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We present a solver for plane wave scattering from a periodic dielectric grating with a large 
number M of inclusions lying in each period of its middle layer. Such composite material 
geometries have a growing role in modern photonic devices and solar cells. The high-order 
scheme is based on boundary integral equations, and achieves many digits of accuracy 
with ease. The usual way to periodize the integral equation—via the quasi-periodic Green’s 
function—fails at Wood’s anomalies. We instead use the free-space Green’s kernel for 
the near field, add auxiliary basis functions for the far field, and enforce periodicity in 
an expanded linear system; this is robust for all parameters. Inverting the periodic and 
layer unknowns, we are left with a square linear system involving only the inclusion 
scattering coefficients. Preconditioning by the single-inclusion scattering matrix, this is 
solved iteratively in O(M) time using a fast matrix-vector product. Numerical experiments 
show that a diffraction grating containing M = 1000 inclusions per period can be solved to 
9-digit accuracy in under 5 minutes on a laptop.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The modeling and design of periodic dielectric structures plays a central role in modern optics. Tools such as diffrac-
tion gratings, photonic crystals, meta-materials, plasmonics, and other micro-scale structures, are becoming key to efficient 
devices, including lasers, sensors, anti-reflective surfaces and absorbers [21], and solar cells [3]. For instance, in thin-film 
solar cell design [44,29] the use of periodic structures, and nanoparticle inclusions, in ordered or disordered composites, en-
hances absorption. One then seeks a grating structure with a specific arrangement of inclusions that maximizes absorption. 
Other optimization problems include the design of photonic crystal lenses [35]. Related is the inverse problem of inferring 
a structure from measurements [37,5]. Such tasks demand a large number of solutions of the direct (forward) scattering 
problem. Similar periodic and multi-particle wave scattering problems arise in acoustics and elastodynamics, and in general 
whenever a super-cell is used to approximate the response of a random composite material (e.g. [36]). Such considerations 
have spurred the development of efficient methods for solving Helmholtz and Maxwell frequency-domain boundary value 
problems in periodic geometries [21,7,14,9,10,23,13,18]. High accuracy can be challenging to achieve due to guided modes, 
resonances, and extreme parameter sensitivity.

Therefore, in this paper we consider the monochromatic scattering from a layered periodic structure containing a large 
number M of inclusions (“particles”) at given locations, as in a (generalized) photonic crystal. As shown in Fig. 1, the 
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structure is periodic in the x direction, layered in the y direction and invariant along the z direction. Because of the 
two-dimensional (2D) geometry, there exist two fundamental polarizations in the electromagnetic scattering: transverse 
electric (TE) where the magnetic field is transverse to the (x, y) plane, and transverse magnetic (TM) where the electric 
field is transverse to the (x, y) plane. We will focus on TE polarization, noting that our technique applies to TM polarization 
without any essential difficulty.

The grating scattering problem has been mathematically very well studied. It has been proved that for an arbitrary 
periodic dielectric and incident angle the problem has a unique solution for all frequencies with the possible exception of 
a countable set of resonances (singular frequencies [11]) at which the solution is not unique. Such physical resonances are 
not to be confused with Wood’s anomalies (for the definition see the next section), which are frequencies where at least 
one of the Bragg diffraction orders points along the grating, i.e. in the x direction. A Wood’s anomaly does not prevent the 
solution from being unique, although it does cause arbitrarily large sensitivity with respect to the incident wave angle or 
frequency [33], and also causes problems with certain integral equation methods [10]. One of the advantages of our scheme 
is that it is applicable and accurate at or near Wood’s anomalies, without any modifications.

There exists a wide range of numerical methods for periodic diffraction, including boundary integral equations [2,14,
10,23,13,18], finite element methods [4,8], Fourier expansion based methods [38], and continuation methods [15]. In the 
time domain, the finite difference scheme has been discussed in [26]. The advantages of the integral approach over finite 
elements and finite differences are that it reduces the dimension by one (vastly reducing the number of unknowns), and 
achieves high-order accuracy with appropriate surface quadratures. However, the resulting linear system is often dense, 
making a naive matrix-vector product expensive when the number of unknowns is large. In this paper, we will reduce this 
cost via the fast multipole method (FMM) [24].

More specifically, we propose an integral approach based on the free space Green’s function; this bypasses the consid-
erable complexities of computing the periodic Green’s function [30,13]. We split the representation of the scattered field in 
the grating structure into near field and far field components. The near field is represented by standard free-space Helmholtz 
single- and double-layer potentials on the material interfaces, while the far field is taken care by a local expansion (Fourier–
Bessel or J expansion) whose coefficients are fixed by enforcing the periodic boundary condition explicitly in the linear 
system. This builds upon recent ideas of the last author and co-workers [9,10,18].

Solving for discretized layer densities on each of the M inclusion boundaries would introduce an unnecessarily large 
number of unknowns. Hence, following [22,32], we precompute the inclusion scattering matrices, then treat the set of out-
going scattering coefficients as a reduced set of unknowns. When particles are sub-wavelength, and not extremely close to 
each other, this is highly accurate with only 20 or so unknowns per particle [32]. The full rectangular linear system then 
couples these to the grating interface densities and periodizing J -expansion coefficients. By eliminating the last two (via a 
Schur complement and pseudoinverse) we are left with a square linear system for the particle scattering coefficients, which 
we precondition with a block-diagonal matrix and then solve via GMRES with FMM acceleration, with effort scaling linearly 
in M . The result is a robust, efficient, high-order accurate solver that we expect to be useful for design and optimization 
problems for periodic photonic devices.

The outline of the paper is as follows. Section 2 gives the mathematical formulation of the periodic problem. Section 3
proposes the integral approach for the scattering from a periodic structure without particle inclusions, based on the free 
space Green’s function. Section 4 reviews classical multi-particle scattering and discusses the evaluation of the scattering 
matrix. The quasi-periodizing scheme combining all the above techniques is given in Section 5, and numerical experiments 
are shown in Section 6. We draw conclusions in Section 7.

2. Problem formulation

Consider the plane-wave incident time harmonic scattering (with time dependence e−iωt ) from a 2D periodic (or grating) 
structure with period d. As shown in Fig. 1, the unit cell � = [−d/2, d/2] × R consists of three layers, denoted by �1, �2
and �3. Let �1 and �2 denote the two smooth interfaces separating the layers. The left and right boundaries of � j are 
denoted by L j and R j , j = 1, 2, 3. Assume the permittivity ε is given as ε1, ε2 and ε3 in the three layers respectively. 
A large number M of particles, collectively denoted by �p , with the same permittivity εp , are located inside �2. The 
permeability μ is assumed to be constant everywhere.

For TE polarization, in which case the total electric field is E(x, y) = (0, 0, u), the full time harmonic Maxwell equations{∇ × E = iωμH
∇ × H = −iωεE

are reduced to the Helmholtz equation:

�u + k(x)2u = 0 , (1)

where x := (x, y), and where the wavenumber k takes one of four values,

k(x) =

⎧⎪⎪⎨
⎪⎪⎩

k1 := ω
√

με1, x ∈ �1

k2 := ω
√

με2, x ∈ �2\�p

k3 := ω
√

με3, x ∈ �3

k := ω
√

με , x ∈ �

(2)
p p p
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Fig. 1. A 2D grating scattering geometry: a plane wave incident on a three-layered periodic structure with periodicity d. A large number of identical 
dielectric obstacles are embedded in the middle layer. We use �p to denote the set of all these particles and � j

p to denote the jth particle. The vertical 
dotted lines indicate the unit cell walls x = d/2 ± ld, l = 1, 2, 3, · · ·, while the top and bottom dotted lines indicate the fictitious boundaries at ±y0. The 
three layers are denoted by �1, �2 and �3.

In the usual setting of scattering theory, the full wave is u = uinc + usc, where uinc is the incident wave and usc is the 
resulting wave scattered from the periodic structure. The incident wave is a plane wave uinc(x, y) = eik1 cos θx+ik1 sin θ y in �1, 
and uinc = 0 elsewhere, with θ the incident angle. Since the wave is propagating in different layers, the continuity condition 
along various interfaces in TE polarization with constant permeability is:

[u] = 0 ,

[
∂u

∂n

]
= 0 , (3)

where [·] denotes the jump of a function across the interface, ∂/∂n is the normal derivative, and u is the total field in each 
layer [20].

We use the term quasi-periodic if a function (such as u) satisfies

u(x + d, y) = eiκdu(x, y) for all (x, y) , (4)

where κ = k1 cos θ is the incident horizontal wavevector. The factor

α := eiκd

is the Bloch phase associated with translation by one period. Since uinc is quasi-periodic, we seek a scattered wave with 
this same symmetry, hence (4) also holds for the full wave [41]. Restricting to a single unit cell, with left and right walls L
and R respectively, we have matching conditions

αuL − uR = 0 (5)

α
∂u

∂n

∣∣∣∣
L
− ∂u

∂n

∣∣∣∣
R

= 0 (6)

which are in fact equivalent to (4) [11, Sec. 3].
Finally, usc must satisfy a radiation condition. Let y0 be sufficiently large such that �2 lies between the lines �u :=

{y = y0} and �d := {y = −y0} (see Fig. 1). Define κn = κ + 2πn/d, n ∈ Z, and k j,n = +
√

k2
j − κ2

n , where j = 1, 3 and the 
sign of the square-root is taken as positive real or positive imaginary. Then the plane wave with wavevector (κn, k j,n) is 
quasi-periodic for each integer n, and satisfies the Helmholtz equation at frequency ω. The radiation condition on usc is 
expressed by uniformly convergent outgoing or decaying Rayleigh–Bloch expansions:

usc(x, y) =
∑
n∈Z

cneiκnxeik1,n(y−y0), for y > y0, x ∈R, (7)

usc(x, y) =
∑
n∈Z

dneiκnxeik3,n(−y−y0), for y < −y0, x ∈R. (8)

The complex coefficients cn , dn , for n such that |κn| ≤ k j (propagating waves), are the Bragg diffraction amplitudes at 
the grating orders. For all other n these give evanescent components which do not contribute to the far field. A Wood’s 
anomaly occurs if, for some n, κn = ±k1, thus k1,n = 0 (upper half-space), or if κn = ±k3 thus k3,n = 0 (lower half-space). 
The radiation conditions ensure that usc is outgoing except at a Wood’s anomaly, when the nth Rayleigh–Bloch mode in 
(7) or (8) is constant in y (a horizontally traveling plane wave). It is also possible to have a double Wood’s anomaly, when 
κn = k1 and κm = −k1 for a pair of integers n, m.
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The following theorem [4,6,11] describes the well-posedness of the boundary value problem.

Theorem 2.1. Fixing an incident angle θ , there exists a unique solution u to (1)–(3) and (5)–(8) for all but a discrete set of ω.

Henceforth we will assume parameter values (θ, ω) for which the solution is unique.
To summarize, we are interested in the solution of (1) together with the continuity condition (3), the unit-cell quasi-

periodicity (5)–(6), and the radiation condition (7)–(8) satisfied by usc. In the next section we discuss the solution for the 
layered periodic structure without inclusions, via the integral equation approach.

Remark 1. From now on we slightly abuse the notation �1, �2 and �3 introduced, by replacing them by their truncated 
versions. In other words, �1 has boundaries L1, �1, R1, and �u , while �3 has boundaries L3, �d , R3, and �2. The unit cell 
will refer to � = �1 ∪ �2 ∪ �3 = [−d/2, d/2] × [−y0, y0]. The artificial upper and lower boundaries �u and �d are also 
called transparent boundaries in some literature [7].

3. Robust solution for empty periodic layered structure

The standard approach to convert a non-periodic integral equation formulation into the correct periodic one is to use 
the quasi-periodic Green’s function [34], defined at wavenumber k j as

Gqp
k j

(x,y) :=
∑
l∈Z

αlGk j (x,y + (ld,0)) , (9)

where x ∈ � j is the target and y ∈ � j the source point, and Gk is the free space Green’s function at wavenumber k, i.e. 
Gk(x, y) = i

4 H (1)
0 (k‖x − y‖), where H (1)

0 is the outgoing Hankel function of order zero, and ‖ · ‖ is the Euclidean norm. 
(9) is well-defined away from Wood’s anomalies, and has been successfully applied in many grating problems [2,14,23,41]. 
However, it has two major practical drawbacks: i) it is expensive to evaluate (requiring either series acceleration, or lattice 
sums [34]), and ii) it blows up (with an inverse-square-root singularity) at Wood’s anomalies, causing a purely numerical 
breakdown in the solution of a what remains a well-posed problem. The key idea is that (9) can be rewritten as

Gqp
k j

(x,y) =
P∑

l=−P

αlGk j (x,y + (ld,0)) +
∑
n∈Z

an Jn(k j‖x − x0‖)einθx−x0 (10)

where P is a positive integer, x0 ∈ � j is a fixed origin, θx is the angle of a vector x, Jn is the Bessel function of order n, 
and the lattice sum coefficients {an} can be found by Graf’s addition theorem [40, 10.23(ii)]. The second term accounts for 
the smooth field due to the infinite set of far sources l < −P and l > P from (9). The 2P + 1 direct terms account for the 
near field.

Remark 2. The sum in (10) converges (and exponentially fast) if and only if the target is closer to the origin than the nearest 
“far” source, i.e. ‖x − x0‖ < minl∈Z,l/∈[−P ,P ] ‖y + (ld, 0) − x0‖. This geometric condition is satisfied with P = 1 for all x, y ∈ � j
if the region � j is not much taller than d, and x0 is placed near the center of � j . Thus, we will use P = 1 in our numerical 
experiments. However, if � j is much taller than d (high aspect ratio), then P needs to be increased to guarantee uniform 
convergence.

Using this idea in the scattering setting we represent the scattered field in the first layer as,

usc
1 (x) =

P∑
l=−P

αlSk1

�l
1
σ1 +

P∑
l=−P

αlDk1

�l
1
μ1 +

∑
n∈Z

a(1)
n Jn(k1‖x − x1‖)einθx−x1 , x ∈ �1 (11)

where �l
1 is the lth periodic translation of �0

1 ∈ �, i.e. ∪l∈Z�l
1 = �1, σ1 and μ1 are unknown periodic density functions 

defined on the interface �1, and x1 ∈ �1 is choice of origin. The coefficients {a(1)
n } are now unknown and need to be 

determined by the boundary conditions. S and D are the usual single- and double-layer potentials [19], which we may 
define living on a general interface � at wavenumber k by,

(Sk
�σ )(x) =

∫
�

Gk(x,y)σ (y)dsy (12)

(Dk
�μ)(x) =

∫
�

∂Gk(x,y)

∂n(y)
μ(y)dsy (13)

These representations satisfy the Helmholtz equation at wavenumber k in R2\�; thus the representation (11) satisfies the 
relevant Helmholtz equation in �1. When restricted to target points on � these give the boundary integral operators Sk
�,�
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(which is weakly singular), and Dk
�,� (which is continuous for � smooth, and is to be interpreted in the principal value 

sense). Here and in what follows, the notation S�i ,� j means the operator from source curve � j to target curve �i . We will 
also need the operators corresponding to the target normal derivatives on �,

(Nk
�,�σ )(x) =

∫
�

∂Gk(x,y)

∂n(x)
σ (y)dsy , (T k

�,�μ)(x) =
∫
�

∂2Gk(x,y)

∂n(x)∂n(y)
μ(y)dsy , x ∈ � . (14)

The operator T k
�,� is hypersingular and defined in the Hadamard finite part sense. The books [19,20] give further details.

We also need the jump relations that relate the limiting values of (12)–(13) to the actions of the above boundary integral 
operators. Let u±(x) := limh→0+ u(x ± hn(x)) and u±

n (x) := limh→0+ n(x) · ∇u(x ± hn(x)) be the limiting values and normal 
derivatives approaching x ∈ � from the positive (+) or negative (−) side. Then for all continuous densities σ and μ,

(Sk
�σ )± = Sk

�,�σ (15)

(Sk
�σ )±n = (∓ 1

2 + Nk
�,�)σ (16)

(Dk
�μ)± = (± 1

2 + Dk
�,�)μ (17)

(Dk
�μ)±n = T k

�,�μ (18)

Thus the single-layer potential is continuous for all x, whereas the double-layer is generally discontinuous across �.
Turning to the third layer �3, we similarly represent the scattered field usc using layer potentials on �2,

usc
3 (x) =

P∑
l=−P

αlSk3

�l
2
σ2 +

P∑
l=−P

αlDk3

�l
2
μ2 +

∑
n∈Z

a(3)
n Jn(k3‖x − x3‖)einθx−x3 , x ∈ �3 (19)

where x3 ∈ �3. The scattered field in the second layer has contribution from both �1 and �2, thus

usc
2 (x) =

P∑
l=−P

αlSk2

�l
1
σ1 +

P∑
l=−P

αlDk2

�l
1
μ1

+
P∑

l=−P

αlSk2

�l
2
σ2 +

P∑
l=−P

αlDk2

�l
2
μ2 +

∑
n∈Z

a(2)
n Jn(k2‖x − x2‖)einθx−x2 , x ∈ �2 (20)

where x2 ∈ �2.
To determine the unknown densities σ1, σ2, μ1, μ2 and the coefficients a(1)

n , a(2)
n and a(3)

n , we enforce the following 
boundary conditions according to (3) and (5)–(8).

• On �0
1 and �0

2 , the continuity condition (3) is imposed, giving,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(usc
1 − usc

2 )|�0
1
= −uinc|�0

1(
∂usc

1
∂n − ∂usc

2
∂n

)∣∣∣∣
�0

1

= − ∂uinc

∂n

∣∣∣∣
�0

1

(usc
2 − usc

3 )|�0
2
= 0(

∂usc
2

∂n − ∂usc
3

∂n

)∣∣∣∣
�0

2

= 0

(21)

Note that since the representation of usc in the three layers involves layer potentials, the limits must be taken from the 
appropriate side of �1 and �2 using jump relations (15)–(18).

• On L j and R j , where j = 1, 2, 3, the quasi-periodicity condition (4) is imposed:
⎧⎪⎨
⎪⎩

αusc
j |L j − usc

j |R j = 0

α
∂usc

j
∂n

∣∣∣∣
L j

− ∂usc
j

∂n

∣∣∣∣
R j

= 0 (22)

The left hand sides (phased differences) are sometimes known as the discrepancy [10].
• On the parts of the artificial boundaries �u and �d lying in the unit cell � (denote this part of the boundary by �0

u
and �0), the radiation conditions (7) and (8) are imposed for values and normal derivatives:
d
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(usc
1 − ∑

n∈Z cneiκnx)|�0
u
= 0(

∂usc
1

∂n − ∑
n∈Z icnk1,neiκnx

)∣∣∣∣
�0

u

= 0

(usc
3 − ∑

n∈Z dneiκnx)|�0
d

= 0(
∂usc

1
∂n + ∑

n∈Z idnk3,neiκnx

)∣∣∣∣
�0

d

= 0

(23)

Substituting the representations (11), (19) and (20) into conditions (21)–(23), one reaches a system of coupled integral 
and functional equations that can only be solved numerically, which means the interfaces must be discretized, and the 
infinite series truncated. The J expansions are truncated up to order Q , i.e. they retain 2Q + 1 terms. The centers of the 
J expansion x1, x2 and x3 should be located roughly in the centers of the domains �1, �2 and �3. We discretize the 
four interfaces �1, �2, �u and �d using equally spaced points (�1 and �2 are discretized through equally-spaced nodes 
in their parametrizations). The left and right boundary L j and R j are discretized by Gauss–Legendre nodes. The singular 
integrals involved in the layer potentials are discretized via the Nyström method [27], with 16th-order Alpert quadrature 
corrections [1]. A phase correction is applied to account for the Bloch phase factors when the parameter “wraps” around 
the end of the open curves �0

1 or �0
2 . The standard application of quadrature rules, and the use of the Alpert scheme, is 

described in [18, Sec. 2.5] (see the smooth case only).
In the end, stacking as block rows the equations (21), (22) and (23), the linear system for the discretized layered periodic 

structure without particle inclusions (the “empty” structure) takes the form,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A1m A1u 0 0 0
A21 A22 A2m 0 A2d 0 0
Aw1 Aw2 Awm 0 0 0 0
Awu1 0 0 Awuu 0 0 0

0 Awd2 0 0 Awdd 0 0
Au1 0 0 Auu 0 Aur 0
0 Ad2 0 0 Add 0 Adr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν1
ν2

a(2)

a(1)

a(3)

c
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vi

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

Here the right-hand side vector has the form

f := [vi,0,0,0,0,0,0]T with vi := [−uinc|�0
1
, −∂uinc/∂n|�0

1
]. (25)

The unknown coefficient vector, which we will call �α, stacks the discretizations of the paired densities ν j := [μ j; σ j] for 
interfaces j = 1, 2, the coefficient vectors a( j) for the J -expansions in layers j = 1, 2, 3, and the Rayleigh–Bloch coefficient 
vectors c and d from (7)–(8). We may then summarize (24) by

A�α = f .

We now describe the matrix blocks in A (for readability we do not give formulae for every single block, trusting that 
their construction is unambiguous from the above; for more detail in a related scheme see [18]). Each block maps unknowns 
to values and normal derivatives at target nodes, or their phased differences between left and right walls. Matrix entries 
involve either free-space Green’s functions between source and target nodes, or J or Rayleigh–Bloch expansions at target 
nodes.

• A11 and A22: Nyström self-interaction matrices for �0
1 and �0

2 respectively, including the phased summation over 2P +1
source near neighbors. For instance,

A11 =
⎡
⎣ I + ∑P

l=−P αl(Dk1

�0
1 ,�l

1
− Dk2

�0
1 ,�l

1
)

∑P
l=−P αl(Sk1

�0
1 ,�l

1
− Sk2

�0
1 ,�l

1
)

∑P
l=−P αl(T k1

�0
1 ,�l

1
− T k2

�0
1 ,�l

1
) −I + ∑P

l=−P αl(Nk1

�0
1 ,�l

1
− Nk2

�0
1 ,�l

1
)

⎤
⎦ (26)

(where here and below, the Nyström discretizations of the various operators are implied), maps [μ1; σ1] at the N
quadrature nodes on �0

1 to the field jumps [usc
1 −usc

2 ; ∂usc
1 /∂n −∂usc

2 /∂n] at these same N nodes. I indicates the N-by-N
identity matrix. All terms (after subtractions) are compact apart from the identities, meaning that this subsystem is of 
Fredholm second kind. Recall that the identities originate in the jump relations (15)–(18). This BIE scheme for dielectric 
interfaces is due in the electromagnetic case to the dual formulation of Müller [39], and the acoustic case to Kress–Roach 
[28] and Rokhlin [42].

• A21, A12: interaction of (2P + 1 summed) source densities on �1 with value and normal derivatives on �2, and vice 
versa, at wavenumber k2.

• A1m , A2m: values and normal derivatives of the middle-layer J -expansion on �0
1 , �0

2 .
• A1u , A2d: values and normal derivatives of the upper-layer and lower-layer J -expansion on �0 and �0, respectively.
1 2
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Fig. 2. Scattering from a periodic structure without inclusions, with k1 = 10, k2 = 5, k3 = 10 and d = 1. The interfaces are �1 given by the graph y =
1 + 0.1 sin(2πx), and �2 the graph y = −1 + 0.1 cos(2πx). (a) The singular value spectrum σ j of matrix A, vs index j: original matrix (blue dots), vs after 
rescaling the columns of the blocks in A corresponding to J expansions (red dots). (b) Real part of the scattered field computed to 13-digit accuracy. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• Aw1, Aw2, and Awm: phased differences of values and normal derivatives between the left and right walls L2 and R2
in (22) (case j = 2), due to the layer potentials on �1, �2, and the middle-layer J -expansion respectively. Awu1, Awuu : 
phased differences for upper walls (case j = 1) due to layer potentials on �1 and the upper J -expansion. Awd2, Awdd: 
phased differences for lower walls (case j = 3) due to layer potentials on �2 and the lower J -expansion.

• Au1, Auu (Ad2, Add): values and normal derivatives of the layer potentials on �1 (�2), and the upper (lower) 
J -expansions, evaluated on the upper boundary �0

u (lower boundary �0
d ).

• Aur , Adr : values and normal derivatives of the Rayleigh–Bloch expansions on the upper and lower boundaries �0
u , �0

d
respectively.

Remark 3. The lower-right 5 × 5 block of A in (24) involves only the effect of the auxiliary periodizing degrees of freedom 
( J and Rayleigh–Bloch expansions) on the auxiliary matching conditions (discrepancies and radiation conditions). In related 
work this block is given the symbol Q [10,18].

The matrix A is generally rectangular, depending on the specific numbers of discretization nodes. Although the upper-
left 2 × 2 block of A is a square system coming from a Fredholm second kind system of BIEs, the other blocks involve 
J -expansions evaluated on interfaces and walls, which make A as a whole exponentially ill-conditioned. Fig. 2(a) shows the 
singular values of A: there are many singular values clustered around 10−14, although the situation is alleviated a little by 
rescaling the columns that correspond to the J -expansions (also shown). However, such ill-conditioning is not an obstacle 
as long as the system is consistent: since A is not too large (of typical size 103 for k j corresponding to up to several 
wavelengths across one period d), we may use direct dense linear algebra for a small-norm least-squares solution. We use 
the mldivide command in MATLAB. Fig. 2(b) shows the resulting real part of the scattered field with a total flux error 
(whose definition will be given in Section 6) of 10−13.

4. Multi-particle scattering

Multi-particle scattering in free space has been discussed extensively in [22,32,31], with applications including clima-
tology, remote sensing, and design of composite materials. Recently, we have developed a fast solver for finding the field 
scattered from a large number of particles located in a layered medium, by combining the Sommerfeld integral and multiple 
scattering theory. Here we briefly review the method introduced in [32], and then combine it with the periodic grating. See 
[32,22] for more details. Note that our approach can be seen as a simple version of a reduced basis method [16].

4.1. Scattering matrix of a single particle

Consider for now a dielectric inclusion with wavenumber kp = ω
√

εpμ surrounded by uniform dielectric with k2 =
ω

√
ε2μ. When the inclusion is a disk of radius R centered at the origin, it is well known that the solution can be repre-

sented using separation of variables, with

uinc(r, θ) =
∞∑

αn Jn(k2r)einθ (27)

n=−∞
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Fig. 3. Two inclusions and their enclosing disks. The scattering matrix S j for each inclusion � j
p with wavenumber kp is defined as the map from an 

incoming field on D j to the corresponding outgoing field.

as the incident field, and scattered wave

usc(r, θ) =
∞∑

n=−∞
βn H (1)

n (k2r)einθ (28)

in the exterior. Here, (r, θ) are the polar coordinates of a point in the plane, and H (1)
n (r) is the Hankel function of the first 

kind of order n.

Definition 4.1. The mapping between the incoming coefficients {αn} and outgoing coefficients {βl} is referred as the scatter-
ing matrix. It will be denoted by S , with matrix elements sln .

For a single disk, the scattering matrix S is diagonal and is easily found analytically [19]; this is not true for an arbi-
trary inclusion shape. We instead seek a solution via BIE, using the Müller–Kress–Roach–Rokhlin scheme from the previous 
section. Suppose that the inclusion �p has boundary ∂�p and is enclosed by a disk D centered at the origin. Given the 
incident wave uinc and the boundary conditions (3), the exterior scattered field usc and the field u within �p have the 
following representations [19]:

us = Sk2σ + Dk2μ, for x ∈ �c
p, (29)

u = Skp σ + Dkp μ, for x ∈ �p . (30)

Here σ and μ are unknown single- and double-layer densities on ∂�p , and, in this section without ambiguity we drop the 
subscripts ∂�p . Enforcing the interface conditions (3) and taking appropriate limits using jump relations (15)–(18) yields a 
system of Fredholm integral equations of the second kind:

μ + (Sk2 − Skp )σ + (Dk2 − Dkp )μ = −uinc, (31)

−σ + (Nk2 − Nkp )σ + (T k2 − T kp )μ = −∂uinc

∂n
. (32)

Let σn and μn denote the solution to (31)–(32) for uinc(r, θ) = Jn(k2r)einθ . We may then precompute the scattering 
matrix elements sln as the multipole expansion coefficients (truncated up to 2p + 1 terms)

usc(r, θ) ≈
p∑

l=−p

sln H (1)

l (k2r)eilθ , (33)

from the densities σn and μn via Graf’s addition theorem, giving the standard formula [43,17]

sln =
∫

∂�p

Jl(k2‖y‖)e−ilθy σn(y) + n(y) · ∇[ Jl(k2‖y‖)e−ilθy ]μn(y) dsy . (34)

4.2. Multiple inclusions

Suppose now that we have M inclusions �1
p, . . . , �M

p that are identical up to translation and rotation, and are well 
separated in the sense that each inclusion �m

p lies within a disk Dm of radius R such that the disks are not overlapping 
(see Fig. 3). The incident wave for the mth inclusion may now be expanded as

uinc(x) ≈
p∑

a(m)
n Jn(k2rm)einθm (35)
n=−p
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where (rm, θm) are defined to be the polar coordinates of x relative to the center of Dm . We will denote by �αm the set 
of 2p + 1 incoming coefficients, and by �βm the 2p + 1 outgoing coefficients, for the mth particle. Thus

�βm = S(m)
p �αm, for m = 1, . . . , M, (36)

where S(m)
p denotes the truncated (2p + 1) × (2p + 1) scattering matrix acting on the truncated expansion about the center 

of the mth particle. If the particles were only translated, we would have S(m)
p = S p for all m, where S p is the truncated 

scattering matrix from the previous section with elements sln . We allow general rotations of particles; rotation of the mth 
particle by angle φ introduces phase factors, so (S(m)

p )ln = eiφ(l−n)sln .
Multi-particle scattering has a key difference from single particle scattering, namely that the incoming field experienced 

by each particle consists of two parts: the (applied) incident field uinc, and the contribution to the scattered field usc from 
all of the other particles. We denote by T mj the translation operator (or M2L in FMM language [43]) that maps the outgoing 
coefficient vector �β j := {β j

n}p
n=−p from particle j to their contribution to the local expansion coefficients �αm centered at 

particle m. With this operator in place, the incoming coefficients �αm for the mth particle are

�αm = �am +
M∑

j=1
j �=m

T mj �β j, (37)

where �am is the (truncated) local expansion (35) of the incident wave uinc relative to particle m.
Combining (36) and (37), one can easily eliminate the incoming coefficients �αm to obtain the following linear system 

that only involves the outgoing coefficients:

(
S−1 − T

)
⎡
⎢⎢⎢⎣

�β1

�β2

...
�βM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�a1

�a2

...

�aM

⎤
⎥⎥⎥⎦ , (38)

where

S :=

⎡
⎢⎢⎢⎢⎣

S(1)
p

S(2)
p

. . .

S(M)
p

⎤
⎥⎥⎥⎥⎦ , T :=

⎡
⎢⎢⎢⎣

0 T 12 · · · T 1M

T 21 0 · · · T 2M

...
...

. . .
...

T M1 T M2 · · · 0

⎤
⎥⎥⎥⎦ .

The system (38) can be solved iteratively, using GMRES. Since each translation operator T nm is dense, a naive matrix-
vector product requires O(M2(2p + 1)2) operations, where p is the order of the truncated expansion. The cost can be 
reduced to O(M(2p + 1)2) work by the low frequency version FMM acceleration, for which we refer the reader to [43,17]. 
Furthermore, there exists an effective preconditioner for the system (38). Left-multiplying by the block diagonal matrix S
results in the preconditioned system matrix I − ST . This significantly reduces the number of iterations.

The advantage of using the one-particle scattering matrices S(m)
p over boundary integral equations is clear: the number of 

degrees of freedom per inclusion is only 2p +1 rather than the number of nodes needed to discretize the domain boundaries 
∂�m

p . For complicated inclusions, this permits a vast reduction in the number of degrees of freedom required, forming the 
basis for the so-called FMPS method [22]. Moreover, the block-diagonal preconditioned multiple scattering equations are 
much better conditioned than the BIE (31)–(32), while FMM acceleration is particularly fast in this setting.

Remark 4. It is straightforward to extend the method to more than one type of particles as long as the assumption that 
the enclosed circles are well separated still holds. The additional cost is simply the bookkeeping for the different scattering 
matrices.

5. Multi-particle scattering in the periodic layered medium

We now combine the schemes of the previous two sections. The field in the middle layer is the periodic layered contri-
bution usc

2 from (20), plus the scattered field from the M inclusions and, crucially, their 2P neighboring near-field phased 
copies. We need the notation (rl

m, θ l
m) for polar coordinates relative to the origin of the mth particle translated by (ld, 0). 

Then,

u2(x) = usc
2 (x) +

P∑
αl

M∑ p∑
n=−p

βm
n H (1)

n (k2rl
m)einθ l

m , x ∈ �2\�p . (39)

l=−P j=1
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It only remains to set up the interactions between the layered periodic structure and the inclusion structure. We denote 
the translation matrix mapping layer densities and the middle-layer J expansion to the incoming coefficients of all particles 
by B, and the translation matrix mapping (phased summed) outgoing particle multipole coefficients to data on the layers 
and walls by C . Adhering to the ordering of unknowns and conditions in (24), one can show that they have the forms (since 
the particles interact only with the middle layer),

B = [
B p1 B p2 B pm 0 0 0 0

]
, (40)

C = [
C1p C2p C wp 0 0 0 0

]T
, (41)

where here [·]T denotes the blockwise transpose. B p1, B p2 and B pm map layer densities on �1, �2 and the J expansion to 
the incoming coefficients of the particles. C1p , C2p , and C wp map the outgoing coefficients from particles to the values and 
normal derivatives on interfaces �1, �2 and the discrepancy from L2 to R2.

It is easy to construct the elements in C1p , C2p , and C wp by direct evaluation of multipole expansions. Note that C wp

involves cancellations which mean that only particle-wall interactions over distances greater than d survive, as discussed in 
Remark 6.

To obtain the elements in B p1, B p2 and B pm , one again uses Graf’s addition theorem. In particular, the translation 
submatrix B pm that maps the coefficients from one J expansion to another J expansion (the local-to-local or L2L operator 
in the FMM) is constructed through the following lemma.

Lemma 5.1. (See [43].) Let disk m be centered at xm and let disk l be centered at xl . Then the local expansion

∞∑
n=−∞

γ m
n Jn(k2rm)einθm (42)

induces a field on disk l of the form

u =
∞∑

n′=−∞
αl

n′ Jn′(k2rl)ein′(θl−π) (43)

where

αl
n′ =

∞∑
n=−∞

ei(n−n′)θxm−xl γ m
n−n′ Jn(k2‖xm − xl‖).

Let us denote by �β := { �βm}M
m=1 the multipole coefficients for all M particles in �2. Combining the matrices (24), (38), 

(40) and (41), we obtain the final system:[
A C
B D

][ �α
�β

]
=

[
f
0

]
, (44)

where D = S−1 − T , as in (38), and f is the right-hand side vector (25).
Since (44) is a rectangular ill-conditioned matrix, we cannot easily solve this whole system iteratively. However, we now 

present a Schur complement scheme to generate a smaller, well-conditioned square linear system for which an iterative 
solution is efficient. Since A has size of order 103 in both dimensions, it is much smaller than D, and we can eliminate the 
unknowns �α via �α = A+( f − C �β), where A+ is the pseudoinverse of A. We precompute A = U�V ∗ , the singular value 
decomposition of A, where the singular values are σ j . Then to apply A+ to an arbitrary vector g we use matrix-vector 
multiplies,

A+g = V �+(U g) , (45)

where �+ has diagonal elements min[1/σ j, 1/ε]. The regularization parameter is fixed at ε = 10−10; its precise choice is 
not crucial, but empirically it is best chosen to be roughly the desired solution accuracy.

Remark 5. Forming the matrix A+ then multiplying it against a vector g is dangerous, since it can cause large and unnec-
essary round-off error. Rather, (45) should be used since it is backward stable and hence introduces the minimum possible 
round-off error.

Substitution for �α into the full linear system gives the Schur complement

(D − BA+C) �β = −BA+ f , (46)

a relatively well-conditioned square system involving only unknowns �β . The new system matrix has a physical interpreta-
tion: it is the particle–particle interaction matrix using the layered-medium quasi-periodic Green’s function, where BA+C



204 J. Lai et al. / Journal of Computational Physics 298 (2015) 194–208
is a low-rank update to D. We can use GMRES on this system, FMM acceleration to apply D, B and C , and the factorization 
(45) to apply A+ . The cost (for moderate frequencies) is then an optimal O(M) per iteration.

As we mentioned in Section 4, left-preconditioning via S can improve the conditioning of the system. We therefore end 
up solving the following,

(I − ST − SBA+C) �β = −SBA+ f , (47)

with the same cost per iteration as (46) (the small dense multiplications by S p being cheap), but fewer needed iterations.

6. Numerical experiments

In this section, we demonstrate the performance of our algorithm with three examples. For simplicity, we use a single 
class of particles, parametrized by{

x = (a1 + a2 cos(a3t)) cos(t),
y = (a1 + a2 cos(a3t)) sin(t),

for 0 ≤ t < 2π. (48)

Particles with more complicated boundaries do not introduce any essential difficulty in our scheme, except that the precom-
putation of the scattering matrix is a little more involved, particularly if corners are present [12,25]. However, regardless 
of complexity, the size of the needed scattering matrix (2p + 1) depends only on the particle size in wavelengths and the 
closeness of nearby particles. Given a fixed a1, a2 and a3, multiple copies of the inclusion are randomly distributed in the 
central layer of the medium with random orientations.

To provide an independent test of accuracy, we check flux conservation. If all wavenumbers k1, k2, k3 and kp are real, 
the Rayleigh–Bloch coefficients satisfy the identity (e.g. see [33])∑

k1,n>0

k1,n|ci |2 +
∑

k3,n>0

k3,n|di|2 = k1 sin θ (49)

In other words, the outgoing energy flux must equal the incoming energy flux. Flux error then refers to the size of the 
difference between the left and right sides.

Throughout all the numerical examples, the period is d = 1, and the near-field summation is fixed at P = 1 (i.e. three 
terms in the near-field sum). In the first two examples the interfaces �1 and �2 are given by the graphs y = 1 +0.1 sin(2πx)
and y = −1 + 0.2 cos(2πx) respectively.

Assume there is a modest distance between the inclusions �p and the interfaces �1 and �2, say, at least 0.5 wave-
lengths in terms of the wavenumber k2. Under this assumption, we may discretize �1 and �2 with N = 120 nodes each, 
equally spaced in x, which is sufficient to achieve 12 digits of accuracy with the periodized Alpert’s quadrature for modest 
wavenumbers k1, k2 and k3. The value of y0 is chosen to be in the far-field of the layer potentials on the interfaces, but no 
larger than necessary since too large a value slows the convergence rate of the J-expansions. In all the examples, we choose 
y0 = 2 and the two artificial boundaries �u and �d are discretized equally in x with 50 points each. We use 2Q + 1 = 73
terms for the J expansions in each layer, and 41 Rayleigh–Bloch modes in each vertical direction. The centers of the J
expansions are chosen to be (0, 1.5), (0, 0) and (0, −1.5) for the first, second and third layer. Based on these discretizations, 
A has size 1020 × 781.

All computations are carried out using a 2.3 GHz Intel Core i5 laptop, with 4 GB RAM.

6.1. Example 1: scattering from large numbers of inclusions

In our first example, we consider distributions of M = 100, 500 and 1000 inclusions with wavenumber kp = 30, by 
assuming the incident angle is away from any Wood’s anomaly, and the boundaries of the inclusions do not touch the wall 
L2 or R2. (Both restrictions will be removed, in our second and third examples, respectively.) The thickness of the central 
layer is fixed by the length of L2 and R2, given by l = 2.0. The size of each inclusion is therefore determined by the amount. 
Assume a3 = 3 in Eq. (48). We let a1 = 0.0309, a2 = 0.0103 for M = 100, and a1 = 0.0154, a2 = 0.00514 for M = 500, and 
a1 = 0.0111, a2 = 0.0037 for M = 1000. To obtain the scattering matrix S p with p = 10, we solve the integral Eqs. (31)
and (32) by discretizing the boundary of the particle with N = 300 equispaced points. We assume the wavenumbers of the 
layered medium are given by k1 = 10, k2 = 8 and k3 = 10. The incident angle is set to be θ = − arccos(1.0 −2π/10.0) +0.1 ≈
−1.089976736488571, which is not a Wood’s anomaly for k1 = 10, but is quite close to one. Results are presented in 
Figs. 4, 5 and Table 1.

Fig. 4 shows the total field in the case M = 1000. Disordered propagation due to the random inclusions is apparent. 
The total number of unknowns in �β is 21 000, although if nodes on the particles were used it would be much higher. It 
requires 287s to achieve 9 digits of accuracy. Fig. 5 shows the convergence behavior of GMRES as the number of inclusions 
is increased, and the total CPU times. In Fig. 5(a), we also study the convergence rate when the background is homogeneous, 
by setting the material parameters to be the same for the three layers (k1 = k2 = k3 = 10). No obvious discrepancy in terms 
of the number of iterations has been observed, which suggests that the multiple scattering is dominated by the inclusions. 
Table 1 shows flux error in the cases above. In all cases we exceed 9 digits of accuracy.
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Fig. 4. Real part of the total field with 1000 dielectric inclusions randomly distributed in a three-layered medium (see Example 1). The wavenumber for each 
particle is kp = 30 and the wavenumbers for the three layers are k1 = 10, k2 = 8, k3 = 10. The diameter of each particle is approximately 0.2 wavelengths 
at the wavenumber kp .

Fig. 5. Convergence behavior of GMRES and the CPU time required for various numbers of periodized inclusions embedded in either (a) homogeneous 
medium or (b) a three-layered periodic medium, for Example 1. For (a), we set k1 = k2 = k3 = 10 and for (b), we set k1 = 10, k2 = 8, k3 = 10.

Table 1
Flux error for various numbers of inclusions embedded in either (a) homogeneous medium or 
(b) a three-layered medium, for Example 1.

Number of particles Flux error, homogeneous case Flux error, three-layer case

100 1.05e-9 2.22e-10
500 4.03e-10 2.35e-10
1000 1.59e-9 1.14e-9

6.2. Example 2: scattering from large numbers of inclusions at a Wood’s anomaly

In our second example, we consider the same scattering as above except the change of incident angle. In particular, 
we let θ = − arccos(1.0 − 2π/10.0) ≈ −1.189976736488571, which is a Wood’s anomaly for k1 = 10. Thus the classical 
quasi-periodic Green’s function for the upper layer does not exist. However, our scheme is still able to obtain 10 digits of 
accuracy as shown in Fig. 6 and Table 2. The flux error suggests at least 9 digits of accuracy in all cases. The number of 
GMRES iterations and CPU times are almost the same as in Example 1.

In Fig. 7, we plot the normalized transmission and reflection coefficients for the periodic structures with and without 
particles inside the second layer. The number of particles is 100 with dimensions specified in Example 1 and the plot is 
generated by 180 incident angles ranging from −π to 0 applied to the periodic structures. Clearly, without particles, there 
are total transmission region which has almost no reflection. While with particles, the total transmission region disappears. 
A potential application of this is to optimize the displacement of the particles such that a specific electromagnetic response 
is obtained.

6.3. Example 3: scattering from inclusions intersecting with unit cell walls

In our last example, we consider the scattering from 100 smoothed pentagons (a3 = 5) with kp = 8. In particular, we 
allow some of the inclusions intersect the wall L2 and R2, as shown in Fig. 8. We set the thickness of the central layer 
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Fig. 6. Real part of the total field when 1000 dielectric inclusions with kp = 30 are randomly embedded in a three-layered medium with k1 = 10, k2 = 8
and k3 = 10, as in Fig. 4. This is Example 2: the angle of the incident wave is at a Wood’s anomaly.

Table 2
Convergence behavior of GMRES, the CPU time required and flux error for various numbers of inclusions embed-
ded in a three-layered medium (see Example 2).

Number of particles Number of iterations GMRES error CPU time (sec.) Flux error

100 97 7.61e-11 41.2 1.03e-9
500 91 4.24e-11 156 3.21e-10
1000 90 5.83e-11 307 2.48e-9

Fig. 7. Normalized reflection (blue solid line) and transmission (green dashed line) coefficient as a function of incident angle from −π to 0 in Example 2; 
(a) the periodic structure that has no particles in the second layer; (b) the periodic structure with 100 particles in the second layer. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

to be l = 2.0, and define parameters a1 = 0.0309, a2 = 0.0103 in Eq. (48). The boundary of the inclusion is discretized by 
N = 300 equispaced points and the scattering matrix S p is truncated up to p = 10. The interfaces �1 and �2 are given by 
the graphs y = 1 + 0.05 sin(2πx) + 0.05 cos(2πx) and y = −1 + 0.1 cos(2πx) respectively. The incident angle is set to be 
θ = − arccos(1.0 − 2π/10.0) + 0.1, which is the same as example 1.

Remark 6. Careful readers might think that our method should fail in this case, since the multipole expansion for each 
inclusion is only valid outside the disk that encloses the inclusion, yet some target nodes on the walls lie inside these disks. 
However, it turns out our scheme is still valid, by design, due to cancellation in the C wp block and translational symmetry: 
whatever field induced by �p ∈ �2 to L2, it is equal to the field induced by �p in the right copy of �2 to R2 up to the 
Bloch phase. Once the subtraction is made in Eq. (22), the two cancel each other. Thus the only effects of particle multipole 
expansions on the discrepancy between walls L2 and R2 are at a distance of around Pd or more. The walls are “invisible” 
to the particles in this scheme. This is discussed more explicitly in [10, Sec. 3.1] and [18, Sec. 2.3].

The above observation has been confirmed by the numerical tests, as shown in Fig. 8 and Table 3.
Fig. 8 shows the total field in the case k2 = 30. We can see smooth field distortion due to the inclusions, even though 

some of the inclusions intersect the walls L2 and R2. In Table 3, we test higher-contrast materials: the wavenumber in the 
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Fig. 8. Real part of the total field with 100 dielectric inclusions, some of which touch the walls L2 or R2, randomly distributed in a three-layered medium 
(see Example 3). The wavenumber for each particle is kp = 8, and the wavenumbers for the three layers are k1 = 5, k2 = 30 and k3 = 5. Each inclusion is a 
smoothed five-pointed star, approximately 0.4 wavelengths in size for k2.

Table 3
Convergence behavior of GMRES, the CPU time required and flux error for 100 inclusions em-
bedded in the central layer, where k2 is allowed to vary from 1 to 30 (see Example 3).

k2 Number of iterations GMRES error CPU time (sec.) Flux error

1 13 9.68e-11 18.0 8.54e-10
10 15 1.39e-11 18.9 7.52e-11
20 43 4.55e-11 26.6 4.38e-10
30 83 5.12e-11 37.8 1.02e-8

middle layer varies from 1 to 30 for the three-layered medium. In all cases, we can get 10 digits of accuracy of GMRES and 
at least 8 digits accuracy has been guaranteed in terms of flux error.

7. Conclusion

We have demonstrated an efficient new scheme to solve the quasi-periodic boundary value problem arising when a 
time-harmonic plane wave is incident on a layered periodic structure containing a large number of inclusions, as occurs in 
various composites and solar cell designs. The method is based entirely on free-space Green’s functions, using an expanded 
linear system to enforce quasi-periodicity and radiation conditions explicitly. This avoids expensive computations of the 
quasi-periodic Green’s function, yet is robust at all scattering parameters including Wood’s anomalies (where the latter fails 
to exist). We have shown high accuracies even at Wood’s anomalies, and with inclusions intersecting unit cell walls.

For the scattering between multiple inclusions, we introduce the scattering matrix for each inclusion and use it as a 
block-diagonal preconditioner, which greatly improves the conditioning of multi-particle scattering system. We also apply 
the FMM to accelerate the translation operator between the different structures. In the end, the system is solved iteratively 
by GMRES, scaling optimally (linearly) in M the number of inclusions, at fixed frequency. This claim of O(M) scaling holds 
only if the number of iterations is independent of M; however, our numerical tests suggest that any growth with M is very 
weak in our setting (see Fig. 5). Multi-particle systems with tens of thousands of unknowns are solved to around 9-digit 
accuracy on a laptop in a few minutes.

There are several possible extensions that we leave for future work. The method can easily be adapted to TM polarization, 
to complex permittivities, and to non-smooth inclusions. If higher aspect ratio unit cell regions (i.e. heights much bigger 
than the period) are needed, P can be increased, although this slows down the FMM which applies the large D matrix 
block. High aspect ratios could instead be handled by replacing the (intrinsically isotropic) J -expansions with proxy nodes 
as in [18], on oval curves. Our scheme naturally generalizes to bi-periodic structures in 3D, with the matrix A still directly 
invertible (with size of order 104) at low frequencies. Other future work includes a rigorous error analysis of the scheme.
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