�n

P]−1[U n
P]T C̄�n x̂n

P + [�n
P]−1[U n

P]T C̄ r̄n[�x̂n−k
P , . . . ,�x̂n−1

P ].
(5.30)

Premultiplying Eq. (5.8) by [V̄
n
P]T = [�n

P]−1[U n
P]T C̄ [Pn]T yields

αn
0[V̄

n
P]T xn


 = βn
0�t[�n

P]−1[U n
P]T C̄ [Pn]T f (x0 + xn


) + [�n
P]−1[U n

P]T C̄ [Pn]T r̄n[�xn−k

 , . . . ,�xn−1


 ]. (5.31)

Subtracting (5.30) from (5.31) yields

αn
0[V̄

n
P]T δx̂n

P =βn
0�t[�n

P]−1[U n
P]T C̄

[
[Pn]T f (x0 + xn


) − f (x0 + x̂n
P)
]
− αn

0[�n
P]−1[U n

P]T C̄�nx̂n
P

+ [�n
P]−1[U n

P]T C̄δrn−1
P,
 ,

(5.32)

where δrn−1
P,
 := [Pn]T r̄n[xn−k


 , . . . , xn−1

 ] − r̄n[�x̂n−k

P , . . . , �x̂n−1
P ]. Adding and subtracting [Pn]T f (x0 + x̂n

P) to the bracketed 
quantity, applying the triangle inequality, and using Lipschitz continuity yields

|αn
0 |‖[V̄

n
P]T δx̂n

P‖ ≤ |βn
0 |�tκ‖[�n

P]−1[U n
P]T C̄ [Pn]T ‖(‖[V̄

n
P]T δx̂n

P‖ + ‖[ Z̄
n
P]T δx̂n

P‖)
+ |βn

0 |�t‖[�n
P]−1[U n

P]T C̄‖‖(I − P
n) f (x0 + �x̂n

P)‖
+ |αn

0 |‖[�n
P]−1[U n

P]T C̄�n‖‖x̂n
P‖ + ‖[�n

P]−1[U n
P]T C̄δrn−1

P,
 ‖.
(5.33)

Noting that ‖[�n
P]−1[U n

P]T C̄ [Pn]T ‖ = ‖�V n
P‖ = 1 and �t < |αn

0 |/(|βn
0 |κ) yields

‖[V̄
n
P]T δx̂n

P‖ ≤εn
0κ‖[ Z̄

n
P]T δx̂n

P‖ + εn
P,0‖(I − P

n) f (x0 + �x̂n
P)‖

+ |αn
0 |‖[�n

P]−1[U n
P]T C̄�n‖

hn
‖x̂n

P‖ + 1

hn
‖[�n

P]−1[U n
P]T C̄δrn−1

P,
 ‖.
(5.34)
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Next, we estimate ‖[�n
P]−1[U n

P]T C̄δrn−1
P,
 ‖. First, we have from adding and subtracting 

∑k
	=1 �n(�T �n)−1x̂n−	

P that

[�n
P]−1[U n

P]T C̄δrn−1
P,
 =

k∑
	=1

βn
	 �t[�n

P]−1[U n
P]T C̄

(
[Pn]T f (x0 + xn−	


 ) − f (x0 + �x̂n−	
P )
)

−
k∑

	=1

αn
	 [�n

P]−1[U n
P]T C̄

(
[Pn]T xn−	


 − �n(�T �n)−1x̂n−	
P + �nx̂n−	

P

)
.

(5.35)

Following similar steps to those above, adding and subtracting 
∑k

	=1 βn
	 �t[�n

P]−1[U n
P]T C̄ [Pn]T f (x0 + �x̂n−	

P ) and applying 
the triangle inequality yields

‖[�n
P]−1[U n

P]T C̄δrn−1
P,
 ‖ ≤

k∑
	=1

|βn
	 |�tκ(‖[V̄

n
P]T δx̂n−	

P ‖ + ‖[ Z̄
n
P]T δx̂n−	

P ‖)

+
k∑

	=1

|βn
	 |�t‖[�n

P]−1[U n
P]T C̄‖‖(I − P

n) f (x0 + �x̂n−	
P )‖

+
k∑

	=1

|αn
	 |‖[V̄

n
P]T δx̂n−	

P ‖ +
k∑

	=1

|αn
	 |‖[�n

P]−1[U n
P]T C̄�n‖‖x̂n−	

P ‖.

(5.36)

Combining inequalities (5.34) and (5.36) yields the final result (5.29). The Galerkin counterpart (5.28) can be de-
rived by following the same steps with the Galerkin operators; the main modification is that adding and subtracting ∑k

	=0 βn
	 �t�−1

G U T
G C̄V f (x0 + �x̂n−	

G ) is not needed in the Galerkin case. �
Lemma 5.2 shows that—as was the case with null-space error bounds in Lemma 5.1—the row-space error bounds are 

affected by the error incurred in the null space through the terms 
∑k

	=0 εn
	κ‖ Z̄

T
Gδx̂n−	

G ‖ and 
∑k

	=0 εn
	κ‖[ Z̄

n
P]T δx̂n−	

P ‖ for 
conservative Galerkin and conservative LSPG projection, respectively. Further, these bounds are quite similar to the null-
space error bounds with two exceptions. First, the projection-error term is multiplied by a constant, which is ζG in the 
case of conservative Galerkin projection and is ζn

P in the case of conservative LSPG projection; this constant arises from 
the fact that these bounds are derived from the discrete equations associated with subdomain conservation (5.11)–(5.12). 
We also note that the conservative LSPG row-space error bound employs the transpose of the typical LSPG projector, i.e., 
[Pn]T , which is the oblique projection onto Ran

(
�n
)

orthogonal to Ran (�); this arises from appearance of the transpose of 
the constraints in the discrete equations (5.10). This also leads to the appearance of the term proportional to ‖�n‖ in the 
conservative LSPG error bound.

Theorem 5.2 (Local a posteriori error bounds). If A1 holds and �t < |αn
0 |/(|βn

0 |κ), then

‖δx̂n
G‖ ≤

k∑
	=0

(1 + ζG)εn
	‖(I −V) f (x0 + �x̂n−	

G )‖ +
k∑

	=1

γ n
	 ‖δx̂n−	

G ‖ (5.37)

‖δx̂n
P‖ ≤

k∑
	=0

εn
	‖(I − P

n) f (x0 + �x̂n−	
P )‖ + ζn

P

k∑
	=0

εn
	‖(I − [Pn]T

P
n) f (x0 + �x̂n−	

P )‖

+ ζn
P

hn
‖�n‖

k∑
	=0

|αn
	 |‖x̂n−	

P ‖ +
k∑

	=1

γ n
	 ‖δx̂n−	

P ‖.
(5.38)

Proof. Adding the premultiplication of Eq. (5.21) by Z̄ G to the premultiplication of Eq. (5.32) by V̄ n
P and noting that [V̄

n
P]T =

[�n
P]−1[U n

P]T C̄ [Pn]T yields

αn
0δx̂n

P =βn
0�t
[

f (x0 + xn

) − ( Z̄

n
P[ Z̄

n
P]T

P
n + V̄

n
P[�n

P]−1[U n
P]T C̄) f (x0 + �x̂n

P)
]
− αn

0 V̄
n
P[�n

P]−1[U n
P]T C̄�nx̂n

P

+ Z̄
n
P[ Z̄

n
P]T δrn−1

P + V̄
n
P[�n

P]−1[U n
P]T C̄δrn−1

P,
 .

(5.39)

Adding and subtracting f (x0 + �x̂n
P) + V̄

n
P[V̄

n
P]T

P
n f (x0 + �x̂n

P) from the bracketed quantity, using [V̄
n
P]T [V̄

n
P]T

P
n =

V̄
n
P[�n]−1[U n]T C̄ [Pn]T

P
n , applying the triangle inequality, and using Lipschitz continuity yields
P P



302 K. Carlberg et al. / Journal of Computational Physics 371 (2018) 280–314
|αn
0 |‖δx̂n

P‖ ≤ |βn
0 |�t

[
κ‖δx̂n

P‖ + ‖(I − P
n) f (x0 + �x̂n

P)‖ + ‖[�n
P]−1[U n

P]T C̄‖‖(I − [Pn]T
P

n) f (x0 + �x̂n
P)‖
]

+ |αn
0 |‖[�n

P]−1[U n
P]T C̄�n‖‖x̂n

P‖ + ‖ Z̄
n
P[ Z̄

n
P]T δrn−1

P + V̄
n
P[�n

P]−1[U n
P]T C̄δrn−1

P,
 ‖.
(5.40)

Now, using �t < |αn
0 |/(|βn

0 |κ) yields

‖δx̂n
P‖ ≤εn

0‖(I − P
n) f (x0 + �x̂n

P)‖ + εn
0ζn

P ‖(I − [Pn]T
P

n) f (x0 + �x̂n
P)‖

+ ζn
P

hn
‖�n‖|αn

0 |‖x̂n
P‖ + 1

hn
‖ Z̄

n
P[ Z̄

n
P]T δrn−1

P + V̄
n
P[�n

P]−1[U n
P]T C̄δrn−1

P,
 ‖.
(5.41)

Next, we estimate ‖ Z̄
n
P[ Z̄

n
P]T δrn−1

P + V̄
n
P[�n

P]−1[U n
P]T C̄δrn−1

P,
 ‖.

Z̄
n
P[ Z̄

n
P]T δrn−1

P = Z̄
n
P[ Z̄

n
P]T r̄n[xn−k


 , . . . , xn−1

 ] − Z̄

n
P[ Z̄

n
P]T

P
nr̄n[�x̂n−k

P , . . . ,�x̂n−1
P ] (5.42)

V̄
n
P[�n

P]−1[U n
P]T C̄δrn−1

P,
 = V̄
n
P[�n

P]−1[U n
P]T C̄ [Pn]T r̄n[xn−k


 , . . . , xn−1

 ] − V̄

n
P[�n

P]−1[U n
P]T C̄ r̄n[�x̂n−k

P , . . . ,�x̂n−1
P ]

= V̄
n
P[V̄

n
P]T r̄n[xn−k


 , . . . , xn−1

 ] − V̄

n
P[�n

P]−1[U n
P]T C̄ r̄n[�x̂n−k

P , . . . ,�x̂n−1
P ].

(5.43)

Thus,

Z̄
n
P[ Z̄

n
P]T δrn−1

P + V̄
n
P[�n

P]−1[U n
P]T C̄δrn−1

P,
 =
k∑

	=1

βn
	 �t
[

f (x0 + xn−	

 ) − ( Z̄

n
P[ Z̄

n
P]T

P
n + V̄

n
P[�n

P]−1[U n
P]T C̄) f (x0 + �x̂n−	

P )
]

−
k∑

	=1

αn
	

[
xn−	

 − ( Z̄

n
P[ Z̄

n
P]T

P
n + V̄

n
P[�n

P]−1[U n
P]T C̄)�x̂n−	

P

]
.

(5.44)

Adding and subtracting 
∑k

	=1 βn
	 �t( f (x0 + �x̂n−	

P ) + V̄
n
P[V̄

n
P]T

P
n f (x0 + �x̂n−	

P )) +∑k
	=1 αn

	 V̄
n
P V̄

n
PP

n�x̂n−	
P , using Pn� = �, 

and applying the triangle inequality yields

‖ Z̄
n
P[ Z̄

n
P]T δrn−1

P + V̄
n
P[�n

P]−1[U n
P]T C̄δrn−1

P,
 ‖ ≤
k∑

	=1

|βn
	 |�t

[
κ‖δx̂n−	

P ‖ + ‖(I − P
n) f (x0 + �x̂n−	

P )‖ + ζn
P ‖(I − [Pn]T

P
n) f (x0 + �x̂n−	

P )‖
]

+
k∑

	=1

|αn
	 |
[
‖δx̂n−	

P ‖ + ζn
P ‖�n‖‖x̂n−	

P ‖
]
.

(5.45)

Combining inequalities (5.41) and (5.45) yields the final result. The Galerkin result is derived similarly, except we note that 
V

T
V = I and the �n term associated with Galerkin projection is zero. �
Comparing Theorem 5.2 with [15, Theorem 6.1] shows that the state-space error bounds for the conservative Galerkin 

and conservative LSPG models are in general larger than the bounds for their unconstrained counterparts; the conservative 
Galerkin bound has the addition of the constant ζG, while the second and third terms in the conservative LSPG bound are 
added. This is to be expected, as the proposed models do not strictly minimize their associated residuals; they do so only 
subject to the satisfaction of nonlinear equality constraints. Thus, general state-space error bounds that are related to the 
full-space residual alone will lead to larger bounds. Instead, if we consider the components of the error associated with the 
constraints themselves, we can derive more favorable bounds.

Lemma 5.3 (Local a posteriori error bounds in conserved quantities). The error in the conserved quantities can be bounded as

‖C̄δx̂n
G‖ ≤

k∑
	=0

|βn
	 |�t

|αn
0 | ‖C̄ f (x0 + xn−	


 ) − C̄ f (x0 + �x̂n−	
G )‖ +

k∑
	=1

|αn
	 |

|αn
0 | ‖C̄δx̂n−	

G ‖ (5.46)

‖C̄δx̂n
P‖ ≤

k∑
	=0

|βn
	 |�t

|αn
0 | ‖C̄ f (x0 + xn−	


 ) − C̄ f (x0 + �x̂n−	
P )‖ +

k∑
	=1

|αn
	 |

|αn
0 | ‖C̄δx̂n−	

P ‖. (5.47)

Proof. The result can be obtained trivially by subtracting Eq. (5.11) from the premultiplication of Eq. (5.8) by C̄ and applying 
the triangle inequality. �
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Lemma 5.3—while very simple—highlights an important attribute of the proposed methods. In particular, the new con-
tribution to the error at time instance tn is due to a term comprising a scalar multiple of ‖C̄ f (x0 + xn


) − C̄ f (x0 + �x̂n
G)‖

and ‖C̄ f (x0 + xn

) − C̄ f (x0 + �x̂n

P)‖ for conservative Galerkin and conservative LSPG, respectively. In the absence of source 
terms, this error associates with the error in the flux along the faces Ē of the decomposed mesh M̄. In many cases, this error will 
be quite small. For example, in the case of global conservation characterized by M̄ = M̄global, N�̄ = 1, �̄1 = � and �̄1 = �, 
the error in the globally conserved quantities arises entirely from the error in the flux computed along the boundary of the 
domain.

Theorem 5.3 (Local a posteriori error bounds in conserved quantities). If A1 holds and �t < |αn
0 |/(|βn

0 |κcond
(
C̄
)
), then

‖C̄δx̂n
G‖ ≤

k∑
	=0

ε̄n
	κ‖Z T

C̄
δx̂n−	

G ‖ +
k∑

	=1

γ̄ n
	 ‖C̄δx̂n−	

G ‖ (5.48)

‖C̄δx̂n
P‖ ≤

k∑
	=0

ε̄n
	κ‖Z T

C̄
δx̂n−	

P ‖ +
k∑

	=1

γ̄ n
	 ‖C̄δx̂n−	

P ‖, (5.49)

where ε̄m
	 := |βm

	 |‖C̄‖�t/h̄m, γ̄ m
	 := (|αm

	 | + |βm
	 |κcond

(
C̄
)
�t)/h̄m, h̄m := |αm

0 | − |βm
0 |κcond

(
C̄
)
�t.

Proof. Subtracting Eq. (5.11) from the premultiplication of Eq. (5.8) by C̄ yields

αn
0 C̄δx̂n

G = βn
0�t C̄

(
f (x0 + xn


) − f (x0 + �x̂n
G)
)

+ C̄δr̄n−1
G , (5.50)

where δr̄n−1
G := r̄n[xn−k


 , . . . , xn−1

 ] − r̄n[�x̂n−k

G , . . . , �x̂n−1
G ]. Applying the triangle inequality yields

|αn
0 |‖C̄δx̂n

G‖ ≤ |βn
0 |�t‖C̄‖‖ f (x0 + xn


) − f (x0 + �x̂n
G)‖ + ‖C̄δr̄n−1

G ‖. (5.51)

Now, using Lipschitz continuity and y = V C̄ V T
C̄

y + Z C̄ Z T
C̄

y for all y ∈ R
N with C̄

+
C̄ = V C̄ V T

C̄
, we have

|αn
0 |‖C̄δx̂n

G‖ ≤ |βn
0 |�t‖C̄‖κ

(
‖C̄

+‖‖C̄δx̂n
G‖ + ‖Z T

C̄
δx̂n

G‖
)

+ ‖C̄δr̄n−1
G ‖. (5.52)

Now, using �t < |αn
0 |/(|βn

0 |κcond
(
C̄
)
) and cond

(
C̄
)= σmax(C̄)/σmin(C̄) = ‖C̄‖‖C̄

+‖, we have

‖C̄δx̂n
G‖ ≤ |βn

0 |�t‖C̄‖κ
h̄n

‖Z T
C̄
δx̂n

G‖ + 1

h̄n
‖C̄δr̄n−1

G ‖. (5.53)

Next, we estimate ‖C̄δr̄n−1
G ‖. First, we have

C̄δr̄n−1
G =

k∑
	=1

βn
	 �t C̄

(
f (x0 + xn−	


 ) − f (x0 + �x̂n−	
G )
)

−
k∑

	=1

αn
	 C̄
(

xn−	

 − �x̂n−	

G

)
. (5.54)

Applying the triangle inequality and following the above steps yields

‖C̄δr̄n−1
G ‖ ≤

k∑
	=1

|βn
	 |κ�t

(
cond

(
C̄
)‖C̄δx̂n−	

G ‖ + ‖C̄‖‖Z T
C̄
δx̂n−	

G ‖
)

+
k∑

	=1

αn
	‖C̄δx̂n−	

G ‖. (5.55)

Combining inequalities (5.53) and (5.55) produces the final result. �
Theorem 5.3 shows that—at a given time instance tn—the only new contribution to the error bound arises from the 

term ε̄n
0κ‖Z T

C̄
δx̂n

G‖, which associates with error incurred in the null space to the constraint matrix C̄ . Thus, even though 
the methods explicitly enforce conservation over subdomains, the actual values of those conserved variables may deviate 
from their full-order-model counterparts. This can be interpreted as a closure problem: the errors in the state component 
not restricted by the constraints can lead to errors in the state component restricted by the constraints, i.e., the conserved 
variables.

6. Numerical experiments

This section compares the performance of several reduced-order models on a parameterization of the quasi-1D Euler 
equations applied to supersonic flow in a converging–diverging nozzle.
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Fig. 2. Quasi-1D Euler. Problem geometry for the converging–diverging nozzle.

6.1. Problem description: quasi-1D Euler equation

We consider a parameterized quasi-1D Euler equation associated with modeling inviscid compressible flow in a one-
dimensional converging–diverging nozzle with a continuously varying cross-sectional area [40, Chapter 13]; Fig. 2 depicts 
the problem geometry. In integral form, the governing equations are:

d

dt

∫
ω

A(x)ρ(x, t;μ)dx +
∫
γ

A(x)ρ(x, t;μ)u(x, t;μ)sign(n(x))ds(x) = 0

d

dt

∫
ω

A(x)ρ(x, t;μ)u(x, t;μ)dx +
∫
γ

A(x)
(
ρ(x, t;μ)u(x, t;μ)2 + p(x, t;μ)

)
sign(n(x))ds(x)

=
∫
ω

p(x, t;μ)
∂ A

∂x
(x, t;μ)dx

d

dt

∫
ω

A(x)e(x, t;μ)dx +
∫
γ

A(x)(e(x, t;μ) + p(x, t;μ))u(x, t;μ)sign(n(x))ds(x) = 0,

∀ω ⊆ � = [0, L]. Thus, the governing system of nonlinear partial differential equations is consistent with the conservation-
law formulation in Eq. (2.1) with d = 1 spatial dimension, nu = 3 conserved variables corresponding to density u1 = Aρ , 
momentum u2 = Aρu, and energy density u3 = Ae. The flux corresponds to g1 = Aρu, g2 = A(ρu2 + p), and g3 = A(e + p)u, 
and the source corresponds to s1 = s3 = 0 and s2 = p ∂ A

∂x . In addition, we have p = (γ − 1)ρε , ε = e
ρ − u2

2 , and assume a 
perfect gas (i.e., p = ρRT ). Here, ρ denotes density, u denotes velocity, p denotes pressure, ε denotes potential energy per 
unit mass, e denotes total energy density, γ denotes the specific heat ratio, and A denotes the converging–diverging nozzle 
cross-sectional area. We employ a specific heat ratio of γ = 1.3 and a specific gas constant of R = 355.4 m2/s2/K. The 
spatial domain is � = [0, L] with L = 0.25 m. The cross-sectional area A(x) is determined by a cubic spline interpolation 
over the points

(x, A(x)) ∈ {(0,0.035), (0.0208,0.0275), (0.0417,0.0206), (0.0625,0.0145), (0.0833,0.0097),

(0.104,0.0066), (0.125,0.0055), (0.146,0.0067), (0.1667,0.0107), (0.188,0.0178),

(0.208,0.0283), (0.229,0.0427), (0.25,0.0612)}.
(6.1)

The final time is T = 0.29 s, and we employ the backward Euler scheme with a uniform time step of �t = 0.01 s for time 
discretization. We declare convergence of the Newton(-like) solver at each time instance when the 	2-norm of the residual 
reaches 1 × 10−5 of its value with the initial guess, which is provided by the solution at the previous time instance.

The initial flow field is created in several steps. First, the following isentropic relations are used to generate a zero 
pressure-gradient flow field at the inlet (x = 0 m) and the outlet (x = 0.25 m):

M(x) = Mm Am

A(x)

(
1 + γ −1

2 M(x)2

1 + γ −1
2 M2

m

) γ +1
2(γ −1)

, x ∈ {0,0.25} m, (6.2)

where a subscript m indicates the flow quantity at x = 0.125 m, and M denotes the Mach number. The initial Mach number 
at the middle of the domain is employed as the problem parameter (i.e., μ = Mm with nμ = 1), from which the initial 
distribution of the Mach number is defined according to a cubic-spline interpolation with points {M(0), μ, M(0.25)}. Then, 
we use the following relations to obtain the rest of the initial flow field for x ∈ �:

p(x) = pt

(
1 + γ − 1

M(x)2
) −γ

γ −1

, T (x) = Tt

(
1 + γ − 1

M(x)2
)−1

, (6.3)

2 2
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ρ(x) = p(x)

RT (x)
, c(x) =

√
γ

p(x)

ρ(x)
, u(x) = M(x)c(x), (6.4)

where c denotes the speed of sound, the total temperature is Tt = 2800 K, and the total pressure is pt = 2.068 × 106 N/m2.

6.2. Compared methods

These experiments compare the following methods, which employ the Tier A-B notation established in Section 4.5:

• FOM. This model corresponds to the full-order model, i.e., the solution satisfying Eq. (2.5).
• Galerkin. This model corresponds to the Tier 1-0 Galerkin ROM.
• LSPG. This model corresponds to the Tier 1-0 LSPG ROM.
• LSPG-FV. This model corresponds to the Tier 1-1 LSPG ROM, which is conservative.
• GNAT. This model corresponds to the Tier 2-0 LSPG ROM, where the residual approximation r̃ is constructed using 

hyper-reduction method 1 with gappy POD as described in Section 3.3. The snapshots used to construct �r are con-
structed during simulation of the FOM method at training instances, i.e., the residual tensor R(x) is employed as 
described in Section 4.6. This corresponds to the GNAT method [16,17].

• GNAT-FV. This model corresponds to the Tier 2-1 LSPG ROM, which is conservative. While objective function is approxi-
mated in the same way as in the GNAT method above, no hyper-reduction is applied to the constraints.

• GNAT-FV(X). This model corresponds to the Tier 2-2 LSPG ROM, which is approximately conservative. The objective 
function is approximated in the same way as in the GNAT method above. The residual approximation ˜̃r, which appears 
in the constraints, is approximated using hyper-reduction method 3 with gappy POD as described in Section 4.5. The 
snapshots used to construct the required reduced-basis matrices �s and �h are constructed from data tensors S(ξ ) and 
H(ξ), where ξ corresponds to the Method ‘X’ state and X varies during the experiments. The sample matrices satisfy 
P s = P r and P r B = P r B P T

h P h as described in Section 4.6 such that a single sample mesh can be employed for all 
approximations.

In all cases that employ constraints (i.e., Tier A-B ROMs with B ∈ {1, 2}), the subdomains defining the decomposed 
mesh M̄ are equally spaced, their union is equal to the global domain (i.e., ∪N�̄

i=1�̄i = �), and are non-overlapping (i.e., 
meas(�̄i ∩ �̄ j) = 0 for i 
= j) such that feasibility implies that all conservative ROMs are globally conservative (Corollary 4.2). 
If infeasibility is detected with N̄ ≤ p, then infeasibility-handling approach 1 in Section 4.4 is employed at that time in-
stance; this amounts to coarsening the decomposed mesh M̄ by reducing the number of subdomains by one and updating 
the operator C̄ accordingly; in all cases, global conservation was feasible. If instead N̄ > p, in which case feasibility can-
not be guaranteed in general (see Proposition 5.1), then infeasibility-handling approach 2 in Section 4.4 is employed; this 
amounts to applying a penalty formulation with a specified penalty parameter ρ ∈ R+ . In all cases, a (Newton) step length 
of ηn(k) = 1 was employed and led to convergence of the solution to the system of nonlinear equations arising at each time 
instance. All ROMs employ a training set of Dtrain = {1.7 + 0.1 j}3

j=0 such that ntrain = 4. The online parameter instance at 
which the ROMs are simulated is set to μ
 = 1.75.

We assess the accuracy of any ROM solution x̃ using two metrics: the mean-squared and time-instantaneous state-space 
error, i.e.,

Ex :=
√√√√ NT∑

n=1

‖xn(μ) − x̃n
(μ)‖2

2/

√√√√ NT∑
n=1

‖xn(μ)‖2
2 (6.5)

εn
x := ‖xn(μ) − x̃n

(μ)‖2/‖xn(μ)‖2, n = 1, . . . , NT , (6.6)

and the mean-squared and time-instantaneous error in the globally conserved variables

Ex,global :=
√√√√ NT∑

n=1

‖C̄ globalxn(μ) − C̄ globalx̃
n
(μ)‖2

2/

√√√√ NT∑
n=1

‖C̄ globalxn(μ)‖2
2 (6.7)

εn
x,global := ‖C̄ globalx

n(μ) − C̄ globalx̃
n
(μ)‖2/‖C̄ globalx

n(μ)‖2, n = 1, . . . , NT , (6.8)

where C̄ global ∈ R
nu×N
+ is the operator C̄ associated with the global decomposition M̄ = M̄global := {�}. We also assess the 

mean-squared and time-instantaneous violation in global conservation as

Er,global =
√√√√ NT∑

n=1

‖C̄ globalrn(x̃n
(μ);μ)‖2 (6.9)

εn
r,global = ‖C̄ globalr

n(x̃n
(μ);μ)‖2, n = 1, . . . , NT . (6.10)
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All timings are obtained by performing calculations on an Intel(R) Xeon(R) CPU E5-2670 @ 2.60 GHz, 31.4 GB RAM using 
the MORTestbed [58] in Matlab.

6.3. GNAT-FV(X) snapshot study

This section assesses the effect of snapshot-collection method on the performance of the GNAT-FV(X) method; all subse-
quent experiments employ the snapshot-collection method yielding the best performance.

We set the number of control volumes to N� = 100 such that N = N�nu = 300, the reduced-basis dimensions to p = 5
(which corresponds to a relative statistical energy of 99.78%) and pr = ph , and employ a sample mesh of 20 control volumes, 
which corresponds to np,r = np, f = np,h = 60. We employ a penalty parameter of ρ = 103, which is used by infeasibility-
handling approach 2 when N̄ > p. In this setting we vary the number of constraints N̄ and flux-basis dimension ph and 
report the relative mean-squared violation in global conservation over the time interval, i.e., the value of Er,global for the 
given reduced-order model divided by the value of Er,global for the (unconstrained) GNAT model; note that this value is zero 
if the constraint-approximation error is zero and a feasible solution is computed at each time instance.

Fig. 3 reports the results for this experiment and elucidates several trends. First, Fig. 3a shows that the GNAT-FV model—
for which the constraints are enforced exactly—yields near-exact satisfaction of the conservation laws for N̄ < p; this implies 
that a feasible solution was computed at every time instance of that simulation.

Second, we note that for 1 < N̄/p < 2, the GNAT-FV model yields approximate but accurate satisfaction of the conserva-
tion laws, as the relative value of Er,global is less than 10−2 in these cases.

Third, Figs. 3b–3f show that the best results for the GNAT-FV(X) method are obtained for X = LSPG-FV (Fig. 3e) and X =
GNAT-FV (Fig. 3f); these techniques yield relative values of Er,global for the GNAT-FV(X) model less than 10−2 for N̄/p < 2
in almost all cases. This result is sensible, as the training simulations corresponding to (constrained) LSPG-FV and GNAT-FV 
are ‘closer’ to the (constrained) GNAT-FV(X) simulation relative to the (unconstrained) FOM, LSPG, and GNAT simulations. 
However, in these cases, the relative value of Er,global for N̄ < p is small, but not close to machine zero as in the GNAT-FV 
case because the constraints are approximated. Thus, these methods—while having a cost independent of N due to the 
introduction of hyper-reduction—are only approximately conservative.

Fourth, we note that the GNAT-FV(LSPG-FV) and GNAT-FV(LSPG-FV) results are insensitive to the flux-basis dimension ph
for ph sufficiently large (ph > 12).

Finally, we note that while the GNAT-FV(LSPG-FV) and GNAT-FV(GNAT-FV) models yield similar accuracy, the latter 
method incurs a lower training cost, as the former incurs training simulations with the (Tier 1-1) LSPG-FV model, while 
the latter incurs training simulations with the (Tier 2-1) GNAT-FV model. Thus, the only GNAT-FV(X) method we consider 
in subsequent experiments is the GNAT-FV(GNAT-FV) approach.

6.4. Penalty-parameter study

This section assesses the effect of the penalty parameter ρ employed by infeasibility-handling approach 2 when N̄ > p on 
the performance of the (constrained) ROMs LSPG-FV, GNAT-FV, and GNAT-FV(GNAT-FV). All subsequent experiments employ 
the penalty parameter yielding the best performance.

We again set the number of control volumes to N� = 100 such that N = N�nu = 300, the reduced-basis dimensions to 
p = 5 and pr = ph = ps = 20 and again employ a sample mesh of 20 control volumes, which corresponds to np,r = np, f =
np,h = 60. We vary the number of constraints N̄ and penalty parameter ρ and report the mean-squared state-space error 
Ex and the (absolute) mean-squared violation in global conservation over the time interval Er,global. We note that a penalty 
value of ρ = ∞ corresponds to minimizing the norm of the constraints only (i.e., the objective function is ignored).

Fig. 4 reports the results for this experiment. First, we note that values ρ ∈ {10, 102, 103} yield similar performance, 
which outperforms the other tested values. In particular, values of ρ ∈ {1, ∞} often yield unstable responses, while ρ = 10
almost always yields larger errors than employing ρ ∈ {10, 102, 103}.

Second, we note that nearly all cases outperform the unconstrained model, characterized by ρ = 0; this implies that 
employing the proposed constraints can improve accuracy, even if the constraints are employed in a penalty formulation 
rather than as strictly enforced constraints.

Third, we observe that the two reported metrics are often correlated: larger values of mean-squared violation in global 
conservation Er,global typically implies larger values of the relative mean-squared state-space error Ex . This lends credibility 
to the proposed technique, which aims to reduce the violation in global conservation, as it suggests that enforcing this 
constraint (or employing it as a penalty in the objective function) can lead to more accurate ROMs.

Fourth, the plots indicate that accuracy typically degrades as constraints are added to the problem, i.e., as the decom-
posed mesh becomes finer. In particular, the case N̄ = N is equivalent to the unconstrained case for LSPG-FV for any value 
of the penalty parameter ρ , as C̄ = I in this case and thus the objective function in Problem (4.63) is equal to a scalar mul-
tiple of the objective in the (unconstrained) LSPG Problem (4.44). This is not true for the GNAT-FV and GNAT-FV(GNAT-FV) 
models, as different hyper-reduction approaches are employed for the residual in the objective and constraints such that 
˜̃r 
= r̃.

In subsequent experiments, we employ a penalty-parameter value of ρ = 103.
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Fig. 3. One-dimensional Euler equation. GNAT-FV snapshot study described in Section 6.3. Fig. 3a corresponds to the (conservative) GNAT-FV model; other 
subfigures correspond to different (approximately conservative) GNAT-FV(X) methods, which employ Method ‘X’ snapshots to construct the required 
reduced-basis matrices �s and �h . Within each subfigure, two parameters vary: the number of constraints N̄ (the reduced-basis dimension is fixed to 
p = 5), and the dimension of the reduced-basis matrices �s and �h , which are enforced to have the same dimension such that pr = ph . Here, E


r,global
denotes the value of Er,global obtained for the unconstrained GNAT model.

6.5. State-basis-dimension study

This section assesses the effect of basis dimension p on the proposed methods. We again employ N� = 100 control 
volumes in the finite-volume discretization, set reduced-basis dimensions to pr = ph = ps = 20, employ a sample mesh 
with 20 control volumes, and set the penalty parameter to ρ = 103. We vary both the state-basis dimension p and the 
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Fig. 4. One-dimensional Euler equation. GNAT-FV penalty-parameter study described in Section 6.4. The top bar reports cases where the reduced-order-model 
simulation was unstable. Each row of subfigures corresponds to a different ROM method; each column reports a different error measure. Within each 
subfigure, two parameters vary: the number of constraints N̄ (the reduced-basis dimension is fixed to p = 5), and the penalty parameter ρ . Note that we 
only consider N̄/p > 1, as infeasibility does not occur for N̄/p ≤ 1.

number of constraints N̄ the relative mean-squared state-space error Ex and the (absolute) mean-squared violation in global 
conservation over the time interval Er,global.

Fig. 5 reports the results. First, and most importantly, we note that Figs. 5a, 5c, and 5e show that the introduction of 
constraints yields the most significant improvements for the smallest basis dimension p = 5. In these cases, the relative 
mean-squared state-space error Ex is reduced by over an order of magnitude for all ROMs, as the unconstrained ROMs yield 
errors exceeding 30%, while their constrained counterparts employing N̄ = 3 (i.e., global conservation with M̄ = M̄global) 
all yield errors less than 2%. In contrast, for p ≥ 7, the unconstrained ROMs are already quite accurate, with errors already 
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Fig. 5. One-dimensional Euler equation. GNAT-FV state-basis-dimension study described in Section 6.5. The top bar reports cases where the reduced-order-
model simulation was unstable. The colored horizontal lines correspond to the associated unconstrained ROM. Each row of subfigures corresponds to a 
different ROM method; each column reports a different error measure. Within each subfigure, two parameters vary: the number of constraints N̄ and the 
reduced-basis dimension p = 5).

less than 2%; incorporating constraints in these cases does yield accuracy improvements in most cases, although these 
improvements are less dramatic. Because the most significant improvements were obtained by enforcing global conservation 
with N̄ = 3, subsequent experiments employ ROMs that enforce global conservation by using a decomposed mesh of M̄ =
M̄global.

Second, Figs. 5b and 5d show that the LSPG-FV and GNAT-FV models produce near-exact satisfaction of the conservation 
laws for N̄ < p; this implies that a feasible solution was computed at every time instance of the corresponding simulations. 
In contrast, Fig. 5f shows that the GNAT-FV(GNAT-FV) ROM is only approximately conservative. Nonetheless, this approximate 
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conservation does not adversely impact the actual errors produced by the ROM, as the errors reported in Figs. 5c and 5e
are nearly identical in all cases. So, while applying hyper-reduction to the constraints results in a loss of numerically exact 
satisfaction of global conservation, the results are extremely similar to the case where the constraints are applied exactly.

6.6. Comparison across all methods

This section assesses the relative performance of the methods over time; all ROMs that employ constraints enforce global 
conservation, i.e., N̄ = 3 and M̄ = M̄global.

We consider two discretizations corresponding to N� = 500 and N� = 1000 control volumes in the finite-volume dis-
cretization. We set reduced-basis dimensions to p = 5 and pr = ph = ps = 20 and employ a sample mesh with 20 control 
volumes. We report the time-instantaneous state-space errors εn

x , n ∈ N(NT ), errors in the globally conserved variables 
εn

x,global, n ∈N(NT ), and violation in global conservation εn
r,global, n ∈N(NT ).

Fig. 6 reports the results. First, we note that the errors εn
x and εn

x,global exhibit the same trends in all cases; this suggests 
that enforcing global conservation—which leads to lower errors in the globally conserved quantities by construction—is an 
effective approach for also reducing the error in the state itself. This also supports previous observations that enforcing 
global conservation rather than employing a penalty approach leads to smaller errors in most cases.

Second, we observe that the FOM, LSPG-FV, and GNAT-FV models all lead to global-conservation violations εn
x,global near 

zero as expected. In contrast, the GNAT-FV(GNAT-FV) approach only approximately satisfies global conservation due the 
introduction of hyper-reduction to the constraints; however, this has no noticeable effect on its response, as the errors 
reported for GNAT-FV and GNAT-FV(GNAT-FV) are nearly identical in Figs. 6a–6d.

Third, we notice that the conservative methods LSPG-FV and GNAT-FV, as well as the approximately conservative method 
GNAT-FV(GNAT-FV), all yield significantly lower errors than the unconstrained methods Galerkin, LSPG, and GNAT. Further, 
these unconstrained methods yield significant violation in global conservation.

Table 1 reports the timings for these methods. We first note that the LSPG ROM does not have a valid timing for either 
problem, as the associated simulations yield negative pressures and thus do not successfully run for the entire time interval 
(see premature termination in Fig. 6). Second, while all other ROMs produce a speedup relative to the FOM, methods that 
employ hyper-reduction for the objective function (GNAT, GNAT-FV) produce more significant speedups; further applying 
hyper-reduction to the constraint (GNAT-FV(GNAT-FV)) improves the speedup further.

To enable an objective comparison of the ROM methods, we compare their performance across a wide variation of all 
method parameters. We subject each model to a parameter study wherein each model parameter is varied between the 
limits specified in Table 2. From these results, we then construct a Pareto front for each method, which is characterized by 
the method parameters that minimize the competing objectives of error and wall time.

Fig. 7 reports these Pareto fronts, where both the mean-squared state-space error Ex and mean-squared violation in 
global conservation Er,global are considered as error measures, as well as an ‘overall’ Pareto front that selects the Pareto-
optimal methods across all parameter variations. Note that this figure reports the relative wall time with respect to that of 
the FOM simulation; relative wall times less than one imply the ROM yields a speedup. Here, Fig. 7a shows that the GNAT-
FV(GNAT-FV) method is always Pareto dominant for error measure Ex , as no other method is both less expensive and more 
accurate for any tested parameter combination. The method that performs second best is the proposed GNAT-FV method, 
which exactly enforces constraints; note that it is only slightly more expensive than the GNAT-FV(GNAT-FV) method, as 
the benefit of performing hyper-reduction on the residual appearing in the constraints with N̄ small is much less signifi-
cant than the benefit of performing hyper-reduction on the residual appearing in the objective function when N̄ is small. 
In particular, note that the Pareto-optimal parameter combinations for the LSPG-FV method yield similar accuracy to the 
Pareto-optimal GNAT-FV(GNAT-FV) points, but incur significantly larger wall times. Fig. 7b shows that GNAT-FV(GNAT-FV) 
is Pareto optimal for error measure Er,global for relative wall times less than 0.28, but GNAT-FV, which enforces constraints 
exactly, is Pareto optimal for larger relative wall times, yielding near-zero violations in global conservation. We empha-
size that both conservative variants of the GNAT method (i.e., GNAT-FV and GNAT-FV(GNAT-FV)) outperform the original 
GNAT approach, and the conservative variant of the LSPG method (i.e., LSPG-FV) outperforms the original LSPG method; this 
demonstrates the benefit of the proposed method and the performance improvement gained by enforcing conservation. In 
particular, note that the introduction of constraints does not adversely affect ROM wall-time performance; in fact, LSPG-FV 
has better wall-time performance relative to the LSPG method. This occurs because global conservation corresponds to only 
N̄ = 3 constraints in this case, and because these constraints lead to improved accuracy and thus promote convergence, 
the associated simulations require fewer iterations to solve the optimization problem at each time instance. We also note 
that hyper-reduction is needed to realize significant speedups: Pareto-optimal parameter combinations for ROMs employing 
hyper-reduction lead to relative wall times less than 0.36, while Pareto-optimal parameter combinations for ROMs without 
hyper-reduction yield relative wall times exceeding 0.6.

7. Conclusions

This work proposed two model-reduction methods for finite-volume models that enforce conservation over subdomains: 
conservative Galerkin and conservative LSPG projection. These methods associate with optimization problems characterized 
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Fig. 6. One-dimensional Euler equation. Method comparison over time as described in Section 6.6, with conservative methods enforcing global conservation. 
Each curve depicts the time evolution of a given error measure for a given ROM. Each row of subfigures corresponds to a different error measure; the left 
and right subfigure columns correspond to cases N� = 500 and N� = 1000, respectively. Note that the missing data for the LSPG method corresponds to 
time instances after a negative pressure was generated, thus causing the simulation to end.

Table 1
One-dimensional Euler equation. Timings for the ROM methods assessed in Section 6.6. Here, all ROMs that employ constraints enforce global conservation, 
i.e., N̄ = 3 and M̄ = M̄global . We set reduced-basis dimensions to p = 5 and pr = ph = ps = 20. ROM methods that use hyper-reduction employ a sample 
mesh with 20 control volumes.

Method FOM Galerkin LSPG LSPG-FV GNAT GNAT-FV GNAT-FV(GNAT-FV)

wall time (seconds) 
for N� = 500

40.9 29.1 N/A 31.9 13.1 11.1 8.1

wall time (seconds) 
for N� = 1000

81.2 52.2 N/A 58.6 19.8 18.4 14.4



312 K. Carlberg et al. / Journal of Computational Physics 371 (2018) 280–314
Table 2
One-dimensional Euler equation. Parameters varied for different ROMs to generate the Pareto 
fronts reported in Fig. 7 as described in Section 6.6.

Method LSPG, LSPG-FV GNAT, GNAT-FV, GNAT-FV(GNAT-FV)

p {4,5,6} {4,5,6}
np,r = np,s = np,h {60,90}
pr {10,20,30}
ph {10 + 5 j}4

j=0

ps {10 + 5 j}4
j=0

Fig. 7. One-dimensional Euler equation. Pareto-optimal performance of various methods after varying model parameters reported in Table 2 for N� = 500 as 
described in Section 6.6. Wall times are reported relative to that of the FOM simulation. Note that the Pareto-optimal ROM methods in terms of minimizing 
error and wall time are the proposed GNAT-FV and GNAT-FV(GNAT-FV) methods.

by a minimum-residual objective function and nonlinear equality constraints formulated at the time-continuous and time-
discrete levels, respectively. We equipped these methods with techniques for handling infeasible constraints, and we also 
developed hyper-reduction methods to ensure low-cost ROM simulations in the presence of nonlinear flux or source terms.

We performed analysis that demonstrated commutativity of conservative Galerkin projection and time discretization, 
developed sufficient conditions for feasibility, demonstrated conditions under which conservative Galerkin and conservative 
LSPG models are equivalent, and derived a posteriori error bounds. Numerical experiments on a model problem highlighted 
the benefit of conservative projection, and also demonstrated that enforcing global conservation led to the most accurate 
results.

Future work involves implementing the proposed techniques in a production-level computational fluid-dynamics code, 
demonstrating the methods on truly large-scale finite-volume models, and investigating combining the methodology with 
space–time projection approaches [56,11,20], as these techniques have demonstrated error bounds that grow slowly in time.
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