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Abstract

For a projection-based reduced order model (ROM) of a fluid flow to be stable and
accurate, the dynamics of the truncated subspace must be taken into account. This
paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs
in which truncated modes are accounted for a priori via a minimal rotation of the
projection subspace. Attention is focused on the full non-linear compressible Navier-
Stokes equations in specific volume form as a step toward a more general formulation
for problems with generic non-linearities. Unlike traditional approaches, no empirical
turbulence modeling terms are required, and consistency between the ROM and the
Navier-Stokes equation from which the ROM is derived is maintained. Mathematically,
the approach is formulated as a trace minimization problem on the Stiefel manifold. The
reproductive as well as predictive capabilities of the method are evaluated on several
compressible flow problems, including a problem involving laminar flow over an airfoil
with a high angle of attack, and a channel-driven cavity flow problem.

Keywords: Projection-based reduced order model (ROM), Proper Orthogonal
Decomposition (POD), compressible flow, stabilization, trace minimization, Stiefel
manifold.

1. Introduction

The past several decades have seen an exponential growth of computer processing
speed and memory capacity. The massive, complex simulations that run on supercom-
puters allow exploration of fields for which physical experiments are too impractical,
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hazardous, and/or costly. A striking number of these fields require computational fluid
dynamics (CFD) models and simulations. Accurate and efficient CFD simulations are
critical to many defense, climate and energy missions, e.g., simulations aimed to de-
sign and qualify nuclear weapons components carried within an aircraft weapons bay;
global climate simulations aimed to predict anticipated twenty-first century sea-level rise;
aero-elastic simulations for optimal design of wind systems for power generation.

Unfortunately, even with the aid of massively parallel next-generation computers,
CFD simulations for applications such as these are still too expensive for real-time and
multi-query applications such as uncertainty quantification (UQ), optimization and con-
trol design. Reduced order modeling is a promising tool for bridging the gap between
high-fidelity, and real-time simulations/UQ. Reduced order models (ROMs) are derived
from a sequence of high-fidelity simulations but have a much lower computational cost.
Hence, ROMs can enable real-time simulations of complex systems for more rapid anal-
ysis, control and decision-making in the presence of uncertainty.

Most existing ROM approaches are based on projection. In projection-based re-
duced order modeling, the state variables are approximated in a low-dimensional sub-
space. There exist a number of approaches for calculating this low-dimensional subspace,
e.g., Proper Orthogonal Decomposition (POD) [45, 19], Dynamic Mode Decomposition
(DMD) [38, 42], balanced POD (BPOD) [35, 50], balanced truncation [17, 27], and the
reduced basis method [39, 48]. In all of these methods, a basis for the low-dimensional
subspace is obtained from a basis for a higher-dimensional subspace through truncation
– the removal of modes that are believed to be unimportant in representing a prob-
lem solution. Typically, the size of the reduced basis is chosen according to an energy
criterion: modes with low energy are discarded, so that the reduced basis subspace is
spanned by the highest energy modes. Although truncated modes are negligible from
a data compression point of view, they are often crucial for representing solutions to
the dynamical flow equations. Dynamics of the truncated orthogonal subspace must be
taken into account for to ensure stability and accuracy of the ROM.

For linear systems, a variety of techniques for generating low-dimensional projection-
based ROMs with rigorous stability guarantees and accuracy bounds are available [17,
27, 1, 23]. Equivalent results are lacking for nonlinear systems. Traditionally, low-
dimensional ROMs of fluid flows have been stabilized and enhanced using empirical
turbulence models. In this approach, the nonlinear dynamics of the truncated subspace
are modeled using additional constant and linear terms in the ROM system of ordinary
differential equations (ODEs) [2, 34, 12, 14]. More recently, nonlinear eddy-viscosity
models have also been proposed [30, 28, 20, 32]. One downside of turbulence models
is that they destroy consistency between the Navier-Stokes partial differential equations
(PDEs) and the ODE system of the ROM. Accurately identifying and matching free
coefficients of the turbulence models is another challenge. Moreover, these methods are
usually limited to the incompressible Navier-Stokes equations.

Consider, for concreteness, the POD/Galerkin approach to model reduction applied
to the incompressible Navier-Stokes equations. For these equations, the natural choice
of inner product for the Galerkin projection step of the model reduction procedure is the
L2 inner product. This is because, in these models, the solution vector is taken to be the
velocity vector u, so that ||u||2 is a measure of the global kinetic energy in the domain,
and the POD modes optimally represent the kinetic energy present in the ensemble from
which they were generated. The same is not true for the compressible Navier-Stokes
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equations. Hence, if a compressible fluid ROM is constructed in the L2 inner product (a
common choice of inner product in projection-based model reduction), the ROM solution
may not satisfy the conservation relation implied by the governing equations, and may
exhibit non-physical instabilities [37].

Unfortunately, ROM instability is a real problem for many compressible flow prob-
lems: as demonstrated in [6, 9, 7, 22], a compressible fluid POD/Galerkin ROM might
be stable for a given number of modes, but unstable for other choices of basis size.
Several researchers have proposed ways to circumvent this difficulty through the care-
ful construction of an energy-based inner product for the projection step of the model
reduction. Rowley et al. [37] show that Galerkin projection preserves the stability of
an equilibrium point at the origin if the ROM is constructed in an energy–based in-
ner product. Barone et al. [7], Kalashnikova et al. [22] demonstrate that a symmetry
transformation leads to a stable formulation for a Galerkin ROM for the linearized com-
pressible Euler equations and nonlinear compressible Navier-Stokes equations with solid
wall and far-field boundary conditions. Serre et al. [43] propose applying the stabilizing
projection developed by Barone et al. [7], Kalashnikova et al. [22] to a skew-symmetric
system constructed by augmenting a given linear system with its adjoint system. The
downside to these methods is that they are inherently embedded methods: access to the
governing PDEs and/or the code that discretizes these PDEs is required.

Other ROM approaches, e.g., the Gauss-Newton with Approximated Tensors (GNAT)
method of Carlberg et al. [10], have better stability properties, as they formulate the
ROM at the fully discrete level. The drawback of this approach is that an additional
layer of approximation – usually called hyper-reduction — is required to gain computa-
tional speed-up. Moreover, the approach lacks stability guarantees for low-dimensional
expansions.

In this paper, a stabilization and enhancement approach to ROMs for the compress-
ible Navier-Stokes equations is developed. The approach is an extension of the method-
ology developed in [3, 5] specifically for the incompressible Navier-Stokes equations. The
specific volume (ζ–) form of the compressible Navier-Stokes equations is utilized. Since
these equations have polynomial (quadratic) nonlinearities, the Galerkin projection can
be computed offline, once and for all; no hyper-reduction is required [21]. Unlike tra-
ditional eddy-viscosity-based stabilization methods, the proposed approach requires no
additional empirical turbulence modeling terms – truncated modes are accounted for a
priori via a minimal rotation of projection subspace. The method is also non-intrusive,
as it operates only on the matrices and tensors defining a ROM ODE system, which
are stabilized through the offline solution of a small trace minimization problem on the
Stiefel manifold. The proposed new approach can be interpreted as a combination of
several previously developed ideas. Following Iollo et al. [21], we propose to stabilize
and enhance projection-based ROMs by modifying the projection subspace in order to
capture more of the low-energy, but high dissipative scales of the flow solution. Similarly
to Amsallem and Farhat [1], a rotation of the projection subspace is used to achieve this
goal. Specifically, a larger set of basis is linearly superimposed to provide a smaller set of
basis that generate a stable and accurate ROM. Finally, in the spirit of most previously
proposed eddy-viscosity-based turbulence models, the eigenvalues of the linear part of
the Galerkin system of ODEs are used as a proxy to guide the stabilization algorithm.

The remainder of this paper is organized as follows. In § 2, the standard projection-
based model reduction approach is outlined in the context of the specific volume form
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of the compressible Navier-Stokes equations. Also overviewed is the POD method for
constructing an optimal reduced basis, and some eddy-viscosity based closure models
used for accounting for modal truncation. The proposed methodology of “rotating” the
projection subspace into a more dissipative regime to better resolve the small, energy
dissipative scales of the flow is detailed in § 3. Here, the approach is formulated math-
ematically as a constrained optimization problem on the Stiefel manifold. In § 4, the
performance of the proposed method is evaluated on several compressible flow problems,
including a problem involving a laminar flow over an airfoil with a high angle of attack,
and a channel-driven cavity flow problem. Finally, conclusions are offered in § 5.

2. Projection-based model reduction for nonlinear compressible flow

In this section the standard projection-based model reduction approach is laid out.
In § 2.1 the approach for a general nonlinear system is presented while in § 2.2 the
approach is applied to the compressible Navier-Stokes equations. The POD method for
calculating a reduced basis using a set of snapshots from a high-fidelity simulation is
outlined in § 2.3, followed by a brief overview of eddy-viscosity-based closure models
that account for modes truncated in the application of the POD method (§ 2.4).

2.1. Nonlinear projection-based model order reduction

Consider a dynamical system of the form:

d

dt
w = F (w) , (1)

where F is the propagator in H, a Hilbert space. In fluid flows, the state variable
w = w(x, t) ∈ H depends on space x ∈ Ω, Ω being the flow domain, and time t ∈ [0, T ],
T representing the period of integration. Then, the propagator F contains spatial deriva-
tives. The associated Hilbert space of square-integrable functions L2(Ω) is equipped with
the standard inner product for its elements v,w ∈ L2(Ω), defined by:

(v,w)Ω :=

∫
Ω

v ·w dx. (2)

In the Galerkin ROM approach, the governing variable, w(x, t) is discretized using basis
functions (modes) {wi(x)}ni=1 ∈ H with corresponding mode coefficients {ai(t)}ni=1

w(x, t) ≈ w0(x) +w[1..n](x, t) := w0(x) +
n∑

i=1

ai(t)wi(x), (3)

where w0(x) denotes the (steady) mean flow.
In the method of lines, the modes wi are known a priori and the goal is to find

mode coefficients ai that satisfy the differential equation (1). In general, the modes
wi can be chosen in a number of ways. In the context of spectral methods in CFD for
example, the basis vectors are usually analytical functions, e.g. trigonometric functions or
Chebyshev polynomials. The advantage of these functions is that their spatial derivatives
have analytical representations and numerically efficient algorithms such as the Fast

4



Fourier Transform (FFT) can be utilized. In the context of ROMs, the spatial basis
functions are usually derived a posteriori from a snapshot of a solution data set, like
the Proper Orthogonal Decomposition (POD) [19] or Dynamic Mode Decomposition
(DMD) [38, 42]. Attention is restricted here to modes computed using the POD method
(detailed in § 2.3), but it is noted that the methods proposed here hold for any choice
of reduced basis. The reason for the choice of the POD reduced basis is two-fold. First,
the POD is a widely used approach for computing efficient bases for fluid dynamical
systems. Moreover, ROMs constructed via the POD/Galerkin method lack in general an
a priori stability guarantee (meaning POD/Galerkin ROMs would benefit from ROM
stabilization approaches such as the one developed herein).

The mode coefficients in (3) ai are chosen to minimize the residual of the Galerkin
expansion (

wi,
d

dt
w[1..n]

)
Ω

−
(
wi,F

(
w0(x) +w[1..n]

))
Ω
= 0, (4)

for i = 1, ..., n. This projection yields a set of evolution equations for the mode coefficients
ai

d

dt
ai = fi(a), (5)

where a := (a1, . . . , an)
T represents the state and f := (f1, . . . , fn)

T its propagator.
Given some initial conditions, the evolution equation (5) can be integrated using standard
numerical integration techniques. The ROM system (5) is, by construction, small, and
can be integrated forward in time in real or near-real time unlike the high-fidelity CFD
model from which it is derived.

2.2. Nonlinear reduction of the compressible Navier-Stokes equations

Consider the 2D compressible Navier-Stokes equations in primitive variables4:

ζt + uζx + vζy − uxζ − vyζ = 0, (6a)

ut + uux + vuy + ζpx =
1

Re
ζ

[(
4

3
ux − 2

3
vy

)
x

+ (vx + uy)y

]
, (6b)

vt + uvx + vvy + ζpy =
1

Re
ζ

[(
4

3
vy − 2

3
ux

)
y

+ (vx + uy)x

]
, (6c)

pt + upx + vpy + γp(vx + uy) =
γ

RePr
[(pζ)xx + (pζ)yy]

+
1− γ

Re

[
ux

(
4

3
ux − 2

3
vy

)
+ vy

(
4

3
vy − 2

3
ux

)
+ (uy + vx)

2

]
.

(6d)

4Presented in two-dimensions for the sake of brevity only. Extension to the three-dimensional equa-
tions is straightforward.
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Here, ζ(x, t) = 1/ρ(x, t) is the specific volume (the inverse of the density, ρ(x, t)),
u(x, t) and v(x, t) are the Cartesian components of the flow velocity, p(x, t) is the pres-
sure, γ is the specific heat ratio, Re is the Reynolds number, Pr is the Prandtl number,
and the subscripts denote partial derivatives. A Galerkin projection yields a system of
coupled quadratic ODEs whose constant coefficients are calculated off-line and once and
for all (see Appendix A and Iollo et al. [21] for details). This system has the form:

da

dt
= C +La+

[
aTQ(1)a aTQ(2)a · · · aTQ(n)a

]T
, (7)

where C ∈ R
n, L ∈ R

n×n and Q(i) ∈ R
n×n, ∀i = 1, . . . , n.

Remark 1: The compressible Navier-Stokes equations are typically expressed in conser-
vative form. This form is convenient for many applications including CFD. The conser-
vative form contains rational functions of the unknowns and it is therefore not possible
to pre-compute ROMs using standard Galerkin projection; to attain any computational
speed-up a hyper-reduction step is necessary. Hyper-reduction is not always desirable,
as it can destroy energy conservation properties and/or symplectic time-evolution maps
[11, 22]. On the other hand, if the equations are expressed in primitive variables, hyper-
reduction can be avoided because all nonlinearities that appear are polynomial. It is for
this reason that, in our approach, we base the ROM on the equations (6). It is possible
to extend our proposed approach to the conservative formulation of the compressible
Navier-Stokes equations; see Remark 2.

2.3. Construction of optimal reduced-order basis via the POD

As discussed earlier, there exist a number of methods for calculating a reduced basis
{wi(x)}ni=1 ∈ H, e.g., proper orthogonal decomposition (POD) [45, 19], Dynamic Mode
Decomposition (DMD) [38, 42], balanced POD (BPOD) [35, 50], balanced truncation [17,
27], and the reduced basis method [39, 48]. In this paper, attention is restricted to reduced
bases constructed using the first of these approaches, namely the POD method. This
method is reviewed succinctly below.

Discussed in detail in Lumley [25] and Holmes et al. [19], POD is a mathematical
procedure that, given an ensemble of data and an inner product, constructs a basis for
the ensemble. The POD basis is optimal in the sense that it describes more energy (on
average) of the ensemble in the chosen inner product than any other linear basis of the
same dimension n. Let wn ∈ R

N denote a snapshot vector, computed as the solution of
the fully discretized version of Eq. (6), for some instance of its parameters — that is, for
some specific time t, some specific value of the set of flow parameters, or some bound-
ary/initial conditions underlying this governing equation. Suppose a total of K ∈ N

snapshots are collected from a high-fidelity simulation. A snapshot matrix is defined as
a matrix M ∈ R

N×K whose columns are individual snapshots. The main focus of this
paper is on unsteady flows and on snapshots associated with different time-instances.
Hence, M:,i := wi for i = 1, . . . ,K. Mathematically, POD seeks an n-dimensional
(n � K and n � N) subspace spanned by the set {wi(x)}ni=1 such that the difference
between the ensemble {wi}Ki=1 and its projection onto the reduced subspace is minimized
on average. That is, a POD basis is obtained by solving the following low-rank matrix
approximation problem:
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For a given snapshot matrix M ∈ R
N×K , find a lower rank matrix M̃ ∈ R

N×K that
solves the minimization problem

min
rank(˜M)=n

‖M − M̃‖F , (8)

where n � N ., and || · ||F is the Frobenious norm.

In this problem, the rank constraint can be taken care of by representing the unknown

matrix as M̃ = Ũ Ṽ , where Ũ ∈ R
N×n and Ṽ ∈ R

n×K , so that problem (8) becomes

min
˜U∈RN×n, ˜V ∈Rn×K

‖M − Ũ Ṽ ‖F . (9)

It is well-known that the solution of the above low-rank approximation problem is given
by the Eckart-Young-Mirsky [13, 26] theorem via the Singular Value Decomposition

(SVD) of M . Specifically, Ũ = U:,1:n and Ṽ = (ΣV T)1:n,: where X = UΣV T. This is
the so-called “method of snapshots” for computing a POD basis [45].

2.4. Accounting for modal truncation: eddy-viscosity based closure models

In the Kolmogorov description of the turbulence cascade, the large, energy–carrying
flow scales transfer energy to successively smaller scales where finally dissipative forces
can dissipate their energy [47, 31]. The large, energy-carrying scales are associated with
the large singular values of the snapshot matrix M , while the smaller, energy-dissipative
scales of the flow are associated with the smaller singular values. Since low order POD-
based ROMs remove modes corresponding to small singular values, these ROMs are, by
construction, not endowed with the dissipative dynamics of the flow.

Many of the popular methods for accounting for truncated modes fall in to the family
of eddy-viscosity based closure models5. In this family of methods, dynamics of the
truncated modes are modeled by modifying the coefficients of the Galerkin model. For
example, in the linear eddy-viscosity approach, the linear term of the Galerkin system is
modified. Equation (7) is replaced with

da

dt
= C + (L+ L̂)a+

[
aTQ(1)a aTQ(2)a · · · aTQ(n)a

]T
(10)

Here, L̂ is an additional linear term whose role is to modify the overall eigenvalue distri-
bution of the linear operator (L+ L̂), i.e., decrease the magnitude of this operator’s real
positive eigenvalues and increase the magnitude of its real negative eigenvalues. This
amounts to decreasing energy production and increasing energy dissipation, respectively.
In general the appropriate eigenvalue distribution is not known a priori and must be
identified via a solution matching procedure. For a detailed review of the performance
of the various methods based on this approach, the reader is referred to Wang et al.
[49], Rempfer and Fasel [34]

5Other ROM stabilization approaches, developed independently from the “modal constant eddy-
viscosity” approach and for a broader range of applications than fluid mechanics, e.g., the method of
Kalashnikova et al. [23] for stabilizing generic linear ROMs via optimization-based eigenvalue reassign-
ment, give rise to a similar modification to the linear term.
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Although the approach described above has been applied successfully to a large
number of Galerkin models of complex, high-Reynolds number flows, it has a signifi-
cant drawback, namely the loss of consistency between the Navier-Stokes equations and
the Galerkin system. Since the Galerkin system is modified empirically, the resulting
quadratic system of ODEs no longer corresponds to a Galerkin projection of the Navier-
Stokes equations.

In the following section, a novel stabilization and enhancement approach that retains
consistency is introduced.

3. Stabilization and enhancement of compressible flow ROMs via subspace
rotation

In this section the new proposed stabilization and enhancement approach for ROMs
is outlined. In this method the projection subspace is “rotated” into a more dissipative
regime by modifying the eigenvalue distribution of the linear operator. This new approach
may be interpreted as an a priori implementation of a traditional eddy-viscosity based
closure model.

The modes wi(x), i = 1, 2 . . . , n are constructed via linear-superposition of n+p (with
p > 0) most energetic POD modes. Mathematically this can be expressed as:

w̃i =

n+p∑
j=1

Xjiwj i = 1, · · · , n, (11)

where X ∈ R
(n+p)×n is the orthonormal (XTX = In×n) “rotation” matrix. The Galerkin

system tensors associated with these new modes are expressed as a function of X as
follows:

Q̃
(i)
jk =

n+p∑
s,q,r=1

XsiQ
(s)
qr XqjXrk i, j, k = 1, · · · , n, (12a)

L̃ = XTLX, (12b)

C̃ = XTC∗, (12c)

where C ∈ R
n+p, L ∈ R

(n+p)×(n+p) and Q(i) ∈ R
(n+p)×(n+p),∀i = 1, · · · , (n+ p) are the

Galerkin system coefficients corresponding to the first n+ p most energetic POD modes.
The new Galerkin system is of the form

da

dt
= C̃ + L̃a+

[
aTQ̃(1)a aTQ̃(2)a · · · aTQ̃(n)a

]T
, (13)

where the matrices Q̃(i), L̃ and C̃ are given by (12).
The goal of the proposed approach is to find X such that 1.) the new modes w̃i

remain good approximations of the flow, and 2.) the new Galerkin ROM is stable and
accurate. To ensure that these properties are satisfied, a constrained optimization prob-
lem is formulated for X. To guarantee that the new modes remain good approximations
of the flow, the distance ||X − In+p,n||F is minimized, where In+p,n are the first n
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columns of an n+ p identity matrix. To ensure that the ROM is stable and accurate, the
traditional linear eddy-viscosity closure ansatz is used as a constraint. Specifically, the
constraint involves the overall balance between linear energy production and dissipation
via the trace of the modified linear operator tr(L̃) = tr(XTLX) =

∑n
i λ̃i = η where

λ̃i are eigenvalues of XTLX. Although this constraint alone does not guarantee any
particular eigenvalue distribution, the objective function promotes minimal rotations and
thus minimal modifications of the eigenvalue distribution. Some alternative candidate
constraint and objective functions are outlined in Appendix B.

Mathematically, the constrained optimization problem for X outlined above reads as
follows:

minimize
X∈V(n+p),n

− tr
(
XTI(n+p)×n

)
subject to tr(XTLX) = η

(14)

where η ∈ R and

V(n+p),n ∈ {X ∈ R
(n+p)×n : XTX = In , p > 0}. (15)

In (15), V(n+p),n is the Stiefel manifold, defined as the set of (n+ p)×n matrices sat-
isfying the orthonormality condition XTX = In [33, 46]. In Equation (14) the objective
function is simplified by utilizing the property that for a real matrix ||A||2F = tr(ATA).
Thus, minimizing ||X − In+p,n||F is equivalent to minimizing −tr(XTI(n+p)×n).

The appropriate eigenvalue distribution η, must be identified using a solution match-
ing procedure. Discussion of an approach for selecting η is deferred until § 3.2.

Remark 2: In this paper, we assume that the ROM advanced forward in time during the
online time-integration step of the model reduction is a system of the form (10), which
arises when projecting the compressible Navier-Stokes equations in primitive specific
volume form (6) onto the reduced basis modes. As suggested in Remark 1, the method
described here can be applied in the case the ROM is based on the compressible Navier-
Stokes equations in conservative form (with or without hyper-reduction). In this case,
the model reduction would proceed as follows:

Step 1: Run a high-fidelity code to generate snapshots from which the POD basis will be
constructed.

Step 2: Construct from the snapshots collected in Step 1 a POD basis {wi(x)}n+p
i=1 for the

primitive variables.

Step 3: Project the compressible Navier-Stokes equations in primitive specific-volume form
(6) onto the modes from Step 2 to obtain a system of the form (10).

Step 4: Use the Galerkin matricesC, L andQ(i) to obtain from the original basis {wi(x)}n+p
i=1

a stabilized basis w̃i =
∑n+p

j=1 Xjiwj , i = 1, · · · , n, where X is the solution to (14).

Step 5: Transform the stabilized basis {w̃i(x)}ni=1 into conservative variables, and use it in
a ROM code that projects the compressible Navier-Stokes equations in conservative
form (with or without hyper-reduction).
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To apply this procedure, two ROM codes are required: a ROM code that projects
the compressible Navier-Stokes equations in primitive specific-volume form, and a ROM
code that projects the compressible Navier-Stokes equations in conservative form. The
former code is only needed to calculate the C, L and Q(i) matrices, which are used for
the basis stabilization.

3.1. Solution of constrained optimization problem

A common method for solving constrained optimization problems of the form (14)
is the method of Lagrange multipliers [29]. In this method, the Lagrangian of the opti-
mization problem is computed, and its stationary points are sought, yielding necessary
optimality conditions for local maxima and minima. The reader can verify that the
Lagrangian for Eq. (14) is

L(X,Λ1,Λ2) := −tr(XTI(n+p)×n)+tr(Λ1(X
TLX− η

nIn))+tr(Λ2(X
TX−In)), (16)

where Λ1 and Λ2 are diagonal matrices of Lagrange multipliers.
Suppose that X is a local maximizer of problem (14). Then X satisfies the first-order

optimality condition LX = −I(n+p)×n+Λ1(L+LT)X+2Λ2X = 0, tr(XTLX− η
nIn) =

0, and XTX − In = 0. Solving Eq.(14) using Lagrange multipliers is possible; however,
it is inefficient. Significant speed-ups are possible by satisfying the orthonormality con-
straint directly via optimization on the Stiefel matrix manifold. In this method, with
the help of the augmented Lagrange method, the constrained optimization problem is
reduced to an unconstrained optimization problem on the Stiefel manifold as follows:

minimize
X∈V(n+p),n

− tr(XTI(n+p)×n) +
μk

2
tr(XTLX − η

nIn)
2 − λLtr(XTLX − η

nIn),

(17)
where μk is increased until the constraint is satisfied to some desired precision. The
variable λL is an estimate of the Lagrange multiplier and is updated according to the
rule

λL ← λL − μktr(X
(k)TLX(k) − η

nIn), (18)

where X(k) is the solution of the unconstrained problem at the kth step. In this work,
the Manopt MATLAB toolbox [8] is used to solve (17). The algorithm is initialized with
X(0) = I(n+p)×n that corresponds to the standard Galerkin ROM. All derivatives in the
optimization algorithm are calculated analytically.

3.2. Solution matching procedure for η

In this section a solution matching procedure for the appropriate eigenvalue distri-
bution, η is outlined. The relative error of the solution delivered by a ROM is defined
as

e(η) =
〈ECFD〉T − 〈EROM 〉T

〈ECFD〉T
× 100 (19)

10



where E(t) =
∑n

i a
2
i (t) is the solution “energy” and 〈·〉T is the mean value (temporal

average). The solution matching procedure consists of identifying the root e(η) = 0 using
the bisection method as summarized in Algorithm 1. For all numerical experiments the

endpoint values are set to ηb = tr((X(0)TL(X(0)) = tr(L1:n,1:n), ηa = ηb − 5|ηb|, where
ηb corresponds to the standard n-order Galerkin ROM. The convergence tolerance, TOL
and the maximum number of iterations, NMAX are set to 0.1% and 100, respectively.

Remark 3. Here, we provide some general guidelines and remarks pertaining to the
proposed stabilization and fine-tuning algorithm.

• Our numerical experiments suggests n = p provides best performance; however the
optimal choice of p remains an open question.

• The proposed algorithm requires that p ≥ 1. For p = 0, the rotation matrix X is
square and therefore corresponds to a coordinate transformation that, by definition,
can have no effect on the dynamics of the system.

• Uniqueness results for the solution to (14) are not provided in this work. We have
found the results to be insensitive to the initial conditions, and the solutions to
(14) to be unique for a large number of random initial conditions.

• For some choices of n, p and η the optimization problem (17) does not have feasible
solutions. Consider the constraint tr(XTLX) = η. Since the trace is invariant un-
der cyclic permutations, we have that tr(XTLX) = tr(LXXT). The rectangular
matrix X is orthonormal XTX = In so the product XXT is positive semidefi-
nite. It was proved in [40] that for an arbitrary matrix A, and positive semidefinite
matrix B

tr(AB) ≤ |tr(AB)| ≤ |A|2tr(B) (20)

where |A|2 = σmax(A) is the spectral norm, i.e., the largest singular value of A.
Setting A = L and B = XXT, and utilizing the fact that the trace of a projection
matrix is equal to its rank, | ηn | ≤ σmax(A) is a necessary condition for the existance
of a solution to (14).

4. Numerical experiments

In this section, we evaluate the performance of Algorithm 1 for stabilizing compress-
ible flow ROMs on several 2D problems: a problem involving a laminar flow around an
inclined airfoil, and a channel-driven cavity problem at two Reynolds numbers. In all
cases, the flow is governed by the full compressible Navier-Stokes equations with constant
viscosity. Direct Numerical Simulations (DNS) are performed and POD basis functions
are derived from snapshots collected during these simulations. ROMs are derived by
projecting the fully compressible Navier-Stokes equations in specific volume (ζ–) form
onto the first n most energetic basis modes. The projection is performed off-line, and
once and for all, resulting in a system of n coupled quadratic ODEs in the form of (7).
From this point forward, such ROMs are referred to as “standard POD-Galerkin ROMs”,
where “standard” refers to the fact that no model is used to account for the dynamics of
the truncated modes, n+1, n+2, · · · ,∞. ROMs derived using the stabilization approach
proposed in this paper are referred to as “stabilized POD-Galerkin ROMs”.
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Algorithm 1: Stabilization algorithm for compressible Navier-Stokes equations

input : endpoint values [ηa, ηb] (where ηa < ηb), convergence tolerance TOL,
maximum iterations, NMAX, ROM size n and p ≥ 1, and Galerkin
system matrices associated with the first n+ p most energetic POD
modes, C ∈ R

n+p, L ∈ R
(n+p)×(n+p) and

Q(i) ∈ R
(n+p)×(n+p), i = 1, · · · , n+ p

output: stabilizing rotation matrix X, and eigenvalue distribution η

1 while N ≤ NMAX do
2 set new midpoint to ηc = (ηa + ηb)/2
3 solve constrained optimization problem on Stiefel manifold:

minimize
X∈V(n+p),n

− tr
(
XTI(n+p)×n

)
subject to tr(XTLX) = ηc

4 construct new Galerkin matrices using (12)
5 integrate numerically new Galerkin system
6 calculate relative ROM error e(ηc)
7 if |e(ηc)| < TOL then
8 η := ηc
9 output X, and η

10 terminate the algorithm

11 end
12 if sign(e(ηc)) = sign(e(ηa)) then
13 ηa = ηc
14 else
15 ηa = ηb
16 end

17 end
18 output (“Method failed, maximum number of iterations exceeded”)

12



4.1. High angle of attack laminar airfoil

The first test case involves the 2D flow around an inclined NACA0012 airfoil at Mach
0.7, and Re = 500 at 25 degrees angle of attack. The Reynolds number is based on the
chord of the airfoil, c. At this Reynolds number and angle of attack, the flow is separated
and the solution corresponds to a stable limit cycle. High-fidelity simulation snapshots
are generated using a second-order, finite-difference, embedded boundary (EB) solver.
The no-slip adiabatic boundary conditions are satisfied using a first-order ghost fluid
method. For a detailed description of the scheme the reader is referred to Balajewicz
and Farhat [4]. The snapshots correspond to a DNS of the compressible Navier-Stokes
equations. The viscosity of the fluid inside the domain is assumed constant. The com-
putational domain extends 20c in all directions and a sponge zone of thickness 2c is used
to help absorb waves entering and leaving the domain. The domain is discretized using
a non-uniform 300 × 300 cartesian grid. The flow is initialized by setting the solution
at all grid points to the free stream values. Time integration is performed using the
second-order BDF scheme and a constant time step corresponding to a CFL = 1 is used.
Snapshot collection begins after 5000 time steps to ensure the solution has reached the
limit cycle. A total of K = 500 snapshots are collected every 5 simulation time steps.
The first four basis functions capture approximately 86% of the snapshot energy.

Figure 1 illustrates the performance of a stabilized n, p = 4 ROM of the laminar airfoil
using η = −3.513×10−1. The stabilization algorithm terminated after 19 iterations with
a relative error e(η) = 0.017%. In Figure 1(a), the global energy of the high-fidelity
CFD model, and standard (i.e., unstabilized) and stabilized ROMs are illustrated. The
stabilized ROM is shown to track very accurately the mean of the fluctuating energy
of the CFD solution while the standard ROM overpredicts the mean by an order of
magnitude. To investigate the long term stability of the stabilized ROM, the system
was numerically integrated 100× the duration of the original snapshots. No change or
drift in trajectory was observed during this long integration period. In Figure 1(b) the
trajectories of the first and second temporal coefficient, a1(t), and a2(t) respectively, are
illustrated. The stabilized ROM accurately reproduces the closed orbit of the stable
limit cycle while the standard ROM predicts an unstable spiral. Figures 1(a) and 1(b)
demonstrate how the stabilized ROM reproduces reliably both the global mean and
fluctuating components of the CFD solution. The stabilizing transformation matrix X
for this problem is illustrated Figure 1(c). As expected the rotation of the projection
subspace is small as demonstrated by the fact that X ≈ I(n+p)×n. For this configuration,
the normalized error defined as ||X − I(n+p)×n||F /n is 0.083.

Finally, the predicted velocity magnitude at the final snapshot is illustrated in Fig-
ure 2. The stabilized ROM (Figure 2(a)) reproduces the velocity contours of the original
high-fidelity CFD solution (Figure 2(c)) remarkably well, in contrast to the standard
ROM (Figure 2(b)). This demonstrates the effectiveness of the proposed model reduc-
tion approach.

4.2. Channel driven laminar cavity

For the results presented in this section, the high-fidelity fluid simulation data are
generated using a Sandia National Laboratories’ in-house finite volume flow solver known
as SIGMA CFD. This code is derived from LESLIE3D [41], a Large Eddy Simulations
(LES) flow solver originally developed in the Computational Combustion Laboratory at
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Figure 1: Nonlinear model reduction of the laminar airfoil. Evolution of modal energy (a), and phase
plot of the first and second temporal basis, a1(t) and a2(t) (b); CFD (thick gray line), standard n = 4
ROM (dashed blue line), stabilized n, p = 4 ROM (solid black line). Stabilizing rotation matrix, X (c)

the Georgia Institute of Technology. The code has LES as well as DNS capabilities.
For the channel-driven laminar cavity problem considered here, the code was run in
DNS mode. For a detailed description of the schemes and models implemented within
LESLIE3D, the reader is referred to [15, 16].

ROMs for the channel-driven laminar cavity problem are constructed using a Sandia
in-house parallel C++ model reduction code known as Spirit, which constructs ROMs
for compressible flow problems using the POD and continuous projection method. This
code, detailed in [22], reads in the snapshot and mesh data written by a high-fidelity flow
solver, creates a finite element representation of the snapshots and computes the numer-
ical quadrature necessary for evaluation of the inner products arising in the Galerkin
projection step of the model reduction. All calculations are performed in parallel using
distributed matrix and vector data structures and parallel eigensolvers from the Trilinos
project [18], which allows for large data sets and a relatively large number of POD modes.
The libmesh finite element library [24] is used to compute the element quadratures.

In the discussion that follows, two variants of the 2D channel-driven laminar cavity
problem are considered: a low Reynolds number variant (Re ≈ 1500) and a moderate
Reynolds number variant (Re ≈ 5500). Both tests cases involve a Mach 0.6 viscous
laminar flow over a cavity in a T–shaped domain (Figure 5). The flow conditions for
both tests are similar to case L2 in [36]. The free stream pressure is 25 Pa, the free
stream temperature is 300 K, and the free stream velocity is 208.8 m/s. The viscosity μ
is spatially constant and calculated such that the above Reynolds numbers are achieved.
The thermal conductivity κ is also constant, calculated such that the Prandtl number
is Pr = 0.72. At the inflow boundary, a value of the velocity and temperature that
is above the free stream values is specified. The flow at the cavity walls is assumed
to be adiabatic and to satisfy a no-slip condition. The remaining outflow boundaries
are open, and a far-field boundary condition that suppresses the reflection of waves
into the computational domain is implemented here. The high-fidelity simulation is
initialized by setting the flow in the cavity to have a zero velocity, free stream pressure,
and temperature. The region above the cavity is initialized to free stream conditions and
the flow is allowed to evolve. As both SIGMA CFD and Spirit are 3D codes, a 2D mesh
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Figure 2: Snapshot of high angle of attack airfoil at final snapshot; contours of velocity magnitude. CFD
(top), standard n = 4 ROM (middle), and stabilized n, p = 4 ROM (bottom)
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of the domain Ω is converted to a 3D mesh by extruding the 2D mesh in the z-direction
by one element. Finally, it is noted that SIGMA CFD and Spirit work with different
meshes. The former code requires a structured hexahedral discretization, whereas the
latter assumes a tetrahedral discretization. To overcome this difference, the hexahedral
high-fidelity meshes associated with the snapshots are converted to tetrahedral meshes
prior to constructing the ROMs. This is accomplished by breaking up each hexahedral
element into six tetrahedral elements.

4.2.1. Low Reynolds number (Re ≈ 1500)

For the first, low Reynolds number variant of the channel-driven laminar cavity prob-
lem, the free-stream viscosity is set to μ∞ = 3.17× 10−6 kg/(m·s), so that Re = 1453.9.
The discretized domain, illustrated in Figure 5, consists of 98,408 nodes, cast as 292,500
tetrahedral finite elements within the ROM code, Spirit. The 2D extent of the domain
is: [(−6.42, 10) × (−1, 10)]\[(−6.42, 10) × (−1, 0) ∪ (2, 10) × (−1, 0)] m. The reader can
observe that the mesh is structured but non-uniform.

The high-fidelity solver, SIGMA CFD, is initiated with the conditions described above
and allowed to run until a statistically stationary flow regime is reached. At this point,
a total of K = 500 snapshots are collected from SIGMA CFD, taken every Δtsnap =
1 × 10−4 seconds. The snapshots are used to construct a POD basis of size 4 modes in
the L2 inner product. This basis captured about 91% of the snapshot energy. For more
details on this test case, the reader is referred to [22].

Figure 4 illustrates the performance of a stabilized n, p = 4 ROM of the low Reynolds
number cavity using η = −3.330×10−3. The stabilization algorithm terminated after 18
iterations with a relative error e(η) = −0.012%. In Figure 4(b), the modal energy of the
CFD, standard, and stabilized ROMs are illustrated. The stabilized ROM is shown to
track very accurately the energy of the original CFD solution while the standard ROM
is unable to reproduce this trajectory. The long term stability of the stabilized ROM
was validated by numerically integrating the system 100× the duration of the original
snapshots. No change or drift in trajectory was observed during this long integration
period. In Figure 4(b) the trajectories of the first and second temporal coefficient, a1(t),
and a2(t) respectively, are illustrated. The stabilized ROM predicts correctly the closed
orbit of the stable limit cycle while the standard ROM predicts an unstable spiral. The
stabilizing transformation matrixX for this problem is illustrated Figure 4(c). As before,
the rotation of the projection subspace is small as demonstrated by the fact that X ≈
I(n+p)×n. For this configuration, the normalized error defined as ||X − I(n+p)×n||F /n is
0.1182.

Figure 5 shows the Power Spectral Density (PSD) of the predicted pressure fluctua-
tions at the bottom right corner of the cavity, x = (2,−1), Both the fundamental and
first harmonic of the response is accurately predicted by the stabilized n, p = 4 ROM.
The PSD of the CFD signal was computed using all available snapshots from t = 0
to t = 380 where t is non-dimensional. On the other hand, the PSD of the stabilized
ROM was computed from the signal 100× past the duration of the original snapshots;
i.e. t = (38000− 380) to t = 38000.

Finally, a snapshot of the predicted velocity magnitude at the final snapshot is illus-
trated in Figure 6. The stabilized ROM (Figure 6(a)) reproduces the velocity contours
of the original high-fidelity CFD simulation (Figure 6(c)) remarkably well. In contrast,
the standard ROM (Figure 6(c)) is unstable and inaccurate.
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4.2.2. Moderate Reynolds number (Re ≈ 5500)

The next test case considered is also a channel-driven laminar cavity problem, but at a
higher Reynolds number. The only parameter that is different is the free-stream viscosity,
now set to μ∞ = 8.46 × 10−7 kg/(m·s), so that Re = 5452.1. Also changed is the size
of the geometry extent, which has a larger sponge region near the outflow regions. This
is needed to suppress adequately the reflection of waves into the computational domain
for this problem. Toward this effect, the 2D extent of the domain is: [(−6.42, 30) ×
(−1, 30)]\[(−6.42, 30) × (−1, 0) ∪ (2, 30) × (−1, 0)] m. The geometry is discretized by
117,328 nodes, cast as 345,900 tetrahedral elements in Spirit. As before, the mesh is
structured but non-uniform. The flow is significantly more chaotic than the Re ≈ 1500
case considered in Section 4.2.1.

A total of K = 500 snapshots are collected from SIGMA CFD at increments Δtsnap =
1 × 10−5 seconds. As before, snapshots collection does not begin until a statistically
stationary flow regime has been reached. From these snapshots, a POD basis of size 20
modes is constructed in the L2 inner product. This basis captures about 72% of the
snapshot energy. Typically, n would be selected such that the POD basis captures a
greater percentage of the snapshot ensemble energy (e.g., ≈ 90% or more). We choose
a basis that captures less energy of the snapshot set to highlight the effectiveness of our
approach for low-dimensional POD expansions.

Figure 7 illustrates the performance of a stabilized n, p = 20 ROM of the higher
Reynolds number cavity problem using η = −5.679× 10−1. The stabilization algorithm
terminated after 25 iterations with a relative error e(η) = −0.065%. In Figure 7(a), the
modal energy of the CFD, standard, and stabilized ROMs are illustrated. The standard
ROM is shown to overpredict the energy of the original CFD solution by an order of
magnitude. The predictive power of the stabilized ROM is demonstrated by numerically
integrating the ROM 10× the duration of the original snapshots. The stabilizing trans-
formation matrix X for this problem is illustrated Figure 7(b). As before, the rotation
of the projection subspace is small as demonstrated by the fact that X ≈ I(n+p)×n. For
this configuration, the normalized error defined as ||X − I(n+p)×n||F /n is 0.0384.

Figures 8 and 9 shows the PSDs of the predicted pressure fluctuations at locations
x1 = (2,−0.5) and x2 = (2, 0.5), respectively. The PSD of the CFD signal was computed
using all available snapshots from t = 0 to t = 67 where t is non-dimensional. On the
other hand, the PSD of the stabilized ROM was computed from the signal 10× past
the duration of the original snapshots; i.e. t = (670 − 67) to t = 670. The stabilized
ROM accurately predicts the chaotic pressure fluctuations at both locations. Figure 10
illustrates the Cross Power Spectral Density (CPSD) for pressure fluctuations at x1 and
x2. Both the power and phase lag at the fundamental frequency, and the first two super
harmonics (normalized frequency (×π rad/sample) ≈ 0.18, 0.35, and 0.53) are predicted
accurately using the stabilized ROM. The phase lag at these three frequencies in Figure 10
as predicted by the CFD and the stabilized ROM is identified by red squares and blue
triangles, respectively. As expected, the low-dimensional ROM is unable to reproduce
the phase lag of low-amplitude frequencies or higher-order super harmonics.
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Table 1: CPU times for off-line and on-line computations.

Numerical Experiment

Procedure Airfoil
Cavity,
Low-Re

Cavity,
Moderate-Re

CFD # of DOF 360,000 288,250 243,750
Time-integration of CFD 7.8 hrs 72 hrs 179 hrs
Basis construction (size n+ p ROM) 0.16 hrs 0.88 hrs 3.44 hrs
Galerkin projection (size n+ p ROM) 0.74 hrs 5.44 hrs 14.8 hrs
Stabilization 28 sec 14 sec 170 sec
ROM # of DOF 4 4 20
Time-integration of ROM 0.31 sec 0.16 sec 0.83 sec

Online computational speed-up 9.1× 104 1.6× 106 7.8× 105

Finally, a snapshot of the predicted velocity and pressure magnitudes at the final
snapshot are illustrated in Figure 11 and 12. Since the flow at this higher Reynolds
number is chaotic, the low-dimensional model can not be expected to track the original
snapshots exactly. However, the snapshots demonstrates that the stabilized ROMs faith-
fully reproduce the large features of the flow. The same cannot be said of the standard
ROMs.

4.3. Computational speed-up

For each problem considered, the speed-up factor delivered by its ROM for the online
computations is reported in Table 1. All ROMs are solved in MATLAB using ODE45s.
For more details on this algorithm, the reader is referred to Shampine and Reichelt [44].
All online time-integration CPU times were measured using the tic-toc function on
a single computational thread via the -singleCompThread start-up option. The CFD
time-integration, basis construction and Galerkin projection times given in the table are
reported in CPU-hours, calculated as the product of the number of processors used in
the computation and the mean CPU time over all processors. The number of processors
employed varied between 1 and 128. The online speed-up is calculated by evaluating the
ratio between the time-integration of the CFD and the time-integration of the ROM.
The reader can observe that the ROM online speedup is on the order of at least 104 for
all three problems considered. Moreover, the stabilization step takes very little time (on
the order of seconds/minutes).

5. Conclusions

In this paper, an approach for stabilizing and enhancing projection-based fluid ROMs
of the compressible Navier-Stokes equations is developed. Unlike traditional approaches,
no empirical turbulence modeling terms are required, and consistency between the ROM
and the CFD model from which the ROM is derived is maintained. Mathematically, the
approach is formulated as a trace minimization on the Stiefel manifold. The method
is shown to yield both stable and accurate low-dimensional models of several represen-
tative compressible flow problems. In particular, the method is demonstrated on flows
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Figure 3: Domain and mesh for viscous channel-driven cavity problem

at higher Reynolds number where the dynamics are chaotic. Future work will include
the extension of the proposed approach to problems with generic non-linearities, where
the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD) following
the procedure described in Remark 2, as well as to predictive applications with varying
Reynolds number and geometry.

19



0 200 400 600
10−3

10−2

10−1

100

t

E

(a)

−0.1 0 0.1

−0.1

0

0.1

a1

a
2

(b)

1 2 3 4

1
2
3
4
5
6
7
8

j

i

0

0.2

0.4

0.6

0.8

(c)

Figure 4: Nonlinear model reduction of channel-driven cavity at Re ≈ 1500. Evolution of modal energy
(a) and phase plot of the first and second temporal basis, a1(t) and a2(t) (b); CFD (thick gray line),
standard n = 4 ROM (dashed blue line), stabilized n, p = 4 ROM (solid black line). Stabilizing rotation
matrix, X (c)
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Figure 5: PSD of p(x, t) where x = (2,−1) of channel-driven cavity Re ≈ 1500. CFD (thick gray line),
stabilized n, p = 4 ROM (black line)
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Figure 6: Snapshot of channel-driven cavity Re ≈ 1500; contours of u-velocity magnitude at the final
snapshot. CFD (top), standard n = 4 ROM (middle) and stabilized n, p = 4 ROM (bottom)
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Figure 7: Nonlinear model reduction of channel-driven cavity at Re ≈ 5500. Evolution of modal energy
(a); CFD (thick gray line), standard n = 20 ROM (dashed blue line), stabilized n, p = 20 ROM (solid
black line). Stabilizing rotation matrix, X (b)
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Figure 8: PSD of p(x1, t) where x1 = (2,−0.5) of channel-driven cavity at Re ≈ 5500. CFD (thick gray
line), stabilized n, p = 20 ROM (black line)
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Figure 9: PSD of p(x2, t) where x2 = (0,−0.5) of channel-driven cavity at Re ≈ 5500. CFD (thick gray
line), stabilized n, p = 20 ROM (black line)
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Figure 10: CPSD of p(x1, t) and p(x2, t) where x1 = (2,−0.5) and x2 = (0,−0.5) of channel-driven
cavity at Re ≈ 5500. CFD (thick gray line), stabilized n, p = 20 ROM (black line)
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Figure 11: Snapshot of channel-driven cavity Re ≈ 5500; contours of u-velocity magnitude at the final
snapshot. CFD (top), standard n = 20 ROM (middle), and stabilized n, p = 20 ROM (bottom)
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Figure 12: Snapshot of channel-driven cavity Re ≈ 5500; contours of pressure at the final snapshot.
CFD (top), standard n = 20 ROM (middle), and stabilized n, p = 20 ROM (bottom)
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Appendix A. Construction of Galerkin matrices for the compressible Navier-
Stokes equations

In this section the construction of Galerkin matrices for the compressible Navier-
Stokes equations (6) is outlined. Consider the standard orthonormal POD vectors ui,
vi, ζi, and pi, i = 0, · · · , n where i = 0 identifies the constant mean flow. The following
products are generated for j, k = 0, · · · , n:

φ
(j,k)
1 = uj � ζkx + vj � ζky − ux � ζk − vjy � ζk, (A.1a)

φ
(j,k)
2 = uj � uk

x + vj � uk
y + ζj � pkx − 1

Re
ζj �

[(
4

3
uk
x − 2

3
vky

)
x

+ (vkx + uk
y)y

]
,

(A.1b)

φ
(j,k)
3 = uj � vkx + vj � vky + ζj � pky − 1

Re
ζj �

[(
4

3
vky − 2

3
uk
x

)
y

+ (vkx + uk
y)x

]
, (A.1c)

φ
(j,k)
4 = uj � pkx + vj � pky + γpj � (vkx + uk

y)−
γ

RePr

[
(pj � ζk)xx + (pj � ζk)yy

]
+

1− γ

Re

[
uj
x �

(
4

3
uk
x − 2

3
vky

)
+ vjy �

(
4

3
vky − 2

3
uk
x

)
+ (uj

y + vjx)� (uk
y + vkx)

]
,

(A.1d)

where subscripts identify partial spatial derivatives, and � is the Hadamard element-by-
element product. A standard L2 Galerkin projection for i, j, k = 0, · · · , n is performed
as follows:

b(i)(j, k) =
N∑

m=0

[
h�

(
ζi � φ

(j,k)
1 + ui � φ

(j,k)
2 + vi � φ

(j,k)
3 + pi � φ

(j,k)
4

)]
m
, (A.2)

where h is a vector of element volumes. Finally, the standard Galerkin matrices for
i, j, k = 1, · · · , n with a0 = 1, are given by

Ci = b(i)(0, 0), (A.3a)

Li,j = b(i)(j, 0) + b(i)(0, j), (A.3b)

Q
(i)
j,k = b(i)(j, k). (A.3c)

Appendix B. Alternative formulations of the constrained optimization prob-
lem

In this section some alternative formulations of the proposed stabilization algorithm
are laid out. In the current implementation, i.e. Eq. (14), the eddy-viscosity closure
ansatz appears in the form of the trace of the modified linear operator. This alone does
not place any guarantees on the eigenvalues of the linear operator. Indeed there are an
infinite number of matrices, and thus eigenvalue distributions, with the same trace. It
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is straight forward to modify our approach to include a constrain for each individual
eigenvalue

λ̃i = αi, i = 1, . . . , n (B.1)

where λ̃i are eigenvalues L̃ = XTLX. Since the subspace rotations modifies all terms of
the Galerkin system, the most general constraint would include the complete Galerkin
system

XTC −ΦC = 0 (B.2a)

XTLX −ΦL = 0 (B.2b)

n+p∑
s,q,r=1

XsiQ
(s)
qr XqjXrk −Φ

(s)
Q = 0, s = 1, . . . , n (B.2c)

where ΦC , ΦL, and Φ
(s)
Q are of appropriate dimension. Such fine grained control would

in principle yield better performing ROMs. Unfortunately since αi, ΦC , ΦL, and Φ
(s)
Q

are not known a priori, the solution matching algorithm would be very high dimensional.
There are also opportunities for exploring alternative objective functions. For exam-

ple, one may be interested in minimizing the rotation based on some weighted norm

||W (X − In+p,n) ||F . (B.3)

One natural choice for a weighted might be the POD eigenvalues, Σ but in principle
arbitrary weightings can be implemented.
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