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A time-dependent coordinate transformation of a constant coefficient hyperbolic system 
of equations which results in a variable coefficient system of equations is considered. By 
applying the energy method, well-posed boundary conditions for the continuous problem 
are derived. Summation-by-Parts (SBP) operators for the space and time discretization, 
together with a weak imposition of boundary and initial conditions using Simultaneously 
Approximation Terms (SATs) lead to a provable fully-discrete energy-stable conservative 
finite difference scheme.
We show how to construct a time-dependent SAT formulation that automatically imposes 
boundary conditions, when and where they are required. We also prove that a uniform 
flow field is preserved, i.e. the Numerical Geometric Conservation Law (NGCL) holds 
automatically by using SBP-SAT in time and space. The developed technique is illustrated 
by considering an application using the linearized Euler equations: the sound generated 
by moving boundaries. Numerical calculations corroborate the stability and accuracy of the 
new fully discrete approximations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

High order SBP operators together with weak implementation of boundary conditions by SATs, can efficiently and reliably 
handle large problems on structured grids for reasonably smooth geometries [1–7]. The main reason to use weak boundary 
procedures together with SBP operators and the energy method is the fact that with this combination, provable stable 
schemes can be constructed. For comprehensive reviews of the SBP-SAT schemes, see [8,9].

The developments described above have so far dealt mostly with steady problems while computing flow-fields around 
moving and deforming objects involves time-dependent meshes [10–12]. We have previously treated the problems with 
steady coordinate transformations [11,5,6]. In this paper we take the next step, which is the treatment of time-dependent 
transformations in combination with SBP-SAT schemes. To guarantee stability of the fully discrete approximation we employ 
the recently developed SBP-SAT technique in time [13,14].

The hyperbolic constant coefficient system that we consider, represents wave propagation problems governed by for 
example the elastic wave equation [15,6], Maxwell’s equations [16,17,4] and the linearized Euler equations [18–20].

The rest of this paper proceeds as follows. In Section 2, we analyze the continuous problem which undergoes a transfor-
mation from a deforming domain into a fixed domain, and derive characteristic boundary conditions which lead to a strongly 
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well-posed problem. Section 3 deals with the discrete problem where we guarantee stability, conservation and the validity 
of the NGCL. In Section 4, numerical examples which corroborate the previous theoretical development and confirm the 
accuracy and stability of the scheme are considered. An application where sound is generated and propagated by a moving 
boundary is also studied. Finally we draw conclusions in Section 5.

2. The continuous problem

Consider the following constant coefficient system,

Vt + ( ÂV )x + (B̂ V )y = 0, (x, y) ∈ �(t), t ∈ [0, T ], (1)

where the spatial domain � is time-dependent. We assume for simplicity that the constant matrices Â and B̂ are symmetric 
and of size l. If the original problem is not symmetric, we symmetrize it by the procedure in [18].

A time-dependent transformation from the Cartesian coordinates into curvilinear coordinates, which results in a fixed 
spatial domain, is

x = x(τ , ξ,η), y = y(τ , ξ,η), t = τ ,

ξ = ξ(t, x, y), η = η(t, x, y), τ = t. (2)

The chain-rule is employed to interpret the system (1) in terms of the curvilinear coordinates as

Vτ + (ξt I + ξx Â + ξy B̂)V ξ + (ηt I + ηx Â + ηy B̂)Vη = 0, (3)

where 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ τ ≤ T . The Jacobian matrix of the transformation is

[ J ] =
( xξ yξ 0

xη yη 0
xτ yτ 1

)
, (4)

where (V ξ , Vη, Vτ )T = [ J ](V x, V y, Vt)
T . The relation between [ J ], and its inverse, which transforms the derivatives back to 

the Cartesian coordinates leads to the metric relations

Jξt = xη yτ − xτ yη, Jξx = yη, Jξy = −xη

Jηt = yξ xτ − xξ yτ , Jηx = −yξ , Jηy = xξ , (5)

in which J = xξ yη − xη yξ > 0 is the determinant of [ J ].
By multiplying (3) with J and using (5), we replace the coefficients in terms of derivatives of the curvilinear coordinates. 

Eq. (3) can be rewritten as

( J V )τ + [( Jξt I + Jξx Â + Jξy B̂)V ]ξ + [( Jηt I + Jηx Â + Jηy B̂)V ]η
= [ Jτ + ( Jξt)ξ + ( Jηt)η]V + [( Jξx)ξ + ( Jηx)η] ÂV + [( Jξy)ξ + ( Jηy)η]B̂ V , (6)

where I denotes the identity matrix of size l. All non-singular coordinate transformations fulfill the Geometric Conservation 
Law (GCL) [10,21,22], which is summarized as

Jτ + ( Jξt)ξ + ( Jηt)η = 0,

( Jξx)ξ + ( Jηx)η = 0,

( Jξy)ξ + ( Jηy)η = 0. (7)

The right hand side of (6) is identically zero, due to (7), which results in the conservative form of the system.
The final problem in the presence of initial and boundary conditions that we will consider in this paper is

( J V )τ + (AV )ξ + (B V )η = 0, (ξ,η) ∈ �, τ ∈ [0, T ],
LV = g(τ , ξ,η), (ξ,η) ∈ δ�, τ ∈ [0, T ],

V = f (ξ,η), (ξ,η) ∈ �, τ = 0, (8)

where

A = Jξt I + Jξx Â + Jξy B̂, B = Jηt I + Jηx Â + Jηy B̂, (9)

and � = [0, 1] × [0, 1]. In (8), L is the boundary operator, g is the boundary data and f is the initial data.
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2.1. Well-posedness

The energy method (multiply with the transpose of the solution and integrate over the domain � and time-interval 
[0, T ]) applied to (8) leads to

Tˆ

0

¨

�

[V T ( J V )τ + V T (AV )ξ + V T (B V )η]dξ dηdτ = 0. (10)

By adding and subtracting V T
τ J V + V T

ξ AV + V T
η B V to the integral argument in (10), we get

Tˆ

0

¨

�

[(V T J V )τ + (V T AV )ξ + (V T B V )η]dξ dηdτ =
Tˆ

0

¨

�

[(V T
τ J V ) + (V T

ξ AV ) + (V T
η B V )]dξ dηdτ . (11)

However, the right hand side of (11) is zero, since the matrices J , A and B are symmetric, and V solves equation 
J Vτ + AV ξ + B Vη = 0. The latter can be seen by multiplying (3) with J and using (9). Integration of (11), and the use 
of Green–Gauss theorem, yields

||V (T , ξ,η)||2J = || f (ξ,η)||2J −
Tˆ

0

˛

δ�

V T [(A, B) · n] V ds dτ , (12)

where the norm is defined by ||V ||2J = ˜
�

V T J V dξ dη. In (12), n = (n1, n2) is the unit normal vector pointing outward 
from �, (A, B) · n = n1 A + n2 B and ds is an infinitesimal element along the boundary of �.

In order to bound the energy of the solution, boundary conditions must be applied when the matrix C = (A, B) · n is 
negative definite. We decompose C = X�C X T = X�+

C X T + X�−
C X T = C+ + C− where �+

C and �−
C are diagonal matrices 

with positive and negative eigenvalues of C , respectively, on the main diagonal. The energy of the solution is now bounded 
by data if we impose the characteristic boundary conditions

(X T V )i = (X T V∞)i, (�C )ii < 0, (13)

where the vector V∞ is the solution at the boundary δ�. The continuous energy, using (13) becomes

||V (T , ξ,η)||2J = || f (ξ,η)||2J −
Tˆ

0

˛

δ�

V T∞C−V∞ ds dτ −
Tˆ

0

˛

δ�

V T C+V ds dτ . (14)

The estimate (14) guarantees uniqueness of the solution and existence is given by the fact that we use the correct number 
of boundary conditions. Hence we can summarize the results obtained so far in the following proposition.

Proposition 1. The continuous problem (8) with the boundary condition in (13) is strongly well-posed and has the bound (14).

Remark 1. The problem (6) is called strongly well-posed since we have an estimate of the solution also for non-zero 
boundary data. For more details on well-posedness see [23].

As an example, assume that we only need boundary conditions at the south boundary, see Fig. 1, indicated by subscript s, 
then Cs = (A, B)s · (0, −1) = −Bs = −Xs�Bs X T

s , and (14) becomes

||V (T , ξ,η)||2J = || f (ξ,η)||2J +
Tˆ

0

1ˆ

0

V T∞B+
s V∞ dξ dτ +

Tˆ

0

1ˆ

0

V T
s B−

s V s dξ dτ . (15)

3. The discrete problem

The spatial computational domain � is a square in ξ , η coordinates, see Fig. 1, and discretized using N and M nodes 
in the direction of ξ and η respectively. In time we use L time levels from 0 to T . The fully-discrete numerical solution is 
a column vector of size lLMN organized as follows
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Fig. 1. A schematic of the moving and fixed domains and boundary definitions.

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V 0

...

[Vk]

...

V L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; [Vk] =

⎡
⎢⎢⎢⎢⎢⎢⎣

V 0
...

[V i]
...

V N

⎤
⎥⎥⎥⎥⎥⎥⎦

k

; [V i]k =

⎡
⎢⎢⎢⎢⎢⎢⎣

V 0
...[

V j
]

...

V M

⎤
⎥⎥⎥⎥⎥⎥⎦

ki

; [
V j

]
ki =

⎡
⎢⎢⎢⎢⎢⎣

v1
v2
...

vl

⎤
⎥⎥⎥⎥⎥⎦

ki j

= Vkij, (16)

where Vkij = [v1, v2, · · · , vl]T
ki j approximates V (τk, ξi, η j).

The first derivative uξ is approximated by Dξ u, where Dξ is a so-called SBP operator of the form

Dξ = P−1
ξ Q ξ , (17)

and u = [u0, u1, · · · , uN ]T is the solution evaluated in each grid point. Pξ is a symmetric positive definite matrix, and Q is 
an almost skew-symmetric matrix that satisfies

Q ξ + Q T
ξ = E1 − E0 = B = diag(−1,0, ...,0,1). (18)

In (18), E0 = diag(1, 0, . . . , 0) and E1 = diag(0, . . . , 0, 1). The η and τ directions are discretized in the same way.
A first derivative SBP operator is a 2s-order accurate central difference operator which is modified close to the boundaries 

such that it becomes one-sided. Together with a diagonal norm P , the boundary closure is s-order accurate, making a stable 
first order approximation s + 1 order accurate globally [24,25]. For more non-standard SBP operators see [26–29].

A finite difference approximation including the time discretization [13], on SBP-SAT form, is constructed by extending 
the one-dimensional SBP operators in a tensor product fashion as

Dτ = P−1
τ Q τ ⊗ Iξ ⊗ Iη ⊗ I,

Dξ = Iτ ⊗ P−1
ξ Q ξ ⊗ Iη ⊗ I,

Dη = Iτ ⊗ Iξ ⊗ P−1
η Q η ⊗ I (19)

where ⊗ represents the Kronecker product [30]. All matrices in the first position are of size L × L, the second position 
N × N , the third position M × M and the fourth position l × l. I denotes the identity matrix with a size consistent with its 
position in the Kronecker product.

The Kronecker product is bilinear and associative. For square matrices the following rules exist

(A ⊗ B)(C ⊗ D) = (AC ⊗ B D), (A ⊗ B)−1 = A−1 ⊗ B−1, (A ⊗ B)T = AT ⊗ BT . (20)

For later reference we need

Lemma 1. The difference operators in (19) commute.



86 S. Nikkar, J. Nordström / Journal of Computational Physics 291 (2015) 82–98
Proof. The properties (20) of the Kronecker product lead to

Dτ Dξ = (P−1
τ Q τ ⊗ Iξ ⊗ Iη ⊗ I)(Iτ ⊗ P−1

ξ Q ξ ⊗ Iη ⊗ I)

= P−1
τ Q τ ⊗ P−1

ξ Q ξ ⊗ Iη ⊗ I

= (Iτ ⊗ P−1
ξ Q ξ ⊗ Iη ⊗ I)(P−1

τ Q τ ⊗ Iξ ⊗ Iη ⊗ I) = Dξ Dτ .

The proof is analogous for the other coordinate combinations. �
To obtain an energy estimate similar to the continuous one, we use the splitting technique described in [31]. We split 

the equation in (8) as

1
2 [( J V )τ + J Vτ + Jτ V ] + 1

2 [(AV )ξ + AV ξ + Aξ V ] + 1
2 [(B V )η + B Vη + BηV ] = 0. (21)

The SBP-SAT approximation of (21) including the penalty terms for the boundary procedure (we only consider the south 
boundary), and a weak initial condition, is constructed as

1
2 [Dτ (JV) + JDτ V + Jτ V] + 1

2 [Dξ (AV) + ADξ V + Aξ V] + 1
2 [Dη(BV) + BDηV + BηV]

= P̃−1
i 	i(V − f) + P̃−1

s 	sXT
s [V − V∞]. (22)

In (22), J and Jτ are diagonal matrices approximating J and Jτ values pointwise. Moreover, A, B, Aξ and Bη are block-
diagonal matrices approximating A, B , Aξ and Bη pointwise respectively, i.e.

Aξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(Aξ )0

. . .

(Aξ )k

. . .

(Aξ )L

⎤
⎥⎥⎥⎥⎥⎥⎦ ;

(Aξ )k =

⎡
⎢⎢⎢⎢⎢⎢⎣

(Aξ )0

. . .

(Aξ )i

. . .

(Aξ )N

⎤
⎥⎥⎥⎥⎥⎥⎦

k

;

(Aξ )ik =

⎡
⎢⎢⎢⎢⎢⎢⎣

(Aξ )0

. . .

(Aξ ) j

. . .

(Aξ )M

⎤
⎥⎥⎥⎥⎥⎥⎦

ki

; (23)

(Aξ )ki j ≈ Aξ (τk, ξi, η j). (24)

Note that in (24),

(Aξ )ki j = [( Jξt)ξ + ( Jξx)ξ Â + ( Jξy)ξ B̂]ki j

(Bη)ki j = [( Jηt)η + ( Jηx)η Â + ( Jηy)η B̂]ki j, (25)

where ( Jξt)ξ , ( Jξx)ξ , ( Jξy)ξ , ( Jηt)η , ( Jηx)η and ( Jηy)η approximate ( Jξt)ξ , ( Jξx)ξ , ( Jξy)ξ , ( Jηt)η , ( Jηx)η and ( Jηy)η
pointwise respectively. In (22), the variables with a bold face correspond to the ones with regular face in the continuous 
problem. This notation is employed to be able to use similar names for the variables that are inherently (not exactly) the 
same in the continuous and the discrete problem, regardless of the structure of the variables.

Moreover, 	i and 	s are the penalty matrices corresponding to the weak initial condition and the south boundary 
procedure. Furthermore P̃−1

i = P−1
τ E0 ⊗ Iξ ⊗ Iη ⊗ I , P̃−1

s = Iτ ⊗ Iξ ⊗ P−1
η E0 ⊗ I , and Xs = (Iτ ⊗ Iξ ⊗ E0 ⊗ X). All the numerical 

matrices defined so far are of size lLMN × lLMN . V∞ is a zero vector of the same size as V except at the position η = 0
where the zeros are replaced with the boundary data. Moreover f is a zero vector, of the same size as V , except at the 
position τ = 0 where the initial data (compatible with the reference solution at the boundaries) is imposed.
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3.1. Stability

The energy method (multiplying from the left with VT (Pτ ⊗ Pξ ⊗ Pη ⊗ I)) is applied to (22), the properties (20) are 
employed and the equation is added to its transpose. The result is

VT (B̃τ J + B̃ξ A + B̃ηB)V + VT P̃ (Jτ + Aξ + Bη)V

= VT (E0 ⊗ Pξ ⊗ Pη ⊗ I)	i(V − f) + (V − f)T 	T
i (E0 ⊗ Pξ ⊗ Pη ⊗ I)V

+ VT (Pτ ⊗ Pξ ⊗ E0 ⊗ I)	sXT
s [V − V∞] + [V − V∞]T Xs	

T
s (Pτ ⊗ Pξ ⊗ E0 ⊗ I)V, (26)

where P̃ = (Pτ ⊗ Pξ ⊗ Pη ⊗ I), B̃τ = [(Q + Q T )τ ⊗ Pξ ⊗ Pη ⊗ I], B̃ξ = [Pτ ⊗ (Q + Q T )ξ ⊗ Pη ⊗ I], and B̃η = [Pτ ⊗ Pξ ⊗
(Q + Q T )η ⊗ I]. We have used that the diagonal matrices B̃τ , B̃ξ and B̃η commute with the symmetric matrices J, A and B
respectively.

We will need

Lemma 2. The NGCL: Jτ + Aξ + Bη = 0, holds.

Proof. Consider the following definitions,

Jτ = diag[Dτ (DηM(1) − Dξ M(2))]
( Jξ t)ξ = diag[Dξ (Dτ M(2) − DηM(3))]
( Jηt)η = diag[Dη(Dξ M(3) − Dτ M(1))]
( Jξx)ξ = diag[Dξ (Dηy)]
( Jξy)ξ = diag[−Dξ (Dηx)]
( Jηx)η = diag[−Dη(Dξ y)]
( Jηy)η = diag[Dη(Dξ x)] (27)

in which x and y are the discrete Cartesian coordinates in �. Also M(1) = diag(y)(Dξ x), M(2) = diag(y)(Dηx) and M(3) =
diag(y)(Dτ x). We evaluate the term Jτ + Aξ + Bη , and substitute Aξ and Bη with the definitions (24) and (25), which results 
in

Jτ + Aξ + Bη = Jτ + ( Jξt)ξ +
[
( Jξx)ξ + ( Jηx)η

]
Â + ( Jηt)η +

[
( Jξy)ξ + ( Jηy)η

]
B̂, (28)

where Â = Iτ ⊗ Iξ ⊗ Iη ⊗ Â, B̂ = Iτ ⊗ Iξ ⊗ Iη ⊗ B̂ . Now we insert (27) into (28) and obtain

Jτ + Aξ + Bη = diag[Dτ (DηM(1) − Dξ M(2))] + diag[Dξ (Dτ M(2) − DηM(3))]
+ diag[Dξ (Dηy) − Dη(Dξ y)]Â + diag[Dη(Dξ M(3) − Dτ M(1))]
+ diag[Dη(Dξ x) − Dξ (Dηx)]B̂. (29)

By Lemma 1 we find that the right hand side of (29) is zero. �
Remark 2. The NGCL as a consequence of commuting operators is previously reported in [32].

On the left hand side of the equality in (26), we keep the terms corresponding to the initial time, final time and the south 
boundary and ignore the other boundary terms. By also using Lemma 2 we get

VT J(E L ⊗ Pξ ⊗ Pη ⊗ I)V = VT (E0 ⊗ Pξ ⊗ Pη ⊗ I)(J + 2	i)V − fT (E0 ⊗ Pξ ⊗ Pη ⊗ I)	iV

− VT (E0 ⊗ Pξ ⊗ Pη ⊗ I)	if + VT (Pτ ⊗ Pξ ⊗ E0 ⊗ I)(Bs + 	sXT
s + Xs	

T
s )V

− VT (Pτ ⊗ Pξ ⊗ E0 ⊗ I)	sXT
s (V∞)s − (V∞)T

s Xs	
T
s (Pτ ⊗ Pξ ⊗ E0 ⊗ I)V. (30)

In (30), Bs = (Iτ ⊗ Iξ ⊗ E0 ⊗ I)B, and E0, E L are zero matrices except at the one entry corresponding to the initial and final 
time, respectively.

We can prove

Proposition 2. The discrete problem (22) is stable if

J + 2	i ≤ 0, 	sXT
s + Xs	

T
s + Bs ≤ 0 (31)

holds.
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Proof. With zero boundary and initial data the solution at the final time is clearly bounded. �
A particularly nice result is obtained with 	i = −J. Let 	s = Xs	̃s , where Xs = (Iτ ⊗ Iξ ⊗ E0 ⊗ I)X, X is a block diagonal 

matrix of X and 	̃s is diagonal. By inserting Bs = Xs�BXT
s , the second condition in (31) becomes Xs(2	̃s + �Bs )XT

s ≤ 0, and 
is fulfilled if 	̃s is defined such that the following relations hold,

(	̃s)ii ≤ − (�Bs )ii

2
if (�Bs )ii > 0

(	̃s)ii = 0 if (�Bs )ii ≤ 0. (32)

A time-dependent penalty matrix that automatically adjusts for stability according to (32) is given by

	̃s = −(�Bs + |�Bs |)/2. (33)

The final numerical energy estimate becomes

||VL ||2J(EL⊗Pξ ⊗Pη⊗I) = ||f||2J(E0⊗Pξ ⊗Pη⊗I) + ||(V∞)s||2B+
s (Pτ ⊗Pξ ⊗E0⊗I)

+ Vs
T (Pτ ⊗ Pξ ⊗ E0 ⊗ I)B−

s Vs

− ||V − f||2J(E0⊗Pξ ⊗Pη⊗I) − ||Vs − (V∞)s||2B+
s (Pτ ⊗Pξ ⊗E0⊗I)

. (34)

In (34) the definition ||Z ||2H = Z T H Z is used for the norms, where Z is a vector and H is a positive definite matrix. As 
an example ||VL ||2J(EL⊗Pξ ⊗Pη⊗I) = VT

L J(E L ⊗ Pξ ⊗ Pη ⊗ I)VL in which J(E L ⊗ Pξ ⊗ Pη ⊗ I) is positive definite. Moreover, VL

denotes the numerical solution restricted to the last time level.
We have proved

Proposition 3. The discrete problem (22) is strongly stable and satisfies (34) if 	i = − J , 	s = Xs	̃s and 	̃s = −(�s +|�s|)/2 holds.

Remark 3. Eq. (34) shows that the numerical energy estimate is similar to that of the continuous one shown in (15) with 
extra damping terms coming from the weak impositions of initial and boundary conditions.

Remark 4. The problem (22) is strongly stable since the estimate (34) contains the boundary data, see [23] for more details 
on stability definitions.

3.2. Conservation and weak form of the governing equations

In a conservation law, the total quantity of a conserved variable in any region changes only as a result of the flux through 
the boundaries of the region. To show that the solution is conserved, we integrate (8) in space and time and obtain

¨

�

(
J V )

∣∣T
0 dξ dη +

Tˆ

0

(F , G) · n dτ = 0, (35)

in which F = AV and G = B V . In this paper, we will however, rely on a broader definition of conservation motivated by the 
original proof of the Lax–Wendroff theorem [33]. We demand that all moments of the flux against an arbitrary test function 
telescope across the domain. This additional constraint demands an equivalence between the weak forms of the continuous 
and discrete operators [11].

We multiply (8) with an arbitrary test function φ(τ , ξ, η) ∈ H0 that vanishes on the temporal and spatial boundaries 
followed by integration with respect to time and space as

Tˆ

0

¨

�

φT [( J V )τ + (AV )ξ + (B V )η]dξ dηdτ = 0. (36)

Integration by parts and the fact that J , A and B are symmetric lead to

Tˆ

0

¨

�

V T [ Jφτ + Aφξ + Bφη]dξ dηdτ = 0. (37)

By adding and subtracting the term V T ( Jτ φ + Aξ φ + Bηφ) to the integral argument in (37) we obtain
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Tˆ

0

¨

�

V T [( Jφ)τ + (Aφ)ξ + (Bφ)η]dξ dηdτ =
Tˆ

0

¨

�

V T [( Jτ + Aξ + Bη)φ]dξ dηdτ

︸ ︷︷ ︸
:=RHS

. (38)

In (38), the GCL leads to RHS = 0. Finally we split the integral argument on the left hand side and obtain

1
2

Tˆ

0

¨

�

V T [( Jφ)τ + Jφτ + Jτ φ + (Aφ)ξ + Aφξ + Aξφ + (Bφ)η + Bφη + Bηφ]dξ dηdτ = 0. (39)

Eqs. (37) and (39) are different weak forms of (8) including the broader definition of conservation mentioned above. The 
form (39) is of specific interest, since we use a scheme based on that form of splitting.

The discrete conservation is shown by multiplying the scheme in (22) from the left with φT (Pτ ⊗ Pξ ⊗ Pη ⊗ I). The 
Kronecker rules (20), together with the SBP properties (18) lead to

1
2 [φT (−Q T

τ ⊗ Pξ ⊗ Pη ⊗ I)JV + φT J(−Q T
τ ⊗ Pξ ⊗ Pη ⊗ I)V + φT P̃ Jτ V]

+ 1
2 [φT (Pτ ⊗ −Q T

ξ ⊗ Pη ⊗ I)AV + φT A(Pτ ⊗ −Q T
ξ ⊗ Pη ⊗ I)V + φT P̃ Aξ V]

+ 1
2 [φT (Pτ ⊗ Pξ ⊗ −Q T

η ⊗ I)BV + φT B(Pτ ⊗ Pξ ⊗ −Q T
η ⊗ I)V + φT P̃ Bτ V] = 0, (40)

in which all the penalty terms are ignored. Eq. (40) now becomes

1
2 [(Dτ φ)T J P̃ V + (Dτ Jφ)T P̃ V + φT Jτ P̃ V]

+ 1
2 [(Dξ φ)T A P̃ V + (Dξ Aφ)T P̃ V + φT Aξ P̃ V]

+ 1
2 [(Dηφ)T B P̃ V + (DηBφ)T P̃ V + φT Bη P̃ V] = 0. (41)

By considering (20), and the fact that P̃ commutes with J, A, B, Jτ , Aξ , Bη we obtain

1
2 VT P̃ [Dτ Jφ + (JDτ φ + Jτ φ) + Dξ Aφ + (ADξ φ + Aξ φ) + DηBφ + (BDηφ + Bηφ)] = 0. (42)

The relation (42) mimics the weak conservative formulation (39) perfectly.
We have proved

Proposition 4. The discrete problem (22) is conservative.

4. Numerical experiments

We consider the two-dimensional constant coefficient symmetrized Euler equations in a deforming domain described 
by (1), where

V = [ c̄√
γ ρ̄

ρ, u, v,
1

c̄
√

γ (γ − 1)
T ]T . (43)

In (43), ρ, u, v, T and γ are respectively the density, the velocity components in x and y directions, the temperature and 
the ratio of specific heats. An equation of state in form of γ p = ρ̄T + ρ T̄ closes the system (1), in which the bar sign 
denotes the state around which we have linearized. Moreover the matrices in (1) are

Â =

⎛
⎜⎜⎜⎜⎝

ū c̄/
√

γ 0 0

c̄/
√

γ ū 0
√

γ −1
γ c̄

0 0 ū 0

0
√

γ −1
γ c̄ 0 ū

⎞
⎟⎟⎟⎟⎠ , B̂ =

⎛
⎜⎜⎜⎜⎝

v̄ 0 c̄/
√

γ 0
0 v̄ 0 0

c̄/
√

γ 0 v̄
√

γ −1
γ c̄

0 0
√

γ −1
γ c̄ v̄

⎞
⎟⎟⎟⎟⎠ , (44)

where γ = 1.4, c̄ = 2 and ρ = 1. These parameter values are used throughout the section while ū and v̄ are changed.
The deforming domain is chosen to be a portion of a ring-shaped geometry where the boundaries are moving while 

always coinciding with a coordinate line in the corresponding polar coordinate system, see Fig. 2. We transform the deform-
ing domain from Cartesian coordinates, x, y, into polar coordinates, r, φ, and scale the polar coordinates such that the fixed 
domain in ξ , η coordinates becomes a square, see Fig. 2, as

r(x, y, t) = √
x(t)2 + y(t)2, φ(x, y, t) = tan−1(

y(t)
x(t) )

ξ(x, y, t) = r(x,y,t)−r0(t)
r1(t)−r0(t) , η(x, y, t) = φ(x,y,t)−φ0(t)

φ1(t)−φ0(t) . (45)

Note that the scaling depends on the movements of the boundaries of the deforming domain, and is defined by arbitrary 
functions of time through r0(t), r1(t), φ0(t) and φ1(t).
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Fig. 2. A schematic of the Cartesian–polar transformation in the physical domain, the computational domain, and definition of r0, r1, φ0 and φ1.

Fig. 3. A schematic of the deforming domain at five time levels.

4.1. Time-dependent automatic SAT formulations

To show that the scheme automatically imposes the correct number of boundary conditions, we move the boundaries by

r0(t) = 1, φ0(t) = −π
8 + 3π

8 sin(2πt − π
2 )

r1(t) = 2, φ1(t) = π
2 , (46)

and construct the matrices Â and B̂ by choosing (ū, ̄v) = (1, 0).
The eigenvalue matrix �C in (13), is evaluated at the moving boundary as

�C =

⎛
⎜⎜⎝

ω
ω

ω −R2c̄
ω +R2c̄

⎞
⎟⎟⎠ , (47)

in which ω = Jηt + Jηxū + Jηy v̄ , R2 =
√

( Jηx)2 + ( Jηy)2. As in (33), we construct 	̃s such that the elements on the main 
diagonal are non-zero if and only if the corresponding eigenvalues are negative. Depending on the signs of the eigenval-
ues we can have zero (super-sonic outflow), one (sub-sonic outflow), three (sub-sonic inflow) or four boundary conditions 
(super-sonic inflow). Note that in time-dependent domains, the relative normal velocity between boundary and fluid distin-
guishes between inflow, outflow, sub- and super-sonic states.

A schematic of the deforming domain at five time levels is shown in Fig. 3. In Fig. 4, the number of boundary conditions 
imposed automatically at the moving boundary is depicted. Initially we have sub-sonic inflow and three boundary conditions 
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Fig. 4. The number of boundary conditions, the position of the moving boundary in terms of φ0, and ω over time.

Fig. 5. A schematic of the deforming mesh at different times, order of accu-
racy.

Fig. 6. A schematic of the fixed mesh at different times, order of accuracy.

are imposed (state a). Then the boundary encounters sub-sonic outflow which requires one boundary condition (state b). 
Next, no boundary conditions are imposed for the super-sonic outflow (state c). A sub-sonic outflow following by a sub-sonic 
inflow occurs afterwards which demands one and three boundary conditions respectively. Finally, in the case of super-sonic 
inflow (state d), four boundary conditions are imposed, and this procedure is continued automatically by the scheme.

4.2. Order of accuracy

We consider a deforming domain where the boundaries are moving by

r0(t) = 1 − 0.1
2π sin(2πt), φ0(t) = − 0.5

2π sin(2πt)

r1(t) = 2 + 0.2
2π sin(2πt), φ1(t) = π

2 + 0.5
2π sin(2πt). (48)

A schematic of the deforming and fixed domains at different time steps is presented in Fig. 5 and Fig. 6 respectively (note 
that these schematics are for illustration purposes only, the numerical experiments are carried out on finer meshes).

Here we use (ū, ̄v) = (1, 1) and c̄ = 2 to construct the matrices Â and B̂ . To verify the order of accuracy of our method, 
we use the manufactured solution V∞

V∞ = [sin(x − t), cos(x − t), sin(y − t), cos(y − t)]T , (49)

which is injected in (1) through a forcing function. The characteristic boundary conditions (13) are automatically imposed 
by the scheme.
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Table 1
Convergence rates at T = 1, for a sequence of mesh refinements, SBP21 in space, SBP84 in time (L = 41).

N , M 21 41 81 161 201

ρ 1.952 1.988 1.995 1.998 2.001
u 2.049 2.001 2.002 1.999 2.001
v 1.955 1.987 1.996 1.998 1.999
p 2.001 1.996 1.996 1.998 1.999

Table 2
Convergence rates at T = 1, for a sequence of mesh refinements, SBP42 in space, SBP84 in time (L = 81).

N , M 21 41 81 161 201

ρ 3.248 3.177 3.099 3.052 3.032
u 3.388 3.238 3.166 3.107 3.077
v 3.198 3.141 3.057 3.026 3.017
p 2.912 2.800 2.989 3.034 3.037

Table 3
Convergence rates at T = 1, for a sequence of mesh refinements, SBP63 in space, SBP84 in time (L = 201).

N , M 21 31 41 51 61 71

ρ 5.780 4.681 4.502 4.379 4.320 4.296
u 6.120 4.531 4.585 4.588 4.575 4.558
v 6.138 4.300 4.179 4.215 4.249 4.268
p 5.701 4.124 4.267 4.340 4.380 4.402

Fig. 7. The ρ component of the solution at T = 40. Fig. 8. The norm of the error for all solution components versus time.

The convergence rate is defined as

p =
log

||V (1)∞ −V (1)||J P̃

||V (2)∞ −V (2)||J P̃

log (N M)(1)

(N M)(2)

, (50)

where superscripts (1) and (2) denote two mesh levels with (N × M)(1) and (N × M)(2) grid points respectively, also 
P̃ = E L Pτ ⊗ Pξ ⊗ Pη ⊗ I . In order to show the convergence rate in space we use the 5th order accurate SBP84 in time.

The numerical solution in our experiments converges to the exact solution at T = 1 with the convergence rates presented 
in Tables 1, 2 and 3. The convergence rates are in agreement with the theory mentioned above, and we conclude that our 
scheme works as it should.

4.3. Free-stream preservation

Consider the domain described in (48) with (ū, ̄v) = (1, 1) when constructing the matrices Â and B̂ . In order to show 
that the scheme in (22) preserves the state of a uniform flow, we use the manufactured solution



S. Nikkar, J. Nordström / Journal of Computational Physics 291 (2015) 82–98 93
Fig. 9. A schematic of the deforming mesh at different times, sound propaga-
tion.

Fig. 10. A schematic of the fixed mesh at different times, sound propagation.

Fig. 11. The global velocity field. Fig. 12. A blow-up of the velocity field.

V∞ = [1,1,1,1]T . (51)

The characteristic boundary conditions (13) are automatically imposed by the scheme. We use the 5th order accurate SBP84 
in time (L = 100) and 3rd order accurate SBP42 in space (N = M = 50).

The uniform flow (examplified by the density component) is preserved up to T = 40 as presented in Fig. 7. Moreover, the 
norm of the error (the difference between the numerical and manufactured solution) versus time is on machine precision 
level, see Fig. 8.

4.4. The sound propagation application

We consider sound propagation in a deforming domain where the west boundary is moving and other boundaries are 
fixed. A schematic of the deforming and fixed domains at different time steps is presented in Figs. 9 and 10 (note that these 
schematics are for illustration purposes only, the numerical experiments are carried out on finer meshes). The movements 
are defined by

r0(t) = 1 + sin(4πt)/(4π), φ0(t) = π/4,

r1(t) = 5, φ1(t) = 3π/4. (52)

We manufacture ū and v̄ such that the mean flow satisfies the solid wall no-penetration condition at the moving 
boundary by

(ū, v̄) = (xτ , yτ )/exp(ξ). (53)
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Fig. 13. The global velocity field. Fig. 14. A blow-up of the velocity field.

Fig. 15. The global velocity field. Fig. 16. A blow-up of the velocity field.

Consider the eigenvalue matrix, C = X�X T evaluated at the west boundary, in which � = R1diag(ω̂, ω̂, ω̂ − c̄, ω̂ + c̄), 
where ω̂ = ( Jξt + Jξxūb + Jξy v̄b)/R1 and R1 =

√
( Jξx)2 + ( Jξy)2. The no-penetration condition for the mean flow results 

in ω̂ = 0, which takes (14) to

||V (T , ξ,η)||2J = || f (ξ,η)||2 −R1

Tˆ

0

1ˆ

0

c̄(ṽ2
4 − ṽ2

3)dη + BT. (54)

In (54), Ṽ = X T V = [ṽ1, ̃v2, ̃v3, ̃v4]T , and BT is the contribution at the other boundaries. Any boundary condition in form 
of ṽ3 = ±ṽ4 is well-posed. We choose ṽ3 + ṽ4 = 0, which is the no-penetration boundary condition. Also we impose 
characteristic boundary conditions with zero data at the other boundaries, and initialize the solution with zero data for 
density and velocities, together with an initial pressure pulse centered at (−1.5, 3.5).

The velocity field with tangential flow close to the solid wall, the pressure distribution and the rate of dilatation at five 
different time levels are presented in Figs. 11–30. We have used SBP42 in both space and time (N = M = 50 and L = 100) 
to obtain these results.

The reference domain in Figs. 11–30 illustrate the movements of the south boundary relative to its initial location. As 
seen in Figs. 11–20 the flow stays tangential to the moving solid boundary all the time, as it should for an Euler solution. 
The pressure pulse and the corresponding rate of dilatation move from left to right, and leave the domain as time passes.
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Fig. 17. The global velocity field. Fig. 18. A blow-up of the velocity field.

Fig. 19. The global velocity field. Fig. 20. A blow-up of the velocity field.

Fig. 21. The pressure distribution. Fig. 22. The rate of dilatation.
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Fig. 23. The pressure distribution. Fig. 24. The rate of dilatation.

Fig. 25. The pressure distribution. Fig. 26. The rate of dilatation.

Fig. 27. The pressure distribution. Fig. 28. The rate of dilatation.
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Fig. 29. The pressure distribution. Fig. 30. The rate of dilatation.

5. Summary and conclusions

We have considered a constant coefficient hyperbolic system of equations in time-dependent curvilinear coordinates. 
The system is transformed into a fixed coordinate frame, resulting in variable coefficient systems. We show that the energy 
method applied to the transformed systems together with time-dependent appropriate boundary conditions leads to strongly 
well-posed problem. The continuous energy estimate that we obtain provides the target for the numerical approximations.

By using a special splitting technique, summation-by-parts operators in space and time, weak imposition of the boundary 
and initial conditions and the discrete energy method, a fully-discrete strongly stable high order accurate and conservative 
numerical scheme is constructed. The fully-discrete energy estimate is similar to the continuous one with small added 
damping terms. Furthermore, by the use of SBP operators in time, the Geometric Conservation Law is proven to hold 
numerically.

We have tested the scheme for high order accurate SBP operators in space and time using the method of manufactured 
solution. It was shown that the scheme automatically imposes the correct number of boundary conditions for the time-
dependent domain. Numerical calculations corroborate the stability and accuracy of the fully-discrete approximations, and 
free-stream preservation was shown. Finally, as an application, sound propagation by the linearized Euler equations in a 
deforming domain was illustrated.
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