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In this work we report on a reduced-order model (ROM) for the system of time-domain 
Maxwell’s equations discretized by a discontinuous Galerkin (DG) method. We leverage 
previous results on proper orthogonal decomposition (POD) [1,2], in particular for the 
wave equation [3], to propose a POD-based ROM with an adaptive snapshot selection 
strategy where the snapshots are produced by a high order discontinuous Galerkin time-
domain (DGTD) solver. The latter is formulated on an unstructured simplicial mesh, and 
combines a centered scheme for the definition of the numerical fluxes of the electric and 
magnetic fields at element interfaces with a second order leap-frog (LF2) time scheme 
for the time integration of the associated semi-discrete equations. The POD-based ROM is 
established by projecting (Galerkin projection) the global semi-discrete DG scheme onto 
a low-dimensional space generated by the POD basis vectors. Inspired from the approach 
followed in [2,3], we derive error bounds for the POD-based ROM that is adapted to our 
particular modeling and discretization settings. The adaptive snapshot selection algorithm 
exploits the results of this analysis to measure the control error. A snapshot choosing rule 
aiming at keeping the error estimate close to a target selection error tolerance is proposed, 
which is similar to the standard rules found in adaptive time-stepping ordinary differential 
equations (ODEs) solvers. An incremental singular value decomposition (ISVD) algorithm is 
used to update the SVD on-the-fly when a new snapshot is available. The purpose of this 
adaptive selection strategy is to save memory without storing snapshots, while producing 
a smaller error. Numerical experiments for the 2-D time-domain Maxwell’s equations 
nicely illustrate the performance of the resulting POD-based ROM with adaptive snapshot 
selection.
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1. Introduction

We consider a normalized form of the time-domain Maxwell’s equations in a bounded convex domain � ⊂ R3⎧⎪⎪⎨⎪⎪⎩
μr

∂H
∂t

+ curlE = 0, in � × (0, T f ],

εr
∂E
∂t

− curlH = 0, in � × (0, T f ],
(1)

where E and H respectively denote the electric and magnetic fields; T f is the final time; εr and μr are the relative electric 
permittivity and magnetic permeability parameters. Details on how to obtain the normalized form (1) can be found in [4]. 
The boundary conditions are given by{

n × E = 0, on �m,

L(E,H) = L(E inc,Hinc), on �a,
(2)

where �m ∩�a =∅, �m ∪�a = ∂�, and L(E, H) = n ×E + Zn × (n ×H); n denotes the unit normal vector pointing outward 
to ∂�, E inc and Hinc are the incident fields, and Z = √

μr/εr . The first relation of (2) states a perfect electric conductor 
(PEC) condition on �m , while the second relation indicates a first order Silver-Müller absorbing boundary condition (ABC) 
on �a . The initial conditions are E(x, 0) = E0(x), H(x, 0) = H0(x) for x ∈ � ⊂ R3, and where E0, H0 denote some given 
functions.

The discontinuous Galerkin time-domain (DGTD) method has emerged in the last 15 years as an appealing strategy for 
solving the time-domain Maxwell’s equations (1) [5,6], in particular because it shares the advantages of the finite element 
time-domain (FETD) and finite volume time-domain (FVTD) methods. A space of basis and test functions is defined as in 
the FETD method on one hand, while the equations are satisfied in a sense closer to the FVTD method on the other hand. 
Moreover, the DGTD method can deal with general (unstructured, possibly non-conforming) [7] meshes and is an ideal 
candidate for designing hp-adaptive solution strategies [8]. Besides, it is easily parallelizable due to its highly local nature. 
However, the DGTD method is also a demanding discretization method because of the duplication of the degrees of freedom 
(DoFs) on the boundaries of the elements, which is greater than the number of DoFs used by a conforming FETD method for 
the same accuracy. Several approaches can be considered to address this issue such as the use of non-conforming meshes 
[9] and hybridization of the DG formulation method [10–12] for time-harmonic problems. The alternative approach that we 
consider in this work is model order reduction (MOR) [2,13–15]. MOR method is useful for accelerating simulations in many 
fields of science and engineering [16–22]. In particular, MOR method is also widely used in the context of electromagnetics 
[19,23–32]. The overall goal of MOR can be stated as to reduce the computational requirements while maintaining an 
acceptable level of accuracy.

Different kinds of reduced-order models (ROM) have been developed, such as simplified models and data-fit models 
[33]. The alternative ROM that we consider in this study is a projection-based model, which proceeds by identifying a re-
duced subspace that is constructed to retain the essential character of the system input-output map [33]. There are many 
approaches for constructing the reduced subspace, see [34] for a detailed survey. One of the most studied methods for 
establishing the ROM is the proper orthogonal decomposition (POD) method [15], also known as Karhunen-Loéve decom-
position, principal component analysis, or singular value decomposition, which uses the solutions of high fidelity numerical 
simulations or experiments at certain time instants, typically called snapshots, to compute a set of POD basis vectors span-
ning a low-dimensional space. The ROM is then created by projecting (Galerkin projection) the selected snapshots onto a 
low-dimensional space. The accuracy of the ROM is directly related to the choice of snapshots [3,20,27,30,35,36]. In princi-
ple, one should store the snapshots at each time step in order to completely characterize the high fidelity simulation. This is 
not feasible and unnecessary since very little new information will be provided if snapshots are taken close to each other in 
time [20,37]. In [35], Luo et al. presented a reduced-order finite volume element (FVE) formulation based on POD method 
for parabolic problems, and analyzed the error between the POD-based MOR solution and the usual FVE solution under 
the condition �

3
2 = O (Nt) with � being the number of the snapshots and Nt being the number of all time instances. They 

concluded that it is unnecessary to take total transient solutions at all time instances t(n) as snapshots. In [27], Kowalski and 
Jin considered a POD-based MOR with three snapshot selection techniques including uniform in time, logarithmic technique 
with a focus on early time steps and logarithmic technique with a focus on later time steps, for Maxwell’s equations to 
model the performance of a medical device in the human body. They concluded that the optimal snapshot selection scheme 
depends on the mathematical model under investigation and the parametric structure of that model. Based on this idea, 
in [20,37], Siade et al. presented a simple exponential function for a groundwater POD-based MOR since confined aquifers 
reach steady state in an exponential manner. However, this strategy is difficult to directly apply to other PDE models. Some 
recent contributions based on an adaptive snapshot selection method for POD-based MOR are presented in [1,30,38,39]. For 
example, in [30], Sato and Igarashi propose a novel method which determines the adequate number of snapshots automat-
ically based on the ratio to characterize the sudden change in the error between the time steps t(n) and t(n+1) for solving 
Maxwell’s equations used to model eddy current problems. In [1], the authors study a novel adaptive snapshot selection 
method in time that reduces off-line training cost according an error control mechanism for a simple first-order dynamical 
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system. The focus of our work is on a generalized first-order dynamical equations obtained after discretization of (1) us-
ing the non-dissipative high order DGTD method introduced in [40]. This DGTD method is formulated on an unstructured 
simplicial mesh, and combines a centered scheme for the definition of the numerical fluxes of the electric and magnetic 
fields at element interfaces with a second order leap-frog (LF2) time scheme for the time integration of the associated 
semi-discrete equations.

In the adaptive snapshot selection method, a priori error bound between the high fidelity model and the ROM is required. 
In [15,41], Kunisch and Volkwein derive a priori error bounds for POD-based methods to solve a class of parabolic partial 
differential equations (PDEs). Rathinam and Petzold [13] present a priori error estimates of POD-based MOR and also analyze 
the effects of a small perturbation on the low-dimensional space generated by the POD basis for a first-order dynamical 
systems. Amsallem and Hermaniuk derive a priori error estimates for Galerkin ROM of the wave equation in [3]. In the 
present work, inspired from the approach followed in [2,3,13], we derive error bounds for a POD-based ROM designed for 
a first-order dynamical system resulting from a DG discretization of the time-domain Maxwell’s equations. This is achieved 
at the semi-discrete level, and at the fully discrete level as well when the semi-discrete POD-based ROM is time integrated 
by the LF2 scheme. The primary objective of our study is to demonstrate the benefits of the proposed POD-based ROM 
of the system of time-domain Maxwell equations discretized by a high order DGTD method (referred as POD-DGTD in the 
sequel), with adaptive snapshot selection based on the error analysis. An incremental SVD (ISVD) algorithm, which is the 
on-the-fly variant of the SVD [42], is employed for the addition of a snapshot to the POD basis. Besides, we adopted a 
snapshot selection rule aiming at keeping the error estimate close to a snapshot selection error tolerance when choosing 
the time interval between snapshots in the adaptive algorithm.

As previously noticed, the herein developed theoretical results, albeit being adapted to specific modeling and discretiza-
tion settings, are very similar to the ones initially derived in [2,3]. From our point view, the main originality of our study 
lies in the numerical demonstration of the effectiveness of the proposed adaptive POD-DGTD method for the simulation of 
time-domain electromagnetic wave propagation in homogeneous media and heterogeneous media as well. From this point 
of view, the combined theoretical and numerical results presented hereafter, contribute to strengthen the aforementioned 
achievements for the system of time-domain Maxwell equations. Moreover, because the DGTD method is nowadays rec-
ognized as a viable alternative to the widespread finite difference time-domain (FDTD) method [43] when dealing with 
electromagnetic wave interaction with general geometries and complex media, we believe that this work will offer a novel 
approach for reducing the computational overhead of a classical DG formulation, which is linked to the drawback of a higher 
number of degrees of freedom as compared to continuous finite element methods.

The rest of the paper is organized as follows. We briefly recall the DGTD method for solving the time-domain Maxwell’s 
equations in Section 2. The POD-based ROM method is established in Section 3. Moreover, a stability analysis of the POD-
based ROM method with LF2 time scheme is presented, and error bounds for the ROM are derived in this section. The 
ISVD and adaptive snapshot selection algorithms are elaborated in Section 4. Numerical results are presented in Section 5
to show the effectiveness of the proposed method for solving 2-D time-domain Maxwell’s equations. We draw conclusions 
in Section 6.

With a few exceptions, we follow the notational conventions used in [28]. Specifically, we use v to denote a scalar 
quantity, V, v or V a vector, and A a matrix, In for the n × n identity matrix, and 0n×m for the n × m zero matrix. We will 
omit these indices whenever the sizes of I and 0 are apparent from the context. The set of real numbers is denoted by R. 
The superscripts ·T and ·′ respectively denote the transpose and the time derivative.

2. Discontinuous Galerkin time-domain method

We consider a partition Th of � into a set of elements Ki of size hi = diam(Ki) such that h = max
∀i∈N�

hi with N� the set of 

indices of the mesh elements. We denote by FI
h the union of all interior faces of Th , by FB

h the union of all boundary faces 
of Th , and by Fh = FI

h ∪ FB
h the union of all faces. For an element Ki ∈ Th , if K j is an adjacent element, Fij is the common 

face of Ki and K j , where the index j denotes a fictitious element outside the domain when Fij ∈ FB
h . We denote by Vi the 

set of indices of the face-neighboring elements of the element Ki , and by ni j the unit normal vector oriented from Ki to 
K j . For a face Fij ∈ Fh , we can define the averaging operator {·} as

{v}Fi j = 1

2
(vi|Fi j + v j|Fi j ),

where vi|Fi j and v j|Fi j respectively stand for the traces of v on Fij from the interior of Ki and K j . Note that for any Fij ∈ FI
h , 

{v}Fi j = {v}F ji . Each Ki ∈ Th is assumed to be the image, under a smooth bijective mapping, of a fixed reference element 
Ke = {(ξ, η, ζ ) | ξ, η, ζ ≥ 0, ξ + η + ζ ≤ 1}. For each Ki ∈ Th , we denote by pi ≥ 0 the local interpolation order, and by 
Ppi (Ki) the space of nodal polynomials of degree at most pi inside the element Ki . In this study, the interpolation order pi

is assumed to be uniform over all the elements, i.e., ∀i, j ∈ N� , pi = p j = p. We introduce the discontinuous finite element 
space defined by

Vh = {v ∈ [L2(�)]3 | v|K ∈ [Pp (Ki)]3, ∀i ∈ N�},
i i
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where L2(�) is the space of square integrable functions in the domain �. The functions in Vh are continuous inside each 
element and discontinuous across the interfaces between elements. For two vectorial functions u, v ∈ [L2(D)]3, (u, v)D

stands for 
∫

D(u · v)d�, and 〈u, v〉F stands for 
∫

F (u · v)dl, where D is a convex domain in R3, and F is an interface in R3.
The DG method seeks an approximate solution (Eh, Hh) in the space Vh × Vh such that for all Ki in Th⎧⎪⎨⎪⎩

(μr
∂Hh

∂t
,v)Ki + (curl Eh,v)Ki = 0, ∀v ∈ Vh,

(εr
∂Eh

∂t
,v)Ki − (curl Hh,v)Ki = 0, ∀v ∈ Vh.

(3)

Integration by parts of (3) and then replacing the boundary terms by numerical traces ̃Eh and H̃h , we have⎧⎪⎨⎪⎩
(μr

∂Hh

∂t
,v)Ki + (Eh, curl v)Ki − 〈̃Eh × n,v〉∂ Ki = 0, ∀v ∈ Vh,

(εr
∂Eh

∂t
,v)Ki − (Hh, curl v)Ki + 〈H̃h × n,v〉∂ Ki = 0, ∀v ∈ Vh.

(4)

Proper choice of numerical traces ̃Eh and H̃h is essential for the correctness and the convergence of the DG scheme. For the 
sake of simplicity, we make use in this study of the centered numerical traces, i.e.,

Ẽh = {Eh}Fi j , H̃h = {Hh}Fi j , ∀i ∈ N�, ∀ j ∈ Vi,

which is the option adopted and studied in [40]. We denote by (Ei, Hi) the approximations (Eh|Ki , Hh|Ki ) restricted to the 
element Ki . As in a classical finite element setting, the fields Ei and Hi are linear combinations of the basis vectors on 
the element Ki with coefficient vectors Ei and Hi , respectively. For each element Ki ∈ Th , a set of scalar basis functions 
(ϕik)1≤k≤di is defined, where di denotes the number of DoFs inside Ki for each spatial dimension. For a 3-D problem, we 
have 3di DoFs per element for each field, and the three vectorial basis functions are defined as

�1
ik = (ϕik,0,0)T , �2

ik = (0,ϕik,0)T , �3
ik = (0,0,ϕik)

T , ∀i ∈ N�, 1 ≤ k ≤ di .

Ei is then locally expanded as

Ei =
3∑

m=1

di∑
k=1

Em
ik�

m
ik= ET

i �i,

where Ei =
⎡⎣(E1

ik)1≤k≤di

(E2
ik)1≤k≤di

(E3
ik)1≤k≤di

⎤⎦ and �i = [�1
i1, · · · , �1

idi
, �2

i1, · · · , �2
idi

, �3
i1, · · · , �3

idi
]T . The definitions for Hi are similar to those 

for Ei . One can obtain the following semi-discrete formulation in Ki⎧⎪⎪⎨⎪⎪⎩
μrMi

∂Hi

∂t
= −KiEi + ∑

l∈Vi

SilEl,

εrMi
∂Ei

∂t
= KiHi − ∑

l∈Vi

SilHl,

(5)

where the 3di × 3di block diagonal mass matrix Mi = diag(M̃1
i , ̃M

2
i , ̃M

3
i ), the 3di × 3di block diagonal stiffness matrix 

Ki = diag(K̃1
i , ̃K

2
i , ̃K

3
i ), and the 3di ×3dl block diagonal surface matrix Sil = diag(S̃1

il, ̃S
2
il, ̃S

3
il) are defined by their respective 

diagonal blocks⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(M̃m

i ) jk = (�m
ij ,�

m
ik)Ki ,

(K̃m
i ) jk = 1

2
[(�m

ij , curl �m
ik)Ki + (curl �m

ij ,�
m
ik)Ki ],

(S̃m
il ) jk = 1

2
〈�m

ij ,�
m
lk × nil〉Fil ,

(6)

where the dimension of M̃m
i , K̃m

i , and S̃m
il are di × di , di × di , and di × dl , respectively, m = {1, 2, 3}, and dl denotes the 

number of DoFs on the face Fil ∈ Vi . Concerning the time discretization, we adopt the LF2 scheme. The combination of the 
centered numerical traces in the DG formulation with the LF2 scheme for time integration of (6) leads to a non-dissipative 
DGTD method [40]. We divide the time interval [0, T f ] into Nt equally spaced subintervals as

0 = t(0) < t(1) < · · · < t(Nt ) = T f ,
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where t(n) = n�t (n ∈ {0, 1, · · · , Nt}) and �t denotes the time step size, which is constrained to a Courant-Friedrichs-Lewy 
(CFL) condition [40]. Then, the fully discrete scheme is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εrMi
E(n+1)

i − E(n)
i

�t
= KiH

(n+1
2 )

i −
∑
l∈νi

SilH
(n+1

2 )

l ,

μrMi
H

(n+3
2 )

i − H
(n+1

2 )

i

�t
= −KiE

(n+1)
i +

∑
l∈νi

SilE
(n+1)

l ,

n = 0,1, · · · , Nt − 1. (7)

In order to construct the POD-based ROM, we need a global formulation of the problem that we state below for the 
semi-discrete system (5). By gathering the electric and magnetic DoFs in each element into column vectors of size N =
3 
∑

i∈N�
di , denoted by Eh and Hh respectively, the local semi-discrete system (5) for each element Ki of the mesh can be 

transformed into the following global semi-discrete system⎧⎪⎨⎪⎩
μrM

∂Hh

∂t
= −KEh + SiEh + SeÊh + Be(t),

εrM
∂Eh

∂t
= KHh − SiHh − ShĤh − Bh(t),

(8)

where M and K are N × N block diagonal matrices, whose diagonal blocks are equal to Mi and Ki , respectively. Si is an 
N × N block sparse matrix whose non-zero blocks are equal to Sil . Sh and Se are also N × N block diagonal matrices whose 
non-zero blocks are respectively equal to Sil and −Sil if Fil ∈ F B

h ∩ �m , assuming that ̂Eh = Eh and Ĥh = Hh on a face of �m

from (2). The non-zero blocks of Sh and Se are respectively equal to Sh
il and Se

il if Fil ∈ F B
h ∩ �a , where the 3di × 3dl block 

diagonal surface matrix Sh
il = diag(S̃h,1

il , ̃Sh,2
il , ̃Sh,3

il ) and Se
il = diag(S̃e,1

il , ̃Se,2
il , ̃Se,3

il ) are defined by their respective diagonal 
blocks⎧⎪⎨⎪⎩

(S̃h,m
il ) jk = −1

2
Z−1

i 〈�m
ij , (�

m
lk × nil) × nil〉Fil

,

(S̃e,m
il ) jk = 1

2
Zi〈�m

ij , (�
m
lk × nil) × nil〉Fil

,

1 ≤ m ≤ 3.

And one can find that ̂Eh = Hh and Ĥh = Eh on a face on �a from (2). Be(t) = SincEinc −SeHinc and Bh(t) = SincHinc −ShEinc

are N × 1 time-dependent vectors when Fil ∈ F B
h ∩ �a , where Sinc is an N × N block sparse matrix whose non-zero blocks 

are equal to Sil; Bh(t). Be(t) are N × 1 zero vectors when Fil ∈ F B
h ∩ �m . In particular, M is a symmetric positive definite 

matrix, K and Si are symmetric matrices, and Se and Sh are skew-symmetric matrices. Besides, Se = −Sh when �a = ∅. 
For detailed descriptions of these matrices, see [28].

3. POD-based model order reduction and error estimates

In this section, we present the formulations of the POD-based ROM, and analyze the stability and the error bounds based 
on appropriate norms to measure the ROM error at both the semi-discrete and fully discrete levels.

3.1. Reduced-order model

We equidistantly or unevenly extract � solutions uni
h (0 ≤ n1 ≤ · · · ≤ n� ≤ Nt , � � Nt ) from the transient solutions {ui

h}Nt
i=0

(ui
h = E(i)

h , H(i+ 1
2 )

h ) of the DGTD method (7) as snapshot vectors. Then, we formulate two N × � snapshot matrices AE and 
AH as follows

Au =

⎡⎢⎢⎢⎢⎣
un1

h,1 un2
h,1 · · · un�

h,1
un1

h,2 un2
h,2 · · · un�

h,2
...

...
. . .

...

un1
h,N un2

h,N · · · un�

h,N

⎤⎥⎥⎥⎥⎦ , u=E,H.

Let

Au = Uu

[
�u

ru×ru
0ru×(�−ru)

0(N−ru)×ru 0(N−ru)×(�−ru)

]
V T

u , u=E,H, (9)

be the SVD of Au , where Uu and Vu are N × N and � × � unitary matrices, ru is the rank of Au , and

�u
r ×r = diag(σu,1,σu,2, · · · ,σu,ru),
u u
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with σu,1 ≥ σu,2 ≥ · · · ≥ σu,ru ≥ 0 being the singular values of Au . Given a number du (u = E, H), the POD method defines 
a basis �u created by the left singular vectors corresponding to the du greatest singular values of Au . The reduced-order 
approximation of the fields takes the form based on a Galerkin ansatz

Eh ≈ Er
h = �EαE(t) , Hh ≈ Hr

h = �HαH(t), (10)

where αu(t) ∈Rdu (u = E, H) is the state vector of the ROM, and Er
h , Hr

h denote the reduced-order solutions. We obtain the 
residual vectors by substituting (10) into (8){

resH(t) = μrM�Hα′
H(t) + (K− Si)�EαE(t) − Se�̂Eα̂E(t) − Be(t),

resE(t) = εrM�Eα
′
E(t) − (K− Si)�HαH(t) + Sh�̂Hα̂H(t) + Bh(t),

(11)

with

α̂E(t) =
{
αE(t), if F B

h = �m,

αH(t), if F B
h = �a,

α̂H(t) =
{
αH(t), if F B

h = �m,

αE(t), if F B
h = �a,

and

�̂E =
{

�E, if F B
h = �m,

�H, if F B
h = �a,

�̂H =
{

�H, if F B
h = �m,

�E, if F B
h = �a.

The residual vectors resu(t) (u = E, H) are required to be orthogonal to the reduced-order space, which is spanned by the 
reduced-order basis �u , by applying the Galerkin projection

�T
HresH(t) ≡ 0 , �T

E resE(t) ≡ 0.

The global semi-discrete ROM system is then written as{
μr�

T
HM�Hα′

H(t) = �T
H(−K+ Si)�EαE(t) + �T

HS
e�̂Eα̂E(t) + �T

HBe(t),

εr�
T
EM�Eα

′
E(t) = �T

E (K− Si)�HαH(t) − �T
ES

h�̂Hα̂H(t) − �T
E Bh(t),

(12)

with the initial conditions{
αE(0) = (�T

EM�E)−1�T
EMEh(0),

αH(0) = (�T
HM�H)−1�T

HMHh(0).
(13)

The local fully discrete system (7) for each element Ki can be transformed into a global system⎧⎪⎪⎪⎨⎪⎪⎪⎩
εrM

E(n+1)

h − E(n)

h

�t
= (K−Si)H

(n+ 1
2 )

h − ShĤ
(n+ 1

2 )

h − Bh(n�t),

μrM
H

(n+ 3
2 )

h − H
(n+ 1

2 )

h

�t
= (−K+ Si)E(n+1)

h + SeÊ
(n+1)

h + Be((n + 1
2 )�t).

(14)

By applying the approximation⎧⎨⎩E(n)

h ≈ Er,(n)

h = �Eα
(n)
E ,

H
(n+ 1

2 )

h ≈ H
r,(n+ 1

2 )

h = �Hα
(n+ 1

2 )

H ,

n = 0,1, · · · , Nt, (15)

we obtain the fully discrete reduced-order model, for n = 0, 1, · · · , Nt − 1⎧⎪⎪⎨⎪⎪⎩
εr�

T
EM�E

α
(n+1)
E − α

(n)
E

�t
= �T

E (K− Si)�Hα
(n+ 1

2 )

H − �T
ES

h�̂Hα̂
(n+ 1

2 )

H − �T
E Bh(n�t),

μr�
T
HM�H

α
(n+ 3

2 )

H − α
(n+ 1

2 )

H

�t
= �T

H(−K+ Si)�Eα
(n+1)
E + �T

HS
e�̂Eα̂

(n+1)
E + �T

HBe((n + 1
2 )�t),

(16)

with the initial conditions⎧⎨⎩α
(0)
E = (�T

EM�E)−1�T
EME(0)

h ,

α
( 1

2 )

H = (�T
HM�H)−1�T

HMH
( 1

2 )

h .

(17)



112 K. Li et al. / Journal of Computational Physics 396 (2019) 106–128
Remark 1. The matrices �T
EM�E and �T

HM�H in (13) and in (17) are dE × dE and dH × dH respectively, thus of small size. 
So their inversion is not computationally expensive, and the POD-DGTD method is still effective even if these matrices are 
dense. The inverse of the matrix �T

uM�u (u = E, H) exists because M is a real symmetric positive definite matrix and �u
consists of the left singular vectors corresponding to the du greatest singular values of Au . In particular, �T

uM�u is also a 
symmetric positive definite matrix.

Remark 2. The general goal of the proposed POD-DGTD method is to reduce the complexity of a full time-domain simu-
lation in order to address problems such as design optimization or uncertainty quantification that will require performing 
many simulations. A specific goal is to study the applicability of POD for reducing the complexity of the full time-domain 
simulation and running with the same basis for different configurations. The snapshot vectors in this work are chosen from 
the full DGTD solutions. However, one may obtain the ensemble of snapshots from physical system trajectories by drawing 
samples from experiments and interpolation (or data assimilation). For example, we can run the full DGTD simulation with 
a reference parameter, and construct the snapshots and the POD basis. Then we can run the POD-DGTD simulations when 
the parameter changes at a much lower cost without running the full DGTD simulation, as we show in the numerical test 
for the scattering of a plane wave by a dielectric disk, see Fig. 7.

3.2. Stability analysis

The resulting full DGTD method with LF2 time scheme (14) is analyzed in [44] where it is shown that the method is 
non-dissipative, conserves a discrete form of the electromagnetic energy and is stable under the CFL condition

�t <
2

dN
, with dN = ‖(Mμr )−

1
2 (K− Si − Se)(Mεr )−

1
2 ‖,

where the matrix Mσ = σM (σ stands for εr or μr ), ‖ · ‖ denotes a canonical norm of a matrix (∀x, ‖Ax‖ ≤ ‖A‖‖x‖), 
and (·)− 1

2 is the inverse square root of a matrix. The stability of the POD-DGTD scheme with the LF2 time scheme is now 
analyzed by using an energy method, where a quadratic form plays the role of a Lyapunov function of the whole set of 
numerical unknowns.

Definition 1. We consider the following discrete electromagnetic energy in the whole domain �

�r,n = 1

2
[(Er,(n)

h )TMεr Er,(n)

h + (H
r,(n+ 1

2 )

h )TMμr H
r,(n− 1

2 )

h ]. (18)

In the following, we shall verify that �r,n is exactly conserved in the absence of the first order Silver-Müller ABC, i.e., 
��r = �r,n+1 − �r,n = 0.

Theorem 1. Using the POD-DGTD scheme (15)-(16) with PEC condition only, the global discrete energy (18) is exactly conserved.

Proof. Based on the definition of the electromagnetic energy, we have

�r,n+1 − �r,n = 1

2
(α

(n+1)
E + α

(n)
E )T (�T

EM
εr �E)(α

(n+1)
E − α

(n)
E )

+ 1

2
α

(n+ 1
2 )

H (�T
HM

μr �H)(α
(n+ 3

2 )

H − α
(n− 1

2 )

H ). (19)

We denote by α[n+ 1
2 ]

E = (α
(n+1)
E +α

(n)
E )

2 , and then we have

�r,n+1 − �r,n = �t(α
[n+ 1

2 ]
E )T �T

E (K− Si − Sh)�Hα
(n+ 1

2 )

H

+ �t(α
(n+ 1

2 )

H )T �T
H(−K+ Si + Se)�Eα

[n+ 1
2 ]

E . (20)

Based on the definition of (8), we have

K= KT , Si = (Si)T , Sh = −Se, and (Se)T = −Se.

Then, one can obtain

�r,n+1 − �r,n = 0, (21)

which completes the proof. �
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Theorem 2. (CFL condition) Using the POD-DGTD scheme (15)-(16) when �a = ∅, the global discrete electromagnetic energy (18) is 
a positive definite quadratic form of the unknowns Er

h and Hr
h if

�t <
2

dr
N

, with dr
N = ‖(�T

HM
μr �H)−

1
2 �T

H(K− Si − Se)�E(�T
EM

εr �E)−
1
2 ‖. (22)

Proof. Using the scheme (16) to develop α(n+ 1
2 )

H in function of α(n− 1
2 )

H and α(n)
E , one can get

�r,n = 1

2
(α

(n)
E )T (�T

EM
εr �E)α

(n)
E + 1

2
(α

(n− 1
2 )

H )T (�T
HM

μr �H)α
(n+ 1

2 )

H

= 1

2
(α

(n)
E )T (�T

EM
εr �E)α

(n)
E + 1

2
(α

(n− 1
2 )

H )T (�T
HM

μr �H)α
(n− 1

2 )

H

−�t

2
(α

(n− 1
2 )

H )T �T
H(K− Si − Se)�Eα

(n)
E . (23)

We have the following equalities and inequalities

1

2
(α

(n)
E )T (�T

EM
εr �E)α

(n)
E = 1

2
‖(�T

EM
εr �E)

1
2 α

(n)
E ‖2,

1

2
(α

(n− 1
2 )

H )T (�T
HM

μr �H)α
(n− 1

2 )

H = 1

2
‖(�T

HM
μr �H)

1
2 α

(n− 1
2 )

H ‖2,

�t

2
(α

(n− 1
2 )

H )T �T
H(K− Si − Se)�Eα

(n)
E ≤ |�t

2
(α

(n− 1
2 )

H )T (�T
HM

μr �H)
1
2 (�T

HM
μr �H)−

1
2

�T
H (K− Si − Se)�E(�T

EM
εr �E)−

1
2 (�T

EM
εr �E)

1
2 α

(n)
E |

≤ �tdr
N

2
‖(�T

EM
εr �E)

1
2 α

(n)
E ‖‖(�T

HM
μr �H)

1
2 α

(n− 1
2 )

H ‖.
Noticing that

‖(�T
EM

εr �E)
1
2 α

(n)
E ‖‖(�T

HM
μr �H)

1
2 α

(n− 1
2 )

H ‖ ≤ 1

2
(‖(�T

EM
εr �E)

1
2 α

(n)
E ‖2 + ‖(�T

HM
μr �H)

1
2 α

(n− 1
2 )

H ‖2),

then one can get

�r,n ≥ 1

2
(1 − �tdr

N

2
)‖(�T

EM
εr �E)

1
2 α

(n)
E ‖2 + 1

2
(1 − �tdr

N

2
)‖(�T

HM
μr �H)

1
2 α

(n− 1
2 )

H ‖2. (24)

This concludes the proof. Expression (22) states a sufficient condition for the stability of the fully discrete reduced-order 
model (16). �
3.3. Error estimates

The error estimate for the ROM (12) and (16) will be used as an error control mechanism in the adaptive snapshot 
selection algorithm. The error eu(t) = uh − ur

h (u = E, H) over the time interval [0, T f ] is decomposed as

eu(t) = eu,P (t) + eu,V (t), (25)

with {
eu,P (t) = [I − �u(�T

uM�u)−1�T
uM]uh,

eu,V (t) = �u[(�T
uM�u)−1�T

uMuh − αu(t)]. (26)

We decompose RN as

RN = span�u ⊕⊥M span�u, u = E,H,

where spanA denotes the subspace spanned by the columns of matrix A, and ⊥M means that span �u and span �u are 
orthogonal with respect to M, that is �T

uM�u = 0. We can easily find that the error components eu,P (t) and eu,V (t) belong 
to span�u and span �u , respectively.

We first introduce two norms and two operators in order to derive an estimation for the error. For a matrix K, the 
K-norm of a vector x and a matrix Y can be defined as

‖x‖K =
√

xTKx, ‖Y‖K = max
‖Yx‖K

, ∀Y ∈ RN×N , ∀x ∈ RN . (27)

x�=0 ‖x‖K
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When the matrix K is a symmetric positive definite matrix, the matrix norm ‖Y‖K is 
√

λmax(Y TKY ), where λmax(Y TKY )

denotes the maximum eigenvalue of the matrix Y TKY . Besides, as in [13], the operators F (T f ; Y ) : L2([0, T f ], RN) →
L2([0, T f ], RN ) and G(T f ; Y ) :RN → L2([0, T f ], RN ) are linear operators if the integral equation

x(t) =
t∫

0

eY (t−τ )u(τ )dτ + eY tx0, Y ∈ RN×N , x,x0,u ∈ RN , (28)

is written as the form

x = F (T f ;Y )u + G(T f ;Y )x0, (29)

in the interval [0, T f ]. For complete descriptions of the definition of the operators F (T f ; Y ) and G(T f ; Y ) see [3,13]. In this 
paper, we shall estimate ‖x‖K based on the matrix theory

‖x‖K ≤ ‖F (T f ;Y )‖K‖u‖K + ‖G(T f ;Y )‖K‖x0‖K. (30)

Lemma 1. [3] Given a sequence {φn}Nt
n=0 such that

0 ≤ φn ≤ βφn−1 + α�tψn + α�tψn−1, f or n ≥ 1,

where β > 0, α ≥ 0, and ψn ≥ 0 (n = 0, 1, · · · , Nt ). For n = 0, 1, · · · , Nt , φn satisfies

φ2
n ≤ 2β2nφ0 + 2[α�t(1 + 1

β
)]2(

Nt∑
i=0

β2i)(

Nt∑
i=0

ψ2
i ), (31)

and

�t
Nt∑
j=0

φ2
j ≤ 2φ0

Nt∑
j=0

β2 j + 2T f [α(1 + 1

β
)]2(�t

Nt∑
i=0

β2i)(�t
Nt∑

i=0

ψ2
i ). (32)

Proof. Proceeding by induction, one can obtain

φn ≤ βnφ0 + α�tψn + α�t(1 + β)

n−1∑
i=0

βn−1−iψi, for n ≥ 1. (33)

Equation (33) can be rewritten as follows (because 1 + 1
β

> 1)

φn ≤ βnφ0 + α�t(1 + 1

β
)

n∑
i=0

βn−iψi . (34)

The lemma is proved by squaring the inequality (34) and then using the Cauchy-Schwarz inequality. �
Theorem 3. Let Uh(t) = (Eh(t), Hh(t)) (t ∈ [0, T f ]) be the semi-discrete DG solution of (5), and Ur

h(t) = (Er
h(t), Hr

h(t)) (t ∈ [0, T f ]) 
be the reduced-order solution of (10), and (12). Then, the error eROM(t) = Uh(t) − Ur

h(t) (t ∈ [0, T f ]) for the POD-based ROM in the 
semi-discrete setting satisfies

T f∫
0

‖eROM(t)‖2
M̂

dt ≤
(
‖F (T f ; (�̂T M̂�̂)−1�̂TR�̂)‖2

�̂T M̂�̂
‖�̂TR�̂(�̂T M̂�̂)−1�̂T M̂

1
2 ‖2

(�̂T M̂�̂)−1 + 1
)

×
⎛⎜⎝ T f∫

0

‖eE,P (t)‖2
Mdt +

T f∫
0

‖eH,P (t)‖2
Mdt

⎞⎟⎠ , (35)

with

�̂ =
[
�E 0
0 �H

]
, �̂ =

[
�E 0
0 �H

]
, M̂ =

[
M 0
0 M

]
, and R=

[
0 ε−1

r (K− Si − Sh)

μ−1
r (−K+ Si + Se) 0

]
,

where M̂
1
2 is the square root of the real symmetric positive definite matrix M̂.
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The proof of Theorem 3 is provided in appendix A. We now consider the error bound for the fully discrete system. 
Similarly, the error e(n)

E = E(n)

h − Er,(n)

h is decomposed as

e(n)
E = e(n)

E,P + e(n)
E,V , n = 0,1, · · · , Nt, (36)

with {
e(n)

E,P = [I − �E(�T
EM�E)−1�T

EM]E(n)

h ∈ span�E,

e(n)
E,V = �E[(�T

EM�E)−1�T
EME(n)

h − α
(n)
E ] ∈ span�E.

The error e(n+ 1
2 )

H is also decomposed as

e
(n+ 1

2 )

H = e
(n+ 1

2 )

H,P + e
(n+ 1

2 )

H,V , n = 0,1, · · · , Nt, (37)

with ⎧⎨⎩e
(n+ 1

2 )

H,P = [I − �H(�T
HM�H)−1�T

HM]H(n+ 1
2 )

h ∈ span�H,

e
(n+ 1

2 )

H,V = �H[(�T
HM�H)−1�T

HMH
(n+ 1

2 )

h − α
(n+ 1

2 )

H ] ∈ span �H.

Theorem 4. Let U(n)

h = (E(n)

h , H(n+ 1
2 )

h ) (n = 0, 1, · · · , Nt ) be the DGTD solution of (7), and Ur,(n)

h = (Er,(n)

h , Hr,(n+ 1
2 )

h ) (n = 0, 1, · · · , Nt ) 
be the reduced-order solution of (16). Then, the error e( j)

R O M = U(n)

h − Ur,(n)

h (n = 0, 1, · · · , Nt ) for the ROM in the discrete system 
satisfies

�t
Nt∑

j=0

‖e( j)
R O M‖2

M̂
≤
⎛⎝1 + 2T f [α(1 + 1

β
)]2(�t

Nt∑
j=0

e2γ j�t)

⎞⎠×
(

�t
Nt∑

i=0

(‖e(i)
E,P ‖M + ‖e

(i+ 1
2 )

H,P ‖M)2

)
, (38)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = max{α1,α2}
β = ‖I + �tM

1
2 {�̂(�̂T M̂�̂)−1�̂TR

+ �t[�̂(�̂T M̂�̂)−1�̂TL][�̂(�̂T M̂�̂)−1�̂TU ]}M− 1
2 ‖2,

γ = ‖M 1
2 {�̂(�̂T M̂�̂)−1�̂TR

+ �t[�̂(�̂T M̂�̂)−1�̂TL][�̂(�̂T M̂�̂)−1�̂TU ]}M− 1
2 ‖2,

where α1 , α2 , L, and U are respectively defined as{
α1 = ‖M̂ 1

2 [I + �t�̂(�̂T M̂�̂)−1�̂TL]�̂(�̂T M̂�̂)−1�̂TU�̂(�̂T M̂�̂)−1�̂T M̂
1
2 ‖2,

α2 = ‖M̂ 1
2 [I + �t�̂(�̂T M̂�̂)−1�̂TL]�̂(�̂T M̂�̂)−1�̂TL�̂(�̂T M̂�̂)−1�̂T M̂

1
2 ‖2,

L =
[

0 0
μ−1

r (−K+ Si + Se) 0

]
, U =

[
0 ε−1

r (K− Si − Sh)

0 0

]
.

The proof of Theorem 4 is provided in appendix B.

Remark 3. The error estimate of the POD-based ROM in the semi-discrete level (Theorem 3) for the system of time-domain 
Maxwell equations discretized by the DG method is not fully novel but used to come to a good snapshot selection, and is 
very similar to the ones initially derived in [3], in which the error bound for the first-order dynamical system is derived 
at the semi-discrete level. However, the discrete system was obtained after time integration with the average constant 
acceleration Newmark scheme is analyzed in [3], while, the error bound for POD-DGTD scheme is derived in the discrete 
level when the LF2 time scheme is applied in Theorem 4.

Remark 4. From Theorems 3 and 4, the total errors eROM(t) (t ∈ [0, T f ]) and e( j)
ROM ( j = 0, 1, · · · , Nt ) are only controlled 

by the errors projected onto the subspace spanned by �u (u = E, H), i.e., one can estimate the errors for a given set of 
snapshots without knowing the solutions of the ROM. These error estimates will be used as the error control mechanism in 
the adaptive selection algorithm for choosing snapshots, and to guarantee the low-rank property of the snapshot matrix Au
(u = E, H). This technique is described in the subsequent section.

Remark 5. In the numerical simulations, one does not need to calculate the coefficients in Theorem 3 and 4, e.g. α, β and γ . 
Instead, one needs to know that the errors are only controlled by the errors projected onto the subspace span�u (u = E, H).
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4. An adaptive algorithm

In this section, an ISVD algorithm for computing the singular vectors on-the-fly [45], and an adaptive selection algorithm 
for choosing snapshots are represented.

4.1. Incremental SVD

The ISVD algorithm is an on-the-fly algorithm of the SVD [45]. The underlying idea is to update the POD basis as soon as 
a new snapshot is added [46]. In this paper, a modified version of Brand’s ISVD [42] proposed by Oxberry, et al. is adopted 
because of its simplicity in implementation and description [1]. A rank-k SVD of a matrix Au is defined by

Au = Uu,k�
u
k×kV

T
u,k +Ru, k ≤ ru ≤ min{N, �}, (39)

where Uu,k�
u
k×kV

T
u,k is the rank-k SVD similar to (9), Ru ∈ RN×� is the error because of rank-k truncation, which equals 

to 0 when k = ru . The rank-k SVD matrix is updated when a new snapshot unnew
h is available. The POD snapshot matrix is a 

low-rank matrix, so we choose k = ru in this work. This ISVD algorithm is derived from the identity

[Au,unnew
h ] = [Uu,k�

u
k×kV

T
u,k,unnew

h ]

= [Uu,k, (I −Uu,kU
T
u,k)unnew

h /p]
[
�u

k×k U T
u,kunnew

h
01×k p

][
Vu,k 0k×1
01×k 1

]T

= [Uu,k,q]
[
�u

k×k l
01×k p

][
Vu,k 0k×1
01×k 1

]T

, (40)

where p = ‖unnew
h −Uu,kU T

u,kunnew
h ‖ is the length of the orthogonal projection of unnew

h onto the subspace with an orthog-

onal basis Uu,k , q = (I − Uu,kU T
u,k)unnew

h /p is the normalized orthogonal projection of unnew
h onto the subspace with an 

orthogonal basis Uu,k , and l = U T
u,kunnew

h is the projection unnew
h onto the orthogonal basis Uu,k . The matrix in the middle, 

which will be denoted by Q, must be diagonalized to update the SVD

Q =
[
�u

k×k l
01×k p

]
= Ûu,k�̂

u
k×kV̂

T
u,k. (41)

Then the updated SVD is

[Au,unnew
h ] = [Uu,k,q]Ûu,k�̂

u
k×kV̂

T
u,k

[
Vu,k 0k×1
01×k 1

]T

= Unew
u �u,newV new

u
T
, (42)

where Unew
u = [Uu,k, q]Ûu,k, �u,new = �̂u

k×k, and V new
u =

[
Vu,k 0k×1
01×k 1

]
V̂u,k . The SVD matrices are initialized by the fol-

lowing formulations

U init
u = un1

h /‖un1
h ‖, �u,init = ‖un1

h ‖, V init
u = 1. (43)

In particular, an SVD truncation tolerance εSVD is used to determine if the new snapshot unnew
h is numerically linearly 

independent on the columns of Au . If p < εSVD, (42) can be replaced with the truncated forms

Unew
u = Uu,kÛu,k1:r,1:r , �u,new = �̂u

1:r,1:r, V new
u = Vu,kV̂u,k:,1:r . (44)

We refer the reader to [42,45] for more details. In this paper, we use the ISVD algorithm to compute the singular vectors 
and singular values of the augmented snapshot matrix Au (u = E, H) on-the-fly, which is described in Algorithm 1.

Remark 6. In Algorithm 1, the cost of the total truncated SVD takes O(N�k2) time,1 and O(k(N + � + k)) memory. In 
particular, the truncated SVD is computed in O(N�k) time, and O(k(N + �)) memory for low-rank matrices [42], e.g., the 
POD snapshot matrix Au with k ≤ ru � N . However, a dense SVD would require O(N�2 + N2� + �3) time, and at least 
O(N2 + �2 + N�) [47]. So, the ISVD algorithm is a perfect candidate to save CPU time and memory.

1 Q is a one-column bordered diagonal matrix, so it can be bidiagonalized in O(k2) time [1].
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Algorithm 1 Incremental SVD.
Input: SVD truncation tolerance εSVD, new snapshot unnew

h , Uu,k , �u
k×k , and Vu,k

Output: Unew
u , �u,new, V new

u
1: k = dimension of �u

k×k (the numerical rank of the truncate SVD)
2: if k = 0 then
3: Initialize Unew

u =U init
u , �u,new = �u,init , and V new

u =V init
u based on (43)

4: else
5: Compute the length p, and the vectors q, l based on (40)

6: Update the matrices [Uu,k, q], 
[

�u
k×k l

01×k p

]
, and 

[
Vu,k 0k×1
01×k 1

]
based on (40)

7: Calculate the matrices Ûu,k , �̂u
k×k , and V̂u,k based on (41)

8: if p < εSVD then
9: Update Unew

u , �u,new, and V new
u based on (44)

10: else
11: Update Unew

u , �u,new, and V new
u based on (42)

12: end if
13: end if

4.2. Adaptive snapshot selection algorithm

The adaptive snapshot selection method is proposed to gather snapshots on-the-fly. It determines the time interval �tu
q

(u = E, H) between snapshots, or the snapshots query time tu
q (u = E, H), based on an error control mechanism, in a way 

similar to adaptive time stepping methods for solving ODEs [48]. The update of the snapshots query time tu
q is based 

on predicting the growth of the ROM approximation errors eu,P (tu
q ) and eu,P (tu

q + �tu
q ) because the total errors eROM(t)

(t ∈ [0, T f ]) and e( j)
ROM ( j = 0, 1, · · · , Nt ) are only controlled by the errors projected onto the subspace from Theorems 3 and 

4, which is spanned by �u (u = E, H). The ROM approximation error eu,P (tu
q + �tu

q ) can be estimated by using the first 
order Taylor series expansion

eu,P (tu
q + �tu

q ) = eu,P (tu
q ) + �tu

q e′
u,P (tu

q ) +O(�tu
q ), (45)

with

e′
u,P (tu

q ) = [I − �u(�T
uM�u)−1�T

uM]∂uh

∂t
, u = E,H,

where 
∂uh

∂t
(u = E, H) has been defined in (8). The optimal step size is then calculated by using the following formulation

�tu
q,opt = κ

(
εsnapshot

‖eu,P (tu
q + �tu

q )‖M
) 1

τ+1 · �tu
q , u = E,H, (46)

where κ is a safety factor that is usually set to 0.8 or 0.9, and τ is chosen to be either the order of the numerical method 
or the order of its embedded estimator [1]. Moreover, because �tu

q is not allowed to increase nor to decrease too fast, one 
can set

�tu
q,new = max{κmax,min{κmin, κ(

εsnapshot

‖eu,P (tu
q + �tu

q )‖M )
1

τ+1 }} · �tu
q , (47)

where κmax > 1 and 0 < κmin < κ denote a maximum time step scaling factor and a minimum time step scaling factor, 
respectively. Besides, according to a standard rule aiming at keeping the error estimate ‖eu,P (tu

q + �tu
q )‖M close to a 

snapshot selection error tolerance εsnapshot, the time interval �tu
q is rejected if ‖eu,P (tu

q +�tu
q )‖M > ϑεsnapshot and the time 

interval �tu
q is chosen as �t; otherwise the time interval �tu

q is accepted. Here, ϑ is an accelerating factor usually taken as 
1.2 [49]. The construction of the POD basis is described in Algorithm 2.2

5. Numerical experiments

In this section, we present numerical results for the solution of the 2-D time-domain Maxwell equations. More precisely, 
we consider the case of transverse magnetic (TM) waves

2 The adaptive method can be performed in parallel to electromagnetic simulation without storing snapshots on the disk.



118 K. Li et al. / Journal of Computational Physics 396 (2019) 106–128
Algorithm 2 POD basis construction.

Input: SVD truncation tolerance εSVD, snapshot selection error tolerance εsnapshot, initial conditions E(0)

h , H( 1
2 )

h
Output: �u (u = E, H)
1: Initialize t = 0, n = 0, tH

q = 0.5�t , tE
q = 0, and �tu

q = �t (u = E, H)
2: while t < T f do
3: if (t + 0.5�t) ≥ tH

q then

4: Calculate the POD basis �H =Unew
H , and �H

rH×rH
= �H,new based on Algorithm 1

5: Update �tH
q based on (47)

6: if ‖eH,P (tu
q + �tH

q )‖M > ϑεsnapshot then

7: Update tH
q = tH

q + �t
8: else
9: Update tH

q = tH
q + �tH

q
10: end if
11: end if
12: if t ≥ tE

q then

13: Calculate the POD basis �E =Unew
E , and �E

rE×rE
= �E,new based on Algorithm 1

14: Update �tE
q based on (47)

15: if ‖eE,P (tE
q + �tE

q )‖M > ϑεsnapshot then

16: Update tE
q = tE

q + �t
17: else
18: Update tE

q = tE
q + �tE

q
19: end if
20: end if
21: Update t = t + �t

22: Update n = n + 1, and compute fields E(n)

h and H(n+ 1
2 )

h based on (7) or (14)
23: end while⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μr
∂ Hx

∂t
+ ∂ Ez

∂ y
= 0,

μr
∂ H y

∂t
− ∂ Ez

∂x
= 0,

εr
∂ Ez

∂t
− ∂ H y

∂x
+ ∂ Hx

∂ y
= 0.

(48)

The DGTD and POD-DGTD methods have been implemented in Matlab 2013b. In order to assess the numerical accuracy of 
the POD-DGTD method with adaptive snapshot selection (termed the adaptive POD-DGTD method), a POD-DGTD method 
based on an equispaced snapshot selection algorithm3 (termed the equispaced POD-DGTD method) matching the number of 
snapshots from the adaptive snapshot ROM, is also implemented (see also [28]). All our tests are performed on a computer 
system equipped a Intel Core i5 3.3 GHz CPU and 8 GB memory. The cost of computing the ROM solution with the equis-
paced and adaptive snapshot selection algorithms is nearly the same when the number of snapshots of these two strategies 
is the same, and a detailed CPU time comparison between the DGTD method and the equispaced POD-DGTD method is 
reported in [28]. So, we do not report CPU time in this work.

5.1. Standing wave in a PEC square cavity

In order to verify the stability of the POD-based ROM with the LF2 time scheme, we first consider the propagation of 
the (1,1) mode in a PEC square cavity �� = {(x, y) ∈ [0 m, 1 m] ×[0 m, 1 m]} with frequency f = 212 MHz and wavelength 
λ = 1.4 m. The exact solution is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Hx(x, y, t) = −π

ω
sin(πx)cos(π y)sin(ωt),

H y(x, y, t) = π

ω
cos(πx)sin(π y)sin(ωt),

Ez(x, y, t) = sin(πx)sin(π y)cos(ωt),

(49)

where ω = 2π f is the angular frequency. The simulation time is set to 20 periods of the incident plane wave, which corre-
sponds to 28.3 m (normalized). The simulations are performed using a triangular mesh with 177 nodes and 312 elements, 
and mesh size h = 1.179 × 10−1 m. The snapshot vectors in this experiment are chosen from the full DGTD solutions, and 
the adaptive selection method is performed with the error tolerance εsnapshot = 10−3. In the adaptive POD-DGTD method, 

3 Firstly, one gets the POD-based ROM for a snapshot selection error tolerance εsnapshot. Then, one can calculate the sampling rate ι matching the 
dimension of the POD-based ROM. Finally, one can equidistantly extract the ι transient solutions from the fully DGTD solutions.
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Fig. 1. Standing wave in a PEC square cavity: time evolution of (a) the energy and (b) the global L2 error obtained by the POD-DGTD method with LF2 time 
scheme. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

we set the maximum time step scaling factor κmax = 10, the minimum time step scaling factor κmin = 0.05, and the SVD 
truncation error tolerance is εSVD = 10−16. These parameters are the same for all our numerical experiments. The time 
evolution of the global L2 error between the exact and the POD-DGTD solutions and the energy defined in (18) are showed 
in Fig. 1, where the Pp approximation denotes the DGTD method of order p (p = 1, 2).

It is seen that the global L2 error stabilizes to a limit value and the energy is exactly conserved, which illustrates the 
stability of the proposed POD-based ROM under CFL-like condition. In addition, the convergence of the DGTD method has 
been verified in [28].

5.2. Plane wave propagation in vacuum

We then consider a simple problem consisting of the propagation of a plane wave in vacuum to compare the adaptive 
and equispaced POD-DGTD methods. The computational domain is chosen to be the unit square �� = {(x, y) ∈ [0 m, 1 m] ×
[0 m, 1 m]} on which the first order Silver-Müller ABC is applied. The relative permittivity εr and permeability μr are set 
to be 1 everywhere. The incident wave is defined as⎧⎪⎪⎨⎪⎪⎩

H inc
x (x, y, t) = 0,

H inc
y (x, y, t) = −cos(ωt − kx),

E inc
z (x, y, t) = cos(ωt − kx),

(50)

where ω = 2π f is the angular frequency with the incident wave frequency f = 300 MHz, and k is the wave number. The 
total simulation time is set to 10 periods of the incident wave oscillation, which corresponds to 10 m (normalized).

The simulations are performed using a triangular mesh with 2,577 nodes and 4,992 elements, and mesh size h = 2.947 ×
10−2 m. A convergence study of the adaptive and equispaced POD-DGTD methods is performed with different snapshot 
selection error tolerance εsnapshot = 10−i (i = 0, 1, · · · , 15). Fig. 2 (a) shows the numerical convergence of the POD-DGTD 
methods, in which L2 error is the global error between the DGTD and POD-DGTD solutions that is integrated in all the 
elements but not over all the time steps. The presented L2 error is the maximum global error over all the time steps. The 
number of snapshots of these two strategies is the same.

We can observe in Fig. 2 (a) that the adaptive POD-DGTD method can achieve higher accuracy compared with the 
equispaced POD-DGTD method with the same number of snapshots. The number of snapshots of the fields Hx , H y , and 
Ez with respect to the snapshot selection error tolerance εsnapshot is shown in Fig. 2 (b). Combining Figs. 2 (a) and (b), we 
note that the L2 error of the equispaced POD-DGTD method stabilizes to a limit value while the corresponding error of the 
adaptive POD-DGTD method can still decrease when the number of snapshots of the field Ez increases. We compare in Fig. 3
the time evolution of the electric Ez at a selected point with coordinates (x, y) = (0, 1) for the exact solution, the DGTD 
solution, and the adaptive and equispaced POD-DGTD solutions for the snapshot selection error tolerance εsnapshot = 10−2

and εsnapshot = 10−4 with a P2 approximation. A zoom of the solution when t ranges [6.0, 6.2] and [6.5, 6.7] is also provided 
in Fig. 3. From Fig. 3, we can find the time evolution of the electric Ez obtained by the adaptive or equispaced POD-DGTD 
method is more and more accurate as the snapshot selection error tolerance εsnapshot becomes smaller. In particular, the 
solution obtained by the adaptive POD-DGTD method matches the exact and DGTD solutions very well relative to the 
equispaced POD-DGTD method.
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Fig. 2. Plane wave propagation in vacuum: (a) L2 error between the DGTD method and the adaptive or equispaced POD-DGTD method. (b) The number of 
snapshots of the fields Hx , H y , and Ez versus the snapshot selection error tolerance εsnapshot.

Fig. 3. Plane wave propagation in vacuum: time evolution of the electric Ez of the exact solution, the DGTD solution, and the adaptive and equispaced 
POD-DGTD solutions at a selected point with coordinates (x, y) = (0, 1) with the snapshot selection error tolerance (a) εsnapshot = 10−2, (b) εsnapshot = 10−4.

5.3. Scattering of plane wave by a dielectric disk

We now consider the problem of the scattering of a plane wave by a dielectric disk. The radius of the disk is 0.6 m, and 
its relative permittivity and permeability are εr,1 = 2.25, μr,1 = 1, respectively. The disk is centered at the origin and the 
computational domain is artificially truncated by the square �� = [−1.6 m, 1.6 m] × [−1.6 m, 1.6 m]. We impose the first 
order Silver-Müller ABC on the square delimiting the domain. The medium exterior to the dielectric disk is assumed to be 
vacuum, i.e., εr,2 = 1, μr,2 = 1. The incident wave is defined in (50). The incident wave frequency, f , is set to f = 300 MHz.

The simulations are performed using a triangular mesh with 2,873 nodes, 5,568 elements of which 512 elements are 
located inside the dielectric disk, and mesh size h = 9.9 × 10−2 m. The total simulation time is set to 10 periods of the 
incident wave oscillation. The numerical convergence of the adaptive and equispaced POD-DGTD methods with P1 and P2
approximation is displayed in Fig. 4. We can make similar observations from Fig. 4 as from Fig. 2. The time evolution of the 
fields H y and Ez at a given point, which are obtained by the DGTD method, and the adaptive and equispaced POD-DGTD 
methods for the snapshot selection error tolerance εsnapshot = 10−2, are shown in Fig. 5. We observe from Fig. 5 that the 
time evolution of the H y and Ez components obtained by the adaptive POD-DGTD method are in good agreement with that 
of the DGTD method, while the equispaced POD-DGTD solution is not accurate enough. The distributions of the real part 
of Ez in the Fourier domain during the last period of oscillation of the incident wave with a P2 approximation and the 
corresponding field based on the adaptive and equispaced snapshot selection algorithms are shown when εsnapshot = 10−6

in Fig. 6.
Finally, we show how the POD-DGTD methods can be potentially applied in real applications. Since we already have 

the POD basis and the ROM for εref = 2.25, now we can use them instead of the full DGTD formulations to compute the 
r,1
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Fig. 4. Scattering of plane wave by a dielectric disk: (a) L2 errors for the adaptive and equispaced POD-DGTD methods. (b) The number of snapshots of the 
fields Hx , H y , and Ez versus the snapshot selection error tolerance εsnapshot.

Fig. 5. Scattering of plane wave by a dielectric disk: the time evolution of the fields H y (left) and Ez (right) at a given point obtained by the DGTD method, 
and the adaptive and equispaced POD-DGTD methods for the snapshot selection error tolerance εsnapshot = 10−2.

Fig. 6. Scattering of plane wave by a dielectric disk: contour lines of the real part of the Ez component in the Fourier domain. (a) Solution from the DGTD 
method. (b) The solution from the adaptive POD-DGTD method. (c) The solution from the equispaced POD-DGTD method.

electromagnetic fields when εr,1 ranges [εmin
r,1 , εmax

r,1 ] = [1.5, 4]. The error is presented in Fig. 7. We can find from Fig. 7
that the POD-DGTD method is applicable in electromagnetic computations with varying parameters. The adaptive snapshot 
selection strategy proposed in this paper performs much better that the equispaced snapshot selection strategy. In addition, 
we can see that the error of the adaptive POD-DGTD method is also sensitive to the difference between the underlying 
parameters and reference parameters. We will consider the parametrized time-dependent problems in the near future. 
Some related contributions please refer to [26,50,51].
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Fig. 7. Scattering of plane wave by a dielectric disk: performance of the POD-DGTD methods (left), zoom (right), for the snapshot selection error tolerance 
εsnapshot = 10−2.

Fig. 8. Scattering of a modulated Gaussian by an airfoil profile: (a) L2 error for the adaptive and equispaced POD-DGTD method. (b) Number of snapshots 
of the fields Hx , H y , and Ez versus the snapshot selection error tolerance εsnapshot.

5.4. Scattering of a modulated Gaussian by an airfoil profile

We finally consider the problem of the scattering of a modulated Gaussian by an airfoil profile, which is a cross-section 
of a three-dimensional wing of an airplane. The computational domain is chosen to be the rectangle � = [−1 m, 2 m] ×
[−1 m, 1 m]. We impose the first order Silver-Müller ABC on the rectangle delimiting the domain, while the surface of the 
airfoil is assumed to be the PEC condition. In the present case, the wave is considered to be emitted from a localized source 
modeled as

J s
z(�x, t) = Ae−( t−4τ

τ )2
sin(2π fc(t − 4τ ))

g(�x)
‖g(�x)‖ ,

where A is the amplitude of the signal, τ = 1.7 × 103 ps, fc = 1.2 GHz, and g(�x) is a two-dimensional Gaussian function 
with (x0, y0) = (−0.3, 0.0) the center of the Gaussian spatial support

g(�x) = e−β((x−x0)2+(y−y0)2).

Here, the parameter β has been chosen such that the source term J s
z is strongly localized. In this study, we set β = 2.5 ×103. 

The total simulation time, T f , is set to T f = 10 m (normalized). Note that there is no analytical solution for this case.
The simulations are performed using a mesh with 8,436 nodes and 16,460 elements, and mesh size h = 3.993 × 10−2 m. 

The result of a numerical convergence study of the adaptive and equispaced POD-DGTD methods with P1 and P2 approx-
imation is shown in Fig. 8. We can make similar observations from Fig. 8 as from Figs. 2 and 4. The time evolution of 
the fields H y and Ez at a selected point of the mesh for the DGTD method, and the adaptive and equispaced POD-DGTD 
methods when εsnapshot = 10−6 with a P2 approximation are shown in Fig. 9. The intensity of the electric field of the DGTD 
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Fig. 9. Scattering of a modulated Gaussian by an airfoil profile: time evolution of the fields H y (left) and Ez (right), at point (x, y) = (−0.541, 0), for the 
DGTD and POD-DGTD methods with a P2 approximation.

Fig. 10. Scattering of a modulated Gaussian by an airfoil profile: time evolution of the intensity of the electric field, |Ez |, at time t = 3.20 m. (a) The solution 
of the DGTD method. (b) The solution of the adaptive POD-DGTD method. (c) The solution of the equispaced POD-DGTD method.

method and the adaptive and equispaced POD-DGTD methods when εsnapshot = 10−6 with a P2 approximation are presented 
in Fig. 10.

6. Conclusions and outlook

We have proposed and studied a POD-based ROM in combination with a high order DGTD method for the generation of 
snapshots, in the context of the numerical solution of the system of time-domain Maxwell equations modeling electromag-
netic wave propagation in homogeneous media and heterogeneous media as well. The DGTD method considered here makes 
use of a centered scheme for the definition of the numerical traces of the electric and magnetic fields at element interfaces, 
with the LF2 scheme for the time integration of the associated semi-discrete equations. The same scheme has been applied 
for the time integration of the semi-discrete ROM equations. However, other options could be adopted such as the implicit 
Crank-Nicolson scheme. This possibility of using a time integration scheme for the POD-projected semi-discrete system, 
which is different from the time scheme adopted in the time-domain method used for generating the snapshots, will be the 
subject of a future study with the goal of further improving the overall computational efficiency of the POD-DGTD method.

We proved that the POD-based ROM conserves the discrete electromagnetic energy and it is stable under some CFL-like 
stability condition. Error bounds for the proposed POD-based ROM method have been derived at both the semi-discrete and 
fully discrete level, which are direct extensions of previously published results for the wave equation [3]. In the same spirit, 
by extending the approach described in [1], an adaptive snapshot selection algorithm has been designed, which leverages the 
error bounds. In particular, we introduced the weight M to measure the control error and changed the standard snapshot 
selection rule to a strategy aiming at keeping the error estimate ‖eu,P (tu

q + �tu
q )‖M close to the snapshot selection error 

tolerance εsnapshot in the adaptive method. An ISVD algorithm has been exploited to update the SVD on-the-fly when a 
new snapshot is added. Numerical results on 2-D test problems indicate that the proposed methodology is effective for 
electromagnetic computations. Based on these results, we will consider more complex 3-D realistic applications in the near 
future. Moreover, several further developments and applications of this POD-DGTD method can be considered among which 
Uncertainty Quantification (UQ) is included. Regarding this topic, we plan to investigate multifidelity UQ methods [33], 
which leverage low-fidelity models to obtain computational speedups in solving UQ tasks.
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Appendix A. Proof of Theorem 3

Differentiating eE,V (t) with respect to time, we get

e′
E,V (t) = �E[(�T

EM�E)−1�T
EM

∂Eh

∂t
− α′

E(t)]

= �E{ε−1
r (�T

EM�E)−1�T
E [(K− Si)Hh − ShĤh − Bh(t)]

− ε−1
r (�T

EM�E)−1�T
E [(K− Si)�HαH(t) − Sh�̂Hα̂H(t) − Bh(t)]}

= ε−1
r �E(�T

EM�E)−1�T
E [(K− Si)(Hh − �HαH(t)) − Sh(Ĥh − �̂Hα̂H(t))]. (A.1)

According to the definitions of (8) and (25), the eE,V (t) satisfies the equations

e′
E,V (t) =

{
ε−1

r �E(�T
EM�E)−1�T

E (K− Si − Sh)eH(t), if F B
h = �m,

ε−1
r �E(�T

EM�E)−1�T
E [(K− Si)eH(t) − SheE(t)], if F B

h = �a.
(A.2)

Similarly, the eH,V (t) satisfies the equations

e′
H,V (t) =

{
μ−1

r �H(�T
HM�H)−1�T

H(−K+ Si + Se)eE(t), if F B
h = �m,

μ−1
r �H(�T

HM�H)−1�T
H[(−K+ Si)eE(t) + SeeH(t)], if F B

h = �a.
(A.3)

Based on (13) and (26), we have

eE,V (0) = 0, eH,V (0) = 0. (A.4)

We first consider the situation with F B
h = �m . Substituting (25) into the first relations of (A.2) and (A.3), we get{

e′
E,V (t) = ε−1

r �E(�T
EM�E)−1�T

E (K− Si − Sh)(eH,P (t) + eH,V (t)),

e′
H,V (t) = μ−1

r �H(�T
HM�H)−1�T

H(−K+ Si + Se)(eE,P (t) + eE,V (t)).
(A.5)

According to (A.4) and (A.5), we can easily get the explicit formula of eE,V (t) and eH,V (t) based the theory of nonhomoge-
neous and linear differential equations

�(t) =
t∫

0

e[�̂(�̂T M̂�̂)−1�̂T R(t−τ )] · {�̂(�̂T M̂�̂)−1�̂TR

[
eE,P (t)
eH,P (t)

]
}dτ , (A.6)

where �(t) =
[

eE,V (t)
eH,V (t)

]
. Based on the properties of the matrix exponential, (28), and (29), we have

�(t) = �̂

t∫
0

e[(�̂T M̂�̂)−1�̂T R�̂(t−τ )] · {(�̂T M̂�̂)−1�̂TR

[
eE,P (t)
eH,P (t)

]
}dτ

= �̂

t∫
0

e[(�̂T M̂�̂)−1�̂T R�̂(t−τ )] · {(�̂T M̂�̂)−1�̂TR�̂(�̂T M̂�̂)−1�̂T M̂
1
2 }{M̂ 1

2

[
eE,P (t)
eH,P (t)

]
}dτ

= �̂F (T f ; (�̂T M̂�̂)−1�̂TR�̂)[(�̂T M̂�̂)−1�̂TR�̂(�̂T M̂�̂)−1�̂T M̂
1
2 ](M̂ 1

2

[
eE,P (t)
eH,P (t)

]
). (A.7)

One can easily get the following inequality based on (27), (30), and (A.7)

T f∫
0

‖�(t)‖2
M̂

dt =
T f∫

0

‖eE,V (t)‖2
Mdt +

T f∫
0

‖eH,V (t)‖2
Mdt

≤
(
‖F (T f ; (�̂T M̂�̂)−1�̂TR�̂)‖2̂T ̂̂‖�̂TR�̂(�̂T M̂�̂)−1�̂T M̂

1
2 ‖2̂T ̂̂ −1

)

� M� (� M�)
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×
⎛⎜⎝ T f∫

0

‖eE,P (t)‖2
Mdt +

T f∫
0

‖eH,P (t)‖2
Mdt

⎞⎟⎠ . (A.8)

The total error eROM(t) satisfies

T f∫
0

‖eROM(t)‖2
M̂

dt =
T f∫

0

‖eE(t)‖2
Mdt +

T f∫
0

‖eH(t)‖2
Mdt. (A.9)

Because eu,P (t) and eu,V (t) (u = E, H) belong to span �u and span �u , (A.9) by using the Pythagorean theorem then be-
comes

T f∫
0

‖eROM(t)‖2
M̂

dt =
⎛⎜⎝ T f∫

0

‖eE,P (t)‖2
Mdt +

T f∫
0

‖eH,P (t)‖2
Mdt

⎞⎟⎠
+
⎛⎜⎝ T f∫

0

‖eE,V (t)‖2
Mdt +

T f∫
0

‖eH,V (t)‖2
Mdt

⎞⎟⎠ . (A.10)

Theorem 4 is proved by substituting (A.8) into (A.10). If F B
h = �a , one can get a similar conclusion.

Appendix B. Proof of Theorem 4

Analogously to (A.2) and (A.3), we can obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
e(n+1)

E,V − e(n)
E,V

�t
= ε−1

r �E(�T
EM�E)−1�T

E (K− Si − Sh)(e
(n+ 1

2 )

H,P + e
(n+ 1

2 )

H,V ),

e
(n+ 3

2 )

H,V − e
(n+ 1

2 )

H,V

�t
= μ−1

r �H(�T
HM�H)−1�T

H(−K+ Si + Se)(e(n+1)
E,P + e(n+1)

E,V ),

(B.1)

for n = 0, 1, · · · , Nt − 1 when F B
h = �m , and⎧⎪⎪⎪⎨⎪⎪⎪⎩

e(n+1)
E,V − e(n)

E,V

�t
= ε−1

r �E(�T
EM�E)−1�T

E [(K− Si)(e
(n+ 1

2 )

H,P + e
(n+ 1

2 )

H,V ) − Sh(e(n)
E,P + e(n)

E,V )],

e
(n+ 3

2 )

H,V − e
(n+ 1

2 )

H,V

�t
= μ−1

r �H(�T
HM�H)−1�T

H[(−K+ Si)(e(n+1)
E,P + e(n+1)

E,V ) + Se(e
(n+ 1

2 )

H,P + e
(n+ 1

2 )

H,V )],
(B.2)

for n = 0, 1, · · · , Nt − 1 when F B
h = �a . Based on (17), (36), and (37), we have

e(0)
E,V = 0, e

( 1
2 )

H,V = 0. (B.3)

We first consider problem (B.1), which can be rewritten as

[I − �t�̂(�̂T M̂�̂)−1�̂TL]
[

e(n+1)
E,V

e
(n+ 3

2 )

H,V

]
= [I + �t�̂(�̂T M̂�̂)−1�̂TU ]

[
e(n)

E,V

e
(n+ 1

2 )

H,V

]

+ �t�̂(�̂T M̂�̂)−1�̂TL

[
e(n)

E,P

e
(n+ 1

2 )

H,P

]
+ �t�̂(�̂T M̂�̂)−1�̂TU

[
e(n+1)

E,P

e
(n+ 3

2 )

H,P

]
, (B.4)

and then, we have

‖e(n+1)
E,V ‖M + ‖e

(n+ 3
2 )

H,V ‖M ≤ β(‖e(n)
E,V ‖M + ‖e

(n+ 1
2 )

H,V ‖M) + �tα1(‖e(n+1)
E,P ‖M + ‖e

(n+ 3
2 )

H,P ‖M)

+ �tα2(‖e(n)
E,P ‖M + ‖e

(n+ 1
2 )

H,P ‖M)

≤ β(‖e(n)
E,V ‖M + ‖e

(n+ 1
2 )

H,V ‖M) + �tα(‖e(n+1)
E,P ‖M + ‖e

(n+ 3
2 )

H,P ‖M)

+ �tα(‖e(n) ‖M + ‖e
(n+ 1

2 )‖M), (B.5)
E,P H,P
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where

β = ‖M̂ 1
2 [I − �t�̂(�̂T M̂�̂)−1�̂TL]−1[I + �t�̂(�̂T M̂�̂)−1�̂TU ]M̂− 1

2 ‖2

= ‖M̂ 1
2 [I + �t�̂(�̂T M̂�̂)−1�̂TL][I + �t�̂(�̂T M̂�̂)−1�̂TU ]M̂− 1

2 ‖2

> 0,

and

α = max{α1,α2}.
By selecting

φ0 = ‖e(0)
E,V ‖M + ‖e

( 1
2 )

H,V ‖M
= 0,

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φn+1 = ‖e(n+1)

E,V ‖M + ‖e
(n+ 3

2 )

H,V ‖M,

≥ 0,

ψn+1 = ‖en+1
E,P ‖M + ‖e

(n+ 3
2 )

H,P ‖M,

≥ 0,

n = 0,1, · · · , Nt − 1, (B.6)

one can obtain the following inequality based on Lemma 1

�t
Nt∑
j=0

‖e( j)
E,V ‖2

M + �t
Nt∑

j=0

‖e
( j+ 1

2 )

H,V ‖2
M ≤ �t

Nt∑
i=0

(‖e(i)
E,V ‖M + ‖e

(i+ 1
2 )

H,V ‖M)2

≤ 2T f [α(1 + 1

β
)]2(�t

Nt∑
j=0

β2 j) · [�t
Nt∑

i=0

(‖e(i)
E,P ‖M + ‖e

(i+ 1
2 )

H,P ‖M)2]. (B.7)

The total error ‖e( j)
ROM‖2

M̂
( j = 0, 1, · · · , Nt ) satisfies

�t
Nt∑
j=0

‖e( j)
ROM‖2

M̂
= �t

Nt∑
j=0

‖e( j)
E ‖2

M + �t
Nt∑

j=0

‖e
( j+ 1

2 )

H ‖2
M. (B.8)

Based on (36), (37), and (B.8), we obtain

�t
Nt∑
j=0

‖e( j)
ROM‖2

M̂
= �t

Nt∑
j=0

‖e( j)
E,P ‖2

M + �t
Nt∑

j=0

‖e( j)
E,V ‖2

M + �t
Nt∑

j=0

‖e
( j+ 1

2 )

H,P ‖2
M + �t

Nt∑
j=0

‖e
( j+ 1

2 )

H,V ‖2
M

≤ �t
Nt∑

i=0

(‖e(i)
E,P ‖M + ‖e

(i+ 1
2 )

H,P ‖M)2 + (�t
Nt∑
j=0

‖e( j)
E,V ‖2

M + �t
Nt∑

j=0

‖e
( j+ 1

2 )

H,V ‖2
M). (B.9)

Besides, one can easily get

β ≤ 1 + γ �t ≤ eγ �t . (B.10)

Theorem 4 is proved by substituting (B.10) into (B.7) and then substituting (B.7) into (B.9). If F B
h = �a , one can get a similar 

conclusion.
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