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In this paper we develop a set of stochastic numerical schemes for hyperbolic and transport 
equations with diffusive scalings and subject to random inputs. The schemes are asymptotic 
preserving (AP), in the sense that they preserve the diffusive limits of the equations in 
discrete setting, without requiring excessive refinement of the discretization. Our stochastic 
AP schemes are extensions of the well-developed deterministic AP schemes. To handle the 
random inputs, we employ generalized polynomial chaos (gPC) expansion and combine 
it with stochastic Galerkin procedure. We apply the gPC Galerkin scheme to a set of 
representative hyperbolic and transport equations and establish the AP property in the 
stochastic setting. We then provide several numerical examples to illustrate the accuracy 
and effectiveness of the stochastic AP schemes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many kinetic and hyperbolic equations often have diffusive scaling that asymptotically leads to diffusion equations. When 
the equations are near the diffusive regime, numerical simulations become prohibitively expensive, due to the exceedingly 
small parameters, e.g., the particle mean free path, relaxation time, etc., that need to be numerically resolved. Asymptotic-
preserving (AP) schemes are those that mimic the asymptotic transitions from the kinetic or hyperbolic equations to their 
diffusive limits in discrete setting [25,24,19,15]. Since the mid-1990s, the development of AP schemes for such problems has 
generated many interests, see, for example, [20,16,17,11,22,12,26]. The AP strategy has been proved to be a powerful and ro-
bust technique to address multiscale problems in many kinetic and hyperbolic problems. The main advantage of AP schemes 
is that they are very efficient in the diffusive regime, for they do not need to resolve the small diffusive parameters numer-
ically and yet can still capture the macroscopic behavior governed by the limiting diffusion equations. For example, it was 
proved, in the case of linear transport with a diffusive scaling, that the AP scheme converges uniformly with respect to the 
scaling parameter [11]. This is expected to be true for all AP schemes [15], although specific proofs are needed for specific 
problems. For many multiscale problems, carefully constructed AP schemes avoid the difficulty of coupling a microscopic 
solver with a macroscopic one, as the micro solver automatically becomes a macro solver in the diffusive regime.

In practical applications, kinetic and hyperbolic problems almost always contain parameters that are uncertain, due to 
modeling and/or experimental errors. In this paper, we investigate numerical methods for such problems and aim to develop 

* Corresponding author.
E-mail addresses: jin@math.wisc.edu (S. Jin), dongbin.xiu@utah.edu (D. Xiu), xzhu@sci.utah.edu (X. Zhu).
http://dx.doi.org/10.1016/j.jcp.2015.02.023
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.02.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:jin@math.wisc.edu
mailto:dongbin.xiu@utah.edu
mailto:xzhu@sci.utah.edu
http://dx.doi.org/10.1016/j.jcp.2015.02.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.02.023&domain=pdf


36 S. Jin et al. / Journal of Computational Physics 289 (2015) 35–52
stochastic version of the AP schemes that can quantify the uncertainty in the diffusive regime. While well established for the 
deterministic kinetic or hyperbolic equations, AP schemes have not been constructed for hyperbolic and kinetic problems 
with random inputs. The few existing work on uncertainty quantification of hyperbolic and transport equations [13,8,14,
6,30] focused on efficient methods in the standard stochastic setting and did not study the asymptotic behavior of these 
methods. Consequently, those methods do not possess the AP property.

In this paper, we present a set of stochastic AP methods for kinetic and hyperbolic problems with random inputs. To cope 
with the random inputs, we employ generalized polynomial chaos (gPC) approach [35], combined with stochastic Galerkin 
(SG) method. While the gPC-SG approach has been adopted for a large variety of stochastic problems, this paper represents 
the first attempt, to our best knowledge, to construct stochastic AP (sAP) schemes. The sAP methods are constructed by 
extending the idea from the deterministic AP methods [16,17], and are illustrated via three prototype kinetic equations: 
the linear Goldstein–Taylor model, the nonlinear Carleman model, and the linear transport equation. The selected equations 
are representative, as they possess features such as linearity vs. nonlinearity, representations in physical space vs. in phase 
space. We will demonstrate that the carefully constructed gPC-Galerkin method can be AP, in the sense that in the diffusive 
regime it automatically becomes a gPC-Galerkin approximation for the limiting stochastic diffusion equations. This holds 
true for fixed time step, mesh size and order of the gPC expansions, and without the requirement for refinement.

It is interesting to note that one obvious approach to extend the deterministic AP methods to random domain is to adopt 
stochastic collocation (SC) approach. SC methods are based on sampling and can be easily applied to any systems with 
established deterministic solvers. One can apply a deterministic AP scheme to each individual sample, solve them separately 
to obtain the solution ensemble, and then construct an approximation, e.g., a gPC approximation, to the stochastic solution 
in the randoms space. However, it is important to note that even though each sample satisfies the AP properties, there is 
no guarantee that the global approximation is AP in the entire random space. This is especially true in higher dimensional 
random spaces, as the errors incurred by the construction (e.g., interpolation errors) can be highly non-trivial away from 
the samples. On the other hand, the proposed sAP is based on the Galerkin formulation, and can be proven to be AP 
throughout the random domain, for any fixed (and even low) order of gPC expansions. (For reviews of the basic properties 
of SC methods, the interested readers are referred to [33].)

The rest of the paper is organized as follows: in the next section we discuss some preliminary materials and give a 
formal definition of stochastic AP. In Section 3 we shall briefly review the three model problems under consideration and 
their diffusive limits. We then present the details of the stochastic AP schemes for these equations and establish their AP 
properties in next three sections. After a discussion on the use of stochastic collocation methods in Section 7, we present 
several numerical examples to illustrate the effectiveness of the sAP methods in Section 8.

2. Preliminaries

Let us consider a class of problems, e.g., kinetic and hyperbolic problems, with diffusive scaling. Without being specific, 
we illustrate the idea of asymptotic-preserving (AP) scheme in the following manner. Consider a system

∂t uε = Lε(t, x, uε;ε), (2.1)

where ε is the scaling parameter. Proper initial and boundary conditions are assumed. As ε → 0, the diffusive limit satisfies

∂t u = L(t, x, u). (2.2)

Let vε
h be a numerical solution to (2.1), where the subscript h denotes the discretization in spatial and temporal domains. 

Obviously, vε
h is obtained via a proper numerical scheme. The scheme is called AP if its limiting solution vh = limε→0 vε

h
solves (2.2) automatically, without refining the discretization h. Such kind of AP schemes are well studied for deterministic 
kinetic and hyperbolic problems, see, for example, [20,16,17,11,22,12,26].

2.1. Stochastic asymptotic preserving scheme

We now consider the same problem subject to random inputs.

∂t uε = Lε(t, x, z, uε;ε), (2.3)

where z ∈ Iz ⊆ R
d , d ≥ 1, are a set of random variables equipped with probability density function ρ . These random variables 

characterize the random inputs into the system. As ε → 0, the diffusive limit becomes

∂t u = L(t, x, z, u). (2.4)

We now extend the concept of deterministic AP to the stochastic case. To avoid the cluttering of notations, let us now focus 
on the discretization in the random space Iz .

Definition 2.1 (Stochastic AP). Let S be a numerical scheme for (2.3), which results in a solution vε(z) ∈ V z in a finite 
dimensional linear function space V z . Let v(z) = limε→0 vε(z) be its asymptotic limit. We say that the scheme S is strongly 
asymptotic preserving if the limiting solution v(z) satisfies the limiting equation (2.4) for almost every z ∈ Iz; and it is weakly 
asymptotic preserving if the limiting solution v(z) satisfies the limiting equation (2.4) in a weak form.
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The strong AP is obviously very strong to acquire, as it requires v(z) to be (almost) the analytical solution of (2.4) in the 
random space. On the other hand, the weak AP is more amenable and practical. In the finite dimensional linear space V z , 
it can be acquired via, for example, a Galerkin formulation by enforcing the residue vt − L(t, x, z, v) to be orthogonal to 
V z . Hereafter we will only discuss the weak AP solution and commonly refer it as stochastic asymptotic preserving (sAP). Note 
that, similarly to the deterministic case, the limiting sAP solution v(z) becomes a weak solution to the limiting equation 
(2.4) automatically, for any given space V z and without the need to enrich it.

2.2. Generalized polynomial chaos and stochastic Galerkin

We now briefly review the gPC method [9,35] and its Galerkin formulation for stochastic PDEs, particularly for the 
random diffusion equation

∂t u = ∂x[a(x, z)∂xu], (2.5)

where 0 < amin ≤ a(x, z) ≤ amax < +∞ for all x, z.
In the most common gPC setting, one seeks a numerical solution in term of d-variate orthogonal polynomials of degree 

N ≥ 1. That is, the linear space V z is set to be Pd
N , the space of d-variate orthogonal polynomials of degree up to N ≥ 1. For 

random variable z ∈R
d , one then seeks

u(x, t, z) ≈ uN(x, t, z) =
M∑

m=1

ûm(t, x)�m(z), M =
(

d + N

d

)
, (2.6)

where {�m(z)} ⊂ P
d
N are orthonormal polynomials satisfying∫

�i(z)� j(z)ρ(z)dz = δi j, 1 ≤ i, j ≤ M = dim
(
P

d
N

)
. (2.7)

Here ρ(z) is the probability density function of z and δi j is the Kronecker delta function. Note that when the random 
dimension d > 1, an ordering scheme for multiple index is required to re-order the polynomials into a single index m
here. Typically, the graded lexicographic order is used, see, for example, Section 5.2 of [33]. The random dimensionality 
d is determined by the number of random variables z used in the input a(x, z), which is typically modeled by a linear 
combination of z, i.e.,

a(x, z) ≈
d∑

i=1

âi(x)zi . (2.8)

The most widely used model is the Karhunen–Loeve expansion. (See, for example, [9,33] for general discussions.)
In the gPC Galerkin formulation, one inserts the approximation uN (2.6) into the governing equation and then enforces 

the residue to be orthogonal to Pd
N . Upon doing so, one obtains a set of deterministic equations for the expansion coefficients 

{ûm}
∂t û(x, t) = ∂x

(
A(x)∂xû

)
, (2.9)

where

û = (û1, · · · , ûM)T ,

is the coefficient vector and A = (aij)1≤i, j≤M with

aij(x) =
∫

a(x, z)�i(z)� j(z)ρ(z)dz. (2.10)

Obviously, A(x) is real and symmetric. It is also straightforward to show that the eigenvalues of A are bounded by the range 
of a.

Lemma 2.2. For any x, let λ1(x) ≥ λ2(x) ≥ · · · be the eigenvalues of A(x), defined by (2.10), and amin ≤ a(x, z) ≤ amax for all x and z. 
Then,

amin ≤ λi(x) ≤ amax, ∀i. (2.11)

Proof. The proof is a trivial extension of Theorem 2.1 of [13], by considering a(x, z) − amin and a(x, z) − amax. �
In the random diffusion equation (2.5), the assumption of 0 < amin ≤ a(x, z) ≤ amax < +∞ for all x, z immediately leads 

to the conclusion that A is positive definite [36].
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3. Three kinetic or hyperbolic equations

In this section we present three representative kinetic equations subject to random inputs and discuss their diffusion 
limits.

3.1. The random Goldstein–Taylor model

We first consider a one dimensional random Goldstein–Taylor model under diffusive scaling:{
∂t u + ∂x v = 0,

∂t v + 1

ε
a(x, z)∂xu = −1

ε
v.

(3.1)

In the deterministic Goldstein–Taylor model [10,31], the wave speed a(x, z) ≡ 1. Here we assume a random wave speed, a 
case that has many interesting applications on its own right [13]. In the diffusion limit ε → 0+ , (3.1) can be approximated 
to the leading order by the following heat equation with random diffusion coefficient a(x, z):{

v = −a(x, z)∂xu,

∂t u = ∂x(a(x, z)∂xu).
(3.2)

3.2. The random Carleman model

The second example is the one-dimensional nonlinear random Carleman model under the diffusive scaling:{
∂t u + ∂x v = 0,

∂t v + 1

ε
∂xu = −1

ε
κ(x, z)uv.

(3.3)

In the deterministic Carleman model [3], κ(x, z) ≡ 1. In general, the randomness in the source term of a hyperbolic balance 
law could arise from friction, topography or random medium. Indeed, certain kinetic equations have been developed for 
porous media [27,29], where u on the right side of (3.3) is replaced by uβ with β ≤ −1, to model the uncertainty in the 
media [5]. The corresponding limiting nonlinear diffusion equation, as ε → 0+ , is⎧⎪⎪⎨

⎪⎪⎩
v = − 1

κ(x, z)u
∂xu,

∂t u = ∂x

[
1

κ(x, z)u
∂xu

]
.

(3.4)

3.3. The linear transport equation

Finally, we consider a one-dimensional linear transport equation with random scattering coefficients under the diffusive 
scaling. Let f (t, x, v) be the probability density distribution of particles at position x, time t , and with v ∈ (−1, 1) the cosine 
of the angle between the particle velocity and its position variable. Then, f is governed by the following linear transport 
equation [4]:

ε∂t f + v∂x f = σ(x, z)

ε

⎡
⎣1

2

1∫
−1

f (v ′)dv ′ − f

⎤
⎦ , (3.5)

where σ(x, z) is the random scattering coefficient. In this equation we ignored the absorption and source terms, which can 
also be random. The treatment of these terms does not add further numerical difficulties and will be neglected here for the 
ease of presentation.

To understand its diffusion limit, we first split this equation into two equations for v > 0:

ε∂t f (v) + v∂x f (v) = σ(x, z)

ε

⎡
⎣1

2

1∫
−1

f (v ′)dv ′ − f (v)

⎤
⎦ ,

ε∂t f (−v) − v∂x f (−v) = σ(x, z)

ε

⎡
⎣1

2

1∫
−1

f (v ′)dv − f (−v)

⎤
⎦ , (3.6)

and then consider its even and odd parities
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r(t, x, v) = 1

2
[ f (t, x, v) + f (t, x,−v)],

j(t, x, v) = 1

2ε
[ f (t, x, v) − f (t, x,−v)]. (3.7)

The system (3.6) can then be rewritten as follows:⎧⎪⎨
⎪⎩

∂tr + v∂x j = σ(x, z)

ε2
(r − r),

∂t j + v

ε2
∂xr = −σ(x, z)

ε2
j,

(3.8)

where

r(t, x) =
1∫

0

rdv.

As ε → 0+ , (3.8) yields

r = r, j = − v

σ(x, z)
∂xr.

Substituting this into system (3.8) and integrating over v , one gets the limiting diffusion equation [23,1]:

∂tr = ∂x

[
1

3σ(x, z)
∂xr

]
. (3.9)

4. Stochastic AP scheme for the random Goldstein–Taylor model

We now derive a stochastic AP scheme for the random Goldstein–Taylor model (3.1). The scheme is based on the gPC 
Galerkin formulation, where again we seek polynomial approximations to the solutions, in the form of (2.6),

uN(x, z, t) =
M∑

m=1

ûm(t, x)�m(z), v N(x, z, t) =
M∑

m=1

v̂m(t, x)�m(z). (4.1)

Let

û = (û1, · · · , ûM)T , v̂ = (v̂1, · · · , v̂ M)T ,

be the coefficient vectors and conduct the Galerkin projection on the governing equation, we obtain⎧⎨
⎩

∂t û + ∂xv̂ = 0,

∂t v̂ + 1

ε
A(x)∂xû = −1

ε
v̂,

(4.2)

where A = (aij)1≤i, j≤M is defined in (2.10).

4.1. AP time splitting

We now extend the deterministic AP time splitting introduced in [16] to the gPC Galerkin system (4.2). The procedure 
starts with a reformulation of (4.2) as a (nonstiff) linear hyperbolic equation system with a stiff relaxation term as follows:{

∂t û + ∂xv̂ = 0,

∂t v̂ + α∂xû = −1

ε
[v̂ + (A − εαIM)∂xû], (4.3)

where IM is the M × M identity matrix, and α > 0 is a real parameter, chosen such that (A −εαIM) remains positive definite 
for any ε [21,19]. Without loss of generality, we shall assume ε � 1. Since the eigenvalues of A(x) are bounded by the range 
of a(x, z) (see Lemma 2.2), then it suffices to choose α < amin.

The deterministic AP time-splitting method introduced in [16] can now be applied to (4.3). It consists of the following 
two steps:

• Relaxation step:{
∂t û = 0,

∂t v̂ = −1

ε
[v̂ + (A − εαIM)∂xû]. (4.4)
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• Convection step:{
∂t û + ∂xv̂ = 0,

∂t v̂ + α∂xû = 0.
(4.5)

As ε → 0+ , the relaxation step yields

v̂ = −A(x)∂xû,

which, when substituted into the convection step, gives

∂t û = ∂x
(
A(x)∂xû

)
.

This is exactly the gPC Galerkin scheme (2.9) for the diffusion equation (3.2). By Definition 2.1, the time splitting method 
presented here is sAP (in the weak form).

4.2. AP for the fully discretized system

We now adopt a finite volume method to discuss the sAP property of the time-splitting scheme in the fully discretized 
form. For spatial discretization, we choose the spatial grids xi+1/2 with a uniform mesh size �x = xi+1/2 − xi−1/2 with the 
spatial index i = 0, ..., Nx . The discrete time level tn are also uniformly spaced with a time step �t = tn+1 − tn , where n is 
the temporal index. We denote the cell average in [xi+1/2, xx−1/2] at time tn as

ûn
i = 1

�x

xi+1/2∫
xi−1/2

û(x, tn)dx.

• Relaxation step: In the relaxation step, we apply the central difference approximation in space and the backward Euler 
method in time:⎧⎪⎨

⎪⎩
û∗

i = ûn
i

v̂∗
i − v̂n

i

�t
= −1

ε

[
v̂∗

i + (Ai − εαIM)
ûn

i+1 − ûn
i−1

2�x

]
.

(4.6)

• Convection step: In the convection step, we use the first order upwind method:⎧⎪⎪⎨
⎪⎪⎩

ûn+1
i = û∗

i − �t

2�x
(v̂∗

i+1 − v̂∗
i−1) +

√
α�t

2�x
(û∗

i+1 − 2û∗
i + û∗

i−1),

v̂n+1
i = v̂∗

i − α
�t

2�x
(û∗

i+1 − û∗
i−1) +

√
α�t

2�x
(v̂∗

i+1 − 2v̂∗
i + v̂∗

i−1).

(4.7)

As ε → 0, (4.6) gives

v̂∗
i = −Ai

ûn
i+1 − ûn

i−1

2�x
,

which, when substituted into the first equation in the convection step (4.7), gives

ûn+1
i = ûn

i − �tAi
ûn

i+2 − 2ûn
i + ûn

i−2

(2�x)2
+

√
α�t

2�x
(ûn

i+1 − 2ûn
i + ûn

i−1). (4.8)

This is the first order approximation, in both space and time, of the gPC diffusion equation (2.9). Thus, the fully discretized 
scheme is sAP.

Remark 4.1. Here we adopted rather low-order discretizations in space and time to illustrate the procedure and the AP 
property of the fully discrete system. In practice, one can of course employ higher-order schemes, e.g., high-order TVD in 
space and high order implicit–explicit time discretization [28,2,18], and establish the corresponding sAP property.

5. Stochastic AP scheme for the random Carleman model

We now consider the nonlinear random Carleman model (3.3). Except for the nonlinear term of the right-hand-side, the 
gPC Galerkin formulation for this system is similar to that of the random Goldstein–Taylor model. Again, let û and v̂ be the 
coefficient vectors of the gPC expansion of u and v , respectively. The gPC Galerkin procedure results in the following system
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⎧⎨
⎩

∂t û + ∂xv̂ = 0,

∂t v̂ + 1

ε
∂xû = −1

ε
B(x, t)v̂,

(5.1)

where the matrix B(x, t) = (bij(x, t))1≤i, j≤M has entries

bij(x, t) =
∫

κ(x, z)uN(x, t, z)�i(z)� j(z)ρ(z)dz

=
M∑


=1

û


∫
κ(x, z)�
(z)�i(z)� j(z)ρ(z)dz. (5.2)

5.1. The AP property

Let us first consider the limiting state (3.4) for the random Carleman model. Upon applying the ansatz (4.1) in the first 
equation of (3.4) and conducting the Galerkin projection, we obtain

v̂ = −B−(x, t)∂xû, (5.3)

where the matrix B− = (b−
i j )1≤i. j≤M has entries

b−
i j (x, t) =

∫
1

κ(x, z)uN(x, t, z)
�i(z)� j(z)ρ(z)dz. (5.4)

If one uses this in (3.4) to derive the gPC limiting equation, then the scheme gives a complicated nonlinear algebraic system. 
Alternatively, we write the first equation of (3.4) in an equivalent form

κ(x, z)uv = −∂xu,

which renders its gPC Galerkin projection

Bv̂ = −∂xû, (5.5)

where B is defined in (5.2). This yields

v̂ = −B−1∂xû. (5.6)

Thus the gPC equation for limiting problem (3.4) is

∂t û = ∂x

[
B−1(x, t)∂xû

]
. (5.7)

We now consider the diffusive limit of the formulation (5.1). As ε → 0+ , the second equation leads to

v̂ = −B−1(x, t)∂xû.

Substituting into the first equation of (5.1), we obtain exactly (5.7). Therefore, (5.1) is sAP.

5.2. Connection with the relaxation scheme for nonlinear diffusion equation (3.4)

As discussed in the previous section, the gPC approximation to the nonlinear diffusion equation (3.4) is difficult. Yet, the 
above discussion of the AP property has an analogy to the Jin–Xin relaxation scheme for nonlinear hyperbolic conservation 
laws [21], in the sense that the nonlinear diffusion equation (3.4) is approximated by the semi-linear hyperbolic equations 
(the Carleman model) (3.3), which can be more easily solved numerically than the original equation (3.4). To be precise, 
we start with the gPC Galerkin system (5.1), which, upon taking the relaxation limit ε → 0, leads to an effective numerical 
scheme for (3.4).

The scheme takes the following form,
Convection step:

ûn+1 − ûn

�t
+ v̂n

j+1/2 − v̂n
j−1/2

�x
= 0, (5.8)

Relaxation step:

v̂n
j+1/2 = −(Bn

j+1/2

)−1 ûn
j+1 − ûn

j

�x
, (5.9)

where B j+1/2 = 1
2 [B j + B j+1].

By substituting (5.9) into (5.8), we obtain

ûn+1 − ûn

�t
= 1

(�x)2

[(
Bn

j+1/2

)−1
(

ûn
j+1 − ûn

j

)
− (Bn

j−1/2

)−1
(

ûn
j − ûn

j−1

)]
. (5.10)

Clearly, this is a second order space approximation for (3.4).
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6. Stochastic AP scheme for the random linear transport equation

We now discuss the gPC Galerkin formulation for the linear transport equation (3.8) with random cross-section σ(x, z). 
Let

rN(x, z, t) =
M∑

m=1

r̂m(t, x)�m(z), jN(x, z, t) =
M∑

m=0

ĵm(t, x)�m(z) (6.1)

be the Nth-order gPC expansion for the solutions and

r̂ = (r̂1, · · · , r̂M)T , ĵ = ( ĵ1, · · · , ĵM)T ,

be the expansion coefficient vectors. The gPC Galerkin procedure can be applied to (3.8) in a straightforward manner and 
results in the following system:⎧⎪⎨

⎪⎩
∂t r̂ + v∂x ĵ = 1

ε2
S(x)(r − r̂),

∂t ĵ + v

ε2
∂xr̂ = − 1

ε2
S(x)ĵ,

(6.2)

where

r(x, t) =
1∫

0

r̂dv,

and S(x) = (si j(x))1≤i, j≤M is an M × M matrix with entries

si j(x) =
∫

σ(x, z)�i(z)� j(z)ρ(z)dz. (6.3)

The remaining AP discretizations for time and space are similar to that of the Goldstein–Taylor model and the Carleman 
model. For velocity discretization, we use the discrete-ordinate method, i.e., we choose the discrete velocity vk to be the 
Legendre–Gauss quadrature points and integrate r on the right hand side of (6.2) using Gauss’s quadrature rule. See, for 
example, [17]. The fully discretized scheme can be shown to be AP, similar to the two previous models. We omit the details.

7. Stochastic collocation methods

We now discuss stochastic collocation methods using the general setup from Section 2. In stochastic collocation, one 
first chooses a set of collocation nodes/samples for the input random variable z ∈ R

d , d ≥ 1. Let {z( j)}Ns
j=1 ⊂ Iz be the set 

of nodes, where Ns is the total number of nodes, one then applies a deterministic AP scheme to (2.3) for each fixed z( j) , 
for j = 1, . . . , Ns , and obtain the solution ensemble vε

j (x, t) = vε(x, t, z( j)). This is a straightforward non-intrusive procedure 
and poses no coding difficulty.

Equipped with the solution ensembles {z( j), vε
j (x, t)}Ns

j=1, one then, in the post-processing step, seeks to construct an 
accurate (gPC) approximation vε(x, t, z). Most of the construction procedures are linear and render an approximation such 
as,

vε(x, t, z) =
Ns∑
j=1

vε
j (x, t)
 j(z), (7.1)

where the form of the function {
 j(z)} depends on the construction method. For example, if the Lagrange interpolation 
method is used, then 
 j(z(i)) = δi j . For other construction methods, e.g., least-square regression, discrete projection, etc., the 
functions are more involved but can be constructed nevertheless. (For an overview of stochastic collocation methods, see, 
for example, [32,33].) Upon taking the diffusive limit ε → 0, we obtain

v(x, t, z) =
Ns∑
j=1

v j(x, t)
 j(z), (7.2)

where v j(x, t) = limε→0 vε
j (x, t) is the limit of each sample solution and is deterministically AP.

If (7.1) is constructed via an interpolation procedure, the limiting solution (7.2) satisfies v(x, t, z( j)) = v j(x, t), which 
means the method satisfies the limit equation (2.4) at each collocation nodes z( j) . And this leads to a strongly AP scheme 
if the nodes fill up the random space Iz asymptotically. This is obvious not a practical situation. For locations outside 
the sample set, it can be argued that the method is AP subject to interpolation errors. Controlling interpolation errors is, 
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Fig. 8.1. The Goldstein–Taylor Model: The mean (left) and standard deviation (right) of u with ε = 0.49, obtained by 4th-order gPC Galerkin (circles) and 
stochastic collocation (crosses).

however, a quite open research topic, even for smooth problems. And the interpolation errors can be highly non-trivial for 
high dimensional random space. Although it is possible to control the errors using tensor Gauss nodes or sparse grids [34], 
they lead to fast growth of the number of nodes in high dimensions and can be impractical to use.

If the construction (7.1) is not of interpolation type, e.g., regression, then it will not be AP at the sample nodes. On the 
other hand, except in some rare cases, it is also not possible to ensure (7.2) solves the limit problem (2.4) in a weak form. 
And therefore it will not sAP, weakly or strongly. This is in contrary to the gPC Galerkin methods presented here — the 
limiting gPC Galerkin solutions satisfy the limiting problem in a Galerkin weak form, for any given order of the polynomial 
expansions. Consequently, it is fair to state that the gPC Galerkin approach is much preferred than the collocation approach, 
if one wishes to enforce AP properties in the random space.

8. Numerical examples

In this section, we present several numerical examples to illustrate the effectiveness of our method. We typically use 
reference solutions to examine the performance of the numerical solutions. To examine the accuracy, two metrics are used 
to quantify the errors: the differences in the mean solutions and in the corresponding standard deviation, with L2 norm 
in x:

emean(t) =
∥∥∥E[uh]−E[u]

∥∥∥
L2

,

estd(t) =
∥∥∥σ [uh]− σ [u]

∥∥∥
L2

, (8.1)

where uh, u are the numerical solutions and the reference solutions, respectively. The reference solutions for the mean 
and standard deviation are typically computed by high-order stochastic collocation methods, using either tensor Gauss 
quadrature or sparse grids quadrature.

8.1. The Goldstein–Taylor model

We first consider the Goldstein–Taylor equation (3.1) with the following initial data

u(x, z,0) = 2.0, v(x, z,0) = 0, x ∈ [−1,0],
u(x, z,0) = 1.0, v(x, z,0) = 0, x ∈ (0,1],

and random coefficient

a(x, z) = 2 + z, z ∈ [−1,1].
This makes the problem of one dimension in random space, and allows us to examine carefully the error behavior. The 
spatial and temporal discretizations discussed in Section 4 are used.

We first set ε = 0.49 to be a relatively large number. The mean (left) and standard deviation (right) of the solution 
until t = 0.25 at order N = 4 are plotted in Fig. 8.1, where we also show the mean and standard deviation obtained by the 
stochastic collocation method over 20 Legendre–Gauss quadrature points. Good agreement can be seen between the two 
sets of results. This gives us a qualitative understanding of the solution behavior.
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Fig. 8.2. The Goldstein–Taylor Model: The mean (left) and standard deviation (right) of u with ε = 10−12, obtained by 4th-order gPC Galerkin (circles) and 
stochastic collocation (crosses), along with the analytical solution (8.2) (dashed lines) of the limiting diffusion equation (3.2).

Fig. 8.3. The Goldstein–Taylor Model: Error convergence in mean (solid lines) and standard deviation (dashed lines), with respect to gPC order for ε = 10−12. 
(Squares: �x = 0.04, circles: �x = 0.02, stars: �x = 0.01.)

We then consider the case of very small ε by setting ε = 10−12. In this case, the analytical solution of the limiting 
random diffusion equation (3.2) is

u(x, t, z) = 3

2
− 1

2
erf

(
x√

4a(z)t

)
. (8.2)

This is an accurate approximation to the exact solution, with error ∼ O (ε). The solution profiles of the mean and standard 
deviations are shown in Fig. 8.2, where we again visually observe a good agreement among the 4th-order gPC solutions, 
stochastic collocations and the analytical solution (8.2). In Fig. 8.3, the errors at time t = 0.02 with respect to increasing gPC 
order are plotted, at various levels of grid resolutions, �x = 0.04 (squares), �x = 0.02 (circles), and �x = 0.01 (stars). The 
time step is �t = �x2/12. The fast exponential convergence with respect to the order of gPC expansion can be observed. 
The errors quickly saturate at modest gPC orders and the saturation levels become smaller with finer �x. This indicates 
that in this case the errors have a larger contribution from the temporal and spatial discretization than that from the 
gPC expansion. The advantage of AP methods can be seen here: even for such an exceedingly small parameter ε = 10−12, 
accurate solutions can still be obtained with very modest mesh.

While keeping the discretization in x at the same three different levels, we now vary the value of ε and examine 
the solutions. We keep the stochastic AP scheme at N = 4 gPC order. From the results above, it is obvious that at N = 4
the errors in random space is subdominant compared to those in space and time. Hence, the numerical solutions can be 
considered accurate up to the discretization errors, whereas (8.2) is accurate up to O (ε) error. In Fig. 8.4, we show the 
differences of the mean (solid lines) and standard deviation (dash lines) between the analytical solution (8.2) and the 
4th-order gPC solutions with respect to varying values of ε . We observe the reduction of the differences as ε becomes 
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Fig. 8.4. The Goldstein–Taylor Model: Differences in mean (solid lines) and standard deviation (dashed lines) with respect to ε between the analytical 
solution (8.2) of the limiting diffusion equation (3.2) and the 4th-order gPC solution with �x = 0.04 (squares), �x = 0.02 (circles), and �x = 0.01 (stars).

Fig. 8.5. The Goldstein–Taylor Model: illustration of the spatially varying ε(x) over the physical domain.

smaller, as the analytical solution (8.2) becomes more accurate, before they become saturated as the numerical errors in the 
sAP solutions start to dominate.

To further demonstrate the effectiveness of the sAP method, we now consider a case of spatially varying ε(x) > 0 span-
ning a wide range of mixing scales. Specifically, we consider the following

ε(x) = ε0 + 1

2

[
tanh

(
1 − 11

2
x

)
+ tanh

(
1 + 11

2
x

)]
,

which is similar to the one used in [7] for simulations of deterministic Boltzmann equation. As seen from Fig. 8.5, the ε(x)
varies smoothly from ε0 to ∼ O (1). Here we set ε0 = 10−12.

The multiscale nature of the problem requires good accuracy over the entire range of ε , which our sAP method is able to 
deliver. The mean and standard deviation of the solution u at t = 0.02 with �x = 0.01 and �t = 1

12 �x2 are shown in Fig. 8.6. 
We observed a good agreement between the sAP gPC-Galerkin solution at order N = 4 and the reference solution. The 
reference solution is computed by the stochastic collocation method using 20 one-dimensional Legendre–Gauss quadrature 
points and also based on the first order deterministic AP method in Section 4 with the same �x and �t . The errors in the 
gPC-Galerkin solutions are plotted in Fig. 8.7, where the exponential convergence is clearly observed with increasing order 
of gPC expansion.
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Fig. 8.6. The Goldstein–Taylor Model with the spatially varying ε(x): The mean (left) and standard deviation (right) of u with ε0 = 10−12, obtained by 
4th-order gPC Galerkin (circles) and stochastic collocation (crosses).

Fig. 8.7. The Goldstein–Taylor Model with the spatially varying ε(x): Error convergence in mean (solid lines) and standard deviation (dashed lines), with 
respect to gPC order for ε0 = 10−12, �x = 0.01, �t = 1

12 �x2.

8.2. The Carleman model

We now consider the nonlinear Carleman model and the corresponding stochastic AP scheme (see Section 5). We focus 
on the diffusive regime and fix ε = 10−12.

In the first case study, we employ the same random coefficient, initial data and boundary condition as in the previous 
section. Lacking an analytical solution, we employ the high-order stochastic collocation method with 20 Legendre–Gauss 
quadrature points to compute the reference mean and standard deviation solutions. In Fig. 8.8, the errors of the mean 
(solid lines) and standard deviation (dash lines) of u (circle) and v (triangle) are plotted at increasing gPC expansion order. 
Spectral convergence is clearly observed. All of the numerical solutions are computed until t = 0.04 with �x = 0.02 and 
�t = 1

12 �x2.
In Fig. 8.9, we plot the mean and standard deviation of u, obtained by the 4th-order gPC Galerkin and collocation, 

as well as a “semi-exact” solution. Here the “semi-exact” solution is obtained by solving the limiting nonlinear diffusion 
equation (3.4) by the stochastic collocation method over 20 one dimensional Legendre–Gauss quadrature points, using the 
Euler forward in time and central difference in space with the same �t and �x. Good agreement can be observed among 
these different methods.

We now examine the difference between our gPC-AP solution at t = 0.04 with �x = 0.02, �t = 1
12 �x2 and the numerical 

solution from the limiting nonlinear diffusion equation (3.4). This is shown in Fig. 8.10, at different values of ε . The errors 
clearly decrease as ε becomes smaller, as expected, before they saturate at a level where the numerical errors become 
dominant.
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Fig. 8.8. The Carleman Model: Error convergence with respect to gPC order for ε = 10−12.

Fig. 8.9. The Carleman Model: The mean (left) and standard deviation (right) of u at ε = 10−12, obtained by N = 4 order gPC Galerkin (circles), the stochastic 
collocation method (crosses), and the limiting random diffusion equation (3.4) (dashed line).

Fig. 8.10. The Carleman Model: Errors in the mean (solid line) and standard deviation (dash line) of u by the gPC solution with order N = 4 at varying ε
values. The reference solution is obtained by solving the limiting random diffusion equation (3.4).
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Fig. 8.11. The Carleman Model: Mean (left) and standard deviation (right) of u by gPC Galerkin with order N = 5 (circles) and the stochastic collocation 
method (crosses) for ε = 10−12.

Fig. 8.12. The Carleman Model: Errors with respect to gPC Galerkin order for ε = 10−12.

We now consider a more general case, where the random input κ is a random field with the following form,

κ(x, z) = 1 + σ

d∑
i=1

1

iπ
cos (2π ix)zi .

This resembles the form of the well known Karhunen–Loeve expansion, widely used for modeling random fields. For bench-
marking purpose, we set σ = 2, d = 2.

The mean and standard deviation of the solution are shown in Fig. 8.11, where we observe a good agreement between the 
AP gPC-Galerkin at order N = 5 and the reference solutions obtained a stochastic collocation over 8d tensor Legendre–Gauss 
quadrature points. The errors in the gPC-Galerkin solutions are plotted in Fig. 8.12, where again we observe the expected 
exponential convergence. All of the numerical solutions are computed until t = 0.02 with a modest mesh of �x = 0.02 and 
�t = 1

12 �x2.

8.3. The linear transport equation

We now consider the linear transport equation (3.8) with the random coefficient σ = 2 +z, where z ∈ [−1, 1] is uniformly 
distributed. The initial conditions are

r(x, v, z,0) = 0, j(x, v, z,0) = 0, (8.3)

and the boundary conditions are (see [17])
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Fig. 8.13. The linear transport equation: Errors of the mean (solid line) and standard deviation (dash line) of r (circle) with respect to the gPC order at 
ε = 10−8: �x = 0.04 (squares), �x = 0.02 (circles), � = 0.01 (stars).

Fig. 8.14. The linear transport equation: The mean (left) and standard deviation (right) of r at ε = 10−8, obtained by the gPC Galerkin at order N = 4
(circles), the stochastic collocation method (crosses), and the limiting analytical solution (8.6).

σ j = −vrx (8.4)

and

r − ε

σ
vrx

∣∣∣
x=0

= 1, r + ε

σ
vrx

∣∣∣
x=1

= 0. (8.5)

The analytical solution for the limiting random diffusion equation (3.9) with the above initial and boundary condition in the 
diffusive regime is

r(x, t, z) = 1 − erf

⎛
⎜⎝ x√

4
3σ t

⎞
⎟⎠ . (8.6)

When ε is small, we use this as the reference solution, as it is accurate with an error of O (ε2). Hereafter we set ε = 10−8. 
In addition, the standard 16-points Gauss–Legendre quadrature set is used for the velocity space to compute r̄ in (6.2) in 
the following example.

In Fig. 8.13, we plot the errors in mean and standard deviation of the gPC numerical solutions at t = 0.01 with different 
gPC orders. Three sets of results are included: solutions with �x = 0.04 (squares), �x = 0.02 (circles), �x = 0.01 (stars) and 
�t = 0.0002/3. We observe that the errors become smaller with finer mesh. And at the finest mesh with �x = 0.01, fast 
convergence with respect to the gPC expansion order can be seen. It is then obvious that the errors due to gPC expansion 
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Fig. 8.15. The linear transport equation: Differences in the mean (solid line) and standard deviation (dash line) of r with respect to ε2, between the limiting 
analytical solution (8.6) and the 4th-order gPC solution with �x = 0.04 (squares), �x = 0.02 (circles) and �x = 0.01 (stars).

Fig. 8.16. The linear transport equation: The mean (left) and standard deviation (right) of r at ε = 10−8, obtained by 5th-order gPC Galerkin (circles) and 
the stochastic collocation method (crosses). The random input has dimension d = 5.

can be neglected at order N = 4. The solution profiles of the mean and standard deviation are shown on the left and right of 
Fig. 8.14, respectively. Here we observe good agreement among the gPC-Galerkin sAP method, stochastic collocation method 
with 20 Gauss–Legendre quadrature points, and the analytical solution (8.6).

In Fig. 8.15, we examine the difference between the solution t = 0.01 obtained by the 4th-order gPC AP method with 
�x = 0.01, �t = 1

12 �x2 and the limiting analytical solution (8.6). As expected, we observe the differences become smaller 
as ε is smaller, before they saturate at a level where the numerical errors in the gPC sAP solutions become dominant.

We then model the random input as a random field, similar to the previous example, in the following form,

σ(x, z) = 1 + σ

d∑
i=1

1

(iπ)2
cos (2π ix)zi, (8.7)

where we set σ = 4, and d = 5. This represents a modestly high dimensional random inputs. The mean and standard 
deviation of the solution r at t = 0.01 obtained by the 5th-order gPC Galerkin with �x = 0.025, �t = 0.0002/3 are shown 
in Fig. 8.16. We then use the high-order stochastic collocation method over 5-dimensional sparse quadrature points with 
level 5 Clenshaw–Curtis rules (cf., [34]) to compute the reference mean and standard deviation of the solutions. In Fig. 8.17, 
we show the errors of the mean (solid lines) and standard deviation (dash lines) of r with respect to the order of gPC 
expansion. The fast exponential convergence of the errors can be clearly seen.

To illustrate the effectiveness of the sAP method, we also computed the mean and standard deviation of the solution r̄
for d = 10. This represents a relatively high dimensional stochastic problem. The results are shown in Fig. 8.18, where we 
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Fig. 8.17. The linear transport equation: Errors of the mean (solid line) and standard deviation (dash line) of r with respect to gPC order, with the d = 5
dimensional random input.

Fig. 8.18. The linear transport equation in high dimension d = 10: The mean (left) and standard deviation (right) of r at ε = 10−8, obtained by 3rd-order 
gPC Galerkin (circles) and the level-2 sparse grids stochastic collocation method (crosses).

observed a good agreement between the sAP gPC-Galerkin solution at the order N = 3 and the reference solution obtained 
by the level 2 Clenshaw–Curtis sparse grids solution. Detailed error convergence requires much higher resolutions and is 
not practical for such a high dimensional problem (d = 10).

9. Summary

In this paper, we proposed a class of stochastic asymptotic preserving (sAP) schemes for multiscale kinetic and hyperbolic 
equations with diffusive scalings. The new schemes are built upon the deterministic AP schemes. They employ the general-
ized polynomial chaos (gPC) expansion, combined with stochastic Galerkin projection. We show that the new schemes are 
AP in the stochastic setting. We also discussed the use of stochastic Galerkin and stochastic collocation. We made it clear 
that the Galerkin approach is preferred as it guarantees the AP property in the entire random space, regardless of the order 
of the approximation. On the other hand, if one is only interested in the solution statistics (e.g., mean, variance, etc.), then 
stochastic collocation is easier to implement in practice. This paper serves as the first attempt to develop AP schemes in 
stochastic setting, and we intend to study more in-depth issues in future studies.
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