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Quantitative phase-field models have been developed as feasible computational tools 
for solving the free-boundary problem in solidification processes. These models are 
constructed with some polynomials of the phase-field variable that describe variations 
of the physical quantities inside the diffuse interface. The accuracy of the simulation 
depends on the choice of the polynomials and such dependence is indispensable for 
high-performance computing and valuable for extending the range of applications of the 
model to several physical systems. However, little is known about the dependence of the 
accuracy on the choice of the polynomials. In this study, numerical testing is carried 
out for quantitative phase-field models with extensive sets of polynomials (24 different 
models) for isothermal solidification in binary alloys. It is demonstrated in two-dimensional 
simulations of dendritic growth that a specific set of polynomials must be employed to 
achieve high accuracy in the models with double-well and double-obstacle potentials. Both 
types of model with the best set of polynomials yield almost the same numerical accuracy.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Accurate control of the solidification microstructures in alloys is an issue of great importance in the field of metallurgy 
because microstructural features such as the size and morphology of the solidified grains and microsegregation directly 
determine the properties of the as-cast alloys. Several methods have been developed for simulation of solidification mi-
crostructures on the basis of the sharp-interface description [1–4] and also the diffuse-interface description. The phase-field 
model is a diffuse-interface model for describing microstructural processes in solidification [5–9]. It serves as a viable com-
putational tool for solving the free-boundary problem (FBP) of solid–liquid interfaces. Although phase-field model generally 
has a high computational cost, recent advances in parallel computing techniques have enabled large-scale phase-field sim-
ulations of the competitive growth of a bunch of dendrites [9,10]. Furthermore, progress has been made in evaluating the 
input parameters in the phase-field model on the basis of atomistic simulations [10–12]. Such progress has rapidly increased 
the effectiveness of phase-field simulations for analyzing and controlling solidification microstructures.
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In the phase-field model, the interface is not sharp but a diffuse entity having a thickness. Since state variables such as 
the order parameter called the phase-field variable and the concentration field(s) change continuously inside the interface, 
the computational cost increases with decreasing interface thickness. The interface thickness must be chosen to be much 
larger than the atomic distance but smaller than any length scale relevant to the microstructure (e.g., the tip radius of a 
dendrite). Therefore, the interface thickness in this model is a constant determined by the scale of microstructure and the 
computational cost. When a finite value is assigned to the thickness, however, it is difficult to use early models in a quantita-
tive manner. The early models are called standard phase-field models in this paper. This problem arises because the standard 
models were constructed to reproduce the solution of the FBP in the limit of zero thickness (the sharp-interface limit). In 
an actual simulation with a finite thickness, they suffer from unphysical magnification of the interface effects, causing an 
undesired dependence of the simulation result on the thickness. This serious problem was resolved in so-called quantita-
tive phase-field models [13–21]. These quantitative models were constructed on the basis of the thin-interface asymptotics, 
where the model is mapped onto the FBP in the limit of non-zero thickness. The first quantitative model was proposed for 
solidification in a pure substance with symmetric diffusion (i.e., equal thermal diffusivity in the liquid and solid phases) 
[13], and it was extended to deal with alloy solidification with one-sided diffusion [13–18] (negligible solute diffusivity in 
the solid) and also two-sided asymmetric diffusion (non-zero solute diffusivity in the solid) [19–21]. The essential ingredi-
ent in the quantitative phase-field models for alloy systems is the so-called anti-trapping current, a correction term for the 
diffusion flux inside the interface [14]. Although this correction term was introduced in a phenomenological manner in the 
early models, variational formulations of quantitative phase-field models including the anti-trapping current have recently 
been demonstrated for a pure substance [22] and for a binary alloy system with two-sided asymmetric diffusion [23].

Quantitative phase-field models were developed as an effective alternative to the FBP and have been increasingly uti-
lized to simulate solidification microstructures [24–32]. It is important to point out that there are several possible forms 
of quantitative phase-field models and that not all the models yield accurate numerical solutions. In the phase-field mod-
els, continuous variations of the physical quantities inside the interface are described by polynomials of the phase-field 
variable, which are called interpolating functions in this paper. As demonstrated in an early study [13], different forms 
of the interpolating function related to the enthalpy result in different numerical accuracy for dendritic growth in a pure 
substance. In the case of isothermal solidification in a binary alloy, which is our main concern, four types of interpolating 
function must be introduced to represent the continuous variations of the barrier potential between the solid and liquid, 
the bulk’s free energy densities (driving force), the concentration field and the diffusivities. There are various possible forms 
for each interpolating function and a different set of functions should result in different numerical accuracy. However, lit-
tle has been clarified regarding the accuracy of models with different sets of interpolating functions. For instance, either 
the double-well potential [13–29] or the double-obstacle potential [30–36] has been employed to represent the barrier 
potential in the standard and quantitative phase-field models. Each potential offers different advantages in terms of ease 
of implementation, applicability to multiphase systems and so forth. However, it is not clear which potential is superior 
in terms of numerical accuracy because a fair comparison between them has not been carried out in the framework of 
quantitative simulations. Note that only a few sets of interpolating functions have so far been employed in quantitative 
phase-field simulations [13–32]. Models with the other sets of functions have not yet been implemented and hence they 
have not been subjected to numerical testing. The dependence of the numerical accuracy on the choice of interpolating 
functions is important information in the development of quantitative phase-field models for a variety of physical systems. 
In addition, finding the best set of interpolating functions is an issue of great interest in the high-performance computing 
of solidification microstructures.

The main purpose of this study is to elucidate the dependence of the numerical accuracy of quantitative phase-field 
models on the choice of the interpolating functions and also to find the best set of functions by performing detailed com-
parisons of the numerical accuracy between them. The numerical testing is carried out for 24 different quantitative models. 
It is found that models constructed with the double-well and double-obstacle potentials yield comparably good numerical 
accuracy as long as the best set of interpolating functions is employed. In the next section, we provide a brief explanation of 
the quantitative phase-field models and interpolating functions. Detailed comparisons of the accuracy between the models 
are demonstrated by performing one-dimensional simulations of a moving flat interface and two-dimensional simulations 
of dendritic growth in Sec. 3. The conclusions are given in Sec. 4.

2. Quantitative phase-field models and computational details

2.1. Model for isothermal solidification in a dilute binary alloy

In this study, we focus on isothermal solidification in a dilute binary alloy which is a simple case suitable for the present 
purpose. We consider a dilute alloy with a constant partition coefficient k, constant diffusivity in the liquid Dl and negligible 
solid diffusivity (i.e., one-sided diffusion). Then, the sharp-interface equations for the moving solid–liquid interface are given 
as

∂tcl = Dl∇2cl, (1)

(1 − k)cl Vn = −Dl∂ηcl|∗, (2)

c∗
l

ce = 1 − (1 − k)d0 K − (1 − k)βVn, (3)

l
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where cl is the concentration in the liquid phase, ∂ηcl|∗ is the concentration gradient in the normal direction to the solid–
liquid interface on the liquid side of the interface, c∗

l is the liquid concentration at the interface, ce
l is the equilibrium 

concentration in the liquid at the holding temperature, d0 is the chemical capillary length, K is the mean curvature, β is 
the inverse of the linear kinetic coefficient and Vn is the normal velocity of the solid–liquid interface. In Eq. (3), anisotropic 
effects are omitted for simplicity.

In the quantitative phase-field models, the microstructural evolution process is described by the spatial and temporal 
variations of the phase-field variable φ and concentration field c. φ takes values of +1 in the solid and −1 in the liquid 
and it continuously changes from +1 to −1 inside the solid–liquid interface. For expedience, we use the dimensionless 
concentration field u defined as u = (cl − ce

l )/[(1 − k)ce
l ] instead of the concentration field c. The time evolution equations 

of φ and u in the two-dimensional system are written as [15,19],

τas(�n)2∂tφ = W 2∇ · [as(�n)2∇φ
] + W 2

∑
i=x,y

∂i

[
|∇φ|2as(�n)

∂as(�n)

∂(∂iφ)

]
− df (φ)

dφ
− dg(φ)

dφ
a1

W

d0
u, (4)

1

2

(
1 + k − (1 − k)h(φ)

)
∂t u = ∇[

Dlq(φ)∇u + �JAT
] + 1

2

(
1 + (1 − k)u

)
∂th(φ), (5)

with

τ = βW 2

d0
+ a1a2W 3(1 + (1 − k)u)

Dld0
, (6)

�n = −∇φ/|∇φ|, (7)

as(�n) = (1 − 3ε4)

[
1 + 4ε4

1 − 3ε4

(∂xφ)4 + (∂yφ)4

|∇φ|4
]
, (8)

�JAT = aAT(φ)
(
1 + (1 − k)u

)
W ∂tφ

∇φ

|∇φ| . (9)

Here τ is the relaxation constant for φ, W is a measure of the interface thickness as explained later and �n is the unit 
vector normal to the interface. We included the crystalline anisotropy in Eq. (4), where as(�n) given by Eq. (8) is the function 
describing a fourfold crystalline anisotropy and ε4 represents the strength of anisotropy of the interfacial energy. �JAT given 
by Eq. (9) is the anti-trapping current, which corrects the diffusion flux inside the interface, making the model consistent 
with the sharp-interface equations (1)–(3). aAT (φ) is given as [15]

aAT(φ) = (h(φ) − 1)(1 − q(φ))

2∂φ/∂η′ , (10)

where η′ = η/W and η is the spatial coordinate in the direction normal to the interface and

∂φ/∂η′ = −√
2 f (φ). (11)

In Eqs. (4), (5), (10) and (11), there are four interpolating functions, f (φ), g(φ), h(φ) and q(φ). f (φ) represents the barrier 
potential between the solid and liquid phases, exhibiting the minima at φ = ±1. g(φ) is an interpolating function between 
the bulk’s free energy densities of the solid and liquid and is usually a monotonically increasing function of φ. h(φ) and q(φ)

are interpolating functions for the concentration and diffusivity, respectively, with h(±1) = ±1, q(+1) = 0 and q(−1) = 1. 
To achieve a correct mapping of the model onto the sharp-interface equations (1)–(3), these functions must satisfy the 
following constraints;

+1∫
0

(
h(φ) − h(+1)

) dφ

∂φ/∂η′ =
−1∫
0

(
h(φ) − h(−1)

) dφ

∂φ/∂η′ = H, (12)

+1∫
0

(
q(φ) − q(+1)

) dφ

∂φ/∂η′ =
−1∫
0

(
q(φ) − q(−1)

) dφ

∂φ/∂η′ = Q . (13)

For simplicity, q(φ) is defined in this study as

q(φ) = 1 − h(φ)

2
. (14)

Then, the constraint of Eq. (13) becomes equivalent to Eq. (12). Equation (14) has been commonly employed in previous 
works [15,19]. Furthermore, the constants a1 and a2 in Eqs. (4) and (6) are given as
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Table 1
Interpolating functions employed in this study (left-hand side) and their 
first derivatives (right-hand side).

f p

f1
1
4 (1 − φ2)2 d f1/dφ −φ + φ3

f2
1
2 (1 − φ2) d f2/dφ −φ

gq

g1
15
8 (φ − 2

3 φ3 + φ5

5 ) dg1/dφ 15
8 (1 − φ2)2

g2
1
2 (3φ − φ3) dg2/dφ 3

2 (1 − φ2)

g3
2
π (sin−1 φ + φ

√
1 − φ2) dg3/dφ 4

π

√
1 − φ2

g4 φ dg4/dφ 1

hr

h1 φ dh1/dφ 1
h2

1
2 (3φ − φ3) dh2/dφ 3

2 (1 − φ2)

h3
15
8 (φ − 2

3 φ3 + φ5

5 ) dh3/dφ 15
8 (1 − φ2)2

a1 = I

J
, (15)

a2 = J H + K

2I
, (16)

where

I = √
2

+1∫
−1

√
f (φ)dφ, (17)

J = g(+1) − g(−1), (18)

K =
−1∫
0

(
g(−1) − g(φ)

)
h(φ)

dφ

∂φ/∂η′ −
+1∫
0

(
g(+1) − g(φ)

)
h(φ)

dφ

∂φ/∂η′ . (19)

Further detail on the quantitative phase-field models can be found in Refs. [15,19].
Several forms for f (φ), g(φ) and h(φ) have been employed in the standard and quantitative phase-field models [13–35]. 

As mentioned in the introduction, the numerical accuracy of the quantitative phase-field model (and standard models) 
depends on the chosen forms of the interpolating functions. In this paper, we investigate the numerical accuracy of the 
models with different sets of interpolating functions.

2.2. Interpolating functions

The interpolating functions tested in this study are explained in this section. Hereafter, f (φ), g(φ) and h(φ) are respec-
tively denoted as f p(φ), gq(φ) and hr(φ), where the subscripts p, q and r specify different forms of the functions.

The interpolating function f p(φ) should be of primary importance in the model because it determines the steady-state 
profile of φ across the interface (traveling wave solution). Two types of function, specifically the double-well potential f1(φ)

and double-obstacle potential f2(φ), have been employed in previous models [13–35]. These are given as

f1(φ) = 1

4

(
1 − φ2)2

, (20)

f2(φ) = 1

2

(
1 − φ2). (21)

In the latter case, the obstacle potentials are introduced at φ = ±1, viz., f2(φ) = ∞ for |φ| ≥ 1. The first derivatives of these 
functions are listed in Table 1. From Eq. (4), in two-phase equilibrium (∂tφ = 0 and u = 0), the following spatial profile of φ
across the interface is obtained for f1(φ);

φ = − tanh

(
η√

2WDW

)
, (22)

where the boundary conditions φ → −1 for η → +∞ and φ → +1 for η → −∞ are considered and the anisotropy is 
neglected. WDW is identical to W in Eq. (4). Under the same boundary conditions, the spatial profile of φ for f2(φ) is given 
as
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Table 2
Coefficient of antitrapping current, aAT(φ).

p r aAT (φ)

1 1 1
2
√

2

2 1
8
√

2
(φ2 − 1)(φ2 − 4)

3 1
128

√
2
(8 − 7φ(1 + φ) + 3φ3(1 + φ))(8 + 7φ(1 − φ) − 3φ3(1 − φ))

2 1 1
4

√
(1 − φ2)

2 1
16

√
(1 − φ2)(φ2 − 1)(φ2 − 4)

3 1
256

√
(1 − φ2)(8 − 7φ(1 + φ) + 3φ3(1 + φ))(8 + 7φ(1 − φ) − 3φ3(1 − φ))

φ = − sin

(
η

WDO

)
, (23)

for −(π/2)WDO ≤ η ≤ (π/2)WDO , φ = −1 for η > (π/2)WDO and φ = +1 for η < −(π/2)WDO . Here, WDO corresponds to 
W in Eq. (4).

The double-well potential has been employed in most quantitative phase-field simulations [13–29]. In this potential, 
d f1/dφ = 0 is satisfied at φ = ±1 and no special care is required for the calculation of ∂tφ (Eq. (4)) near φ = ±1. In the 
case of the double-obstacle potential, however, d f2/dφ �= 0 at φ = ±1 and hence the range of |φ| > 1 should be manually
prohibited in the numerical integration of Eq. (4). The double-obstacle potential has the advantage that the interfacial 
region is well defined as the region of |φ| < 1 with thickness πWDO . Moreover, this potential is beneficial for modeling 
multiphase systems [33–35]. Quantitative phase-field simulations with this potential were reported in Refs. [30,32]. One of 
these functions has been adopted in many works in the light of ease of handling, appropriateness in the modeling and/or 
convenience of numerical implementation. A fair comparison between the quantitative models with these functions should 
be made to reveal which potential is superior in terms of the numerical performance. This point is addressed in this study.

The interpolating function gq(φ) in Eq. (4) determines the contribution of the driving force to ∂tφ in the interface region. 
Four types of function listed in Table 1 have been employed in previous studies [13–36], and these are tested in this study. 
All these functions are monotonically increasing functions of φ in the range of −1 ≤ φ ≤ 1. g1(φ) has been employed in 
most quantitative phase-field simulations [13–30]. The usage of g3(φ) can be found in Ref. [30]. Here, care is necessary in 
the numerical simulation of the model with g4(φ) and f1(φ). When g1(φ), g2(φ) and g3(φ) are used, the contribution of 
the driving force to ∂tφ vanishes at φ = ±1 because dgq/dφ = 0 at φ = ±1. In the case of g4(φ), however, the contribution 
of the driving force is finite even at φ = ±1 since dg4/dφ = 1. This does not cause any problem in the model with the 
double-obstacle potential because the numerical integration of Eq. (4) is prohibited at φ = ±1, where f2(φ) = ∞. The finite 
contribution of the driving force at φ = ±1 causes a problem in the model with f1(φ). Specifically, it results in a large 
deviation of the φ profile from Eq. (22). In this case, hence, the contribution of the driving force should be removed near 
φ = ±1. In this study, a cutoff value of the phase-field variable, φc , is introduced and Eq. (4) is solved only for the region of 
|φ| < φc in the model with f1(φ) and g4(φ). Finally, the interpolating function hr(φ) describes the continuous variations of 
the concentration and diffusivity in the interface, and we employed the three types of functions shown in Table 1.

In Eq. (10), aAT(φ) depends on both f p(φ) and hr(φ). The form of aAT(φ) for each set of f p(φ) and hr(φ) is shown in 
Table 2, where p and r indicate the types of functions f p(φ) and hr(φ), respectively. Furthermore, the solvability integrals 
I , J , H and K and the constants a1 and a2 for each set of functions are listed in Table 3. All these values were analytically 
obtained except for the case of p = 1 and q = 3, where the value of K was calculated by the numerical integration of 
Eq. (19). In this study, these models are denoted as models p-q-r as listed in the last column in Table 3. Model 1-1-1 is 
the quantitative phase-field model employed in most of the previous works [13–29] and its numerical accuracy has been 
investigated in detail. The quantitative model 2-3-1 was employed in the simulation of directional solidification in Ref. [30]
and its convergence behavior was demonstrated in Ref. [31]. In this study, the numerical accuracy of the 24 different models 
listed in Table 3 is investigated.

2.3. Thickness measure

The interface thickness is an important parameter affecting the accuracy of the phase-field models. If the interface is 
defined as the region of |φ| < 1, its thickness is clearly given as πWDO in the models with the double-obstacle potential 
f2(φ). On the other hand, the thickness cannot be well defined in the models with the double-well potential f1(φ), as can 
be understood from the hyperbolic tangent function, Eq. (22). In previous works on model 1-1-1 [13,15,19–21,23], WDW was 
employed as a measure of the interface thickness in the numerical testing. In this study, we define the following quantity, 
Wc , as a measure of the thickness for the models with f1(φ) and f2(φ);

Wc = WDW = WDO/
√

2. (24)

When the same value is assigned to Wc in both models, the slopes of φ at φ = 0 are identical in both models. Fig. 1(a) shows 
the steady-state profiles of φ calculated by Eqs. (22) and (23) for Wc = 1 × 10−6 m. Note that the actual interface thickness 
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Table 3
Values for the solvability integrals and constants for each quantitative phase-field model.

p q r I J H K a1 a2 model

1 1 1 0.94281 1.0667 0.98026 0.13605 0.88388 0.62667 1-1-1
2 0.62671 0.18992 0.45524 1-1-2
3 0.49412 0.22359 0.39810 1-1-3

2 1 1.3333 0.98026 0.26434 0.70711 0.83333 1-2-1
2 0.62671 0.35862 0.63333 1-2-2
3 0.49412 0.41418 0.56905 1-2-3

3 1 1.5708 0.98026 0.42907a 0.60021 1.0441 1-3-1
2 0.62671 0.56791a 0.82325 1-3-2
3 0.49412 0.64600a 0.75422 1-3-3

4 1 2.0000 0.98026 0.86791 0.47140 1.5000 1-4-1
2 0.62671 1.1036 1.2500 1-4-2
3 0.49412 1.2274 1.1750 1-4-3

2 1 1 1.5708 1.0667 0.57080 0.08492 1.47262 0.22083 2-1-1
2 0.40413 0.11953 0.17526 2-1-2
3 0.32913 0.14154 0.15680 2-1-3

2 1 1.3333 0.57080 0.15524 1.17810 0.29167 2-2-1
2 0.40413 0.21383 0.23958 2-2-2
3 0.32913 0.24941 0.21908 2-2-3

3 1 1.5708 0.57080 0.23746 1.00000 0.36098 2-3-1
2 0.40413 0.32149 0.30440 2-3-2
3 0.32913 0.37072 0.28257 2-3-3

4 1 2.0000 0.57080 0.42920 0.78540 0.50000 2-4-1
2 0.40413 0.56619 0.43750 2-4-2
3 0.32913 0.64256 0.41406 2-4-3

a These values were obtained by numerical integration.

Fig. 1. (a) Phase-field profiles calculated by Eqs. (22) and (23) for Wc = 1 × 10−6 m. (b) Ratio of interface thickness of model 1-q-r to that of model 2-q-r
plotted against the cutoff value of the phase-field variable, φW .

differs between the models, depending on the definition of the interface region. When the region of −φW ≤ φ ≤ φW is 
defined as the interface region, the actual interface thickness depends on φW . The ratio of the actual interface thickness in 
the model with f1(φ) to that with f2(φ) is plotted against φW in Fig. 1(b) where some values are indicated for reference. 
At the same value of Wc , the actual thickness in the model with f1(φ) is always larger than that in the model with f2(φ). 
In this paper, Wc is called the thickness measure to distinguish it from the actual interface thickness, which is defined by 
φW and denoted by Wa .

2.4. Computational detail

We carried out one- and two-dimensional simulations of isothermal solidification in binary dilute alloys. Equations (4)
and (5) were discretized on the basis of second-order finite difference formulas with a square grid spacing of 	x. The time 
evolutions of the φ and u fields were solved using a simple first-order Euler scheme as in previous works [19–21]. All 
simulations were performed using a TESLA K40 graphics processing unit (GPU) [9,27,29].

3. Results and discussion

3.1. One-dimensional analysis of moving flat interface

We conducted a one-dimensional analysis of a steady-state flat interface moving in an undercooled melt during isother-
mal solidification. It is known that an analytical solution of the sharp-interface equations (1)–(3) can be obtained for this 
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Fig. 2. Results of 1D simulations for 
 = 1.05. (a, b) Concentration profiles near the interface calculated by (a) model 1-1-1 and (b) model 2-1-1. The 
vertical dashed lines represent the edges of the interface region defined by φW = 0.95. (c) Dependence of L2 error norm on nW . (d) Dependence of 
interface velocity on nW . In (c) and (d), the plots for models 2-q-1 almost overlap with each other.

problem. When Eqs. (1)–(3) are rewritten in a frame moving with a constant interfacial velocity Vn along the coordinate η, 
the steady-state concentration profile is given as

c = c0(1 − k)

k
exp

(
− Vnη

Dl

)
+ c0 (25)

in the liquid (η ≥ 0) and c = c0 in the solid (η < 0), where c0 is the average concentration. The interfacial velocity Vn is 
given as

βVn = 
 − 1

k
, (26)

where 
 is the initial undercooling defined as 
 = −(c0 − ce
l )/[(1 − k)ce

l ]. The results of the phase-field simulations are 
compared with the analytical solution.

In the phase-field simulation, we focused on a model alloy system and employed the following parameters: partition 
coefficient k = 0.2, chemical capillary length d0 = 2 ×10−8 m, liquid diffusivity Dl = 2 ×10−8 m2/s, linear kinetic coefficient 
β−1 = 5 m/s. The time step 	t was set to 	t = 	x2/(3Dl). The zero-flux boundary condition was applied to both edges of 
the system. A solid seed was initially placed at the left-hand edge and the solidification proceeded from left to right side. 
The moving frame was employed to track the position of the interface and the simulations were conducted until steady-state 
growth was realized.

The spatial grid spacing 	x was given by 	x = Lsys/Np , where Lsys is the system size and Np is the total number of 
spatial grid points. The thickness measure Wc was set to Wc = nW 	x, where nW is a constant associated with the number 
of spatial grid points inside the interface. We investigated the dependence of the accuracy on nW and 	x for a fixed value of 
Wc . In this test, the accuracy is expected to increase with an increase in nW (thus a decrease in 	x) because the number of 
spatial grid points inside the interface increases with nW and the variations of φ and u inside the interface can accordingly 
be described with high accuracy.

The steady-state profiles of the concentration c near the interface calculated with models 1-1-1 and 2-1-1 are shown 
in Figs. 2(a) and (b), respectively. In Fig. 2, the concentration c and distance η are normalized by ce

l and Wc , respectively. 
The initial undercooling 
 was set to 
 = 1.05 and the system size Lsys was fixed at Lsys = 8 × 10−7 m. Np was varied 
from 512 to 2048 and then nW was varied from 1.0 to 4.0. The fixed thickness measure was Wc = 1.5625 × 10−9 m. In 
the phase-field models, the concentration c is given as c = ce(1 + (1 − k)u)(1 + k − (1 − k)h(φ))/2. η = 0 corresponds to 
l
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Fig. 3. Results of 1D simulations for 
 = 1.1. (a) Dependence of L2 error norm on nW . (b) Dependence of interface velocity on nW . In (a) and (b), the plots 
for model 2-q-1 almost overlap with each other.

the position of φ = 0 in each case. The solid curve indicates the exact solution of Eq. (25). The comparison should be made 
in the region outside the diffuse interface. The vertical dashed lines indicate the actual interface thickness Wa defined by 
φW = 0.95, which are shown for the convenience of discussion. When nW = 4.0, both models reproduce the exact solution 
with high accuracy. However, the concentration profile deviates from the exact solution when nW = 1.0 in both models. 
The deviation is significant in model 2-1-1. To evaluate the accuracy in a quantitative manner, the L2 error norm E L2 was 
calculated by the following equation [37];

E L2 =

√√√√∑NE
kp=1(cpfm

kp
− cex

kp
)2

NE
, (27)

where cpfm
kp

is the concentration at grid point kp calculated by the phase-field simulation, cex
kp

is the exact solution of the 
concentration at point kp and NE is the number of grid points used in the evaluation of E L2. Fig. 2(c) shows E L2 calculated 
in the regions of φ < −0.95 and φ > 0.95. We also calculated E L2 for φ < −0.99 and φ > 0.99, but the results were not 
essentially different from those shown in Fig. 2(c). The results for model p-q-1 with different sets of p and q are shown. The 
calculation with model 1-4-1 was performed with a cutoff value of φc = 0.01. Except for model 1-4-1, E L2 for all models 
monotonically decreases with increasing nW . In the case of model 1-4-1, the contribution of the driving force to ∂tφ does 
not vanish near φ = ±1 as described in Sec. 2.2. This contribution becomes large as nW increases (	x decreases). Namely, 
model 1-4-1 is not appropriate in terms of accuracy. Although the results for model 1-4-1 are shown in Figs. 2(d), 3 and 4
for the sake of completeness, the accuracy of this model will not be considered in the following discussion. The important 
finding from Fig. 2(c) is that the numerical accuracy of the quantitative models is mainly determined by f p(φ) and that 
it does not strongly depend on the form of gq(φ) (except for model 1-4-1). The models with f1(φ) exhibit relatively high 
accuracy compared with models with f2(φ). Fig. 2(d) shows the dependence of the calculated velocity on nW . The calculated 
velocities of all models gradually converge to the exact solution βVn = 0.25 with increasing nW . The convergence of the 
models with f1(φ) is faster than that of the models with f2(φ).

The same analysis was conducted for 
 = 1.1 and Lsys = 5 × 10−7 m. Np was varied from 512 to 2048 and nW was 
accordingly varied from 1.0 to 4.0. The results are shown in Fig. 3. The same behavior as that in Fig. 2 was observed. 
More specifically, the accuracy depends on f p(φ), while it is almost independent of gq(φ) (except for model 1-4-1). The 
convergence of the models with f1(φ) is faster than that of the models with f2(φ).

As shown in Figs. 2 and 3, the accuracy increases with nW . This is because the number of spatial grid points inside 
the interface increases with nW , and thereby the profiles of φ and u inside the interface can be accurately calculated by 
employing a large value of nW . As mentioned above, the convergence of model 1-q-1 is faster than that of model 2-q-1 
in Figs. 2 and 3. In these tests, we assigned the same value to Wc in both models. As shown in Fig. 1(b), however, the 
actual interface thickness Wa in the models with f1(φ) is always larger than that in the models with f2(φ). Accordingly, 
the number of spatial grid points in Wa is larger in the models with f1(φ) than in the models with f2(φ) for the same 
value of nW (Wc). Therefore, a fair comparison should be made by considering the difference in Wa . From Figs. 2 and 3, 
it was found that the results for both models can be approximately merged onto single curves when Wa in the models 
with f1(φ) is assumed to be about twice as large as that in the models with f2(φ). This difference in Wa corresponds to 
φW ∼ 0.995 (see Fig. 1(b)). To show this, the results of Figs. 2 and 3 are replotted by doubling the value of nW in the models 
with f1(φ) in Fig. 4. It can be seen that the results for the models with f1(φ) and f2(φ) are merged onto single curves 
for each value of 
. The convergence rate of both models is almost identical in this rescaled plot. To confirm this finding, 
additional calculations were carried out by using model 2-1-1 for Np = 2048 and nW = 8, the results of which are indicated 
by the diamond symbols at nW = 8. These results are in good agreement with those calculated by using the models with 
f1(φ) for the rescaled nW = 8 (i.e., Np = 2048 and nW = 4). Therefore, it can be concluded that the quantitative phase-field 
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Fig. 4. (a, b) Results for 
 = 1.05, indicating dependence of (a) EL2 and (b) βVn on rescaled nW . (c, d) Results for 
 = 1.1, indicating dependence of (c) 
EL2 and (d) βVn on rescaled nW .

models exhibit almost the same accuracy regardless of the choice of f p(φ) and gq(φ) in terms of the rescaled nW in the 
one-dimensional problem.

Although not shown here, the accuracy is slightly dependent on the choice of hr(φ), particularly in the models with 
f1(φ). The accuracy slightly increases as the order of the polynomial decreases, namely, the accuracy is highest in the 
models with h1(φ) and lowest in the models with h3(φ). This should be because hr(φ) for the high-order polynomial 
causes rapid variations of the concentration and diffusivity near the center of the interface (i.e., φ ∼ 0), and the description 
of such rapid variation requires a small spatial grid spacing. The fact that the accuracy is higher in the models with h1(φ)

than in those with h3(φ) is consistent with the finding in a previous study on a pure substance with symmetric diffusion 
[13]. However, it is stressed that the difference in accuracy between the models with different hr (φ) is not substantial.

In these one-dimensional analyses, it was found that the convergence behavior is uniquely characterized using the 
rescaled nW , more precisely, the actual interface thickness Wa with φW ∼ 0.995 for models with f1(φ) and f2(φ). More-
over, the quantitative models (except for model 1-4-1) exhibit almost the same numerical efficiency regardless of the choice 
of f p(φ), gq(φ) and hr(φ). However, in contrast to these findings, the numerical accuracy strongly depends on the choice of 
f p(φ), gq(φ) and hr(φ) in two-dimensional simulations of dendritic growth as described in detail below.

3.2. Two-dimensional analysis of isothermal dendritic growth

In this section, we investigate the numerical accuracy of the quantitative models for isothermal dendritic growth in a 
two-dimensional system. The migration of a curved interface is involved in this process.

We first carried out a comparison between the calculated shapes of a dendrite for the purpose of rough screening to 
identify accurate models, which are later subjected to more detailed numerical tests. We focused on a model alloy with 
k = 0.2, d0 = 2 × 10−8 m, Dl = 2 × 10−8 m2/s and β = 0. The simulations were carried out using a square two-dimensional 
system with a side length of Lsys . A solid seed with a radius of 1 × 10−6 m was initially placed at the origin (x = 0 and 
y = 0). The growth of a quarter of a single dendrite was simulated by applying the mirror boundary condition to the edges 
x = 0 and y = 0 and by applying the zero-flux boundary condition to the edges x = Lsys and y = Lsys . The time step 	t was 
set to 	t = 	x2/(5Dl). As mentioned in Sec. 2, the numerical integration of Eq. (4) was carried out only for the region of 
|φ| < 1 in the models with f2(φ) as required from the definition of f2(φ). On the other hand, no such care is necessary 
in the models with f1(φ) and the integration can be performed over the whole system. However, the integration over 
the whole system wastes the computational cost because ∂tφ = 0 at φ = ±1 in the models with f1(φ) (except for models 
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Fig. 5. Shapes of a dendrite during isothermal solidification calculated for 
 = 0.2 using eight different models. The name of the model is indicated in each 
figure and each line represents the φ = 0.0 contour line calculated using different values of Np as indicated in the legend. A cross mark in the legend 
indicates that the numerical simulation was unstable and the result was therefore not obtained for this value of Np .

1-4-r). Hence, Eq. (4) was integrated over only the region of |φav| ≤ 0.999 in the models with f1(φ), where φav represents 
the average value of φ over the neighboring grid points. We confirmed that this cutoff does not essentially change the 
accuracy of the models with f1(φ) in preliminary simulations.

The shapes of the dendrite calculated with the different models are shown in Fig. 5, where the lines in each figure 
represent the contour lines of φ = 0 at t = 0.114 s calculated for different values of N p . All the calculations were performed 
for 
 = 0.2 and Lsys = 1 × 10−4 m. nW was fixed at nW = 1.2, while 	x (= Lsys/Np) and thus Wc (= nW 	x) were varied 
according to Np , which was varied from Np = 2562 to 15362. The accuracy is highest in each model when Np = 15362

in this test. A cross mark in the legend indicates that the calculation was not stable and the numerical solution was not 
obtained for the condition. Model p-q-1 with different sets of p and q are compared in this figure. When model 1-1-1 
is considered, the result does not significantly depend on Np . Only the shape calculated for Np = 2562 slightly deviates 
from those for the other values of Np . Therefore, the numerical performance of this model is reasonably high. Such high 
performance can be also observed in the results for models 2-1-1, 2-2-1 and 2-3-1. However, the simulations with models 
1-2-1, 1-3-1 and 2-4-1 are unstable for small values of Np as shown by the cross marks. Also, the result for model 1-4-1 
strongly depends on Np . Hence, these models are not satisfactory in terms of numerical performance.

The difference in the numerical accuracy between different gq(φ) becomes marked when the contribution of the driving 
force in Eq. (4) is large. A similar test to the above was carried out for 
 = 0.3, Lsys = 1.0 × 10−4 m and nW = 1.2 and 
the results are shown in Fig. 6 as the contour lines of φ = 0 at t = 0.0305 s. In this case, the numerical solutions for 
some values of Np were not obtained with models 1-2-1, 1-3-1, 1-4-1, 2-3-1 and 2-4-1. Moreover, the shape calculated 
for Np = 2562 markedly deviates from that for Np = 15362 in model 2-2-1. On the other hand, models 1-1-1 and 2-1-1 
reproduce accurate shapes even for small values of Np . Therefore, the present numerical test reveals that the function g1(φ)

is the most appropriate choice for models with both f1(φ) and f2(φ). We accordingly focus on the models with g1(φ) in 
the following convergence tests.

To investigate the accuracy of the different models in a more quantitative manner, we examined the convergence be-
havior in the steady-state growth of a dendrite with respect to the spatial grid spacing 	x. In this convergence test, we 
employed a rectangular computational box with Lx = Lsys and L y = Lsys/2, where Lx and L y are the lengths in the x and y
directions, respectively. In this test, we fixed Lsys and nW , while we varied Wc and 	x by changing Np . The mirror boundary 
condition was applied to the edge y = 0 and the zero-flux boundary condition was applied to the other edges. We focused 
on the same model alloy as before, i.e., the alloy with k = 0.2, d0 = 2 × 10−8 m, Dl = 2 × 10−8 m2/s and β = 0. The simula-
tions started from a small solid quarter disk with an initial radius of 1 × 10−6 m at the origin. To simulate the steady-state 
growth within a reasonable computational time, a moving-frame calculation was conducted by moving the computational 
box with a certain velocity in the x direction. In this convergence test, the accuracy of models 1-1-r and 2-1-r with r = 1, 2 
and 3 is discussed.

The dependence of the results on the spatial grid spacing 	x is shown in Fig. 7, where 	x is normalized by the capillary 
length d0. These results were calculated for 
 = 0.3, Lsys = 4 × 10−4 m and nW = 1.25. Since nW is fixed in this test, the 
thickness measure Wc (= nW 	x) changes with the value of 	x. Fig. 7 shows the steady-state values of the dendrite tip 
velocity Vn (Fig. 7(a)), the curvature radius of the tip ρ (Fig. 7(b)), the solid composition at y = 0 far behind the dendrite 
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Fig. 6. Shapes of a dendrite during isothermal solidification calculated for 
 = 0.3 using eight different models. The name of the model is indicated in each 
figure and each line represents the φ = 0.0 contour lines calculated using different values of Np as indicated in the legend. A cross mark in the legend 
indicates that the numerical simulation was unstable and the result was therefore not obtained for this value of Np .

Fig. 7. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in Gibbs–Thomson relation on 	x calculated for 
 = 0.3, 
Lsys = 4 × 10−4 m and nW = 1.25. In each figure, the different symbols represent the results for the different models as specified in the legend in (a).

tip c∗
s (Fig. 7(c)) and the error in the Gibbs–Thomson relation 	EG (Fig. 7(d)). The curvature radius ρ was calculated by 

fitting the φ = 0 contour at the dendrite tip with a parabola. The error in the Gibbs–Thomson relation 	EG was calculated 
by the following equation;
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Fig. 8. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in Gibbs–Thomson relation on 	x calculated for 
 = 0.5, 
Lsys = 1 × 10−4 m and nW = 1.25. In each figure, the different symbols represent the results for the different models as specified in the legend in (a).

	EG = c∗
s

ce
l

− k

(
1 − (1 − k)

d0(1 − 15ε4)

ρ

)
. (28)

In this convergence test, the accuracy should be highest for the smallest value of 	x, and the fast convergence of the results 
with decreasing 	x indicates good performance. When Vn and ρ are considered, all the models predict the same values 
at the smallest value of 	x. However, Vn and ρ rapidly and markedly deviate from the converged values with increasing 
	x in models p-1-2 and p-1-3. The plots of models p-1-2 and p-1-3 are missing for large values of 	x because stable 
solutions were not obtained for these values of 	x. On the other hand, solutions for all values of 	x were obtained with 
models 1-1-1 and 2-1-1. Note that models 1-1-1 and 2-1-1 yield almost the same convergence behavior of Vn and ρ in 
Fig. 7. However, a difference in their accuracy appears in c∗

s (Fig. 7(c)) and 	EG (Fig. 7(d)). c∗
s takes an almost constant 

value for 	x/d0 < 20 in model 1-1-1, while it still varies in model 2-1-1. The absolute values of 	EG for small values of 	x
are always smaller in model 1-1-1 than in model 2-1-1. Therefore, the convergence of model 1-1-1 is slightly faster than 
that of model 2-1-1. Similar results were found in the case of a large degree of undercooling. Fig. 8 shows the results of the 
convergence test for 
 = 0.5. The convergence of models p-1-2 and p-1-3 is rather poor. Models 1-1-1 and 2-1-1 exhibit 
comparably good convergence behavior of Vn and ρ . However, the convergence is faster in model 1-1-1 than in model 2-1-1 
when c∗

s and 	EG are considered.
The accuracy of the simulations of dendritic growth should be determined by two factors. The first one is the number of 

spatial grid points inside the interface. As the number of spatial grid points inside the interface increases (i.e., nW increases), 
the profiles of φ and u inside the interface can be calculated more accurately. Hence, the accuracy of results should be 
improved by increasing nW as discussed for the one-dimensional problem (Fig. 4). The second factor is the resolution 
capability of describing the shape of the dendrite. In the diffuse interface approach, the interface thickness determines the 
minimum radius of the dendrite tip that can be accurately described in the simulation. When the interface thickness is 
comparable to or larger than the tip radius, the interface regions overlap near the tip and hence the shape of the tip cannot 
be accurately described. Namely, the accurate description of a small curvature radius requires a small interface thickness 
(i.e., high resolution). To make this point clearer, simulations were carried out for different values of nW . The results for 
nW = 1.10, 1.25 and 1.50 are shown in Fig. 9, where only the best models 1-1-1 and 2-1-1 are compared. The parameters 
used in the simulations were the same as those in Fig. 8 except for nW and thus Wc . Since Wa is larger in model 1-1-1 than 
in model 2-1-1 for the same value of nW , the simulation was carried out for nW = 2.0 with model 2-1-1. In both models, 
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Fig. 9. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in Gibbs–Thomson relation on 	x calculated for 
 = 0.5 and 
Lsys = 1 × 10−4 m. In each figure, the different symbols represent the results for the different models with different values of nW specified in the legend 
in (a).

the convergence starts to break down for small values of 	x when nW is large. This is because the interface thickness 
increases with nW at a given value of 	x, which lowers the resolution capability.

It is convenient to examine the convergence with respect to 	x as in Figs. 7–9 to understand the relationship between 
the accuracy and computational cost. On the other hand, the convergence behavior should be more effectively characterized 
in terms of Wc or Wa when the resolution capability is considered. In Fig. 10, all the data in Fig. 9 are replotted against the 
thickness measure Wc . All the data of Vn and ρ are merged onto single curves, which are independent of nW . This indicates 
that both models can predict Vn and ρ with the same accuracy as long as the same value is assigned to Wc . When c∗

s and 
	EG are considered, the convergence of model 1-1-1 only slightly varies with nW , while the convergence strongly depends
on nW in model 2-1-1. c∗

s for model 2-1-1 becomes close to c∗
s for model 1-1-1 with increasing nW , and also 	EG in model 

2-1-1 approaches zero for small values of Wc with increasing nW . Note that the increase in nW increases the computational 
cost for a fixed value of Wc because the small grid spacing 	x = Wc/nW is required. Hence, model 1-1-1 is slightly superior 
to model 2-1-1 in terms of numerical efficiency.

It is important to point out that the accuracy of models 1-1-1 and 2-1-1 shown in Figs. 7–9 is significantly higher 
than that of the standard models. As demonstrated for model 1-1-1 in Refs. [19,21], c∗

s for the standard models (the models 
without the anti-trapping current) is strongly dependent on Wc and the resulting 	EG is more than one order of magnitude 
larger than the values shown in Figs. 7–10. Namely, the differences in c∗

s and 	EG between models 1-1-1 and 2-1-1 are 
small compared with the differences between the quantitative and standard models. Therefore, it is concluded that models 
1-1-1 and 2-1-1 exhibit comparably good numerical performance.

Although the results for only models 1-1-r and 2-1-r with r = 1, 2 and 3 were shown in Figs. 7 and 8, the convergence 
tests were carried out for all the models with different sets of f p(φ), gq(φ) and hr(φ) in this study. It was found that the 
accuracy of the model with hr(φ) �= h1(φ) is always much lower than that of the models with h1(φ) for any set of f p(φ) and 
gq(φ). Also, the calculations of the models with f1(φ) and gq(φ) �= g1(φ) were unstable under most of the computational 
conditions used in Figs. 7 and 8. Even if a solution was obtained, the accuracy was always much lower than that of model 
1-1-1. Among the models with f2(φ) and gq(φ) �= g1(φ), models 2-2-1 and 2-3-1 yield reasonable accuracy as can be seen 
from Figs. 5 and 6. However, the accuracy of models 2-2-1 and 2-3-1 is always lower than that of model 2-1-1 in the 
convergence tests on steady-state growth. Hence, it was confirmed that the set of g1(φ) and h1(φ) is the best choice for 
models with both f1(φ) and f2(φ). However, with the exception of models 1-1-1 and 2-1-1, the numerical accuracy of 
models 2-2-1 and 2-3-1 is higher than that of the other models. It is expected that these models can exhibit reasonable 
numerical performance for some solidification conditions (e.g., a low degree of undercooling) as demonstrated for model 
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Fig. 10. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in Gibbs–Thomson relation on thickness measure calculated for 

 = 0.5 and Lsys = 1 × 10−4 m. In each figure, the different symbols represent the results for the different models with different values of nW specified in 
the legend in (a).

2-3-1 in Ref. [31]. In this regard, compared with f1(φ), the model with f2(φ) may offer more choices in constructing 
a quantitative phase-field model with reasonable numerical performance, which is beneficial for extending the range of 
applications of quantitative simulations.

Finally, let us discuss a unique aspect of the convergence behavior related to the resolution capability. By comparing 
Figs. 7–9, one notices that the critical value of 	x (and thus the critical value of Wc ) at which the convergence starts to 
break down is strongly dependent on the solidification condition 
. In practice, therefore, the value of 	x (Wc) neces-
sary for accurate simulation must be found by carrying out burdensome convergence tests for each condition of interest. 
However, as discussed in Ref. [10], the convergence behavior of Vn and ρ in model 1-1-1 can be uniquely characterized 
on normalized scales regardless of the solidification condition and alloy system. The convergence of model 2-1-1 can be 
uniquely characterized in the same way. In Fig. 11, all the data of Vn and ρ in Figs. 7 and 9 are plotted on normalized 
scales, where Vn and ρ are normalized by V c and ρc , respectively, and Wc is normalized by ρc . Here, V c and ρc are the 
converged values of Vn and ρ , respectively, that correspond to those calculated for the smallest value of 	x for each value 
of 
. The results of Refs. [19,21] are shown for reference. As Wc increases, Vn decreases and ρ increases in all the cases. 
Importantly, the results of the present simulations including those with model 2-1-1 exhibit unique convergence behavior 
regardless of 
 and they are almost coincident with the data in the previous studies. The convergence starts to break down 
for Wc/ρc ∼ 0.2 in all the cases. In model 1-1-1, this condition corresponds to the condition of Wa ∼ ρc with Wa defined 
by φW = 0.95 [10]. In the case of model 2-1-1, Wa = πWDO = π(2)1/2Wc for φW = 1, and hence the condition Wc/ρc ∼ 0.2
is approximately equivalent to the condition Wa ∼ ρc . These facts indicate that the breakdown of the convergence of Vn

and ρ stems from the limitation due to the resolution capability in both models. Hence, the unphysical magnification of 
interface effects, which is a critical problem of the standard models, is sufficiently suppressed in models 1-1-1 and 2-1-1. 
The result shown in Fig. 11 should be useful for reducing the effort required to find a suitable value of Wc for accurate 
simulations.

4. Conclusions

Quantitative phase-field models have been developed as effective tools for solving the free-boundary problem [13,14]. 
The numerical efficiency of these quantitative models depends on the set of interpolating functions that represent the con-
tinuous variations of the physical quantities inside the interface. In this paper, the numerical accuracy of 24 different models 
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Fig. 11. Convergence behavior of Vn (circles) and ρ (squares) calculated with models 1-1-1 and 2-1-1 for 
 = 0.3 (Fig. 7) and 
 = 0.5 (Fig. 9). Data [a] and 
[b] are the results for isothermal solidification in binary alloys shown in Figs. 4 and 5 of Ref. [19], respectively. Data [c] and [d] are those for non-isothermal 
solidification shown in Figs. 2 and 3 of Ref. [21], respectively. Data [e] and [f] are the results for isothermal and non-isothermal solidification in a ternary 
alloy shown in Figs. 4 and 5 of Ref. [21], respectively.

was investigated in detail by carrying out one-dimensional simulations of a moving flat interface and two-dimensional sim-
ulations of the dendritic growth during isothermal solidification in dilute binary alloys. In the one-dimensional problem, the 
accuracy of the simulations is essentially independent of the choice of the interpolating functions (except for model 1-4-1). 
However, in the case of the two-dimensional problem, where the curved interface migrates, the set of interpolating func-
tions should carefully be chosen to achieve high numerical accuracy. In both models with double-well and double-obstacle 
potentials, high numerical accuracy can be achieved by employing the fifth-order and first-order polynomials, i.e., g1(φ) and 
h1(φ), as the interpolating functions of the driving force and concentration changes inside the interface, respectively. Quan-
titative phase-field models have so far been developed for only some specific physical systems [15–21,30,32], and further 
extension of the range of applications of the quantitative models is required to realize accurate control and analysis of a 
variety of solidification microstructures. We expect that the present findings should be useful for the development of highly 
accurate quantitative phase-field models with extended ranges of applications.
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