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The Fully Eulerian framework is a monolithic implicit variational formulation for the
coupled problem. In contrast to the well-established Arbitrary Lagrangian Eulerian (ALE)
coordinates, the Fully Eulerian framework formulates both subproblems, fluid and solid,
in Eulerian coordinates. This concept circumvents various difficulties connected to ALE
coordinates since no artificial domain mapping is used. The formulation is an interface-
capturing method and uses an extension of the solid’s deformation, the Initial Point Set,
to detect the interface location.
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1. Introduction

We present a monolithic variational finite element method for fluid-structure interaction problems. Emphasis is on appli-
cations where very large structural deformations, free movement of the structure within a flow domain and contact of the
structure with the domain’s boundary, with other structures or self-contact appears. The formulation presented in this work
is Eulerian-Eulerian and a first variant of this novel approach has been suggested by Dunne [14,15].

There exist countless different approaches to model and simulate fluid-structure interaction problems. Among them, we
focus on monolithic models, where the complete problem is formulated in one coupled system including the interface con-
ditions between solid and fluid. Monolithic models allow for implicit solution schemes, large timesteps and offer the possi-
bility to use sensitivity based error estimation and optimization methods. They are well suited for the simulation of
problems with large fluid densities as appearing in hemodynamics [18]. While fluid problems are naturally described in a
fixed Eulerian coordinate framework, a Lagrangian, material centered description is the usual basis for solid problems. All
monolithic schemes for a fluid-solid interaction must somehow match these two different frameworks.

In Lagrangian or arbitrary Lagrangian methods, the flow problem is mapped onto a matching reference domain. Classical
approaches are the ALE method, see [29,4,35] or deforming-spatial-domain/ stabilized space-time methods (DSD/SST), see
for instance [53,51]. These formulations have in common, that kinematic and dynamic coupling conditions are easily embed-
ded into trial spaces and established by variational techniques. A drawback of Lagrangian methods is the underlying trans-
formation of the fluid-problem which can break down for large deformations or large solid movements. Lagrangian
approaches are interface-tracking methods as the common interface is shared by both subproblems.

The Eulerian-Lagrangian methods use a Eulerian fixed computational mesh for the fluid problem and a Lagrangian mesh
for the solid problems. Coupling of the two frameworks is accomplished by using force densities as in the immersed bound-
ary method by Peskin [43] or the immersed interface method [39]. Other approaches introduce additional interface variables
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and couple the two systems using Lagrange multipliers. Examples are the fictitious domain method [22], or other recent
approaches based on the extended finite element method [20]. A survey of interface coupling approaches is given by Felippa
et. al. [17]. Eulerian-Lagrangian methods are interface-capturing approaches. The interface is not part of the fixed Eulerian
fluid mesh and its location within the computational fluid domain must be captured implicitely as part of the solution
scheme. An early approach for capturing the interface is the Volume of Fluid method [30], where a tracking function @y takes
the value one in the fluid domain and zero in the solid domain. This function ®y is transported with the interface velocity. A
proper numerical approximation of ®, with a sharp jump from fluid to solid domain is one of the difficulties connected to
this scheme. Another possibility for capturing the interface - at first used to model multiphase-flows - is by means of a scalar
Level-Set [42,47] function ®; which in any point of the domain indicates the signed distance to the interface. The interface
itself is given as zero-contour of the Level-Set function. Based on Level-Sets, very efficient and simple numerical schemes
exist to describe free-boundary and fluid-structure interactions [38]. Usually, Level-Set representations of the interface lack
the ability to reproduce sharp corners. A general problem of Eulerian-Lagrangian methods are the approximation properties
close to the interface. Since the fluid elements are cut by the interface and the solution may be discontinuous (or at least not
differentiable) across the interface, approximation with standard finite elements is difficult. Here, the extended finite ele-
ment method helps to improve accuracy [11,20].

Finally, for problems with very large deformation, an Eulerian description of the structural problem is desirable [54,41].
Using a fixed Eulerian background mesh, the interface between fluid and solid will freely move in the domain. A Eulerian
method will always be of interface-capturing type. Dunne [14] and Dunne et al. [15] has first implementations of an Eule-
rian-Eulerian model for the interaction of an incompressible fluid with an hyper-elastic solid. Here, capturing of the interface
is accomplished with the Initial Point Set (IPS), a vector-field ®ps used to transport the complete reference coordinate sys-
tem. The IPS-method is able to capture interfaces with sharp edges. A finite difference approach for Eulerian-Eulerian fluid-
structure interaction based on the Volume of Fluid method [30] is introduced by Sugiyama et al. [50]. Here, the coupling be-
tween incompressible fluid and structure is solved with a pressure correction iteration. An Eulerian-Eulerian fluid-structure
interaction method based on Level-Set functions is introduced by He and Qiao [23]. Four Level-Set functions are required to
represent the moving structure domain. Two of them take a role similar to the Initial Point Set as introduced by Dunne [14]
and Dunne et al. [15].

The Fully Eulerian formulation introduced in this work is based on extensions of the IPS method [46,16,44]. Fluid and so-
lid problem are given in an Eulerian formulation, the interface conditions are embedded in the function spaces and realized
by variational load balancing. For capturing the interface the solid’s deformation will be extended to only a small layer in the
fluid domain. The flow problem is modeled without any transformation and apart from the small interface layer no addi-
tional variables must be introduced, making the method very efficient.

In the second section we shortly introduce the required notation. Section 3 is devoted to the governing equations in Eule-
rian coordinates and deals with the coupling of fluid and solid problem. Details on discretization and the solution scheme are
provided in Section 4. Finally, in Section 5 we present different numerical examples demonstrating the scope of this new
Fully Eulerian fluid-structure interaction formulation. We conclude in Section 6.

2. Preliminaries

Let Q C R? be a two dimensionalAdomain. At time ¢ = 0 this domain is split into a non-overlapping partitioning into the
fluid part Qf := Q(0) and solid part Q, := Q,(0) with a common interface I'; := 9Q N 9€;. We will consider problems, where
the domain partitioning will change in time, the combined domain Q however will be fixed:

Q- (D), Q- Q(t), Ti(t) = dQ (1) NIA(L), Q= Q(t) UQ(E).

At time t = 0 we call Qf and €, the reference configuration. In the context of fluid-structure interaction, Qs refers to the
Lagrangian view-point and €(t) to the Eulerian. For simplicity, we will consider problems with Dirichlet boundary condi-
tions only and define

Ty(t) == 09 () NOQ, T(t) := 0Q(t) N Q.

As function spaces we use the Lebesgue space L?(Q) in the domain Q or in the (moving) subdomains as well as Sobolev-
spaces H™(Q) of L* functions with weak derivatives in L% By (-,-), we denote the L*-inner product and by | - ||, the usual
[*-norm on Q. Further, by (-, - we denote the L?-inner product on (parts of) the boundary I' ¢ 99, usually the inner interface
between the two subdomains. By H' (Q) we denote the Lebesgue space of L>-functions with first weak derivative in L? and by
Hy(Q;T) the space of H'-functions with trace zero on (parts of) the boundary I ¢ 9Q.

3. Eulerian formulation of fluid structure interaction

In this section we derive the coupled system of equations describing the interaction of an incompressible Stokes or
Navier-Stokes fluid with an elastic structure of St. Venant Kirchhoff type. All equations are given in variational formulation.
This allows for an easy transformation between Eulerian and Lagrangian coordinate frameworks.
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3.1. Eulerian description of fluid flows

Fluid problems are naturally given in the Eulerian coordinate framework. Here, the flow domain Q(t) is moving in time
along with the interface I'i(t) to the solid domain. On this interface, a no-slip condition is assumed for the viscous fluid. Let
v;(t) be an extension of the interface-velocity into the fluid domain. Then, velocity and pressure are given as

Ur(t) € vi(t) +Vi(0),  pp(t) € Ly(t) = pp(Ocvp(8) + v (8) - V(L) oy + (05 (8), Vdr)ay
= pf(ff(t)? ¢f)Qf([) (diV ”f(t)7 ff)gf(t) =0 Vd’f € Vf(t)v vff € ﬁf(t)v (1)

where by Vr(t) and £;(t) we denote suitable H'-function spaces for velocity and L*-spaces for the pressure on the moving
domain Q(t). The Cauchy-stress tensor is given by

of = psVy (VT/f + VU}) - pf,

where by p; we denote the fluid’s density and by vy its kinematic viscosity.
3.2. Lagrangian description of a St. Venant Kirchhoff material

In natural Lagrangian coordinates, elastic structures are modeled by describing the deformation of the reference domain
Q, == Q(0) via Ty(t) := id + 1i5(t) : @ — Q(t). The computational domain € is fixed. On I'; := I';(0) we drive the problem by
interface-stresses coming from the flow domain. Let F; := I + Vii; be the deformation gradient, J; := det F; its determinant
and 7, := d,i the solid’s velocity. The hyperelastic material is governed by:

ﬂs(t) € Vs, @S(t) € zs : (psdti/s(t)a &s)g}s + (Fs(t)ﬁs(t)v v&%)gs = i)s(fs(t% &s)ﬂ, + <g5(t)7 &’>f,- (dtﬂs(t)v Ws)ﬂs
= (@s(t)vlzfs)fzs Vis € f}s, Vl]/s € Zs- (2)

Again, by Vs and £, we denote suitable function spaces on ;. By &, we denote interface-stresses on the interface boundary
and by ps the solid’s density (in unloaded reference configuration). With the Lamé coefficient 4, and shear modulus y, the
second Piola Kirchhoff stress tensor for a St. Venant Kirchhoff material [31] is given by

¥ = 2u,Es + Astr (), (3)

where E; := %(I:‘STIA-‘S —I) is the Green-Lagrange strain tensor.
3.3. Eulerian description of a St. Venant Kirchhoff material

The Eulerian version of solid Eq. (2) is derived by simple integral transformation using the natural mapping to the Eule-
rian framework T(t) : Qs — Q(t). First, for an Eulerian coordinate x := X + ii;(X, t) we define on Q;(t) the Eulerian deforma-
tion u,(t) € Vs(t) and velocity vs(t) € Ls(t):

Ug(X, 0) = Ug(X, 1), vs(x,1) = (X, ).

These definitions allow us to introduce an inverse mapping Ts(t) : Q(t) — € back to the reference domain, its deformation

gradient F; and determinant J,:
Ts(x,t) ;==X —us(x,t), Fs:=VTs=1-Vu,, J,:=detF,. (4)

With the relation T,(t) o Ts(t) = id, it follows in Eulerian coordinates:

. . - 1 5.
FF,=1 = F,=F"' J=]' E ::E(FSTFS1 ~1I). (5)
Next, let ¢(t) € Vs be arbitrary with Eulerian counterpart ¢(t) € Vs(t) defined by ¢(x) := ¢(%). Then, it holds:
Vo =VoF', dip=0p+vs- Vo (6)

Integral transformation of (2) using (4)-(6) gives the Eulerian formulation of the solid problem:
us(t) € Vs(t),  s(t) € Ls(t) : (Ps(0r0s + Vs - Vs), b)g, ) + (T, Vb))
= Ushsfs, bs)aye) + (&5 sy Us(Ortls + 05 - VUts) i), ) = Us Vs, U)oy Vs € Vs(t), Vs € Lg(t), (7)
where the Cauchy stress tensor in Eulerian formulation reads:

T Eo= %(F’TF’l -1.

s

05 = JiF; S F; T = JF; " (2 Es + Astr(Es))F

In Eulerian framework, the solid’s density gets p,(x,t) = J;(x, t)ps(X). Transition to Eulerian coordinates gives rise to convec-
tive terms in the momentum equation as well as the velocity-deformation relation. These terms have to be carefully resolved
by the discretization scheme. We give details in Section 4.2.
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3.4. Coupled fluid structure interaction problem in Eulerian coordinates

Coupling of (1) and (7) is accomplished by prescribing balancing conditions for velocity and normal stresses on the com-
mon interface:

() = vs(t),  op(t)n(t) = as(t)n(t) on  Ii(t). 8)

We realize these conditions by variational techniques. Continuity of velocities is incorporated in one globally defined and
“continuous” trial space V on Q = Q¢ (t) U Qs(t). For v(t) € V we use the notation ¢ (t) := vjq ) and vs(t) := v, While look-
ing straightforward, prescribing continuity of the velocities reveals a regularity problem that is discussed in literature [13]:
without further damping, the structure’s velocity lacks the required regularity to have a well-defined trace on I';(t). Although
being fundamental, we do not elaborate on this issue here.

The dynamic condition coupling the normal-stresses is realized by means of variationally consistent load evaluation
[10,21] choosing common and “continuous” test-functions ¢ € V with ¢, := /o, and ¢y := Pioy0)- Then, the dynamic condi-
tion is inherently given (g, = 0) with integration by parts. It holds for the relevant terms in the momentum equation:

(o7, fo’f)nf + (05, V), = —(divay, ‘f’f)gf — (divas, ¢g)g, + /09 oftiy - dpdo + /_)Q osns - ¢gdo,
f Qs

where by n; and n; we denote the outward facing normal vectors at the subdomains boundary. On boundaries with Dirichlet
condition, these boundary integrals vanish due to ¢ =0. On the common interface I, it holds n; = —n;. Further, with
¢ = ¢y = ¢ on I'; we get

/. oy - ppdo + / osN; - p,do = /r (o7 — as)n - ¢do,

i i i

where we have picked n := n;. Therefore, continuity of stresses o;n = g,n holds by variational principles. For simplicity of
notation we introduce characteristic functions with respect to the two subdomains:

1 xeq 1 xeQ
1y(%.0) ‘_{0 xeq L&D “{0 xe Q) ©)

Combining (1) and (7) the coupled fsi problem is given using the globally defined function spaces:
vev, us€Vs, prely: ((pf;(f +Jspsx) (O + v - V), d)) + (afxf + O'SXS,Vd))

= <Pfffo + 05 Ass ¢> (diV Ur, éf)gf(t) = 0(J;(Oclhs + v - VUs), g)g oy = Us Vs W)y VP EV. & €Ly s € Ls.
(10)

The crux of this very simple looking variational formulation is the partitioning of the domain Q into the two subdomains
described by (9). The characteristic functions depend on the solution, namely on us, itself. Dunne et al. [15] used the defor-
mation to introduce an additional global vector field, the Initial Point Set ®;ps which at time t = 0 is the identity ®(x,0) = x
and then transported with the solid’s velocity »; and its extension to the fluid-domain. This IPS function helps to find a ref-
erence location of every Eulerian point. We further simplify this approach by directly using the Eulerian inverse transforma-
tion T,(t) := id — u(t) : Qs(t) — Q and its extension to define the characteristic functions:

1 x—uxt) el
Xs(xv t) = { . Xf(x7 t) =1- XS(X7 t)7 (11)
0 x—ux,t) ¢ Q

where u : Q — R? is an extension of u; to the whole domain. The extension u of the solid’s deformation u; establishes the
Initial Point Set by the relation ®pps(x, t) := x — us(x, t). Note, that for a fluid-coordinate x € Q(t) we do not necessarily require
X — ug(x,t) € Q, see (11).

3.5. Comparison to ALE formulations

In the classical ALE formulation for FSI problems the structure problem is formulated on the static reference domain
and the flow problem is mapped onto the fixed matching domain Qf via T (%, t) := & + @ (&, £), where @iy = ext;(il;) is an exten-
sion of the solid’s deformation field to the flow domain, see [35,36,21,2]. By this transformation, the interface does not move
in the computational domain and can easily be resolved with high accuracy. As a drawback, strong nonlinearities are intro-
duced. For comparison with (10), the variational formulation of the coupled ALE system is given by:

Upsorty + piF (1 = 0cTp) - Vg, §)g, + JGrF T, V), + (psets, §)g, + (FEs, Vb,
= (s, g, + (Fos D)o, (AIVGE8y), O, + (dells — B,)g, =0,
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with deformation gradient F := I + V1, its determinant ] and the stress tensors in Lagrangian formulation:
6f = prf(vaf‘ul + ﬁfT@TA/}r) — f)l.‘ 25 = ,LLSES + /lstr(Es).

In both formulations, Eulerian and ALE, an extension of the deformation into the fluid domain is introduced. The conceptual
difference between the Eulerian and ALE formulation is the use of the deformation-extension to the flow domain. In ALE, this
extension is used to establish a mapping Tf(fzf) = Qs (t) for the transformation of the equations. This gives rise to one fun-
damental problem: if the mapping gets irregular, i.e. jf = det(@ff) — 0/00, the ALE formulation will break down. This is
unavoidable in the case of very large movement (e.g. permanent rotation of a free solid) or topology change (e.g. contact
of the solid with the domain’s boundary).

In the Fully Eulerian formulation, the extension uy is only used to capture the interface as a look-up function in the def-
inition of (11). Here T;(Q(t)) = € is allowed. We only expect T (Q(t)) N Qs = (. This gives more freedom in the choice of the
extension’s boundary values. Possible regularity problems of ur do not influence the overall scheme. For the numerical appli-
cation it will turn out, that the extension u; is only required in a small layer around I';(t). Beyond this layer it is sufficient to
solve the Navier-Stokes equations without further variables. This leads to a very efficient scheme.

One major drawback of transforming the structure system to Eulerian coordinates is the introduction of convection terms
in the equations. Here loss of conservation principles due to numerical diffusion has to be expected. Further, even if the cou-
pled Eulerian system (10) does not include strong nonlinearities at first glance (like it is the case for ALE), implicit domain
affiliation leads to nonlinearities in the coupling. This even holds true, if linear models (Stokes and linear elasticity) are cou-
pled. Finally, by having the interface cut through mesh elements, a discretization will require finer meshes to get accuracies
similar to those of the ALE approach.

4. Discretization

In this section, we describe the discretization scheme used to approximate the fluid-structure interaction system (10). In
short, we use a semi-implicit time stepping scheme for temporal discretization and a stabilized equal order finite element
discretization in space.

4.1. Temporal discretization

Llet 0=ty <t; <---<ty=T be a subdivision of the time interval [0,T] with (possibly non uniform) step-size
Km = tm — tm_1. By e = (M)}, v = (™) and py = (pI')y_, We define the solution U™ := {#™ u,p} at the discrete
time-step t,. Every time-step is split into two sub-steps: (1) we march in time U™' — U™ using the old domain-partitioning
at time t,, 1. (2) we update the domain partitioning I'""' — T'" by extending the new solid-deformation @™ and then project
the solution to the new domains U™ — U™.

(1) time-marching For simplicity, we define 15 = X(Em)p/er Q}“/S := Qy/s(tm), and combine trial-spaces and test-spaces to
U € XM=V X Vs(tm) x Li(tm), D€ Y™ :=V x Ls(tm) x Ls(tm).
For time-stepping, we use the -scheme and starting with U™ ! € x™! we find the intermediate U™ € ™! by
Umeam™!: A" (U™)(@) =0 Ybe)y™!, (12)

with the test-functions @ := {¢, , &} € Y™ ' and the semilinear form

AT OM)(@) = k' (P + a2 (" = 0" )+ (VD" Egp
+ (pf(ei»m V" 4 (1 - )™ -wmfl).,qs)

m—1
o

+ (pOIrm - Vo (L =07 Vo)) L+ (067 (1= 007 )
s !

+ (067 + (1= 00071 ¢) g1 + Ky (@™ = U™ ) g
+ (00" VA" 4 (1= 0) 0™ - VU™ ) gy — (00 + (1= 0) 0™ ) g
= Py (OF + (1= OF . p)gpr = po(OFTA" + (1 = OS¢ gppr- (13)

The scalar parameter 0 € (0, 1] controls the time-stepping scheme. For 0 = 1 we get a variant of the implicit Euler scheme, for
6 = 1/2 the well known Crank-Nicolson scheme which is of second order in the time. Since we use a first order explicit rep-
resentation of the domain affiliation by freezing the characteristic functions at the old time step t,,_; we cannot expect sec-
ond order convergence of the overall scheme in the general case. Nevertheless, we choose an implicitely shifted variant of
Crank-Nicolson with 6 =1+ O(k) to avoid excessive numerical dissipation in the fluid equation while formally preserving
second order accuracy, see [26,27,40]. The intermediate solution U™ € A™'at time t,, is still given on the old domain par-
titioning belonging to t,,_;. Transition to X™ is accomplished in the second substep.
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(2) extension step. To generate a new partition I'""~' — I'" we need to extend the intermediate deformation & to the entire
domain. Then, given " : Q — R? we can define the new domain partitioning with help of the characteristic functions (11):

et uy! in Q"' o 1 x—um(x,t) ey
C o lextg@mty inQf T 0 x—dm(xt) ¢ Qs

Projection of U™ to the new domain partitioning is accomplished by simply restricting the extensions to the corresponding
subdomains:

m .__ 5m-1 m._ ;m-1 m .__ pm-1
V=00 ul=U" g, pfli=p \Q}n.

This very simple extension and projection operation will limit the overall accuracy of the scheme to O(k). For obtaining high-
er order schemes, time-stepping should be performed on space-time slabs similar to the DSD/SST formulation introduced by
Tezduyar [52]. For extending the deformation one should use an extension operator which preserves the stiffness of the
structure like the biharmonic operator, see [25]. However, since we will introduce a discrete extension on the algebraic level
we skip further discussions at this point.

4.2. Spatial finite element discretization

Eq. (12)is discretized by a finite element method using continuous, piece-wise polynomial equal order elements. First, by
Qy, we denote a triangulation of the domain Q into quadrilaterals. Q, consists of open, non-overlapping elements K € Q, and
all elements have interior angles which are bound close to /2 in order to prevent too sharp or blunt corners. Details on prin-
cipals of finite element meshes as well as necessary modifications to deal with adaptive meshes and local mesh refinement
are given in the literature [12,7,3]. Let Q" = span{x'y/, 0 < i,j < r} be the polynomial space of degree r in every direction. On
Q;, we define by V;, the usual isoparametric finite element space of degree r:

Vi={¢eCQ), VKeQ:g|goT' €Q”, Q" >Tx:(0,1° =K} (14)

This space (with the required modification at Dirichlet boundaries) is used for all solution variables. The triangulation Q;
must not necessarily be aligned with the fluid and structure domain as it is usually the case in ALE formulations. Since
the interface I'; is moving, an alignment would ask for mesh-motion or even remeshing in every step. Besides the effort
for accomplishing a tracking mesh, such a scheme would require careful projection of the solution between the time-steps.
Conservation of physical principles, in particular incompressibility is very cumbersome, see e.g. [5].

Hence, an element K can be cut by the interface T';(t) and be part of both subdomains. We introduce (overlapping) sub-
partitionings for the fluid-mesh, the solid-mesh and the interface-mesh:

an}s.h ={KeQp;Kn Q}n/s # (0}, :ﬂh = Q}’?h n Q??h.

See the left sketch in Fig. 1 for this partitioning. The affiliation of an element K € Q;, to the sub-meshes will change in time.
Close to the interface layer Q;, we will use locally refined meshes for a higher resolution at this critical coupling region. See
Fig. 2 for a snapshot of the solid’s deformation us,.

Ja .,
fs K.

Q Ks

ih 4

A Qe Ky Ky

Q r; Qs

Fig. 1. Left: partitioning of a finite element triangulation into overlapping sub-meshes. Right: partitioning of interface-elements into four triangles each
used for accurate numerical quadrature.

Fig. 2. Discrete deformation u;; is defined only in Q,, and on the adjacent layer of elements. The dark-shaded area denotes the real solid-domain. It is only
here, that u,;, enters the computation.
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Some of the solution variables like pressure p; and deformation us are defined in parts of the domain Q only:
DPrn € VFh» Ush € [th]zv

where by V}'}s.h we denote the finite element-space (14) restricted to Q}'fh and Q),, respectively. By this construction, different
degrees of freedom are involved to represent a discrete function at different times. At the interface I';, the discrete functions -
like p;, — are defined on the complete element K € Q;;, their values however only enter the calculation within the physical do-
main as given by the discretized Initial Point Set. In Fig. 2, we show a plot taken from the numerical examples in Section 5 which
demonstrates this construction. Here, the solid fills the dark-shaded area on the mesh. The discrete deformation u;;, is defined
on all elements K that cover the solid-domain. This “sawtooth pattern” of the finite element solution is only used for reasons of
practical implementation. The values of u,; will only be used inside the solid domain Q;(t) given by Initial Point Set.

(1) Spatial discretization of the time-matching step

By X}’ = Vj x V{}, x L}’fh we denote a couple of H'-conforming isoparametric finite element space of degree r > 1 as de-
scribed in the previous paragraph. Let Uy, := {vj, Us;, P} € X;' be the unknown solution and @, := {¢y, Y, &} the set of
test-functions. Since all unknowns (velocity, deformation and pressure) are discretized with order-r-finite elements, addi-
tional stabilization terms S(-)(-) are added to the semi-linearform A(-)(-) (see (13)). For stabilization of the inf-sup condition
as well as for convective terms arising in the momentum equation, the Local Projection Stabilization is applied, see the sur-
vey [6,45] for a first application to fluid-structure interaction problems. These stabilization terms take the form

Sips(Un)(Pr) = Z5K(Uh V(U — T th), Un - V(dp — Tuep)) + Z ok (V(Prn — brn), VPra — Tbrn)) o

KeQy KeQs

where by 7, : V}, — V,, we denote the local projection into a coarser space. Here, this coarser space is either the polynomial
space with a reduced degree, or an equal-order space on a coarser mesh. See [6] for details on different choices for this local
projection as well as for hints on the local choice of the stabilization parameters ¢, and éx. The LPS method is not suitable for
the second equation in (13), since it lacks any natural diffusion: (for simplicity 6 = 1):

ko (0™ = U™ ) s+ (D VA" = D )gnr =0 W € Ls.

Instead, we apply the usual residual based conforming streamline diffusion method and a second stabilization term is added
to the set of equations:

Ssupg (Un) (@) = (Icr;] @ —u™ '+ " VU — Py " les>

m-1"
Ketop &

We refer to [37] or [8] for details. The stabilized semi-linearform is denoted by Ax(-)(-) := A(-)(-) + Sips(-)(*) + Ssupg () (*)-

We emphasize, that deformation us; € Vi, and pressure pyj, € Ly, are not defined on the whole mesh. They appear only on
the corresponding sub-meshes. As opposed to ALE formulation, no global extension of the solid deformation is required to
solve the fluid-problem. By defining the deformation locally only on €, (which is the solid domain plus the small layer of
interface elements Q; ), a significant reduction of numerical effort is reached, as in many applications, the structure fills only
a very small part of the entire domain. The stabilized Petrov-Galerkin-formulation of (12) reads:

UpeXp ' AR (UM @) =0 YDy e Y=V x L} < L} (15)

Since the interface I';(t) is moving through the domain and crossing mesh elements, one cannot align the mesh nodes with
the interface. This is a one severe drawback compared to interface tracking formulations like ALE. Numerical integration thus
has to carefully consider the interface regions that dominate the dynamics of the coupled problem. In Dunne [15] it was pro-
posed to use summed integration formulas to evaluate integrals on elements touched by the interface. For an accurate inte-
gration a very large number of integration points is necessary. This method, not taking the specific layout of the interface into
account is not efficient. Here, we approximate the interface by a piece-wise linear function and split every element touching
the interface into four triangles. In the right sketch of Fig. 1 we show examples for the splitting of an element into triangles.
Each triangle is integrated with a seven-point Gauss formula [49].

A further approximation problem occurs, since piece-wise polynomial finite element functions U, € X, are not able to
correctly reflect the solution’s behavior at the interface. While the velocity is continuous over I, its gradient is expected
to have a jump. Here, one should use the extended finite element method [11,20] for increasing the interface accuracy.

(2) Spatial discretization of the extension-step

In the extension-step, we first have to extend the intermediate deformation @], into the fluid-domain. We assume, that
the time-step k,, is small enough to prevent interface-movements larger than one element-size

knllonl " < h.

By this assumption it is sufficient to extend the deformation L:lh’" := exty (i) to at most one layer of elements into the fluid-
domain. Here, we use a simple constant extension. In Fig. 3 we give a plot of a one dimensional configuration. After extending
the deformation we can locate the new interface-location using the extended 1:121. The new interface-location xI" belonging to
Fig. 3 is characterized by the relation
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X — (k™) = X - (k.

Since 1y is a piece-wise polynomial, this equation is easily solved for x" with some few steps of a Newton’s iteration. Like-
wise, we extend the intermediate pressure pj; one layer into the solid mesh. Given the new partitioning Q}’Tm Qf, we acquire
U} by restriction to the subdomains:

m . 5m m ._ &~m m . =m
Up =V, Uy = Udlgn, PPh = Pf‘h|9}'_',,~

4.3. Solution scheme

In every time-step t,,_1 — t,, we need to solve a large, nonlinear coupled system of discretized partial differential equa-
tions given by (13) and (15):

Uh eX,, :Ah(Uh)((Dh) =0 V(Dh € Yh7

where we have skipped the superscript “m” denoting the time-step. Given a suitable initial guess U,(lo), which is usually the
old time-step U} := Uj"', we approximate the solution by a Newton iteration

WY € Xy : A (U)W, ) = —Ap(UD) (@), USY = UV + WP,

where by A, (U)(W,, @) we denote the Gateaux derivative of A;()(-) in direction W}, := {wy, 1y, q,} € Xp. This derivative is
computed analytically based on the variational form (13). The Jacobian of the Navier-Stokes equations is standard and found
in the literature. Computing the Jacobian of elastic structure equations, in particular including fluid-structure interactions is
more involved, see [21,2,45] for works regarding ALE formulations. Here, due to the separate extension step, the Jacobian
does not include derivatives with regard to the movement of the domain. Including these derivatives will be necessary when
deriving fully implicit time-stepping schemes which will help to increase stability for larger time-steps. In this case, the
derivatives with regard to the domain movement correspond to shape-derivatives as known from topology- and struc-
ture-optimization problems [48]. In the context of fluid-structure interactions or free-surface flows, these shape derivatives
are analyzed by Brummelen and coworkers [58,57]. As mentioned, using the semi-implicit time-stepping scheme we only
need to evaluate the derivatives with respect to the principal variables which are easily given with help of the following fun-
damental relations [31,45]:

OF '), . _ S
su (@) =F Ve (), =2 = (9) = J(wF () : V.

For completeness, we give the full Jacobian of A(-)(-) for the case of the backward Euler scheme (6 = 1) using the notation
W = {w,r,q} e X" ! and skipping all indices regarding temporal and spatial discretization

A U)W, ) =k, ((pr +Jsp W + pJF - V1,6 ) + (divw, &)g,
+ ((pfxf +pJY) WV o+ v-Yw) + p(F " Vv Vo, 4)) + (PP (VW + VW) — gl Vg,
+ (Dos(u) (1), V)g, + (k' T+ v-Vr+w-Vu—w,y)g — (p(F " : V1), d)q,, (16)

()

with the derivatives of the St. Venant Kirchhoff stress tensor in Eulerian coordinates:

Dos(u)(r) = (F' : VIos(u) + F'Vros(u) + osw)Vr F T+ wF ' F (VT F T+ F'VrF'FT

+ JF ' (F'VrF ' FDOFT, (17)
I
re
u;L"*l
" 1 ™~ "

Fig. 3. Extension-step (2): old deformation u"~! and intermediate @] (on old mesh). Extension ﬁh’" into fluid-domain. x" is new interface location.
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A very efficient implementation of these derivatives is possible since most terms, like the product F'F~" appear very often
and must be coded only once. The linear system to be solved in every step of the Newton iteration involves a very large and
coupled, ill conditioned matrix given by (16) and (17). In this first work on the Eulerian method we use a direct solver for
these linear problems. While multigrid methods are well established for both solid and fluid computations, the application to
a coupled fluid-structure interaction problem is very involved. For efficient solving one has to exploit a partitioned structure
within the multigrid smoother, see [24,32,9,19]. Application of a partitioned inner iteration to the Eulerian formulation is
difficult, since the interface cuts through mesh elements and no strict partitioning is available.

5. Numerical examples

For validation of the Eulerian model, we first consider two simple fluid-structure interaction benchmarks, the csm-1
problem and the fsi-1 problem as proposed by Hron and Turek [33]. Both benchmark problems use the configuration as
shown in Fig. 4, where an incompressible fluid flows around a circular obstacle and an elastic beam that is attached to this
rigid obstacle. In the csm-1 benchmark configuration the fluid is initially at rest and the beam undergoes a deformation
caused by a gravity force. In the fsi-1 benchmark problem no gravity force is acting, but the flow is driven by an inflow pro-
file. Both problems have a stationary solution and highly accurate results for different functional values are available in lit-
erature [33,34]. Finally, we describe a more challenging test-case, where an elastic ball falls in an container filled with an
incompressible fluid. The ball touches the bottom of the container and rebounces. Here we focus on modeling this collision
of elastic structure with the domain’s boundary.

5.1. Model validation: csm-1

In this first test-case, a gravity force is acting on the elastic structure f; := —J;0sg; ), shown in Fig. 4. In the original bench-
mark configuration [33] g, = 2 has been used, Wick [55] also published results for g, = 4 yielding a larger deformation. To
exploit the possibilities of very large deformation with the Eulerian approach, we add a further test-case using g, = 8. We
measure the deformation u; in the tip of the beam A = (0.6, 0.2) in the stationary limit. In Table 1 we present the deflections
in this measurement point on different meshes with decreasing mesh sizes under three different gravity forces. For compar-
ison, we indicate the reference values are stated in [33,34,55,56]. The complete set of parameters used in this configuration is:

pr=ps=10° v =107, p =5-10°, 7 =2-10° f=—-gJpsy, (18)

It is clearly seen, that the Full Eulerian method yields accurate values which are very close to the reference values cited from
the literature. Further, the Eulerian framework is able to increase the gravity force up to a point (g, = 8) where the beam
touches the rigid bottom of the flow-chanel, see Fig. 5. Here, no results for comparison are available in the literature.

5.2. Model validation: fsi-1

As a second test-case of the benchmark-suite published by Hron and Turek we refer to the fsi-1 problem. The flow is dri-
ven by a parabolic inflow profile on the boundary I',:

v =YY H=041, e =03,
4H

M =(0.2,0.2
\ ( )A = (0.6,0.2) Fu’rall

—— \
Ibase
I ‘/X' \%‘/ / Lout

/\/ N\ /
1_‘circle FL /

Fig. 4. Configuration of the csm-1 and fsi-1 benchmark problems as published by Hron and Turek [33].

Table 1
Results for the CSM-1 benchmark problem using increasing volume forces. Functional values on a sequence of meshes. Comparison to reference values taken

from the literature using the ALE framework.

Mesh size g =2 g =4 g, =8

u*(A) w(A) u*(A) w(A) u*(A) w(A)
Amin =~ 0.008 6.372 61.84 21.22 114.54 59.846 189.74
hmin ~ 0.004 7.116 64.70 25.02 121.25 65.760 192.03
Amin =~ 0.002 7.149 66.07 25.10 122.16 66.857 192.35
Hron and Turek [33] 7.187 66.10 n/a n/a n/a n/a

Wick [55,56] 7.150 64.90 2533 122.30 nja nja
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Fig. 5. Configuration of the csm-1 benchmark problem and modifications with larger gravity force. Left g, = —2, middle g, = —4 and right g, = —8.

Due to a slight unbalance in the configuration (see Fig. 4) the elastic beam undergoes a small deflection. Apart from this mod-
ification, the material constants are taken as described in (18). Besides measuring the deflection of the beam, drag- and lift-
values of the obstacle (rigid circle & beam) where to be estimated. Let I'gps := I'; U I'ircle \ I'base be the complete outer bound-
ary of the obstacle. Here, we consider the drag-value:

Jarag = / ngayse; ds.
obs

Evaluation of these integrals is not trivial in the Eulerian setting, since I',ps depends on the solution itself and further since

Tops cuts through mesh elements which makes the integration difficult. Hence, for evaluation purposes we first modify the

functionals by using the dynamic coupling condition (8) and inserting zero:

.]drag:/ ng0ye; ds+/ Ny 0y € dsi/ Ns0seq ds:/ nyose; ds+/ Ns0564 dsf/ nsoseq ds.
rcircle\rbase ri —~— 1—base rcirc]e\rbase l—‘hase 895

=—Ns0s

In the stationary limit (and in the absence of external forces) it holds for the exact solution f,, nads = — [, divasdx = 0 and
hence:

Jarag = / noe;ds,
Ceircle
where by n we denote the outward facing normal vector (whether in Qf or ;) and by ¢ the corresponding acting tensor.
Evaluation of this boundary integral is straightforward, since the boundary I';qe is fixed, even in the Eulerian setting. The
accuracy of this functional evaluation can be further enhanced by expressing it in terms of variational residuals (Babus$ka-
Miller-Trick) [1,10,45]. In Table 2 we gather the drag-value as obtained with the Eulerian approach. For evaluation of the
functional we consider both the boundary integrals as well as the reformulation into residual terms. A good reference value
Jarag = 14.2940 + 107% is available in the literature [34,45]. In Fig. 6 we show the error slopes of the drag approximation. Here
we observe linear order of convergence (in the mesh-size h) for the boundary integral and quadratic convergence for the

Table 2
fsi-1 Benchmark results. Drag-coefficient J,., (Us) evaluates as boundary integral and reformulated as residual
expression. The reference value taken from literature is given by Jy,,, = 14.2940 + 107,

Mesh-size Dof’s Boundary Variational
0.1 53,450 15.1052 14.9004
0.05 176,790 15.2333 14.5971
0.025 640,490 14.7836 14.4062
0.0125 2,466,390 14.5118 14.3280

Boundary —+—
Residual —»—
h? -

01 F

relative error

0.01

0.001
10000 100000 1e+06 1e+07

degrees of freedom

Fig. 6. Convergence of the drag-approximation with the Eulerian coordinate framework. Evaluated as boundary integral (linear convergence) and as
residual term (quadratic convergence).
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residual reformulation. Using piece-wise linear finite elements one would expect (at least for a pure incompressible flow
problem) the double order of convergence. Here, order reduction will take place due to the limited discretization accuracy
close at the elements that are cut by the moving interface. Remedy could be found by using local mesh adaptation close to
the interface or considering the extended finite element method [11] for better accuracy in the interface region.

5.3. Contact problem

Finally, we model the “free fall” of an elastic ball Qs with radius r,,; = 0.4 in a container Q = (-1, 1)2 filled with a viscous
fluid ;. The container is closed at the bottom boundary I',,c = 9Q,__; but open at the top and the sides. Here, by open we
refer to the “do-nothing” boundary condition

vo,v —pn =0,

which allows free in- and outflow of the fluid. See [28].

Fig. 7 shows the configuration of this test-case. At time t = 0, the midpoint of the ball is at x, = (0, 0). Since gravity is the
only acting force on the solid, the ball will accelerate and fall to the bottom I',o: = {(x,—1), x € (—1,1)}. At this rigid wall
with homogenous Dirichlet condition vy = 0, the ball stops and due to elasticity it will bounce off again. The parameters used
for this test-case are given by

p;=10°, p=10°, v =107 p,=10* J=4-10° f=—Jpsx,.

As functional outputs, we measure the average y-displacement and y-velocity of the structure as well as the structure’s
volume:

Jua(t) = /Q PRLTCES /Q RO 0= /ﬂ PREGES (19)

In Fig. 7 we show snapshots of the solution for different times. By gravity influences, the ball is accelerated and finally
touches the bottom boundary. Here, the flow comes to a rest and the ball gets compressed. Then, by its elasticity it gets
stretched and bounces back.

Fig. 8 shows the progress of the functionals (19) as function over time. The left sketch shows the average deformation
(which can be used to measure the position of the ball). Here it is clearly seen that due to the viscous damping of the fluid,
the bounce-off height is considerably smaller than the initial height. The right sketch shows the volume of the ball. Due to
the compression at impact-time, the volume gets reduced during the contact. Reduction of volume is possible, since the
flow-container is open on the upper, left and right boundaries.

Fig. 7. Falling ball bouncing of the bottom wall. Snapshots of the solution at times t = 0, t = 0.71, t = 0.96 (first contact), t = 1.035 (biggest deformation),
t = 1.125 (breaking contact) and t = 1.38 (highest bounce-off).
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Fig. 8. Falling ball: functionals as plot over time. Left: solid’s average deformation. Middle: solid’s average velocity. Right: solid’s relative volume. The two
turning points of the velocity for contact (C) and maximum bounce-off (B) are indicated in the middle plot.

Table 3
Left: maximum (negative) velocity reached in free fall. Right: maximum average velocity after bounce-off. Calculations on three different spatial and temporal
meshes.

h k k
0.0100 0.0050 0.0025 0.0100 0.0050 0.0025
95 —0.4977 —0.4990 —0.5006 0.320 0.348 0.365
96 ~0.5248 —0.5286 —0.5298 0.318 0.369 0.396
2-7 —0.5402 —0.5311 —0.5315 0.357 0.388 0.404
Table 4
Error in mass conservation for the falling ball.
h k
0.0100 0.0050 0.0025
273 2.68-1073 266-1073 269-1073
276 7.82-1074 6.95-1074 6.72-1074
277 263-1074 1.92.107* 1.68-.107*

In Table 3 we indicate the maximum (negative) velocity that is reached at the time of first contact tc ~ 0.952, as well as
the maximum velocity that is reached after the first bounce-off tz ~ 1.105, see Fig. 8. Computations are done using three
different temporal and spatial discretization parameters h and k. All meshes are uniform in space and time. While the
time-step has only a very small influence on the functional values we observe convergence under mesh-refinement.

Finally, in Table 4 we give the temporal error with regard to mass conservation

. . 9 . R
H]mass(t) - pSnrballHLz([OQ]): ]mass(t) = o (t)]sps dX.

Here, we observe O(hz) convergence. Being an interface-capturing method like Level-Sets, this result has to be expected for

linear finite elements. The time-discretization parameter k appears to be too small to have a substantial influence on the

accuracy. The question of mass conservation is of great importance in the context of this Eulerian formulation, since the

method by construction does not strictly guarantee this conservation.

6. Outlook

In this paper we investigate a new, fully Eulerian variational formulation for fluid-structure interaction problems. The
fully Eulerian formulation allows us to treat FSI problems with freely moving structures and with large deformations. This
is the main advantage of the Eulerian method compared to interface tracking methods such as the arbitrary Lagrangian—
Eulerian (ALE) method.

The method based on the Eulerian approach is inherently more expensive than the ALE method, since a careful capturing
and discretization of the moving interface is necessary. Further, without local mesh adaptation at the interface, loss of accu-
racy and reduction to first order convergence has to be expected. One benefit of the Eulerian method is the standard descrip-
tion of the flow problem in Eulerian coordinates without the need to introduce additional variables and without the
introduction of nonlinearities by means of domain transformations.
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The Eulerian formulation allows the straightforward realization of problems with very large deformation, movement and
even contact of the structure. Without the artificial domain mapping used in ALE approaches, the variational formulation is
well-posed, even in the event of “near contact” where the elastic structure enters the last layer of mesh elements close to the
boundary. This potential has been investigated for two model configurations.

In future work it will be of upmost importance to extend the discretization to a higher order scheme both in space and
time. Here it will be necessary to use a fully implicit time-stepping scheme taking the domain movement into account. For
this purpose it will be necessary to include shape derivatives with respect to the moving interface. Further, in the context of
more realistic and three dimensional application problems an efficient multigrid solver for this monolithic coupled fsi-for-
mulation must be developed. Both issues are subject to ongoing work.
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