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A data transfer (remap) between two meshes is an important step of each arbitrary 
Lagrangian-Eulerian (ALE) simulation. We develop a conservative scheme for remapping
high-order discontinuous Galerkin fields on high-order polytopal meshes with curved faces. 
This scheme uses a virtual element function to define the remap velocity. We show that 
the optimal accuracy is achieved when the remap problem is written and is solved as a 
coupled system of two conservative equations. The properties of the proposed scheme are 
studied numerically for smooth and discontinuous fields on cubic and prismatic meshes.

Published by Elsevier Inc.

1. Introduction

Lagrangian hydrodynamic codes use often general polytopal meshes and second-order discretization schemes. To increase 
predictive power of future codes, researchers are looking at high-order numerical schemes on high-order meshes [24,28]. 
Indirect arbitrary Lagrangian-Eulerian (ALE) hydrodynamics methods adopt a three-step approach to evolve the solution and 
mesh positions. The first step is a Lagrange calculation that deforms the mesh, the second step creates an improved mesh 
(e.g., a smoother mesh), and the third step remaps the physical quantities to the improved mesh. The last two steps are as 
critical for the overall simulation accuracy as the first step, since they must preserve characteristic mesh features as well 
as important mathematical and physical properties of the Lagrangian solution, see e.g. [21,11,12,29] and references therein. 
The focus of this paper is on remapping high-order discontinuous Galerkin (DG) solutions.

The first DG method for neutron transport equation was introduced in [32]. Typical DG methods have a number of prop-
erties important in applications. They are locally conservative, can handle complex geometries, support arbitrary (polytopal) 
meshes, and provide high-order accuracy. DG methods are used nowadays in a huge variety of engineering applications 
including compressible [7,14,27] and incompressible [31] fluid dynamics, granular flows [19], semiconductor device simu-
lation [13], viscoelasticity [6], transport in porous media [2,4], and Lagrangian hydrodynamics on linear [30,34,24,27] and 
high-order (curvilinear) [35,28,15] meshes, see also references inside. DG methods have been employed to solve various 
other nonlinear equations: viscosity solutions of the general Hamilton-Jacobi equation are considered in [23], the Korteweg-
deVries equations are studied in [33], the level set equation is analyzed in [26].
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Fig. 1. Illustration of map F(X) from a reference (left) to a physical (right) mesh cell. Three visible faces are shown. Cell vertices are marked with solid 
disks.

For DG methods, there exist two major approaches to a conservative data remap. The first approach is based on the L2

finite element projectors. Its practical implementation requires the intersection of two meshes which is a very challenging 
problem for high-order meshes with curved faces. But this approach is needed when mesh topology has changed during 
the mesh optimization step, see e.g. [29].

The second approach, that we employ in this paper, is to write the data remap as a dynamic process governed by a 
linear transport equation. If the difference between meshes is small, on the order of the mesh size, then the remap may be 
written as a simple flux-form transport algorithm [16]. The swept region algorithms work under similar assumption [21]. 
We consider a more general case where such an assumption is not valid. This PDE-type approach is natural for meshes 
with strongly curved faces and was analyzed in two-dimensions in [25]. Specifics of the two-dimensional remap problem 
is that the mesh deformation could be defined point-wise on mesh edges. Using exterior data, the deformation map is 
extended inside each polygonal cells using non-polynomials virtual element functions. The practical implementation uses 
virtual element projections that produce a polynomial approximation of an un-computable virtual element function. The 
virtual element projector minimizes energy norm of a polynomial which is a useful property for the stability analysis. 
When the cell is a triangle or a quadrilateral, the resulting map coincides with the conventional finite element map, see e.g. 
[15,3]. Finally, we mention a finite volume scheme from [12]. It is one of the rare schemes that deals with a conservative 
remapping on curvilinear grids.

In three-dimensions, the deformation map is defined pointwise on mesh edges; hence, it should be extended first inside 
mesh faces and then inside mesh cells. Development and analysis of the resulting 3D remap algorithm is the first novelty 
of this paper. This algorithm uses the serendipity virtual element method (VEM) to build a remap velocity. The VEM is a 
non-trivial generalization of the finite element to polytopal meshes [8,5,9] which emerged recently from the mimetic finite 
difference method [10]. Useful property of the VEM is that it remains stable numerically for non-convex and degenerate 
cells.

The mathematical formulation of the advection-based remap problem leads to a system of two coupled conservation 
equations for volume and mass. One equation describes dynamics of determinant of the Jacobian matrix, the other one 
describes the change in the remapped quantity. We show why the discrete volume conservation equation improves the 
remap error by one order and verify this with numerical experiments. This could be considered as the second novelty of 
this paper.

The paper outline is as follows. In Section 2, we introduce the PDE formulation of the advection-based remap problem. In 
Section 3, we present the numerical scheme and describe briefly construction of the virtual element projectors. In Section 4, 
we summarize briefly scheme’s properties. In Section 5, we present results of numerical experiments on cubic and prismatic 
meshes for two different mesh deformation maps.

2. Advection based remap

Let us derive a PDE model for the advection-based remap problem. Consider a two meshes �X,h and �x,h called also 
the source and target meshes. In the context of the Lagrangian hydrodynamics, the first mesh is a Lagrangian mesh, while 
the second one is a modified (a higher quality) mesh. For simplicity, we assume that both meshes cover the computational 
domain � without gaps and overlaps. We also assume that the meshes are topologically equivalent, i.e. there exists a 
bijective map F : � → � that maps cells to cells, faces to faces, edges to edges, and nodes to nodes, see Fig. 1.

Let X = (X1, X2, X3) and x = (x1, x2, x3) denote the position vectors on meshes �X,h and �x,h , respectively. Hereafter, 
we refer to X as the reference coordinate system. For simplicity, we assume that the reference mesh �X,h consists of 
polyhedral cells with flat faces and �x,h consists of generalized polytops with curvilinear faces. We make the following 
additional assumptions.

(A1) The map F(X) is a vector polynomial of order k on each mesh edge.
(A2) The map F(X) is sufficiently smooth so it could be approximated (with the optimal order) by a vector polynomial of 

order k on each mesh face and inside each mesh cell.
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Using the pseudo-time τ , let us define a space-time map:

x(τ , X) = X + τ (F(X) − X), 0 ≤ τ ≤ 1.

A remap “velocity” u can be defined as the rate of change of this map:

u(X) = ∂x

∂τ
= F(X) − X. (1)

Similar to a physical Lagrangian motion, this velocity defines a particle trajectory. A change of field ρ along this trajectory 
is governed by the material derivative. By the nature of the remap problem, the field is not changing at each space point, 
i.e. ∂ρ/∂τ = 0. Using this and definition of the material derivative, we obtain the following advection equation:

dρ

dτ
= ∂ρ

∂τ
+ u · ∇xρ = u · ∇xρ. (2)

Hereafter, the operator’s subscript indicates the coordinate frame. Note that remap equations for vector fields are derived 
similarly.

To derive a conservative formulation, we need the equation for volume change. Let j be the determinant of the Jacobian 
J = ∇X x. We assume that j > 0 for τ ≤ 1. The rate of change of the determinant, which captures the volume evolution, is 
(see e.g. [35]):

dj

dτ
= j divxu. (3)

This paper proposes a new method to solve the advection equation and the volume evolution with high-order accuracy 
on 3D curvilinear polytopal meshes (e.g., Voronoi-type grids with curved cell faces). Hereafter, we pursue the approach 
where the equations are solved in the reference coordinate system. Let us recall formulas for the change of coordinates in 
differential operators, see [35] for derivations:

∇xρ = J−T ∇Xρ, divxu = 1

j
divX ( j J−1u). (4)

Multiplying equation (2) by j, equation (3) by ρ , changing coordinates, and finally summing them up, we obtain the con-
servative formulation in the reference coordinates:

d( j ρ)

dτ
= j u · J−T ∇Xρ + ρ divX ( j J−1u) = divX (ρ j J−1u). (5)

Introducing an auxiliary velocity v = j J−1u, we conclude that the remap problem consists of two conservative equations:

d( j ρ)

dτ
= divX (ρ v),

dj

dτ
= divX v. (6)

Note that the obtained equations could also be derived using the Reynolds Transport Theorem. The second equation is 
actually a continuous form of the volume conservation equation, also known as the Geometric Conservation Law (GCL), 
which plays an important role in remapping. We show later, that it increases accuracy of the remap scheme. In other words, 
a numerical scheme for the first equation should use approximation of j provided by the second equation.

3. Numerical scheme

3.1. Semi-discrete formulation

Since F is the bijective map, we use same symbols to denote related topological objects on meshes �X,h and �x,h . We 
use c for a cell, f for a face, and e for an edge. When the space-time position of a mesh object is important, we write 
c(τ ), with c(0) ∈ �X,h and c(1) ∈ �x,h . Let n f (τ , x) (or simply n f ) be the unit normal vector to face f at point x whose 
orientation is fixed once and for all. Furthermore, let xc(τ ) denote the centroid of cell c, and Xc = xc(0). Finally, let |c(τ )|
denote the cell volume and | f (τ )| denotes the face area.

By our assumption, mesh �X,h has planar faces. In the ALE framework, this assumption could be simplified by requiring 
that only a mesh at the beginning of a simulation has flat faces. The recent progress in the theory of virtual element 
projectors allows us to drop even this assumption at expense of a more complex construction than that presented below.

In cell c, we define a moving basis ψc
i (τ , x) which has polynomial representation only at time τ = 0, see formulas below. 

We assume that the basis function remains constant along particle trajectories, i.e.

dψc
i = 0. (7)
dτ
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At time zero, the basis functions are given by the Taylor polynomials. The lower-order basis functions are

ψc
0 = 1, ψc

1 = ac
1(X1 − Xc,1), ψc

2 = ac
2(X2 − Xc,2), ψc

3 = ac
3(X3 − Xc,3).

Higher-order basis functions have the following form:

ψc
i = ac

i

(
(X1 − Xc,1)

αi (X2 − Xc,2)
βi (X3 − Xc,3)

γi − bc
i ψc

0

)
, i > 2,

where αi , βi , and γi are non-negative integers. The scaling factors ac
i and the orthonormalization factors bc

i are calculated 
from these two conditions:∫

c(0)

ψc
0 ψc

i dV = δ0,i |c(0)|,
∫

c(0)

ψc
i ψc

i dV = |c(0)|, (8)

where δ0,i is the Kronecker symbol. The scaling factors improve spectral properties of mass matrices that appear later. Their 
proper selection increases the stability domain of an explicit time integration scheme.

A discrete space-time fields ρh and jh in cell c have the following expansions in the Taylor basis:

ρh|c(x) = ρc
0 + ρc

1 ψc
1(x) + ρc

2 ψc
2(x) + ρc

3 ψc
3(x) + . . . ,

jh|c(x) = jc
0 + jc

1 ψc
1(x) + jc

2 ψc
2(x) + jc

3 ψc
3(x) + . . . .

For a DG scheme of formal order k + 1, each expansion is a polynomial of order k with (k + 1)(k + 2)(k + 3)/6 terms.
We use conventional definitions of the jump and average operators: Consider a face f shared by two cells c1 and c2 and 

the normal vector pointing from c1 to c2. Then,

[ψ] = ψ |c1 − ψ |c2 , {ψ} = 1

2

(
ψ |c1 + ψ |c2

)
. (9)

These definitions are extended to boundary faces by dropping out the c2-terms.
Let us multiply both equations in (6) by a test function ψ and integrate by parts. Since we work with discontinuous 

functions, we perform calculations cell-by-cell and then sum up the results. For the first equation, we have

d

dτ

∑
c

∫
c

jρψ dV = −
∑

c

∫
c

(
v · ∇Xψ

)
ρ dV +

∑
f

∫
f

(v · n f )ρ [ψ]dS. (10)

Since u · n f = 0 on the domain boundary, v · n f = j J−1u · n f = 0 and the last term uses only internal faces. For the second 
equation in (6), we have

d

dτ

∑
c

∫
c

jψ dV = −
∑

c

∫
c

(
v · ∇Xψ

)
dV +

∑
f

∫
f

(v · n f ) [ψ]dS. (11)

Note that at the continuous level, this equation follows immediately from the previous one.
A semi-discrete formulation is obtained by replacing functions ρ and j by their cell-based Taylor expansions ρh and 

jh , respectively. To enforce the conservation law, we introduce a unique value of function ρ on face f , which leads to the 
unique definition of a mass flux between cells. Since velocity u is unknown inside mesh cells, we approximate it using 
specially designed polynomial projectors �c,k(u), k > 0, described later. The matrix jJ−1 is approximated using definition of 
the Jacobian matrix which gives J = I + τ∇X u. Hence, we take

Jh = I + τ∇X�c,k(u). (12)

We note that entries in the matrix of cofactors C ≡ jJ−1 are quadratic functions of entries in J. Thus, a polynomial approxi-
mation Jh of J leads to a polynomial approximation Cc of C. More details are provided below.

Uniqueness of the surface fluxes implies that we cannot use Cc in surface integrals. Instead, we introduce another ap-
proximation of jJ−1, now on face f , denoted by C f . Notice that we need to approximate the matrix-vector product jJ−T n f

which depends only on the velocity value on this face. As we show in the next subsection, vector CT
f n f , f ∈ ∂c, will be used 

in the hierarchical construction of matrix Cc . Finally, we have

d

dτ

∑
c

∫
c

jhρhψh dV = −
∑

c

∫
c

(
Cc �c,k(u) · ∇Xψh

)
ρh dV +

∑
f

∫
f

(� f ,k(u) · CT
f n f )ρ

∗
h [ψh]dS,

where � f ,k(u) is a specially designed polynomial projector on face f . Let us introduce a discrete velocity vh such that 
vh = vc ≡ Cc �c,k(u) in mesh cells and vh = v f ≡ C f � f ,k(u) on mesh faces. Then,
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d

dτ

∑
c

∫
c

jhρhψh dV = −
∑

c

∫
c

(
vc · ∇Xψh

)
ρh dV +

∑
f

∫
f

(v f · n f )ρ
∗
h [ψh]dS. (13)

The discrete form of the second equation is

d

dτ

∑
c

∫
c

jhψh dV = −
∑

c

∫
c

(
vc · ∇Xψh

)
dV +

∑
f

∫
f

(v f · n f ) [ψh]dS. (14)

The stability argument suggests to select the downwind value for ρ∗
h :

(v f · n f )ρ
∗
h = (v f · n f ){ρh} − 1

2
|v f · n f | [ρh]. (15)

By our assumption, u is a vector polynomial on each mesh edge. It is natural to require that projectors �c,k(u) and 
� f ,k(u) be exact for vector polynomials of order k. This is the necessary condition for achieving an optimal approximation 
of u in certain functional spaces that completely characterized by velocity data on the mesh skeleton. With this requirement, 
all integrals in the weak formulation use polynomials and could be computed with the divergence theorem. Integration of 
surface fluxes based on formula (15) requires more comments. We can either split face f into triangles and apply this 
formula at each Gauss quadrature point or define one upwind direction for the whole face. In our numerical experiments, 
we use the second approach.

3.2. Fully discrete scheme

3.2.1. Time discretization
We use the third order TVD Runge-Kutta (RK) scheme [18] to derive a fully discrete scheme, although other RK schemes 

can be also used. When we rewrite the weak formulation (13)-(14) in a matrix form, each RK substep looks like a forward 
Euler step. Let ρn,i

h , jn,i
h be the algebraic vectors of coefficients in all Taylor expansions at time level n and the RK substep i. 

Note that ρn,0
h = ρn

h and jn,0
h = jn

h . The left hand side of equation (13) produces the matrix Mρ(jn,i
h ) which is the conventional 

mass matrix for the weighted L2 product with the weight jh . Note that Mρ(jn,0) = I. Similarly, the left hand side of equation 
(14) produces a matrix M j that does not depend on the pseudo-time and can be computed once. Then each RK substep is

Mρ(jn,i+1)ρn,i+1
h − Mρ(jn,i

h )ρn,i
h

�τ
= Gn,i

ρ ,

M j
jn,i+1
h − jn,i

h

�τ
= Gn,i

j ,

(16)

where Gn,i
ρ , Gn,i

j are the discrete functionals combining volumetric and surface terms at the previous RK substeps, and �τ

is the pseudo-time step.
Note that introduction of the auxiliary variable wi,n

h = Mρ(jn,i
h )ρn,i

h and the auxiliary functional Ĝn,i
j = M−1

j Gn,i
j may help 

to reuse the existing RK codes.

3.2.2. Numerical implementation
This subsection describes a brief over of the remap approach, the equations that must be solved, and the order in which 

the equations are solved. The first concept in our approach is to express/approximate everything (the maps and unknowns) 
as Taylor-series polynomials in terms of the Lagrangian coordinates X. The second concept is to make approximations that 
are exact for the polynomials of order k. The remap equations (6) and spatial maps require a mesh velocity along the cell 
face and inside the cell, which are both calculated following the ideas from VEM. Each velocity component on a cell face f
is projected onto a 2D Taylor-series polynomial u f = ∑

i
ψi(X)ui, f using

∫
f

∇X u f · ∇Xψq dS = −
∫
f

u f (∇2
Xψq)dS +

∮
∂ f

(∇Xψq · n)u dL ∀ψq, (17)

which is equivalent to formula (25) below with a VEM projector in place of u f . Here u f is a least-square fit to the mesh 
velocity values on the face skeleton. The mesh velocity on the skeleton is known and corresponds to the mesh smoothing 
process. All integrals are over the mesh prior to the remap (locations given by the coordinates X). Solving this system of 
equations gives the coefficients ui, f needed to describe the mesh velocity polynomial for the face.

Each component of the mesh velocity inside a cell c is projected onto a 3D Taylor-series polynomial in the cell, uc =∑
ψi(X)ui,c , using
i
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∫
c

∇X uc · ∇Xψq dV = −
∫
c

uc(∇2
Xψq)dV +

∮
∂c

(∇Xψq · n)u f dS ∀ψq, (18)

which is equivalent to formula (22) below with a VEM projector in place of uc . Here uc is a least-squares fit to the velocity 
values on the cell skeleton, and u f is the polynomial velocity on the cell face. Solving this system of equations gives the 
coefficients ui,c needed to describe the mesh velocity polynomial for the interior of the cell.

Given three velocity components from equation (18), we calculate the polynomial vector mesh velocity uh . The polyno-
mial approximation of Jacobian J is given by Jh = I + τ∇X uh . Instead of using jh = det(Jh), we solve a separate equation to 
evolve the polynomial coefficients in jc = ∑

i ψi(X) ji forward in time using the second equation in (16). Finally, we solve 
the first equation in (16) for an unknown polynomial field coefficients in ρc = ∑

i ψi(X)ρi . The pseudo time derivatives are 
approximated using the third-order accurate TVD RK method.

3.3. Virtual element projector on a polytopal cell

Here we highlight important aspects of the mathematical theory behind computation of projectors �c,k(u) and � f ,k(u). 
In other words, given a cell c and a velocity polynomial on mesh edges, we want to build polynomial approximation of 
velocity inside c. The construction is done independently for each velocity component. We assume that k > 0. For the case 
k = 0, we build projectors of order 1.

Let u be a velocity component in a virtual element space Vk(c) that we formalize along with our derivations. From the 
approximation view point, this space must contain the polynomial space Pk(c) and the projectors �c,k(u) and � f ,k(u) must 
be exact for polynomials from this space. The theory of virtual elements introduces multiple projectors. Our construction 
uses orthogonal projectors that minimize the H1 semi-norm of the resulting polynomial.

The classical definition of the orthogonal projector reads: Find polynomial �c,k(u) ∈Pk(c) such that∫
c

∇�c,k(u) · ∇q dV =
∫
c

∇u · ∇q dV ∀q ∈ Pk(c), (19)

subject to∫
c

�c,k(u)dV =
∫
c

u dV , if k > 1, (20)

or ∫
∂c

�c,k(u)dV =
∫
∂c

u dV , if k = 1. (21)

Integrating by parts the right-hand side of (19), we obtain the equivalent definition of the projector:∫
c

∇�c,k(u) · ∇q dV = −
∫
c

u �q dV +
∫
∂c

u(∇q · n)dS ∀q ∈ Pk(c). (22)

We develop further the surface integral by adding the first requirement to the space Vk(c). Let B( f ) denote the trace of 
Vk(c) on face f ∈ ∂c. Then, we require that the L2 projector �0

f ,k−1(u| f ) is computable (knowing velocity only on edges of 
face f ) for any u| f ∈ B( f ), i.e.∫

f

�0
f ,k−1(u| f ) p dS =

∫
f

u p dS ∀p ∈ Pk−1( f ). (23)

The second requirement to the space Vk(c) is that moments of u are computable upto order k − 2. This implies that the 
second integral in (22) is computable. This also implies that we know the orthogonal L2 projector �0

c,k−2:∫
c

�0
c,k−2(u) p dV =

∫
c

u p dV ∀p ∈ Pk−2(c).

3.3.1. Two-dimension space B( f )
Nowadays, there exist enough publications on construction of the virtual space B( f ) and the L2 projector �0

f ,k−1. For 
this reason, we present major steps (sufficient to reproduce the scheme) in the construction and avoid precise definitions of 
virtual spaces. We refer the reader to [9] for these definitions and other technical details. Recall, all steps should be exact 
for polynomials of order k.
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Let v = u| f . The staring point is the least-square algorithm which compute a polynomial of order k using velocity data 
on edges of face f . We formally write this algorithm as the linear operator I L S,k

f (v). For a triangular face, the least-square 
algorithm is stable up to k = 2. For a quadrilateral, this bound becomes k = 3. For a convex pentagon, this bound is k = 4. 
In our opinion k = 3 is more than enough for hydrodynamic codes. We define the moments in the right-hand side of (23)
as follows:∫

f

v p dS =
∫
f

I L S,k
f (v) p dS ∀p ∈ Pk−1( f ). (24)

Thus, the first requirement for space B( f ) is that the least-square operator becomes the desired L2 projector, i.e. �0
f ,k−1 =

I L S,k
f .

Now we build the desired projector � f ,k(u). The integration by parts gives

∫
f

∇� f ,k(v) · ∇p dS = −
∫
f

v �p dS +
∫
∂ f

v(∇p · n)dL ∀p ∈ Pk( f ). (25)

To fix the constant part of this projector we impose conditions similar to conditions (20) and (21). By the definition of B( f ), 
the moments of v ∈ B( f ) are computable upto order k − 1. Thus, we have only computable integrals in the right-hand side. 
The projector is computed by inverting the Gramm-Schmidt matrix appearing in the left-hand side. This projector has the 
following property. Taking p = � f ,k(v), we bound the left-hand side as follows:

‖∇� f ,k(v)‖2
L2( f ) =

∫
f

∇v · ∇� f ,k(v)dS ≤ ‖∇� f ,k(v)‖L2( f ) ‖∇v‖L2( f ), (26)

i.e. this projector reduces the energy norm of the resulting polynomial. Note that I L S,k does not have this property.

Remark 3.1. The virtual space B( f ) is not unique. For instance, we can use a different space that satisfies (24) with k
instead of k − 1. This new space allows us to compute the L2 and H1 projectors with the optimal approximation properties. 
In practice, the space with less additional constraints in (24) shows better approximation properties.

3.3.2. The L2 projector �0
c,k−2

To define the orthogonal projector �0
c,k−2, we again use the least-square approach to build a polynomial of order k in cell 

c. But now we use all velocity data on edges of c. We formally write this algorithm as I L S,k
c (u) and define �0

c,k−2 = I L S,k
c (u).

The virtual element space Vc,k with the above properties allows us to calculate the desired projector �c,k from this 
formula:∫

c

∇�c,k(u) · ∇q dV = −
∫
c

I L S,k
c (u)�q dV +

∑
f ∈∂c

∫
f

I L S,k
f (u)(∇q · n)dS ∀q ∈ Pk(c). (27)

The global continuous virtual element space Vk is defined by cell-based spaces Vc,k . Let v ∈ Vk . The degrees of freedom 
are moment of v on mesh edges up order k. The space properties are as follows:

1. v ∈Pk(e) for any mesh edge e;
2. v ∈ B( f ) for any mesh face f and such that I L S,k

f (v) = �0
f ,k−1(v);

3. I L S,k
c (v) = �0

c,k−2(v).

To find the trace of v on face f we need to solve two-dimension Poisson equation on f with the Dirichlet boundary data 
and the specially designed source term, see [26] for more detail. Similarly, a three-dimensional Poisson equation in cell c has 
to be solved to find the actual shape of v . Despite the implicit definition of the virtual element space, the local projectors 
� f ,k and �c,k can be computed from the degrees of freedom. These projectors are all what we need to build a scheme.

Remark 3.2. We could reproduce the finite elements deformation maps for a hexahedral cell by building projectors of order 
k + 1. However, this only increases the cost of the scheme. Hence, the proposed scheme is not equivalent to a finite element 
scheme in [3] on hexahedral meshes.
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3.4. Limiting of discontinuous solutions

Remap of a discontinuous solution requires a carefully designed limiting strategy to avoid oscillations around disconti-
nuities. As the proof of principle, we use the Barth-Jespersen limiter, although we see no obvious obstacles in using more 
complex limiters such as the accuracy preserving hierarchical limiter from [22].

Let ρ̂h be the limited solution. As discussed in [25], specifics of the remap problem is that the limiting strategy consists 
of two steps that we briefly summarize here. First, we limit ρh in each cell by multiplying high-order terms by a single 
non-negative factor:

ρ̂h
∣∣
c = ρc

0 + αc
(
ρc

1 ψc
1 + ρc

2 ψc
2 + ρc

3 ψc
3 + . . .

)
, 0 ≤ αc ≤ 1.

The factor αc is calculated such that the limited function satisfies the following inequalities:

min
c′∈Fc

{ρc′
0 } ≤ ρ̂h

∣∣
c(Xk) ≤ max

c′∈Fc

{ρc′
0 }, ∀Xk ∈ Gc,

where Fc is the set of cells that have at least one common point with cell c and Gc is a set of limiting points. We define 
Gc as the set of Gauss points on edges of c. We use one Gauss point for k < 2 and two Gauss points for k = 2. Second, we 
restore the conservation law which implies that the integral of ρh jh must be preserved during the limiting strategy, see the 
next section. This is achieved by shifting the mean value of the limited function in each mesh cell:

ρ̂c
0 = αc ρc

0 + (1 − αc)
1

|c(τ )|
∫

c(τ )

ρh jh dV . (28)

4. Properties of the scheme

4.1. The conservation law

Taking ψh = 1 in formula (13), we have

d

dτ

∑
c

∫
c

ρh jh dV = 0.

Thus, the weighted integral of ρh is conserved. Using the orthogonality property of basis functions at time τ = 0 and the 
fact that jh = 1 at this time moment, we rewrite this equation as follows:∑

c

∫
c

ρn+1
h jh dV =

∑
c

(ρc
0)

0 |c|. (29)

4.2. Justification of the volume equation

The purpose of this section is not to provide a detailed error analysis but give a simple explanation of the impact of 
equation (14) on critical error terms. Our focus will be on the spatial error, so that we restrict discussion to semi-discrete 
weak formulations. We refer the reader to [17,20] where the importance of the discrete geometric conservation law is 
studied for finite volume schemes.

Since equation (14) is decoupled from (13), we can employ the existing error analysis for hyperbolic problem (see, e.g. 
[36]) that gives

‖ j − jh‖L2(�) ≤ Chk1 (30)

where k1 is a function of k and h is the characteristic mesh size. Hereafter, C denotes a generic constant.
Let us introduce a trilinear form

L(α,β,γ ) =
∫
c

α β γ dV .

Let us take ψ = ψh = εh in weak formulations (10) and (13), where εh = ρh − �0
k (ρ). We take the difference of these 

equations and analyze each term separately. For the accumulation term, we have

L( j, εh,ρ) −L( jh, εh,ρh) = −I1 + I2 + I3 + I4,

where
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I1 = L( j, εh, εh), I2 = L( j − jh, εh, εh),

I3 = L( j − jh, εh,�
0
c,k(ρ)), I4 = L( j, εh,ρ − �0

c,k(ρ)).

The first term is a part of the error energy definition. The other terms describe how the error grows. The second term is 
smaller than the first term due to (30), so it changes only the generic constant in the error estimate. The fourth term has the 
optimal approximation property, O (hk), due to properties of the L2 projector. The third term has sub-optimal approximation 
properties since jh depends on derivatives of uh . Here we need the second equation. Let us take ψ = ψh = εh�

c,0
0 (ρ) in 

weak formulations (11) and (14). The difference of two equations gives

L( j, εh�
0
0(ρ),1) −L( jh, εh�

0
0(ρ),1) = L( j − jh, εh�

0
c,0(ρ),1) = L( j − jh, εh,�

0
c,0(ρ)),

since �0
0(ρ) is a constant. Subtracting the last formula form I3, we obtain

Ĩ3 = I3 −L( j − jh, εh,�
0
c,0(ρ)) = L( j − jh, εh,�

0
k(ρ) − �0

c,0(ρ)). (31)

The difference of two L2 projectors gives addition factor h to the error estimate. The same strategy can be applied to the 
remaining terms in the weak formulation. We verify this gain of accuracy with numerical experiments.

5. Numerical experiments

To generate a modified mesh �x,h , we consider two deformation maps given by the vorticial motion (VM map) and the 
compression/expansion map (CE map). In the VM map, the nodes of a given mesh are moved according to the following 
ODEs:

ẋ1 = 0.2 sin(πx1) cos(πx2) sin(πx3/2),

ẋ2 = −0.2 cos(πx1) sin(πx2) sin(πx3/2),

ẋ3 = 0.0,

with the initial values x(0) = X and the final integration time 1. The VM map preserves cell volume; however, only ap-
proximately in the discrete setting. Indeed, the remap velocity u linearizes the continuum motion which introduces a small 
error.

The CE map is given by the quartic velocity:

u = 1

2
X1 X2 X3 (1 − X).

We consider two sequences of cubic and prismatic meshes. The original and two modified meshes are shown in Fig. 2
for modest mesh resolutions. Note that prismatic cells degenerate near domain boundary, some dihedral angles are 180◦ .

Calculation of the discrete L2 error, denoted by ε(ρh), deserves a few comments. We cannot use centroid xc of cell 
c ∈ �x,h , since the basis functions cannot be evaluated there. But we can use values of basis functions at cell vertices xv

where the remap velocity is well defined. We define the discrete error as follows:

ε(ρh) =
[ ∑

c∈�x,h

|c|
Nc

∑
v∈c

|ρ(xv) − ρh(xv))|2
]1/2

, (32)

where Nc is the number of vertices in cell c.
The visualization is done with the Paraview software [1] using the solution mean values ρc

0. The curvature of mesh edges 
for k > 1 is not resolved in the presented figures, although it is present in the calculations.

5.1. Numerical integration over polytopal cells

Efficiency of the proposed technology is based on the feasibility to integrate polynomial functions over arbitrarily-shared 
cells. Let q be a monomial of degree n. The Euler homogeneous function theorem reads∫

c

q dV = 1

3 + n

∑
f ∈∂c

∫
f

(X · n f )q dS. (33)

Polynomial (X · n f ) q is a linear combination of monomials; hence, we can employ the two-dimensional version of the Euler 
homogeneous function theorem for each monomial. This leaves only edge integrals of polynomials that could be computed 
efficiently using the Gauss-Legendre quadrature formulas.
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Fig. 2. Top row: original (left) and two modified (right) cubic meshes. Bottom row: original (left) and two modified (right) prismatic meshes.

Table 1
VM map: the discrete L2 and maximum errors for DG(Pk ) schemes on a sequence 
of cubic meshes.

1/h DG(P0) DG(P1) DG(P2)

L2 L∞ L2 L∞ L2 L∞

10 1.700e-1 4.147e-1 4.013e-2 1.126e-1 4.662e-3 1.470e-2
20 8.746e-2 2.095e-1 1.078e-2 3.669e-2 5.766e-4 1.888e-3
40 4.434e-2 1.057e-1 3.001e-3 1.597e-2 7.438e-5 3.138e-4

rate 0.969 0.986 1.871 1.409 2.985 2.775

5.2. Smooth solution: logically cubic meshes

Let � be the unit cube. To study the formal order of convergence of the proposed scheme, we consider a smooth solution 
given by

ρ(X1, X2, X3) = sin(3X1) sin(6X2) sin(4X3). (34)

In the first experiment, we compare the unlimited DG(Pk) solutions for cubic meshes and the VM map. The results 
are collected in Table 1. Hereafter, the convergence rates are calculated using the linear regression algorithm. We suppress 
the time integration error by using the time step that is smaller than that required for scheme stability. The time step on 
the coarsest mesh is 0.025 and is reduced twice for each mesh refinement. Notice that with each increment of k, we gain 
almost one order of accuracy on the intermediate mesh.

In the second experiment, we compare the DG(Pk) solutions for the CE map. The results collected in Table 2 confirm 
our previous conclusions. On cubic meshes, the projector �c,k does not recover the conventional finite element map, i.e. 
�c,k(u) is discontinuous across mesh faces. Still, our results are in agreement with the results reported in [3] for the finite 
element method on curvilinear meshes. Indeed, the virtual element space is continuous by construction; hence, the optimal 
convergence rate is expected.

5.3. Smooth solution: prismatic meshes

In this section, we consider again the smooth solution (34) but the sequence of prismatic meshes shown in Fig. 2. In two 
sets of experiments, we compare the DG(Pk) solutions for the VM and CE maps. The results are collected in Tables 3 and 4, 
respectively.

The benefits of using higher-order DG schemes are evident also in the case of polyhedral meshes. The lack of optimal 
convergence of the DG(P0) scheme requires a rigorous analysis which is beyond the scope of this paper.
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Table 2
CE map: the discrete L2 and maximum errors for DG(Pk) schemes on a sequence of 
cubic meshes.

1/h DG(P0) DG(P1) DG(P2)

L2 L∞ L2 L∞ L2 L∞

10 1.693e-1 3.898e-1 3.869e-2 1.063e-1 4.685e-3 1.387e-2
20 8.611e-2 2.179e-1 9.941e-3 2.994e-2 5.521e-4 2.122e-3
40 4.336e-2 1.136e-1 2.529e-3 7.802e-3 6.632e-5 2.969e-4

rate 0.983 0.889 1.968 1.884 3.071 2.773

Table 3
VM map: the discrete L2 and maximum errors for DG(Pk ) schemes on a sequence of 
prismatic meshes.

#cells DG(P0) DG(P1) DG(P2)

L2 L∞ L2 L∞ L2 L∞

103 1.718e-1 5.425e-1 4.070e-2 1.675e-1 4.191e-3 3.960e-2
203 1.033e-1 4.315e-1 1.128e-2 5.070e-2 6.331e-4 7.737e-3
403 5.942e-2 3.394e-1 2.956e-3 1.363e-2 8.107e-5 8.059e-4

rate 0.767 0.338 1.892 1.810 2.846 2.809

Table 4
CE map: the discrete L2 and maximum errors for DG(Pk) schemes on a sequence of 
prismatic meshes.

#cells DG(P0) DG(P1) DG(P2)

L2 L∞ L2 L∞ L2 L∞

103 1.590e-1 5.146e-1 4.174e-2 1.986e-1 4.709e-3 4.116e-2
203 8.763e-2 3.064e-1 1.153e-2 6.014e-2 6.735e-4 6.509e-3
403 4.620e-2 1.981e-1 3.017e-3 1.722e-2 8.741e-5 9.397e-4

rate 0.892 0.687 1.895 1.763 2.876 2.726

Table 5
Direct calculation of jh : the discrete L2 and maximum errors for DG(Pk) schemes 
on a sequence of cubic meshes.

1/h DG(P0) DG(P1) DG(P2)

L2 L∞ L2 L∞ L2 L∞

10 1.700e-1 4.147e-1 4.173e-2 1.380e-1 4.800e-3 1.487e-2
20 8.746e-2 2.095e-1 1.412e-2 6.006e-2 6.418e-4 2.095e-3
40 4.434e-2 1.057e-1 6.222e-3 2.778e-2 1.024e-4 3.308e-4

rate 0.969 0.986 1.373 1.156 2.775 2.745

Let us compare the DG schemes for a given level of accuracy, see Table 4. On a Linux cluster with 24 cores, the DG(P0) 
scheme on the finest mesh runs approximately 20 times longer than the DG(P1) scheme of the coarsest mesh. The DG(P1) 
scheme on the finest mesh runs approximately 6 times longer than the DG(P2) scheme of the coarsest mesh. Significant 
CPU time is spent on calculation of the remap velocities v f and vc . Since these are polynomial functions not only in space 
but also in the pseudo time τ , we recommend to compute coefficients in the τ -polynomial only once per simulation.

5.4. Impact of the volume equation

In the next experiment, we calculate jh directly from the remap velocity, so effectively, we drop the volume conservation 
equation. We consider only the VM map. The results are shown in Tables 5 and 6.

Observe the reduced convergence rate compared to the results in Tables 1 and 3. Approximately one order has been 
lost on prismatic meshes. Also notice that lose of the convergence rate is less drastic for cubic meshes, especially for the 
DG(P2) scheme. We attribute this behavior to additional error cancellation on structured meshes for the divergence-free 
map. Indeed, for the CE map the convergence rates for the DG(P2) scheme are 2.432 and 2.052 (compare with Table 2).
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Table 6
Direct calculation of jh : the discrete L2 and maximum errors for DG(Pk) schemes on 
a sequence of prismatic meshes.

#cells DG(P0) DG(P1) DG(P2)

L2 L∞ L2 L∞ L2 L∞

103 1.718e-1 5.425e-1 5.132e-2 4.903e-1 6.282e-3 7.043e-2
203 1.103e-1 4.316e-1 2.259e-2 2.807e-1 1.542e-3 2.217e-2
403 5.942e-2 3.394e-1 1.105e-2 1.517e-1 3.966e-4 5.989e-3

rate 0.766 0.338 1.108 0.846 1.993 1.778

Fig. 3. Top row: unlimited solution for the finest prismatic mesh and VM map. Bottom row: limited solution.

5.5. Discontinuous solution

Discontinuity in a solution is typical for hyperbolic systems. Numerical diffusion and unphysical oscillations around 
discontinuity effect significantly the quality of the remapped solution. Limiters and a shock detection algorithms are typically 
used to restrict solution dissipation to shock location and to suppress oscillations. We consider the Barth-Jespersen limiter 
with the correction suggested in [25], see also Sec. 3.4.

The computational domain is again the unit cube. The solution is given by the characteristic functions of the notched 
cube and sphere. The cube has edge size a0 = 0.4 and is centered at point (0.25, 0.25, 0.25). The notch is formed by 
removing a smaller cube with edge size a1 = 0.2 centered at point (0.15, 0.15, 0.15). The sphere has radius a3 = 0.2 and is 
centered at point (0.75, 0.75, 0.75).

We consider the meshes introduced above. To make the numerical experiment relevant for applications, we break the 
pseudo-time interval (0, 1) into 10 uniform segments and perform 10 advection solves. The reference coordinate system is 
the same for all solves and is given at time 0.

In Figs. 3 and 4 we compare limited and unlimited solutions on the finest prismatic meshes obtained with VM and CE 
maps, respectively. We plot solution isovolume for ρc > 0.01. Solution bounds are reported in Table 7. In all experiments, 
the mass conservation law is satisfied up to machine precision.

The lack of limiters leads to moderate overshoots and undershoots around the solution discontinuity. The violation of 
bounds is between 0.05 and 0.11, depending on the experiment, and is slightly less for the DG(P2) solution. The Barth-
Jespersen limiter suppresses the oscillations. The reported violation of bounds is between 0 and 0.0003, due to the fact that 
our limiter is not mathematically monotone for the remap problem.

As expected, the Barth-Jespersen limiter smears solution near discontinuity. The experiment shows significant shape im-
provement for k = 1 and k = 2. Notice, that both high-order DG schemes looks similar in the eye-ball norm; although on 
average the limiting was more aggressive for the DG(P1) scheme. This indicates that higher-order limiters may be needed 
for higher-order DG schemes. Also, the initial piecewise constant solution profile is not well suited for showing impact of 
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Fig. 4. Top row: unlimited solution for the finest prismatic mesh and CE map. Bottom row: limited solution.

Table 7
Bounds on the mean values in the remapped solution.

DG(P0) DG(P1) DG(P2)

ρmax ρmin ρmax ρmin ρmax ρmin

cubes VM 1.0 0.0 1.103 -0.0706 1.083 -6.86e-2
cubes VM lim 1.0 0.0 1.0 0.0 1.0 -1.54e-28

cubes CE 1.0 0.0 1.107 -0.0583 1.075 -0.0548
cubes CE lim 1.0 0.0 1.0 -6.96e-31 1.0 0.0

prisms VM 1.0 0.0 1.093 -8.44e-2 1.076 -8.16e-2
prisms VM lim 1.0 0.0 1.0 -2.63e-4 1.0 -1.13e-4

prisms CE 1.0 0.0 1.113 -6.67e-2 1.082 -7.37e-2
prisms CE lim 1.0 0.0 1.0 -1.79e-43 1.0 -1.20e-35

higher-order schemes. To show this impact, additional work is needed on shock captured schemes and visualization tools. 
Our preliminary two-dimensional experiments revealed that the shock detectors developed for the Lagrangian hydrodynam-
ics require additional analysis for the remap problem which is beyond the scope of this work. Finally, the visualization tool 
Paraview interpolates cell-centered values to mesh nodes which is a diffusive process.

6. Conclusion

The remap problem is an important step in most arbitrarily Lagrangian-Eulerian (ALE) hydrodynamics simulations. We 
proposed a new technology to remap high-order discontinuous Galerkin solutions between two polytopal meshes with 
curved edges and faces. The proposed scheme uses globally continuous uncomputable virtual element remap velocity and 
its computable polynomial projections in each mesh cell. The projectors are computed from velocity information on cell 
edges.

For smooth solutions, we demonstrated the k +1 order of convergence of the DG(Pk), k = 1, 2, scheme on cubic and pris-
matic meshes in both discrete L2 and maximum norms. The numerical experiments have shown significant computational 
advantage for using these schemes compared to the DG(P0) scheme. For discontinuous solutions, we verified numerically 
the modified scalar Barth-Jespersen limiter proposed in [25]. The numerical experiments on polytopal meshes have shown 
significant reduction of overshoots and undershoots in the limited solution.
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