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In this paper, we construct an efficient numerical scheme for full-potential electronic 
structure calculations of periodic systems. In this scheme, the computational domain is 
decomposed into a set of atomic spheres and an interstitial region, and different basis 
functions are used in different regions: radial basis functions times spherical harmonics in 
the atomic spheres and plane waves in the interstitial region. These parts are then patched 
together by discontinuous Galerkin (DG) method. Our scheme has the same philosophy as 
the widely used (L)APW methods in materials science, but possesses systematically spectral 
convergence rate. We provide a rigorous a priori error analysis of the DG approximations 
for the linear eigenvalue problems, and present some numerical simulations in electronic 
structure calculations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Electronic structure calculations describe the energies and distributions of electrons, which plays a fundamental role in 
many different fields: materials science, biochemistry, solid-state physics, and surface physics. Among different electronic 
structure models, the Kohn-Sham density functional theory (DFT) [1] so far achieves the best compromise between accuracy 
and computational cost. For an Ne-electron system with the presence of M nuclei of charge Zk and located at Rk ∈ R

3

(k = 1, · · · , M), Kohn-Sham DFT gives rise to the following nonlinear eigenvalue problems

H�φi = λiφi, λ1 ≤ λ2 ≤ · · · ≤ λNe , (1.1)

with � = {φ1, · · · , φNe} and the Kohn-Sham Hamiltonian

H� = −1

2
� + V ext + V H[ρ�] + V xc[ρ�].

Here, V ext(x) = − 
M∑

k=1

Zk

|x − Rk| is the external potential generated by nuclear attraction, V H[ρ�] =
∫
R3

ρ�(y)

| · −y|dy and V xc[ρ�]

are the so-called Hartree potential and exchange-correlation potential, respectively, with the electron density ρ�(x) =
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Ne∑
i=1

|φi(x)|2. A self-consistent field (SCF) iteration algorithm is commonly resorted to for these nonlinear problems. In each 

iteration, a Hamiltonian H�̃ is constructed from a trial electronic state �̃, and a linear eigenvalue problem is then solved 
to obtain the low-lying eigenvalues and corresponding eigenfunctions. The loop continues until self-consistency of the elec-
tronic states is achieved. The efficiency of the algorithm is mainly determined by the discretization of the Hamiltonian, the 
self-consistent iteration, and the linear eigensolver. We shall focus ourselves on the discretization method in this paper.

For periodic systems, plane waves with pseudopotentials are natural methods which are simple to implement and give 
relatively accurate simulations. The pseudopotential approximations [1] replace singular nuclear attraction potential and 
complicated effects of the motion of core electrons by a smooth potential. They give satisfactory results in most cases, but 
sometimes fail. The mathematical analysis of the pseudopotential approximations is very rare, and we refer to [2,3] for 
two recent works. Moreover, the core electrons have to be considered sometimes and are responsible for many properties. 
Therefore, the full-potential/all-electron calculations are necessary.

For eigenvalue problems with singular potentials in full-potential calculations, plane waves are inefficient basis functions 
for describing the cusps at the nuclei positions [4–7]. In contrast, it is observed that a significant part of the rapid oscillations 
can be captured by atomic orbitals such as Gaussians and Slater-type orbitals [1,8], which have been widely used in quantum 
chemistry (we refer to [9,10] for their numerical analysis). Therefore, it would be practically efficient to approximate the 
wavefunction in a crystal by using combinations of plane waves and appropriate atomic orbitals. Several computational 
methods using this idea have been developed, for example, augmented plane waves (APW) [11,12], linearized augmented 
plane waves (LAPW) [11], and their extensions by including local orbitals (lo), LAPW+lo methods [13–15]. Exploiting the 
idea of constructing basis functions for different domains separately, we construct a numerical scheme in this paper. The 
smoothly varying parts of the wavefunctions away from the atoms are represented by plane waves, the rapidly varying 
parts near the nuclei are represented by radial basis functions times spherical harmonics, and the approximations inside 
and outside the spheres are patched together by DG methods.

The DG framework has been widely used in numerical solutions of partial differential equations and investigated the-
oretically in a lot of works (see, e.g., [16–20] and references cited therein). For electronic structure calculations, we refer 
to works by Lin et al. [21,22], which constructs basis functions adaptively from the local environment and patches them 
together in global domain by DG methods.

We further present an a priori error analysis of our DG approximations for the linear eigenvalue problems. Thanks to 
the asymptotic regularity result developed by Flad et al. [23], we can guarantee smoothness of the wavefunctions on the 
domain [0, R] × S2 in spherical coordinates. Our analysis for DG approximations is also closely related to the technique used 
in [19,20,24,25]. The main theoretical result in this paper is the following superalgebraic convergence rate under certain 
assumptions (see Theorem 3.1):

|λ − λDG
i | + ‖ui − uDG

i ‖DG ≤ Cs�
3
2 +ε−s ∀ s ∈R

+,

where ε > 0 can be arbitrarily small, � denotes the discretization parameters (see (3.1)), and the constant Cs depends only 
on s and the eigenfunctions.

We shall briefly compare our DG method with other existing full-potential/all-electron methods in electronic structure 
calculations. (a) APW: The augmented plane wave (APW) method [12] introduces basis functions that are plane waves 
in the interstitial region and radial solutions of Schrödinger equations inside the atomic spheres. A great disadvantage 
of the APW method is that the basis functions are energy dependent, which results in a nonlinear eigenvalue problem 
and must be solved separately for each eigenstate by “root tracing” technique [1] or iteration methods. This method is 
much more complicated to solve than the straightforward linear eigenvalue equations expressed with a fixed basis set, 
such as plane waves, Gaussians, LAPW (in the following), and our DG schemes. (b) LAPW (+lo): The linearized augmented 
plane wave (LAPW) method [1,11] is a linearization of APW, which defines basis functions as linear combinations of a 
radial solution and its energy derivative evaluated at a chosen fixed energy. This forms a basis set adapted to a particular 
system that is suitable for calculation of all states in an energy “window”. The accuracy depends heavily on the choice of 
energy parameter and the width of the energy window under consideration. Although the inclusion of additional variational 
freedoms (the energy derivatives and sometimes local orbitals (lo) [11]) in the LAPW method facilitates the computation 
for non-spherical symmetric parts of the potential, there is no proof that it can give solutions of arbitrarily great accuracy 
for general potentials as our DG scheme. Here we would like to mention a recent work [26] which uses similar ideas as 
LAPW+lo and may possess systematical convergence. (c) OPW: The orthogonalized plane wave (OPW) method [8] constructs 
basis functions by orthogonalizing the plane waves to special local functions around each nucleus. The ambiguity of this 
method arises from inaccuracies of the core wave functions, which are not precise eigenfunctions of the given Hamiltonian. 
Thus, there is always an uncertainty about the accuracy of OPW results which can not be refined out by more extended 
calculations. (d) PAW/VPAW: The projector augmented wave (PAW) method [27] replaces the original eigenvalue problem 
(with singular potential) by a new one with the same eigenvalues but smoother eigenvectors. A slightly different method, 
called variational projector augmented wave (VPAW), was proposed and analyzed recently [2]. This new method allows 
for a better convergence with respect to the number of plane waves. But we mention that the PAW method is more of a 
pseudopotential method.
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The rest part of this paper is organized as follows. In Section 2, we set up the model problem and present some regularity 
results. In Section 3, we introduce a DG discretization scheme, provide a numerical analysis of the convergence and a priori
error estimates of the DG approximations. In Section 4, we give some details of the numerical implementations and present 
some numerical experiments to support our theory. Finally, we give some concluding remarks.

2. Preliminary

Throughout this paper, we shall use C to denote a generic positive constant which may stand for different values at its 
different occurrences and is independent of finite dimensional subspaces. For convenience, the symbol � will be used and 
the notation A � B means that A ≤ C B for some generic positive constant C .

Let R be a discrete periodic lattice of R3, 	 be the unit cell of the lattice, and R∗ be the dual lattice. For simplicity, we 
take 	 = [− D

2 , D
2 ]3 (D > 0), R = DZ

3, and R∗ = 2π
D Z

3.
For k ∈ R∗ , we denote by ek(r) = |	|−1/2eik·r the plane wave with wavevector k. The family {ek}k∈R∗ forms an or-

thonormal basis set of

L2
#(	) = {u ∈ L2

loc(R
3) : u is R-periodic}.

For all u ∈ L2
#(	), we have

u(r) =
∑

k∈R∗
ûkek(r) with ûk = (u, ek)L2

#(	) = |	|−1/2
∫
	

u(r)e−ik·rdr.

We introduce the Sobolev spaces of R-periodic functions

Hs
#(	) =

{
u(r) =

∑
k∈R∗

ûkek(r) :
∑

k∈R∗

(
1 + |k|2)s|ûk|2 < ∞

}
,

with s ∈R
+ . For K ∈ N

+ , we denote the finite dimensional subspace by

VK =

⎧⎪⎨⎪⎩v K (r) =
∑

k∈R∗,|k|≤ 2π
D K

ckek(r)

⎫⎪⎬⎪⎭ .

For v ∈ Hs
#(	), the best approximation of v in VK is �K v = ∑

k∈R∗,|k|≤ 2π
D K v̂kek(r) for any Ht -norm (t ≤ s). The more 

regularity v has, the faster this truncated series converge to v: For real numbers t and s satisfying t ≤ s, we have that for 
each v ∈ Hs

#(	),

‖v − �K v‖Ht
#(	) = min

v K ∈VK
‖v − v K ‖Ht

#(	) � K t−s‖v‖Hs
#(	). (2.1)

As a model problem, we consider the following Schrödinger-type linear eigenvalue problem, which can be viewed as a 
linearization of (1.1): Find λ ∈ R and 0 �= u ∈ H1

#(	) such that ‖u‖L2
#(	)=1 and

a(u, v) = λ(u, v) ∀ v ∈ H1
#(	), (2.2)

where the bilinear form a(·, ·) : H1
#(	) × H1

#(	) → C is given by

a(u, v) = 1

2

∫
	

∇u · ∇v +
∫
	

V uv (2.3)

with a R-periodic potential V ∈ L2
#(	).

To represent the wavefunctions separately in different regions, 	 is divided into atomic spheres and an interstitial region 
(see Fig. 2.1 (left) for decomposition of a single-atom system, and Fig. 2.1 (right) for similar construction of a two-atom 
system).

For sake of simplicity, we shall restrict our discussions to a single atom located at the origin, the algorithms and analysis 
of which can be easily generalized to multi-atom systems. Throughout this paper, we shall denote by 	out the interstitial 
region, by 	in the sphere centered at the origin with radius R , and by � the spherical surface. We also assume throughout 
this paper that the potential V equals to −Z/|r| in the neighborhood of 0, and belongs to C∞

loc(R
3 \R) ∩ L2

#(	).
It was shown in [4–6] that the exact electron densities are analytic away from the nuclei and satisfy certain cusp 

conditions at the nuclei. The plane wave approximations can not have as good convergence rate as (2.1) due to the cusps 
at the nuclear positions. The following lemma concerning the regularity of eigenfunctions of (2.2) is heavily used in our 
analysis, the proof of which can be referred to [23, Theorem 1, 4 and Proposition 1].
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Fig. 2.1. The division of 	 into atomic spheres 	in and an interstitial region 	out .

Lemma 2.1. If u is an eigenfunction of (2.2), then u ∈ Hs([0, R] × S2) for any s ∈ Z
+ .

The following lemma states the relationship between two Sobolev norms. It can be proved by some standard calculations, 
and we refer to the preprint [28] for a detailed proof.

Lemma 2.2. If v ∈ H1(	in) 
⋂

H3([0, R] × S2), then there exists a constant C R depending on R such that

‖v‖H1(	in) ≤ C R‖v‖H1([0,R]×S2).

3. DG discretization

In this section, we construct a DG discretization scheme using radial basis functions times spherical harmonics inside 
the sphere and plane waves outside. We provide an a priori error analysis of the numerical approximations. Our analysis is 
composed of three steps: first, we estimate the best approximation errors inside and outside the sphere separately; then we 
give an error estimate for the DG approximation of the corresponding source problem; finally, we derive an error estimate 
for the eigenvalue problem. Note that the errors generated by numerical quadratures and linear algebraic solvers are not 
considered in this paper, which deserve separate investigations.

Note that if u is an eigenfunction of (2.2), then we have from Lemma 2.1 that for any s > 0, u|	in ∈ Hs([0, R] × S2) in 
spherical coordinates and u|	out ∈ Hs(	out). We can therefore introduce the following space

H̃ s(	) =
{

v ∈ H1
#(	) : v|	in ∈ Hs([0, R] × S2), v|	out ∈ Hs(	out)

}
with induced norm

‖v‖H̃ s(	) := ‖v‖Hs(	out) + ‖v‖Hs([0,R]×S2).

3.1. Approximation space

Denote by PK (	out) the space of functions on 	out expanded by plane waves

PK (	out) =

⎧⎪⎨⎪⎩u ∈ H1(	out), u(r) =
∑

|k|≤ 2π
D K

ckek(r)

∣∣∣∣
	out

⎫⎪⎬⎪⎭
and by BN L the space of functions on 	in expanded by radial basis functions times spherical harmonics

BN L(	in) =
⎧⎨⎩u ∈ H1(	in), u(r) = ǔ(r, θ,φ) =

∑
0≤n≤N,0≤l≤L,|m|≤l

cnlmχn(r)Ylm(θ,φ)

∣∣∣∣
	in

⎫⎬⎭ ,

where {χn}N
n=0 are basis functions on [0, R]. Here, we denote by ǔ(r, θ, φ) the spherical coordinate representations of the 

function u(r), i.e., u(r) = ǔ(r, θ, φ).
For simplicity, we may assume that the radial basis functions {χn} are polynomials that span the space of all polynomials 

of degree no greater than N .

Remark 3.1. There are many choices of the radial basis functions {χn}. One can use spectral methods, such as Legendre 
polynomials, Chebyshev polynomials and Jacobi polynomials, etc. These types of functions form a complete basis set on 
[0, R], and possess spectral convergence rates for any sufficiently smooth function [29].

Another type of basis set is atomic orbitals [1,30], such as Gaussians, Slater-type orbitals and numerical solutions of 
radial Schrödinger equations [1,30]. These basis functions are closely related to physical problems, and can be very efficient 
in practice. In some cases, we can rigorously derive their convergence rates [9,10].
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For simplicity of presentation, we shall focus our analysis on the polynomial-type radial basis functions and investigate 
the atomic orbitals as well in numerical experiments.

Define the finite dimensional space

SK
N L(	) : = PK (	out) ⊕ BN L(	in)

=
{

u ∈ L2
#(	), u|	in ∈ BN L(	in) and u|	out ∈ PK (	out)

}
.

Throughout this paper, we may assume that there exists a constant � such that

max{K , N, L} ≤ � ≤ C min{K , N, L}, (3.1)

which can denote the discretization parameters.
In the following, we shall define some “best” approximations of the function in the interstitial region and atomic spheres 

respectively.
For the interstitial region, we define the projections P K : L2

#(	out) →PK (	out) satisfying

‖u − P K u‖H1(	out)
= inf

U out
K ∈PK (	out)

‖u − U out
K ‖H1(	out)

.

We have the following estimate, whose proof is similar to that of [31, Proof of Lemma 3.1]. For simplicity of presentation, 
we refer to the preprint [28] for a detailed proof.

Proposition 3.1. If u ∈ Hs(	out), then for 0 ≤ t < s, there exists a constant C such that

‖u − P K u‖Ht (	out) ≤ C K t−s‖u‖Hs(	out). (3.2)

For the atomic spheres, we define P N : H1([0, R]) → �N ≡ span{χn}N
n=1 satisfying

‖v − P N v‖H1([0,R]) = inf
ψN∈�N

‖v − ψN‖H1([0,R]),

and P L : L2(S2) →YL ≡ span{Ylm, 0 ≤ l ≤ L, −l ≤ m ≤ l} satisfying

P Lϕ(θ,φ) =
L∑

l=0

l∑
m=−l

ϕ̂lmYlm(θ,φ) with ϕ̂lm =
π∫

0

sin θ

2π∫
0

ϕ(θ,φ)Y ∗
lm(θ,φ)dφdθ.

For P N and P L , we have the following standard estimates (see, e.g., [32,33])

‖v − P N v‖Ht ([0,R]) ≤ C Nt−s‖v‖Hs([0,R]),
‖ϕ − P Lϕ‖Ht (S2) ≤ C Lt−s‖ϕ‖Hs(S2)

for any 0 ≤ t ≤ 1 and t < s. Define the projection P N L : H1([0, R] × S2) → �N × YL by P N L = P N ◦ P L , we have that for 
w ∈ Hs([0, R] × S2), 0 ≤ t ≤ 1 and t < s,

‖w − P N L w‖Ht ([0,R]×S2) ≤ C(Lt−s + Nt−s)‖w‖Hs([0,R]×S2). (3.3)

We have the following estimate, which is a direct result of (3.3) and Lemma 2.2.

Proposition 3.2. If u ∈ Hs([0, R] × S2) 
⋂

H1(	in), then for 0 ≤ t ≤ 1 and any s ≥ 3, there exists a constant C such that

‖u − P N Lu‖Ht (	in) ≤ C(Lt−s + Nt−s)‖u‖Hs([0,R]×S2). (3.4)

3.2. DG approximations of the source problem

We shall discuss the DG discretization for the source problem and our analysis is related to the framework in [24].
For vector-valued w and scalar-valued function u which are not continuous on the spherical surface �, we define the 

jumps by

[w] = w+ · n+ + w− · n−, [u] = u+n+ + u−n−

and the averages by
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{w} = 1

2
(w+ + w−), {u} = 1

2
(u+ + u−),

where w± and u± are traces of w and u on � taken from inside and outside the sphere, n± are the normal unit vectors.
Since SK

N L(	) is a finite dimensional space, there exists a constant γ� depending on � such that the following inverse 
estimate holds

‖u+ − u−‖
H

1
2 (�)

≤ γ�‖u+ − u−‖L2(�) ∀u ∈ SK
N L(	). (3.5)

In our analysis, we assume

‖u+ − u−‖H1(�) � �2‖u+ − u−‖L2(�) ∀u ∈ SK
N L(	). (3.6)

We are not able to justify (3.6) rigorously, however, we provide some numerical experiments in Appendix A to show that it 
could be true. Then we get from the “interpolation” arguments (see Appendix A) that

γ� = Cε�
1+ε (3.7)

for some ε ∈ (0, 1).
We then define the bilinear form aDG(·, ·) : (SK

N L(	) ∪ H1
#(	)

) × (
SK

N L(	) ∪ H1
#(	)

) → C by

aDG(u, v) =
∫

	in

(
1

2
∇u · ∇v + V uv

)
+

∫
	out

(
1

2
∇u · ∇v + V uv

)

−1

2

∫
�

{∇u} · [v]ds − 1

2

∫
�

{∇v} · [u]ds +
∫
�

σ [u] · [v]ds, (3.8)

where σ = Cσ �2+2ε is the discontinuity-penalization parameter with a constant Cσ independent of the discretization.
Note that there are many other types of DG formulations (see, e.g., [16,24]), and (3.8) is the classical symmetric interior 

penalty (SIP) method [21,24,34].
We further define the broken Sobolev space

H#δ(	) =
{

v ∈ L2
#(	) : v|	in ∈ H1(	in), v|	out ∈ H1(	out)

}
equipped with the following DG-norm

‖u‖2
DG = ‖u‖2

H1(	in)
+ ‖u‖2

H1(	out)
+ σ‖[u]‖2

L2(�)
. (3.9)

The following lemma gives the coercivity of the bilinear form. It can be proved by using Hölder inequality, Sobolev’s 
embedding theorem and Young’s inequality, and we refer to the preprint [28] for a detailed proof.

Lemma 3.1. If Cσ is sufficiently large, then there exist constants α, β > 0 such that

aDG(u, u) ≥ α‖u‖2
DG − β‖u‖2

L2
#(	)

∀ u ∈ SK
N L(	) ∪ H1

#(	). (3.10)

For simplicity, we can take β = 0. Note that aDG
β (u, v) = aDG(u, v) + β(u, v) makes this true for β > 0.

Define the solution operator

T : L2
#(	) → H1

#(	) a(T f , v) = ( f , v) ∀ v ∈ H1
#(	),

and its DG approximation

T DG : L2
#(	) → SK

N L(	) aDG(T DG f , v) = ( f , v) ∀ v ∈ SK
N L(	).

The following result gives an error estimate for T DG, whose proof is given in Appendix B.

Proposition 3.3. Assume that (3.6) is true and Cσ is sufficiently large. If T f ∈ Hs(	out) ⊕ Hs([0, R] × S2) for f ∈ L2
#(	) and s ≥ 3, 

then there exists a constant C such that

‖(T − T DG) f ‖DG ≤ C�
3
2 +ε−s‖T f ‖H̃ s(	). (3.11)
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3.3. DG approximations of the eigenvalue problem

We construct DG methods for eigenvalue problem (2.2): Find λDG ∈ R and uDG ∈ SK
N L(	), such that ‖uDG‖L2

#(	) = 1 and

aDG(uDG, v) = λDG(uDG, v) ∀ v ∈ SK
N L(	). (3.12)

Note that (2.2) and (3.12) are equivalent to λT u = u and λDGT DGuDG = uDG, respectively.
Denote by σ(T ) the spectrum and ρ(T ) the resolvent set of the solution operator T . For any z ∈ C in ρ(T ), we define 

the resolvent operator Rz(T ) = (z − T )−1. Let λ−1 be an eigenvalue of T and γ be a circle in the complex plane that is 
centered at λ−1 and does not enclose any other point of σ(T ).

Define the following operators with contour integrations:

E = E (λ) = 1

2π i

∫
γ

Rz(T )dz and E DG = E DG(λ) = 1

2π i

∫
γ

Rz(T DG)dz.

If � is sufficiently large, then E and E DG are the spectral projectors of T and T DG relative to λ−1, respectively (see [25]).
Define the distances

D(X, Y ) = sup
x∈X

‖x‖DG=1

inf
y∈Y

‖x − y‖DG and D(X, Y ) = max{D(X, Y ),D(Y , X)}.

Using Proposition 3.3 and similar arguments as those in [24], we have the following convergence results (including non-
pollution and completeness) for DG eigenvalues and eigenspaces.

Remark 3.2. Let A ⊂ R be an open set containing σ(T ). If Cσ and � are sufficiently large, then σ(T DG) ⊂ A. Moreover, for 
all z ∈ σ(T ), we have

lim
�→∞ inf

y∈σ (T DG)
|z − y| = 0.

In addition, we have

lim
�→∞D

(
R(E DG),R(E )

) = 0,

where R denotes the range.

Now we can derive the following a priori error estimate for DG approximations. The proof is given in Appendix C.

Theorem 3.1. Assume that (3.6) is true and Cσ is sufficiently large. Let λ be an eigenvalue of (2.2) with algebraic multiplicity m. Then 
for � sufficiently large, there exist m eigenpairs (λDG

i , uDG
i ) (i = 1, 2, · · ·m) of (3.12) such that

|λDG
i − λ| + ‖uDG

i − ui‖DG ≤ Cs�
3
2 +ε−s ∀ s ≥ 3, i = 1,2, · · ·m, (3.13)

where the constant Cs depends only on λ, ui and s.

Remark 3.3. We emphasize that our result works not only for the case of single eigenvalue (m = 1), but also for general 
cases of multiple eigenvalue (m > 1).

Remark 3.4. It was shown in many cases that the convergence rate of finite dimensional approximations under a weaker 
norm is faster than that under a stronger norm (see, e.g., [35,36]). By making this assumption for our DG approximations, 
for example,

‖ui − uDG
i ‖L2(	) � �−α‖ui − uDG

i ‖DG with some α > 0,

it may be true from (C.6) and (C.7) that the eigenvalue approximations have better convergence rate than that of eigenfunc-
tions.

Remark 3.5. Within the framework of Kohn-Sham density functional theory, one has to solve the nonlinear eigenvalue 
problem (1.1) with a SCF iteration. Using our DG discretizations, the linear eigenvalue problem (3.12) is solved at each 
iteration step and complex mixing schemes such as Roothaan, level-shifting and DIIS algorithms (see, e.g., [30,37]) are used 
to achieve convergence.

If the exchange-correlation potential V xc is sufficiently smooth and the trial state (from previous DG approximations) 
�̃ ∈ (SK (	))Ne , then we have from similar arguments as those in [23] that the eigenfunctions {φi}i=1,··· ,Ne of H ˜ belong 
N L �
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to C∞
loc(R

3 \R) ∪ C∞([0, R] × S2). This regularity together with the analysis in Theorem 3.1 gives spectral convergence rates 
for DG approximations of the (linear) eigenvalue problem in each SCF iteration step.

Note that we have not obtained a priori error estimates for approximations of nonlinear eigenvalue problems but only 
for linearized equations in SCF iterations. We refer to [38,39] for numerical analysis of nonlinear eigenvalue problems.

4. Numerical experiments

In this section, we will present some details for implementing our DG scheme, and some numerical experiments in 
electronic structure calculations.

4.1. Hamiltonian matrix elements

With our DG scheme, we can discretize the continuous eigenvalue problem into a (finite dimensional) matrix generalized 
eigenvalue problem

Hûi = λi Mûi,

where ûi are eigenvectors that correspond to the DG approximations uDG
i . We shall explain in the following how the matrix 

elements of H and M are generated.
For basis functions p and q, we divide the integrals for overlap matrix Mpq and stiff matrix Hpq into three parts. The 

scattering identity (see, e.g., [40])

eik·r = 4π
∑
lm

il jl(kr)Ỹ ∗
lm(k)Ỹlm(r) (4.1)

with k = |k|, is heavily used to bridge the gap between plane waves and spherical harmonics.
For p,q ∈PK (	out), we have

Ma
pq = (ekq |	out , e∗

kp
|	out) = 1

|	|
∫

	out

ei(kq−kp)·r = U (kq − kp), (4.2)

where U (k) is the Fourier transform of the step function with 0 inside the sphere and 1 outside

U (k) = 1

|	|
∫

	out

eik·r =
{ |	out|/|	| if k = 0,

−4π R2 j1(kR)/(k|	|) if k �= 0

with k = |k| and jl the lth spherical Bessel function. Similarly, we have from (3.8) that

Ha
pq = aDG(ekq |	out , e∗

kp
|	out) = 1

2
kp · kqU (kq − kp) + V (kq − kp) +Da

pq, (4.3)

where

V (k) = 1

|	| 1
2

∫
	

V eff(r)ek − 4π

|	|
∑
lm

il Ỹlm(k)

R∫
0

r2 vlm(r) jl(kr)dr (4.4)

with k = |k| and the potential inside the sphere expanded by V (r) = ∑
lm vlm(r)Ỹlm(r). The discontinuity and penalization 

term Da
pq in (4.3) is given by

Da
pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π R2σ

|	| kp = kq = 0,

4π R2

|	|
(

1

4

∂ j0(kqr)

∂r

∣∣∣∣
r=R

+ σ j0(kq R)

)
kp = 0, kq �= 0,

4π R2

|	|
(

1

4

∂ j0(kpr)

∂r

∣∣∣∣
r=R

+ σ j0(kp R)

)
kp �= 0, kq = 0,

(4π R)2

|	|
∑
lm

(−1)l Ỹ ∗
lm(−kp)Ỹlm(kq)

(
1

4
jl(kq R)

∂ jl(kpr)

∂r

∣∣∣∣
r=R

+1

4
jl(kp R)

∂ jl(kqr)

∂r

∣∣∣∣
r=R

+ σ jl(kp R) jl(kq R)

)
kp �= 0, kq �= 0,

(4.5)
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with kp = |kp| and kq = |kq|. Note that the first term of (4.4) is obtained by fast Fourier transform (FFT) and the second 
term is calculated by numerical integrations.

For p,q ∈ BN L(	in), we have from the orthogonality of Ylm on the surface that

Mb
pq = δll′δmm′

R∫
0

r2χn(r)χn′(r)dr (4.6)

and

Hb
pq = aDG(

χn′(r)Ỹl′m′(r)|	in ,χn(r)Ỹ ∗
lm(r)|	in

)
= δll′δmm′

R∫
0

1

2

(
r2χ ′

n(r)χ
′
n′(r) + l(l + 1)χn(r)χn′(r)

)
dr

+
∑
l̂m̂

G(ll′l̂,mm′m̂)

R∫
0

r2χn(r)χn′(r)vl̂m̂(r)dr +Db
pq, (4.7)

where the potential inside the sphere is expanded by V (r) = ∑
l̂m̂ vl̂m̂(r)Ỹ l̂m̂(r) and G is the integral of three spherical 

harmonics that can be written in terms of Gaunt coefficients (see, e.g., [1]). The discontinuity and penalization term Db
pq is

Db
pq = δll′δmm′R2

(
−1

4
χn(R)χ ′

n′(R) − 1

4
χ ′

n(R)χn′(R) + σχn(R)χn′(R)

)
. (4.8)

For p ∈PK (	out), q ∈ BN L(	in), we have

Mc
pq = 0 (4.9)

and

Hc
pq = aDG(χn(r)Ỹlm(r)|	in , e∗

kp
|	out) = Dc

pq

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 kp = 0, l �= 0,
√

4π R2

|	| 1
2

(
1

4
χ ′

n(R) − σχn(R)

)
kp = 0, l = 0,

4π R2

|	| 1
2

il Ỹlm(−kp)

(
1

4
jl(kp R)χ ′

n(R) − 1

4
χn(R)

∂ jl(kpr)

∂r

∣∣∣∣
r=R

−σ jl(kp R)χn(R)

)
kp �= 0.

(4.10)

Since we use a symmetric DG scheme, the elements for p ∈ BN L(	in), q ∈PK (	out) can be obtained immediately.
Combining (4.2)–(4.10), we can obtain the matrices H and M , and further solve the matrix eigenvalue problems by linear 

eigensolvers.

4.2. Numerical results

All the numerical results are presented by atomic units (a.u.). When we test the convergence with respect to one param-
eter (say, K , N or L), the other two parameters are fixed and chosen to be sufficiently large.

Example 1 (linear problem for a single-atom system). Consider the linear eigenvalue problem: Find λ ∈R and u ∈ H1
#(	) such 

that (
−1

2
� + V

)
u = λu, (4.11)

with 	 = [−5, 5]3 and V (r) = − 4π

|	|
∑

k∈R∗,k�=0

eik·r

|k|2 . Note that the potential V can be viewed as a periodized version of the 

potential − 1

|r| for a hydrogen atom. It is periodic and sufficiently smooth everywhere except at the origin. Then due to 

Lemma 2.1, the error estimates in Theorem 3.1 hold.
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Fig. 4.1. (Example 1) Numerical errors of plane waves and DG approximations in the single-atom system.

Fig. 4.2. (Example 1) Eigenfunctions along the x-axis obtained by plane waves and DG discretizations.

Fig. 4.3. (Example 1) Numerical errors of DG approximations with respect to K .

We first compare the numerical errors of the lowest eigenvalue approximations by plane waves and our DG methods (see 
Fig. 4.1), from which we observe that the DG approximations converge much faster. We compare the eigenfunctions along 
the x-axis obtained by plane waves and DG methods (see Fig. 4.2). We observe that the DG approximations can capture the 
cusp at the nuclear position while that plane waves can not. For a more precise comparison, when the required accuracy is 
10−1 (for the first eigenvalue), the DG method needs around 50 degrees of freedom (DOFs) while the plane wave method 
need about 60 DOFs; when the required accuracy is 10−2, the DG method needs around 300 DOFs while the plane wave 
method needs more than 1100 DOFs.

We further show the convergence rates of the eigenvalue errors with respect to plane wave truncations K (see Fig. 4.3), 
and observe exponential decay for different sizes of atomic spheres. We find a slightly faster convergence rate of the nu-
merical errors (in Fig. 4.3) with a bigger size of atomic sphere. The reason is that the eigenfunctions are less varying outside 
a larger atomic sphere. However, we see that the choice of R does not affect the numerical simulations significantly. In 
practical simulations, we could choose relatively large atomic spheres as long as they do not overlap.

We also present the numerical errors with respect to the orders of radial basis functions (see Fig. 4.4), and compare the 
polynomials with Slater-type atomic orbitals
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Fig. 4.4. (Example 1) Numerical errors for different types of radial basis functions.

χk(r) = rke−ηr, k = 0,1, · · ·
with η a fixed parameter. We observe that although a high accuracy can be obtained by Slater-type atomic orbitals with 
very few degrees of freedom, a better systematically convergence rate is achieved by polynomials.

Example 2 (linear problem for a two-atom system). Consider the linear eigenvalue problem for a two-atom system: Find λ ∈R

and u ∈ H1
#(	) such that(

−1

2
� + V 1 + V 2

)
u = λu, (4.12)

where 	 = [−5, 5]3 and V j(r) = − 4π

|	|
∑

k∈R∗,k�=0

1

|k|2 eik·(r−Rj) ( j = 1, 2) with R1 and R2 the positions of atoms.

We first compare the numerical errors of the lowest eigenvalue approximations by plane waves and our DG methods. We 
observe a much better convergence rate with respect to K in Fig. 4.5 and a more accurate capture of the eigenfunction cusp 
by our DG approximation in Fig. 4.6. For a more precise comparison, when the required accuracy is 10−1, the DG method 
needs around 100 DOFs while the plane wave method need about 30 DOFs; when the required accuracy is 10−2, the DG 
method needs around 400 DOFs while the plane wave method needs more than 1000 DOFs.

We then show the convergence rates of the eigenvalue errors with respect to plane wave truncations K (see Fig. 4.3), 
and angular momentum truncation L (see Fig. 4.8). We observe exponential decay with respect to both K and L for different 
sizes of atomic spheres. In this example, when the radii of atomic spheres are larger than 0.5, increasing the size of spheres 
does not improve the convergence rate significantly (see Fig. 4.7). From the comparisons of different radii, we again observe 
that the choice of R does not affect the numerical simulations significantly.

We further show the convergence rates of numerical errors for the lowest 3 eigenvalues, and observe exponential decay 
of the numerical errors with respect to K (see Fig. 4.9). This supports our theory.

Finally, we test the effect of penalty parameter Cσ . In our DG scheme, the penalty constant Cσ plays an important role 
to guarantee the stability. The errors with respect to different choices of Cσ are shown in Fig. 4.10. We observe that the DG 
method can be stable and accurate in a large range of values beyond a certain threshold value. Similar discussions for the 
penalty parameter can also be found in [21].

Fig. 4.5. (Example 2) Numerical errors of plane waves and DG approximations in the two-atom system.
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Fig. 4.6. (Example 2) Eigenfunctions along the x-axis obtained by plane waves and DG discretizations.

Fig. 4.7. (Example 2) Numerical errors with respect to K for different R in the two-atom system.

Fig. 4.8. (Example 2) Numerical errors with respect to L for different R in the two-atom system.

Fig. 4.9. (Example 2) Numerical errors with respect to K for different eigenvalues in the two-atom system.
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Fig. 4.10. (Example 2) Numerical errors with respect to the penalty parameter Cσ , using K = N = L = 5 and R = 1.0.

Example 3 (simulation of a helium atom). Consider the following nonlinear eigenvalue problem: Find λ ∈ R and u ∈ H1
#(	)

such that(
−1

2
� + V ext(r) + V H[ρ]

)
u = λu, (4.13)

with the external potential V ext(r) = − 8π

|	|
∑

k∈R∗,k�=0

eik·r

|k|2 , the Hartree potential V H[ρ] =
∫
R3

ρ(y)

| · −y|dy and ρ = 2u2. Note 

that the exchange-correlation potential V xc[ρ] is ignored here from a standard Kohn-Sham DFT model. We present the 
eigenfunction along the x-axis (see Fig. 4.11) and the convergence rates of numerical errors for different sizes of atomic 
spheres (see Fig. 4.12). We observe exponential decay of the numerical errors with respect to K even for the nonlinear 
problem.

Fig. 4.11. (Example 3) Eigenfunction along the x-axis obtained by DG discretizations in the helium-atom system.

Fig. 4.12. (Example 3) Numerical errors with respect to K for different R in the helium-atom system.
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5. Concluding remarks

In this paper, we construct a discontinuous Galerkin scheme for full-potential electronic structure calculations. It exploits 
the idea of augmented plane wave method which approximates the wavefunction in some ways “the best of two worlds”. 
The smoothly varying parts of the wavefunctions between the atoms are represented by plane waves, the rapidly varying 
parts near the nuclei are represented by radial atomic functions times spherical harmonics inside a sphere around each 
nucleus, and these two parts are patched together by discontinuous Galerkin scheme. We demonstrate a priori error estimate 
of this approximation to illustrate the accuracy and efficiency of this scheme, and provide some numerical experiments to 
support the theory.

Besides the accuracy and efficiency we have shown in this paper, the discontinuous Galerkin scheme is also flexible and 
economical for adaptive procedures since the nonconformity results assuredly in limiting the contamination only to the 
subdomain where refinement is needed. The a posteriori error analysis and the adaptive algorithm will be addressed in our 
future works.
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Appendix A. Inverse estimates on the surface

In this appendix, we shall provide the numerical tests to support the inverse estimate assumption (3.6) and the “inter-
polation” arguments to obtain (3.7).

Let

Ṽ�(�) :=
{

v�

∣∣ ∃v ∈ SK
N L(	) such that v� = v+ + v−}

.

Consider the largest eigenvalue λ�,max of the following discrete eigenvalue problem on the spherical surface �: Find λ� ∈R

and u� ∈ Ṽ�(�) such that

(−�S2 u�, v) + (u�, v) = λ�(u�, v) ∀ v ∈ Ṽ�(�). (A.1)

We perform numerical simulations for (A.1) and present the scalings of λ�,max (with respect to the discretizations �) in 
Fig. A.1 for different sizes of atomic spheres.

We observe from the numerics that λ�,max = C R�4 for all different radii R , which together with the fact

‖u‖2
H1(�)

� λ�,max‖u‖2
L2(�)

∀u ∈ Ṽ�(�),

implies

‖u‖H1(�) � �2‖u‖L2(�) ∀u ∈ Ṽ�(�), (A.2)

which supports the inverse estimate assumption (3.6).

Fig. A.1. Scalings of the largest eigenvalue of the operator (−�S2 + 1) restricted on Ṽ�(�).
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We then use the “interpolation” between two spaces L2(�) and H1(�). For any u ∈ L2(�) and t > 0, define

K (t, u) = inf
v∈H1(�)

(‖u − v‖L2(�) + t‖v‖H1(�)) (A.3)

and the H
1
2 -norm through “interpolation” [41]: ‖u‖

H
1
2 (�)

=
⎛⎝ ∞∫

0

K 2(t, u)

t2 dt

⎞⎠
1
2

. For any 0 < α < 1, we have

‖u‖
H

1
2 (�)

� ‖u‖
α
2
L2(�)

‖u‖1− α
2

H1(�)
. (A.4)

To see (A.4), we have K (t, u) ≤ t‖u‖H1(�) by taking v = u in (A.3) and K (t, u) ≤ ‖u‖L2(�) by choosing v = 0. Using these two 
inequalities, we can derive

‖u‖2

H
1
2 (�)

=
1∫

0

K 2(t, u)

t2
dt +

∞∫
1

K 2(t, u)

t2
dt

≤ ‖u‖α
L2(�)

⎛⎝ 1∫
0

K 2−α(t, u)

t2
dt +

∞∫
1

K 2−α(t, u)

t2
dt

⎞⎠

≤ ‖u‖α
L2(�)

⎛⎝ 1∫
0

(t‖u‖H1(�))
2−α

t2
dt +

∞∫
1

‖u‖2−α
L2(�)

t2
dt

⎞⎠
≤ Cα‖u‖α

L2(�)
‖u‖2−α

H1(�)
∀ 0 < α < 1.

Combining (A.2) and (A.4), we can obtain the inverse estimate (3.7).

Appendix B. Proof of Proposition 3.3

Proof. Denote w = T f and wDG = T DG f . Define the projection Pu = P K u|	out + P N Lu|	in . We decompose the error e =
w − wDG as e = η + ξ , where η = w − Pw and ξ = Pw − wDG. With simple calculations, we can easily obtain that 
aDG(w, ξ) = ( f , ξ), which leads to the property that aDG(w − wDG, ξ) = 0. Using (3.10) and the property, we have

‖ξ‖2
DG � aDG(ξ, ξ) = aDG(e − η, ξ) = −aDG(η, ξ).

Thus we deduce that

‖ξ‖2
DG � I1 + I2 + I3, (B.1)

where

I1 =

∣∣∣∣∣∣∣
∫

	in

(
1

2
∇η · ∇ξ + V ηξ)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫

	out

(
1

2
∇η · ∇ξ + V ηξ)

∣∣∣∣∣∣∣ ,
I2 = 1

2

∣∣∣∣∣∣
∫
�

{∇η} · [ξ ]ds +
∫
�

{∇ξ} · [η]ds

∣∣∣∣∣∣ ,
I3 =

∣∣∣∣∣∣
∫
�

σ [η] · [ξ ]ds

∣∣∣∣∣∣ .
Since V ∈ L2

#(	), we have

I1 � ‖ξ‖DG(‖η‖H1(	 ) + ‖η‖H1(	 )). (B.2)

in out
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Using the trace inequality, I2 can be estimated by

I2 � ‖[ξ ]‖
H

1
2 (�)

‖{∇η}‖
H− 1

2 (�)
+ ‖{∇ξ}‖

H− 1
2 (�)

‖[η]‖
H

1
2 (�)

� ‖[ξ ]‖
H

1
2 (�)

(‖η‖H1([ R
2 ,R]×S2) + ‖η‖H1(	out)

) + (‖ξ‖H1([ R
2 ,R]×S2) + ‖ξ‖H1(	out)

)‖[η]‖
H

1
2 (�)

� (‖ξ‖H1([ R
2 ,R]×S2) + ‖ξ‖H1(	out)

)(‖η‖H1([ R
2 ,R]×S2) + ‖η‖H1(	out)

)

� ‖ξ‖DG‖η‖DG. (B.3)

Similarly, I3 can be estimated by

I3 � σ
1
2 ‖ξ‖DG‖[η]‖L2(�). (B.4)

Collecting (B.1) and the error bounds (B.2) to (B.4), we have

‖ξ‖DG � ‖η‖DG.

We obtain from (3.2) and (3.4) that if u ∈ Hs(	out) ⊕ Hs([0, R] × S2) (s ≥ 3), then

‖η‖H1([ R
2 ,R]×S2)

+ ‖η‖H1(	out)
� �1−s‖w‖H̃ s(	),

which together with

‖[η]‖L2(�) � ‖η‖
H

1
2 ([ R

2 ,R]×S2)
+ ‖η‖

H
1
2 (	out)

� �
1
2 −s‖w‖H̃ s(	)

leads to

‖w − wDG‖DG ≤ ‖η‖DG + ‖ξ‖DG � (�1−s + �
1
2 −sγ�)‖w‖H̃ s(	).

Then we can derive (3.11) by using (3.7). �
Appendix C. Proof of Theorem 3.1

Proof. Note that for f ∈ L2
#(	), T f ∈ H̃2(	) and ‖T f ‖H̃2(	) ≤ C‖ f ‖L2

#(	) (see [42], p. 257, Thm. 9 and (8.137)).

For f ∈ H#δ(	), we have from Proposition 3.3 that

‖(T − T DG) f ‖DG � �− 1
2 +ε‖T f ‖H̃2(	) � �− 1

2 +ε‖ f ‖L2
#(	) � �− 1

2 +ε‖ f ‖DG,

which implies

lim
�→∞‖T − T DG‖L (H#δ(	),H#δ(	)) ≤ C lim

�→∞�− 1
2 +ε = 0. (C.1)

Using (C.1) and [25, Theorem 1], we have the convergence of the eigenvalues and

D(R(E),R(EDG)) � ‖T − T DG‖L (R(E),H#δ(	)). (C.2)

Then it is only necessary for us to estimate the right-hand side of (C.2).
Using Proposition 3.3, the regularity result Lemma 2.1 and the fact T v = λ−1 v for v ∈R(E), we have that for any s ≥ 3,

‖T − T DG‖L (R(E ),H#δ(	)) = sup
v∈R(E ),‖v‖DG=1

‖(T − T DG)v‖DG

≤ C�
3
2 +ε−s sup

v∈R(E ),‖v‖DG=1
‖T v‖H̃ s(	)

≤ C�
3
2 +ε−s sup

v∈R(E ),‖v‖DG=1
‖v‖H̃ s(	) ≤ Cs�

3
2 +ε−s, (C.3)

where Cs is a constant depending only on R(E ), λ and s.
It is apparent from (C.2) and (C.3) that

lim
�→∞D(R(E),R(EDG)) = 0. (C.4)

Let m and m� be the dimensions of R(E) and R(EDG), respectively. Then, (C.4) indicates that, for � large enough, m = m�

(see [43, p. 200]) and there exist m eigenfunctions uDG
i ∈ R(EDG) and m eigenpairs (λDG

i , uDG
i ) (i = 1, 2, · · ·m) satisfying 

(3.12). Moreover, according to the definition of distance D(X, Y ), we can find ui ∈R(E) and ‖ui‖ 2 = 1 such that
L#(	)
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‖uDG
i − ui‖DG � D(R(E),R(EDG)) i = 1,2, · · ·m. (C.5)

This completes the proof of error estimates for eigenfunctions.
For eigenvalues, we obtain by a simple calculation that

λ − λDG
i = a(ui, ui) − aDG(uDG

i , uDG
i )

= aDG(ui − uDG
i , ui − uDG

i ) + 2aDG(uDG
i , ui − uDG

i ) + aDG(ui, uDG
i ) − aDG(uDG

i , ui)

= aDG(ui − uDG
i , ui − uDG

i ) + 2λDG
i (uDG

i , ui − uDG
i ) + 2Dδ + aDG(ui, uDG

i ) − aDG(uDG
i , ui)

= aDG(ui − uDG
i , ui − uDG

i ) − λDG
i (ui − uDG

i , ui − uDG
i ) + Dδ + Dδ (C.6)

with the consistency error

Dδ = aDG(uDG
i , ui) − λDG

i (uDG
i , ui) = aDG(uDG

i , ui − uDG
i ) − λDG

i (uDG
i , ui − uDG

i )

≤ C�
3
2 +ε−s(‖uDG

i ‖DG + λDG
i )‖ui‖H̃ s(	). (C.7)

Using (C.3) to (C.7), we obtain

|λ − λDG
i | ≤ Cs�

3
2 +ε−s ∀ s ≥ 3,

where the constant Cs depends only on λ, ui and s. �
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