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We consider the solution of high-frequency scattering problems in two dimensions, mod-
eled by an integral equation on the boundary of a smooth scattering object. We devise a
numerical method to obtain solutions on only parts of the boundary with little computa-
tional effort. The method incorporates asymptotic properties of the solution and can there-
fore attain particularly good results for high frequencies. We show that the integral
equation in this approach reduces to an ordinary differential equation.
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1. Introduction

Scattering problems in the domain exterior to a scattering surface are common in the modelling of electromagnetic and
acoustic wave phenomena [21,44]. In these problems, the governing differential equation on the infinite domain surrounding
the scattering obstacle can conveniently be replaced by an integral equation on the surface of the scatterer. The new com-
putational domain is bounded and has lower dimension, two significant advantages for computational purposes. However,
the numerical simulation of highly oscillatory phenomena remains a challenging problem. Traditional methods require a fine
discretization in order to resolve the oscillations. Solution methods for partial differential equations may even require the
degrees of freedom to grow faster than linearly with the frequency due to pollution errors [11]. A third advantage of bound-
ary integral equations in an oscillatory setting is that they do not exhibit such errors [10]. Still, resolving the oscillations re-
quires a fine discretization and this implies that the scattering problems rapidly become intractable as the frequency grows.

Although the situation improves with high-order methods for integral equations [16,27], the efficient implementation of
fast multipole methods [46] or other approaches (see, for example, the overview in [13]), the computational complexity of
these methods still increases with increasing frequency. Asymptotic methods on the other hand, such as Geometrical Optics,
Physical Optics and the Geometric Theory of Diffraction [38], typically improve with increasing frequency [26]. They exhibit
Oðk�nÞ error behaviour, where k is the wavenumber of the problem and n is a positive integer, though usually n = 1. Asymp-
totic methods have uncontrollable error for a fixed frequency however and, depending on the method, may exhibit break-
down near caustics or points of diffraction.

Recent research focuses on a combined, hybrid approach in the construction of converging boundary element methods
that incorporate asymptotic properties of the solution (see [1,15,19,23], reviewed in [18]). This approach is most successful
for scatterers with convex shape, but extends to multiple scattering configurations [24,3]. Some of the methods may be
. All rights reserved.
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implemented with a computational complexity that appears to be independent of the wavenumber for single convex
obstacles [15,34] and multiple convex obstacles [28]. Although applicability is limited by the convexity requirements, the
wavenumber independence motivates further research in this area. Other approaches for high-frequency scattering prob-
lems include using on-surface radiation conditions [25,37,4], which may lead to differential equations like in the current pa-
per, and efficient preconditioners leading to convergent iterative methods at high frequencies [5,41] when coupled with fast
multiple method techniques or hierarchical matrices [9].

Integral operators, being global operators, give rise to dense matrices upon discretization. This is however not compatible
with the localization principle of high-frequency scattering problems, which states that the solution of the problem essen-
tially depends on local properties of the scatterer [14]. The work in this paper was motivated by the observation that the
method in [34], which applies to smooth scatterers, gives rise to a discretization matrix that is largely sparse if k is suffi-
ciently large. Moreover, this method achieves high asymptotic order of accuracy in large parts of the computational domain.
These two features are unique among the hybrid methods currently described in literature and represent a numerical man-
ifestation of the localization principle. The result was obtained through a discretization based on Filon-type quadrature for
highly oscillatory integrals [36] and does not require the construction of asymptotic expansions.

In this paper, we significantly extend the results and analysis of [34]. We restrict the computational domain to only a part
of the boundary and we thereby relax convexity requirements. It turns out that, perhaps surprisingly, the integral equation in
this setting reduces to an ordinary differential equation that is a singular perturbation problem. This equation can be solved
rapidly and to essentially arbitrarily high asymptotic order of accuracy. The main achievement of the method is the compu-
tation of single reflections very efficiently and to high accuracy. This is by no means competitive with more general methods
capable of treating arbitrary scattering configurations. Yet, owing to its simplicity and efficiency we believe it to be valuable in
a range of applications. Moreover, we believe the reduction of a two-dimensional partial differential equation to a lower-
dimensional integral equation and subsequently to a univariate ordinary differential equation to be interesting in its own
right. A motivating application is the use of local solutions in iterative schemes for high-frequency scattering by multiple
obstacles. Such schemes typically require in each step of the iteration the solution of a single scattering problem, in which
only part of the computation is relevant for the next iteration [24,3]. Local solutions correspond exactly to such computations.

The layout of the paper is as follows. We start with a formal, non-theoretical description of the method in Section 2. The
description differs from the method in [34] mostly in that the computational domain is truncated, which greatly simplifies
computations. We analyze the asymptotic properties of our approach in Section 3. We give numerical results of a number of
scattering problems in Section 4. Finally, we end with some concluding remarks in Section 5.

2. Description of the method

2.1. Problem statement

Consider a scattering object X 2 R2 with a smooth boundary C = oX. The total field surrounding the obstacle can be writ-
ten as the sum of an incoming wave ui and a scattered wave us. Our aim is to solve the two-dimensional Helmholtz equation
for the scattered field in the exterior space,
Dus þ k2us ¼ 0; x 2 R2 nX; ð2:1Þ
usðxÞ ¼ �uiðxÞ; x 2 C:
The Dirichlet boundary condition is such that the total field ui + us vanishes on C, which corresponds to a perfectly reflecting
object. The incoming wave ui is assumed to be given. We further impose the Sommerfeld radiation condition on us in order to
ensure uniqueness of the solution [21].

We can represent the unknown scattered wave with the single-layer potential
usðxÞ ¼ ðSqÞðxÞ ¼
Z

C
Gðx; yÞqðyÞdsy: ð2:2Þ
Here, q is the single-layer potential density and
Gðx; yÞ ¼ i
4

Hð1Þ0 ðkjx� yjÞ ð2:3Þ
is the Green’s function of the two-dimensional Helmholtz equation. It is well known that the density function can be found
from the integral equation of the first kind [21,44]
Z

C
Gðx; yÞqðyÞdsy ¼ �uiðxÞ; x 2 C: ð2:4Þ
Other integral formulations exist, and we note in particular the integral equation of the second kind
qðxÞ
2
þ
Z

C

@G
@nx
ðx; yÞ þ igGðx; yÞ

� �
qðyÞdsy ¼

@ui

@n
ðxÞ þ iguiðxÞ; ð2:5Þ
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with g 2 R a coupling parameter. Eq. (2.5) is uniquely solvable for all values of the wavenumber k [21]. It is important for
further developments that the solution q in both cases corresponds to a physical density [15]. We proceed with Eq. (2.4)
for simplicity of presentation, but the method was implemented for both equations. In the following, we assume a plane
wave incidence or, more generally, an incoming wave of the form
uiðxÞ ¼ �f ðxÞeikgiðxÞ: ð2:6Þ
The function gi(x) cannot be completely arbitrary however. Cases that we have in mind are waves arising from a point-source
and waves that have already been reflected elsewhere.

2.2. Phase extraction and high-frequency formulation

As the wavenumber k increases the single-layer potential density q becomes increasingly oscillatory. In order to avoid a
fine discretization grid, we will assume knowledge of the oscillatory behaviour of q. The main reason for the restriction to
convex obstacles in literature is that the phase of the solution is then known to be the phase of the incoming wave. Let us
write, for the time being indeed assuming a convex obstacle,
qðxÞ ¼ k qsðxÞeikgiðxÞ: ð2:7Þ
It is known for a plane wave incidence that the function qs is less oscillatory than q in the part of the computational domain
that is ‘‘lit” by the incoming wave, and slowly oscillatory but rapidly decaying in the remainder [23]. This observation seems
to hold for more general incoming waves as well. Thus, a coarser discretization can be used for qs than for q. We introduced
the normalizing factor k such that qs ¼ Oð1Þ; k!1.

The total phase of the integrand in (2.4) is given by the sum of the extracted phase of the solution and the phase of the
Green’s function (2.3). It can be written as ikgtot(s; t) where the oscillator gtot is given by
gtotðs; tÞ ¼ giðjðsÞÞ � giðjðtÞÞ þ dðt; sÞ; ð2:8Þ
with
dðt; sÞ :¼ jjðtÞ � jðsÞj
the Euclidean distance between the two corresponding points on C [34].
Assume we have a smooth periodic parametrization of C
jðsÞ : ½0;1� ! C;
with jrj(s)j > 0. The integral Eq. (2.4) in terms of qs becomes
ðKqsÞðsÞ ¼ k
Z 1

0
Gnoðt; sÞeikgtotðs;tÞqsðsÞds ¼ f ðtÞ; t 2 ½0;1�; ð2:9Þ
with the singular but non-oscillatory function
Gnoðt; sÞ :¼ Gðt; sÞe�ikdðt;sÞjrjðsÞj: ð2:10Þ
Note that in a slight abuse of notation we identified qs(j(s)) with qs(s),G(j(t),j(s)) with G (t,s) and f (j (t)) with f (t).
At first sight, the requirement of having a smooth parametrization seems to be rather restrictive, in particular with a gen-

eralization to three-dimensional problems in mind. On the other hand, the solution to high-frequency scattering problems is
very sensitive to the shape of the boundary, and methods of high asymptotic order are meaningless when the shape of the
boundary is insufficiently described.

2.3. Local solutions

The concept of local solutions of high-frequency scattering problems is based on the fact that local reflections are based
(asymptotically) only on local data. In the following, we will consider an admissible part of the boundary and we are interested
only in waves that are reflected once by this part of the boundary. First, we give the precise definition of an admissible part.

Definition 2.1. Consider a simply connected open subset eC � C and a given incoming wave ui. We say that eC admits a local
solution if
@gtot

@s
ðs; tÞ– 0; 8t; s 2 j�1ðeCÞ: ð2:11Þ
Definition 2.1 is formulated in terms of the total oscillator function defined by (2.8). It excludes so-called stationary points
of the integral Ku (see Section 2.4). In practice, this corresponds precisely to the exclusion of multiple reflections from eC onto
itself. The physical interpretation of Definition 2.1 therefore is that any part of C is admissible as long as the incoming wave
reflecting from eC does not immediately hit eC again.
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It is common in methods based on the technique of phase extraction to assume a convex boundary. Most of the theoret-
ical results in asymptotic analysis moreover assume a plane wave incidence. Definition 2.1 is more general than these
assumptions in two ways. First, the entire boundary need not be convex. For a plane wave incidence, any locally convex part
of C is admissible, even when C itself is not convex. This is illustrated in the left panel of Fig. 1. Second, even local convexity
is not required. If the given incoming wave does not reflect from eC onto itself, then eC is admissible. A non-convex admissible
part is illustrated in the right panel of Fig. 1.

Next, we define the local solution. Let the interval [a,b] correspond to j�1ðeCÞ, where eC admits a local solution according
to Definition 2.1. This will be our computational domain. If the obstacle X is such that no multiple reflection occurs, then we
simply define the local solution to be
Fig. 1.
the bou
qlðtÞ ¼ qsðtÞ; t 2 ½a; b�; ð2:12Þ
i.e., the local solution is the restriction of the density function qs to [a,b]. If the obstacle X gives rise to multiple reflections,
consider a different obstacle eX such that eC is an admissible part of its boundary and no multiple reflections occur. Then the
local solution is defined to be
qlðtÞ ¼ ~qsðtÞ; t 2 ½a; b�; ð2:13Þ
where ~qs is the solution of the scattering problem on the boundary of eX. Suitable choices of obstacles eX are shown in Fig. 1
for both examples. In practice, a suitable obstacle eX is never constructed in the numerical method.

2.4. Application of Filon-type quadrature

The integral Eq. (2.9) after phase extraction has a highly oscillatory integral in the left hand side. Our computational
method is based on an efficient numerical method to evaluate oscillatory integrals, namely Filon-type quadrature [36].
We refer the reader to [31] for a review of this and other modern numerical methods for evaluating highly oscillatory
integrals.

2.4.1. Filon-type quadrature
Many highly oscillatory integrals of practical interest have the general form
I½f � :¼
Z b

a
f ðsÞeikgðsÞds; ð2:14Þ
where both f and g are non-oscillatory functions and the parameter k is large. Filon-type quadrature is an effective quadra-
ture approximation Q[f] to I[f] using derivatives with the general form
I½f � � Q ½f � :¼
XN

l¼1

XJl

j¼0

wl;jf ðjÞðslÞ: ð2:15Þ
The quadrature points sl, l = 1, . . . ,N, include the endpoints a and b and any singular points of f and g, as well as the stationary
points, these are all points n 2 (a,b) such that g0(n) = 0. The method is based on polynomial interpolation of the non-oscilla-
tory function f, which ensures possible convergence for any value of k simply by adding quadrature points. The use of deriv-
atives of f at endpoints and stationary points also ensures high asymptotic order of accuracy, in the sense that
I½f � � Q ½f � ¼ Oðk�dÞ; k!1;
Examples of non-convex domains. The highlighted part eC of the boundary C admits a local solution. The dashed curve indicates an extension of eC to
ndary of an obstacle eX. The local solution is asymptotic to the solution of the scattering problem involving eX, restricted to eC.
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where d > 0 depends on the number of derivatives Jl, l = 1, . . . ,N, used and on the order of the stationary points [36]. A station-
ary point has higher order if in addition to g0 (n) = 0 higher order derivatives of g also vanish.

2.4.2. Application to the full scattering problem
Filon-type quadrature was used to solve the full scattering problem for convex obstacles in [34], based on the observation

that the operator K yields an oscillatory integral of the form (2.14) for each value of t. In particular, the oscillator is given by
gtot(s; t) as a function of s for fixed t. The integral Ku can therefore be approximated by Filon-type quadrature where both the
weights and the quadrature points now depend on the value of t:
ðKuÞðtÞ �
XN

l¼1

Xn

j¼0

wl;jðtÞuðjÞðslðtÞÞ: ð2:16Þ
It was shown in [34] that this quadrature approximation too has high asymptotic accuracy. It may be used to solve Eq. (2.9),
i.e., Kqs = f. However, an inherent assumption of Filon-type quadrature for Ku is that u is non-oscillatory. As noted earlier, the
solution qs may be oscillatory in certain parts of the domain and, hence, different discretization of Ku has to be applied in
those regions. Approximation (2.16) can only be applied when j (t) is in the region lit by the incoming wave.

2.4.3. Application to the local problem
The approach simplifies considerably in the setting of local solutions. In particular, fewer quadrature points are necessary.

Note that the integrand of Ku is smooth except for the singularity of the Green’s function when t = s. This point produces a
contribution to the asymptotic expansion of the integral [47,45] and should therefore be included as a quadrature point. Sta-
tionary points on eC are excluded by construction according to Definition 2.1. Stationary points elsewhere physically corre-
spond to multiple reflections and they are simply discarded. Thus, the only contributing point is s = t and the Filon-type
quadrature simplifies to
ðKuÞðtÞ � ðQ nuÞðtÞ :¼
Xn

j¼0

wjðtÞuðjÞðtÞ; t 2 ½a; b�: ð2:17Þ
We replace the integral operator K by its Filon-type quadrature approximation in Eq. (2.9). The local method consists of solv-
ing the equation
ðQ nqFÞðtÞ ¼ f ðtÞ; t 2 ½a; b�: ð2:18Þ
We call a solution qF to this problem a Filon solution.

2.4.4. The weights of Filon-type quadrature
The weights of an interpolatory quadrature rule correspond to the integrals of Lagrangian interpolants [22]. The weights

of quadrature rules using derivatives are similar, but based on Hermite interpolation. To be precise, weight wl, j in (2.15) for
the evaluation of the model integral (2.14) is given by
wl;j :¼ I½plj�;
with plj the Hermite interpolating polynomial that satisfies
pðkÞlj ðsmÞ ¼ dl�mdj�k:
Note that the weights correspond to oscillatory integrals themselves. This is a general issue when using Filon-type quadra-
ture. In our implementation, we have evaluated the weights using the steepest descent technique proposed in [32], which is
a numerical adaptation of the classical method of steepest descent [47]. The weights are then given by a sum of line integrals
along the paths of steepest descent of the total oscillator gtot.

The evaluation of the specific oscillatory integral appearing in (2.9) requires only minor changes to the general method,
which we now discuss. Since the oscillator gtot(s; t) has a square root singularity at s = t, there are two paths of steepest des-
cent in the complex plane that originate in t, corresponding to the two solutions h(p) of the general path equation
gtotðhðpÞ; tÞ ¼ gtotðt; tÞ þ ip ¼ ip: ð2:19Þ
Each solution h(p) results in a non-oscillatory integral with exponential decay, since the above equation implies that
eikgtot ðhðpÞ;tÞ ¼ eikðgtot ðt;tÞþipÞ ¼ e�kp:
Call these solutions h1 (p) and h2 (p). Since in the setting of local solutions only the contributing point s = t is kept, it is suf-
ficient to consider only the polynomials 1

j! ðs� tÞj, instead of the full set of Hermite interpolating polynomials [32]. We arrive
at a definition of the weights in (2.17) as follows:
wjðtÞ ¼ �
1
j!

k
Z 1

0
Gnoðt;h1ðpÞÞðh1ðpÞ � tÞjh10ðpÞe�kpdpþ 1

j!
k
Z 1

0
Gnoðt;h2ðpÞÞðh2ðpÞ � tÞjh20ðpÞe�kpdp: ð2:20Þ
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In the first integral we used the analytic continuation of the integrand for s < t, in the second integral we use the analytic
continuation corresponding to s > t. This also fixes the choice of h1 and h2.

The two line integrals above have a logarithmic singularity at p = 0. A new element in our implementation, compared to
the technique described in [34], is that the integrals are evaluated with generalized Gaussian quadrature. Suitable quadra-
ture rules for exponentially decaying integrands with a logarithmic singularity were constructed with this particular appli-
cation in mind in§7, Example 2, of [30].

Note that we have assumed analyticity of the integrand, and in particular of the parametrization j (t) of the boundary C.
The upper integration limit1 in (2.20) may be replaced by any finite value P > 0 that is independent of k. Alternatively, one
could define suitable weights by
1 The
wjðtÞ ¼ k
Z 1

0
Gnoðt; sÞeikgtotðs;tÞ 1

j!
ðs� tÞjvðsÞds; ð2:21Þ
where v (s) is a smooth cut-off function that equals 1 in a small neighbourhood of t. The equivalence of this definition will be
shown further on in Lemma 3.4. This approach avoids complex arithmetic and analyticity assumptions. This resembles the
approach taken in [15], but a useful difference is that the current approach achieves high asymptotic order in k.

Finally, we note that the weights rapidly decrease in size for derivatives of increasing order. In particular, it follows from
[34, Lemma 3.3] that 1
wjðtÞ ¼ Oðk�jÞ; k!1: ð2:22Þ
2.4.5. Discretization
For the numerical solution we introduce a discrete space and solve Eq. (2.18) based on collocation. Let Vh be a discrete

space spanned by a set of N basis functions f/jg
N
j¼1. A function in Vh can be represented by a set of N coefficients

c ¼ fcjgN
j¼1 through the operator
Lh : CN ! Vh; Lhc ¼
XN

j¼1

cj/j:
Furthermore, a set of N collocation points ftjgN
j¼1 is needed and we define the corresponding evaluation operator
Ph : W ! CN ; Phf ¼ ff ðtjÞgN
j¼1:
With this notation, the discretization matrix is found to be
M ¼ PhQ nLh: ð2:23Þ
An approximation to the solution of (2.18) is found by solving
Mc ¼ Phf ¼: b: ð2:24Þ
We denote by
qhðtÞ ¼ Lhc 2 Vh ð2:25Þ
the numerical solution.
In our implementation we chose Vh to be the space of natural splines of (odd) order s. The nodes of the splines were taken

as collocation points. We note that the dimension of the space of splines is in general higher than the number of nodes. Nat-
ural splines remove a number of degrees of freedom by requiring vanishing high-order derivatives at the endpoints. We will
elaborate on the importance of this boundary condition in Section 3.

The system (2.24) is typically very small because the computations involve only a part of the scatterer. We have therefore
used a direct solver. Following [40,20], we have chosen the coupling parameter g in (2.5) to be g = k in order to minimize the
condition number, though we found condition numbers to be small for all examples in this paper, including for the integral
equation of the first kind (2.4). Interestingly, the choice g = k can be seen as corresponding to a low-order approximation of
the Dirichlet-to-Neumann operator at high frequencies [5,6]. Based on our numerical experiments however, we found that
this formulation based on an integral equation of the second kind seems to yield less accurate solutions.

3. Analysis

Numerical results of the method to compute local solutions will be given in Section 4. The results indicate that the accu-
racy of the computed solution qh increases rapidly with increasing frequency throughout the computational domain,
qhðtÞ � qsðtÞ ¼ Oðk
�n�1Þ; 8t 2 ½a; b�: ð3:1Þ
asymptotic order of the weights as displayed here is a factor k larger than what is given in [34] due to the normalizing factor k in (2.7).
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This behaviour is reminiscent of asymptotic expansions, but unlike traditional boundary element methods for oscillatory
integral equations. In this section we shall give a partial proof of this result based on rigorous results in asymptotic analysis,
completed with arguments based on the (non-rigorous) theory of singularly perturbed differential equations.

Rigorous mathematical results on the asymptotic behaviour of scattering solutions are known, with few exceptions, only
for convex obstacles and incident plane waves (see [23] and references therein). For this reason, throughout this section we
shall assume that X is a convex obstacle, and restrict ourselves to the case of an incident plane wave,
uiðxÞ ¼ eikx�d;
where the direction vector d has unit length. We do note, however, that our numerical results indicate a similar behaviour
for the more general obstacles shown in Fig. 1 with X replaced by eX and for more general incoming waves.

3.1. Asymptotic properties of the solution

We start with a description of the asymptotic behaviour of the slowly oscillatory function qs (t) that solves Eq. (2.9). This
behaviour is well understood and differs in different parts of the obstacle. For a convex obstacle and plane wave incidence,
there are two points where the incoming wave is tangent to the boundary. We denote those by s1 and s2 respectively, and we
let t1 and t2 be the corresponding points in the parameter domain, i.e., j (t1,2) = s1,2. We assume without loss of generality
that t1 < t2 and we define the illuminated region
Ci ¼ ðt1; t2Þ
and the shadow region
Cs ¼ ½0;1� n Ci:
In the illuminated region, the first order asymptotic term is commonly known as the Kirchhoff approximation or Phys-
ical Optics approximation. For the incident plane wave and assuming a natural parametrization j (t) of C, it is given
explicitly by
qsðtÞ � 2imðjðtÞÞ � d; k!1; t 2 Ci; ð3:2Þ
where m (x) is the exterior normal to C at x 2C. More generally, the solution qs (t) has a full asymptotic expansion of the form
qsðtÞ �
X1
j¼0

ajðtÞk�j
; k!1; ð3:3Þ
for all points t in Ci. The functions aj (t) are C1 and independent of k. They can be constructed explicitly for all sufficiently
smooth and convex scatterers. Examples of such computations are given in [17] and in [8, Ch. 1]. It follows from these con-
structions that the aj (t) depend only locally on the surface, i.e., on the tangent, curvature, and higher derivatives at j (t). This
is commonly called the localization principle of high-frequency scattering. A mathematical justification for these formal con-
structions is given in [43] for the case of Dirichlet boundary conditions.

It follows from (3.3) that qs and all its derivatives are bounded in k in the illuminated region. In the shadow region the
function qs is known to exhibit extra-polynomial decay, i.e., faster than any inverse power of k (see e.g. [43, Sect. 2]). Note
that a slightly stronger result can be proved, namely that
kqkL2ðK2Þ 6 c0 expð�ckdÞ:
This result is stated in [23, Theorem 6.5] with several references to rigorous proofs. We shall here only employ the property
of extra-polynomial decay, which is a slightly weaker result.

Finally, the function qs has large derivatives in a region around the shadow boundary that shrinks like k�1/3. A useful glo-
bal bound on the derivatives of qs was established in [23, Corollary 5.5],

Lemma 3.1. For all n P 1,
dnqs

dsn
ðsÞ

���� ���� ¼ Oððkðn�1Þ=3Þ; t 2 ½0;1�:
This bound is sharp in the shadow boundary region, but pessimistic in both the illuminated and shadow regions.
3.2. Asymptotic order of accuracy of qF

We set out to show that the Filon solution qF is asymptotically close to the exact solution qs. First, we gather some
useful lemmas. Next, in Theorem 3.5 we prove that Qn is a good asymptotic approximation to K, in the sense that both
operators applied to the exact solution qs agree to high asymptotic order. The argument will finally be completed in
Section 3.3.
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3.2.1. Stationary points
As indicated in Section 2.4.1, the asymptotic behaviour of an oscillatory integral depends critically on its stationary points.

In the following we will need to know some specifics about the location of the stationary points of the integral (2.9).

Lemma 3.2. For t 2 Ci, the stationary points of the integral (2.9), i.e., the zeros of the derivative of (2.8), are all contained in Cs.
Proof. Performing the differentiation yields,
Fig. 2.
configu
@gtot

@s
ðs; tÞ ¼ ðvðs; tÞT þ dTÞ � rjðsÞ;
where,
vðs; tÞ ¼ jðsÞ � jðtÞ
kjðsÞ � jðtÞk :
We have jvj � jdj = 1 and v (s,t) is discontinuous at s = t with left and right limits ±rj (s)T/krj (s)k. Thus, a stationary point
can only occur if either v = �d or if v + d\rj.

We first rule out the former case. The vector v points from j (t) to j (s), which implies that v = �d can only occur along the
line parallel to d passing trough j (t). Because of convexity there can be no point of C in the direction �d when s 2 Ci.

Next, we consider the points s for which (v(s, t) + d)\rj. Let /1 be the angle between d and the normal m at j(s), and /2

the angle between v and m. Since both v and d have unit length, for the orthogonality condition to hold we should have either
/1 = �/2 or /1 = /2 + p (in both cases modulo 2p). The latter case implies v = �d, which was already ruled out above. In the
former case, it follows that d and �v make equal angles with the normal at j (s). Thus, an incident ray in the direction of d at
j (s) would reflect in the direction of �v. But �v points towards j (t) and this scenario clearly can not occur for s 2 Ci; all
incident rays will reflect away from X. h

Note that in the proof of Lemma 3.2 we encountered a special case of a more general principle, namely that stationary
points of the integral (2.9) correspond to double reflections. This is illustrated in the right panel of Fig. 2: if a wave in the
direction of d hits the obstacle at a point j (s) and reflects to hit the obstacle again at the point j (t), then s is a stationary
point for t.

3.2.2. Localizing the integral operator
Next, we localize the integral Kqs around the singularity of the integrand by introducing a cut-off function and we show

that the remainder of the integral is asymptotically small.
We split the integral in different regions using a partition of unity as follows. Let K1 be a sub interval of Ci such that

t 2K1. Next, as a consequence of Lemma 3.2 we can find a subset K2 � Cs of the shadow region that contains all stationary
points in its interior. Finally, we construct two intervals K3 and K4 around the shadow boundaries t1 and t2 respectively, that
intersect K1 and K2, but such that there are no stationary points in K3, 4 and such that t 2K1n(K3 [K4). The partition of
unity is constructed as a collection of functions vj 2 C1, j = 1, . . . ,4 such that,
suppðvjÞ ¼ Kj; 0 6 vjðsÞ 6 1; and
X4

j¼1

vjðsÞ ¼ 1:
Denote by eK the localized integral operator defined as
eK ðuÞ ¼ Kðv1uÞ: ð3:4Þ
We have the following result.
An illustration for the proof of Lemma 3.2. Left: A ray reflects away from a convex obstacle, whereas �v points into the obstacle. Right: A non-convex
ration allows stationary points.
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Lemma 3.3. For t 2Ci,
KðqsÞ � eK ðqsÞ ¼ Oðk
�NÞ; 8N 2 N:
Proof. The difference between the two integral operators is
KðqsÞ � eK ðqsÞ ¼ k
X4

j¼2

Z
Kj

Gnoðt; sÞeikgtotðs;tÞvjðsÞqsðsÞds:
The integral over K3 contains no stationary points by construction. Thus, we can perform repeated integration by parts, as is
usually done for oscillatory integrals of the form (2.14) without stationary points. The boundary terms will drop out since v3

and all its derivatives vanish at the boundaries. Performing integration by parts m times yields (see e.g. [7, Sect. 2])
Z
K3

Gnoðt; sÞeikgtot ðs;tÞv3ðsÞqsðtÞds ¼ 1
ð�ikÞm

Z
K3

rm½F3qs�ðsÞeikgtotðs;tÞds; ð3:5Þ
where the functions rj are defined recursively,
r0½f �ðsÞ ¼ f ðsÞ;

rjþ1½f �ðsÞ ¼
d

ds
rj½f �ðsÞ

g0ðsÞ ; k ¼ 0;1; . . . ;
and F3 is the non-oscillatory function
F3ðs; tÞ ¼ Gnoðt; sÞv3ðsÞ:
Boundedness of this function and its partial derivatives for increasing k when t – s follows readily from the asymptotic
expansion of the Hankel function for large arguments [2].

In [36] it is shown that the functions rm depend on the derivatives of f in a predictable manner, namely that there exist
functions rm, j (x),rm, m (x) – 0, depending on gtot and its derivatives, such that,
rm½f �ðxÞ ¼
Xm

j¼0

rm;jðxÞf ðjÞðxÞ: ð3:6Þ
Note that from the construction of K3 the function F3 is C1(K3). As a consequence of Leibniz’ Rule, Eq. (3.6) and Lemma 3.1
we then get, for m P 1,
rs½F3�ðxÞ ¼
Xm

j¼0

rs;jðxÞ
@j

@sj
½F3ðs; tÞqsðsÞ� ¼ Oðk

ðm�1Þ=3Þ:
Using this result to bound the integral on the right hand side of (3.5) we get that the left hand integral is Oðk�ð2m�1Þ=3Þ for all
m P 1, or equivalently,
Z

K3

Gnoðt; sÞeikgtot ðs;tÞv3ðsÞqsðsÞds ¼ Oðk�NÞ; 8N 2 N:
The reasoning for K4 is similar. This leaves the integral over K2. Here we use the fact that K (t,s) is bounded as a function of s
in K2, which gives
Z

K2

Gnoðt; sÞeikgtot ðs;tÞv2ðsÞqsðsÞds 6 C sups2K2
½qsðsÞ� ¼ Oðk

�NÞ;
where the last equality is a consequence of the extra-polynomial decay of the solution in the shadow zone. This concludes
the proof. h

Finally, we show that the definition of the weights using steepest descent paths as in (2.20) or using a cut-off function as
in (2.21) are indeed asymptotically equivalent.

Lemma 3.4. Let v1 and eK be defined as above and wj(t) defined by (2.20). Then
wjðtÞ ¼ K v1
1
j!
ðs� tÞj

� �
þOðk�NÞ; 8N 2 N:
Proof. The technical challenge here is that v1 is not analytic, which prevents immediate application of Cauchy’s theorem. On
the other hand, the singularity of the kernel prevents immediate application of integration by parts. We proceed by carefully
removing the singularity from the problem.
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Assume that [c1,c2] = C1 is the support of v1 and v1(s) � 1 on [d1,d2] � [c1,c2]. By construction we have t 2 [d1,d2]. We
focus on the interval [t,c2] and note that the reasoning for [c1, t] is similar. We fix t and define
UðsÞ ¼ kGnoðt; sÞeikgtotðs;tÞ:
Under the same conditions as the validity of (2.20), the integral
I1 :¼
Z d2

t
UðsÞ1

j!
ðs� tÞjv1ðsÞds ¼

Z d2

t
UðsÞ1

j!
ðs� tÞj ds ¼

Z
L1

UðzÞ1
j!
ðz� tÞj dz�

Z
L2

UðzÞ1
j!
ðz� tÞj dz
can be written as the sum of two line integrals in the complex plane, with L1 and L2 the steepest descent paths at t and d2

respectively. Note that the integral along L1 is precisely the second integral of wj (t) in (2.20).
Next, we define the integral
I2 :¼
Z c2

d2

UðsÞv1ðsÞ
1
j!
ðs� tÞj ds:
We aim to show that the integral along L2 above cancels with I2. A similar reasoning on [c1, t] would then complete the proof.
To that end, consider an analytic function w (s) such that
wðsÞ ¼ 1þOððs� d2ÞMÞ; s! d2; and

wðsÞ ¼ Oððs� c2ÞMÞ; s! c2;
for an integer M. The integral
I3 :¼
Z c2

d2

UðsÞwðsÞ1
j!
ðs� tÞjds ¼

Z
L2

UðzÞwðzÞ1
j!
ðz� tÞjdz�

Z
L3

UðzÞwðzÞ1
j!
ðz� tÞjdz
can also be written as the sum of two steepest descent line integrals, where L2 is the same path as before and L3 originates in
s = c2. From [34, Lemma 3.3] we deduce that, for sufficiently large M, the integral along L2 agrees with the former integral
along L2 to high asymptotic order (because the Taylor series of both integrands around d2 agree to high order) and that
the integral along L3 vanishes to high asymptotic order. Finally, integration by parts as in the proof of the previous lemma
shows that I2 and I3 also agree to high asymptotic order. This concludes the proof. h
3.2.3. Asymptotic accuracy of Qn

We have established enough results to prove the following theorem, which shows that it makes sense to approximate the
integral operator K by the differential operator Qn.

Theorem 3.5. For t 2 Ci,
ðKqsÞðtÞ � ðQnqsÞðtÞ ¼ Oðk
�n�1Þ; 8t 2 ½a; b�:
Proof. We may conclude from Lemmas 3.3 and 3.4 and from the definition (2.17) of Qn that it is sufficient to prove
k
Z

K1

Gnoðt; sÞeikgtot ðs;tÞv1ðsÞ qsðsÞ �
Xn

j¼0

qðjÞs ðtÞ
ðs� tÞj

j!

 !
¼ Oðk�n�1Þ:
This expression implies that the kth term of the asymptotic expansion of the oscillatory integral eKqs depends on the
kth order derivative of qs at the single contributing point t: subtracting out derivatives renders the integral asymptot-
ically smaller.

This is most easily proved using integration by parts, as was done for integrals over C3 in the proof of Lemma 3.3. The
integral over C1 is slightly more involved due to the singularity at s = t. However, we can write
qsðsÞ �
Xn

j¼0

qðjÞs ðtÞ
ðs� tÞj

j!
¼
XM

j¼nþ1

qðjÞs ðtÞ
ðs� tÞj

j!
þ RMðsÞ; ð3:7Þ
where the remainder term RM (s) vanishes to high order at s = t. Recall that qs and its derivatives, hence also RM and its deriv-
atives, are bounded in k. Substituting into the above, we conclude from Lemma 3.4 that each term in the Taylor series of qs

gives rise to an integral that is Oðk�n�1Þ or smaller. The integral involving RM (s) can also be bounded by Oðk�n�1Þ by perform-
ing integration by parts n + 2 times and noting that all boundary terms in the process vanish. The integrand is sufficiently
differentiable at s = t if M is taken sufficiently large. h
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3.3. A singular perturbation problem

Let us analyze the form of Eq. (2.18), which we repeat here for the clarity of our exposition:
Xn

j¼0

wjðtÞqðjÞF ðtÞ ¼ f ðtÞ; t 2 ½a; b�: ð3:8Þ
This is an ordinary differential equation of order n, rather than an integral equation. Note that no boundary conditions are
specified. Since the local solution is a restriction of the full solution of the scattering problem to a part of the domain, it seems
impossible to determine n boundary conditions without prior knowledge of the full solution.

However, the differential Eq. (3.8) has a special form. Recall that the variable coefficients in this ODE have size
wjðtÞ ¼ Oðk�jÞ as k ?1. Thus, (3.8) has the form of a singular perturbation problem (see, for example, [12]):
envnðtÞqðnÞF ðtÞ þ � � � þ ev1ðtÞq0FðtÞ þ v0ðtÞqFðtÞ ¼ f ðtÞ; t 2 ½a; b�;
with e � 1/k a small parameter and v jðtÞ ¼ Oð1Þ as e ? 0. The solution to such a problem can be written as the sum of a
slowly and rapidly varying part,
qFðtÞ ¼ qSðtÞ þ qRðtÞ; t 2 ½a; b�:
The rapidly varying part qR (t) depends on the boundary conditions for qF, but manifests itself only in boundary layers near the
endpoints of the interval. It vanishes rapidly in the interior. The slowly varying part is smooth everywhere and independent
of the boundary conditions. A first order approximation is qS (t) � f(t)/v0(t).

The solution to (3.8) of interest is non-oscillatory on [a,b] and therefore corresponds to the slowly varying solution qS (t)
above. This function qS (t) has bounded derivatives in e at the endpoints. Then the bounded derivative principle [39] applies: if
boundary conditions are chosen such that derivatives up to order p are bounded in e at the boundary, then the boundary data
is correct for qS to order p. The function qS can moreover be determined to any asymptotic order in the interior (a,b). Thus,
even if boundary values of the solution are not specified, enforcing bounded derivatives at the endpoints ensures that the
slowly varying part of the solution can be recovered to a certain asymptotic order in e.

Using the theory of singularly perturbed differential equations, we may fully explain the observed asymptotic accuracy of
qF. In order to recover a non-oscillatory solution to (3.8), we augment this equation with the condition that derivatives of qF

are bounded in k:
qðjÞF ðtÞ ¼ Oð1Þ; k!1; j ¼ 0; . . . ;n: ð3:9Þ
We have, for any N 2 N and t 2 [a,b],
Xn

j¼0

wjðtÞ qðjÞs ðtÞ � qðjÞF ðtÞ
h i

¼ ðQnqsÞðtÞ � ðQ nqFÞðtÞ ¼ ðKqsÞðtÞ þ Oðk
�n�1Þ � f ðtÞ ¼ Oðk�n�1Þ:
Both qF and qs haveOð1Þ derivatives as k ?1. Comparing the asymptotic size of all terms in the summation to the right hand
side, and using wj ¼ Oðk�jÞ, gives
qðjÞF ðtÞ ¼ qðjÞs ðtÞ þ Oðk
j�n�1Þ; j ¼ 0; . . . ;n:
We therefore expect that the functions qF and qs agree to asymptotic order n + 1, and higher order derivatives agree to lower
asymptotic order.

Natural splines are a convenient choice to enforce (3.9) because they satisfy homogeneous boundary conditions in high-
order derivatives at the endpoints. In particular, using natural splines of odd degree s we have
8v 2 Vh : v ðjÞðaÞ ¼ v ðjÞðbÞ ¼ 0; j ¼ sþ 1
2

; . . . ; s� 1:
Enforcing boundary conditions on higher derivatives independently of k ensures that lower derivatives are bounded in k and,
hence, by the bounded derivative principle we find the correct solution to high asymptotic order. The solution in the interior
has full asymptotic accuracy n + 1 if s P n. We attain order n + 1 near the boundary only if
sþ 1
2

> n) s > 2n� 1: ð3:10Þ
4. Numerical results

In order to demonstrate the properties of local solutions we devise a set of numerical experiments. The aim of these is first
to show that the computations yield solutions with the claimed asymptotic order, but with better properties than the
asymptotic approximation (3.3), and second to demonstrate that the method works also with certain slightly exotic and
non-convex shapes. All experiments in this section are performed on the first order formulation (2.4).
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We shall investigate three different obstacle geometries: the circle, the ellipse and a kite. The kite is a smooth, non-convex
obstacle parametrised by j (t) = [sin (2pt) + cos (4pt),cos (2pt)] for t 2 [0,1]. The boundary condition is chosen to be either a
plane wave or a point-source. From these obstacles and boundary conditions we choose the following test cases:

(1) A circle of diameter 1, illuminated by an incoming plane wave along the positive x-axis. See Fig. 3(a). For this case an
analytic solution exists which can be used to compute the error [29] and the asymptotic expansion of the form (3.3)
can be constructed. Thus we shall be able to assess the asymptotic order of the approximation as well as to investigate
break-down of the solutions near shadow boundaries.

(2) An eccentric ellipse situated at the origin and oriented along the x-axis, with major and minor axis lengths 1 and 1/10
respectively, illuminated by a point-source situated at [� 1,1]. See Fig. 3(b).

(3) A kite illuminated by a plane wave traveling along the positive x-axis, see Fig. 3(c). The illuminated side of the kite is
locally convex, whereas the shadow region is non-convex.

(4) The kite again, this time illuminated by a point-source situated in the point [1,0]. See Fig. 3(d). The geometry is non-
convex, but such that no multiple reflections occur in a small region near the bottom of the cavity.

In those cases where no analytical solution is available the local solutions are compared to numerical solutions obtained
from an efficient full BEM-solver with a fine discretization of around 4000 elements. Details on this solver can be found in
[35].

In all examples we efficiently computed the Filon-type quadrature weights (2.20) using a numerical steepest descent
method [32] to treat the oscillatory nature of the integrand, combined with generalized Gaussian quadrature [42] to treat
its singularities. We refer the interested reader to [30] for results on the rapid convergence of that approach for similar inte-
grals (in particular§7, Example 2).

The local solutions are in all experiments sought in a space of natural splines of order s = 5. Since the solutions are smooth,
only a small number of collocation points (�40) are needed to get a good solution. Since spline basis functions are compactly
supported, the resulting linear system is banded with bandwidth s, therefore the linear algebra involved is not a great issue.

We use a wavenumber k = 100 in all experiments unless noted otherwise.
4.1. Comparison of asymptotic methods for the circle

Consider the circular obstacle parametrized by j (t) = [cos (2pt), sin (2pt)] and illuminated by a plane wave travelling
along the x-axis in the positive direction. The illuminated region corresponds to the range t 2 [0.25,0.75]. We compute local
solutions on an admissible region, say, [a,b] = [0.27,0.73].
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Fig. 3. Four different experimental setups.
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Repeating the computation for a range of wavenumbers k, we can compare the local solution with the asymptotic expan-
sion of the same order in k. The errors of both asymptotic methods at the point t = 0.35 are compared in Fig. 4 for varying
order. The experiments confirm that local solutions have the expected asymptotic orderOðk�n�1Þ. Moreover, the results show
that the local solution is much more accurate than the asymptotic expansion of the solution with the same order when
n P 1.

It is well known that the asymptotic expansion (3.3) diverges as one approaches the shadow boundary. Our next exper-
iment shows that this blow-up is not present in the local solution. The relative error for the local solution is shown in Fig. 5
for the whole illuminated region t 2 [0.25,0.75], along with the asymptotic expansions of equal order. The results clearly
show that the local solutions gracefully loose accuracy near the shadow boundary, whereas the asymptotic expansions
blow-up. The accuracy of the local solution even improves with increasing order at the shadow boundaries t = 0.25 and
t = 0.75, though no longer at the rate Oðk�n�1Þ.

4.2. The case of an eccentric ellipse

For the eccentric ellipse parametrized by jðtÞ ¼ cosð2ptÞ; 1
10 sinð2ptÞ

� �
with a point-source at [� 1,1], the illuminated re-

gion corresponds to the interval t 2 [0.032, . . . ,0.5]. We compute a local solution for the whole illuminated region, excluding
some small regions near the shadow boundaries. The result can be seen in Fig. 6. Fig. 6(a) shows the full solution of the scat-
tering problem after phase extraction. The local solution on [0.032, . . . ,0.5] is superimposed, but the plots are indistinguish-
able. The relative error of the local solution is shown in Fig. 6(b), by comparing to the solution obtained from the full BEM
solver. The accuracy is highest near t � 0.4, but the accuracy improves everywhere with increasing order (n = 1,3 shown) and
with increasing k (not shown).

4.3. Non-convex scatterers

We present two different cases to show that the method can indeed handle certain cases of non-convex objects. Fig. 7
shows the local solution and the full solution after phase extraction for an incoming plane wave on the kite obstacle, a setup
illustrated in Fig. 3(c). We obtain a good approximation on the illuminated part of the kite, which can be viewed as a locally
convex part of the scatterer.

The results for a circular wave originating from a point inside the cavity of the kite obstacle are shown in Fig. 8. Due to
multiple reflections inside the cavity, the full solution of the scattering problem is not a smooth function after extraction of
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Fig. 4. Relative errors as function of wavenumber for local solutions (solid) and asymptotic expansions (dashed) at t = 0.35 for scattering by a circle.
Approximations of order 1,2,3 and 4 in panels (a), (b), (c), and (d).
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the phase of the incoming wave. The ‘‘smooth” solution qs is in fact highly oscillatory. However, near the bottom of the cavity
where no multiple scattering occurs, the phase is well predicted. Fig. 8(a) shows that the local solution actually coincides
with the full solution in that region, with small relative error as shown in Fig. 8(b).

Note that both the upper and lower parts of the cavity are admissible and local solutions can be computed for each part.
Iterating this procedure, by taking each locally scattered wave on one side of the cavity as the boundary condition for the
next local solution on the other side of the cavity, one could conceivably also compute the oscillatory parts of qs shown
in Fig. 8(a) by adding the fields of a few iterations.
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4.4. Demonstration of boundary layers

Finally, we will show numerically the effect of boundary conditions for Eq. (3.8). We implemented a simple central-dif-
ference scheme for the case second order differential equation
w0ðtÞqðtÞ þw1ðtÞq0ðtÞ þw2ðtÞq00ðtÞ ¼ f ðtÞ;
to compute the local solution for the circular scatterer with an incoming plane wave. Fig. 9 shows the results corresponding
to two different sets of boundary conditions: homogeneous Dirichlet (dashed curves) and vanishing second order derivative
(solid curves). The accuracy of the computed solution is not severely affected by the boundary condition in the interior of the
interval. Near the endpoints however, the boundary layers are visible. The solution corresponding to homogeneous Dirichlet
conditions has large errors in an interval near the endpoints that shrinks with increasing k. The solution with vanishing sec-
ond order derivatives has bounded derivatives near the endpoints and therefore recovers the slowly varying solution of the
singular perturbation problem to high accuracy throughout the interval.
5. Concluding remarks

We presented an efficient and simple scheme to compute single reflections in scattering problems to very high accuracy.
We reduced the integral equation formulation of a two-dimensional Helmholtz problem to a univariate ordinary differential
equation and showed that even simple finite difference schemes can be used to solve this equation. The differential equation
appeared due to the use of Filon-type quadrature in the discretization of the integral operator, as Filon-type quadrature em-
ploys derivatives of the integrand. The coefficients of the differential equation are given by the weights of the Filon-type
quadrature.

Preliminary results were also obtained for three-dimensional scattering problems. A major difference compared to the
two-dimensional case is the challenge of efficiently computing the weights of the Filon-type cubature rule. These weights
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are given by two-dimensional, singular and highly oscillatory integrals. Current research focuses on their numerical compu-
tation based on the results for multivariate oscillatory integrals in [33].
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