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The deterministic transport code HZETRN was developed for research scientists and design
engineers studying the effects of space radiation on astronauts and instrumentation pro-
tected by various shielding materials and structures. In this work, several aspects of code
verification are examined. First, a detailed derivation of the light particle (A 6 4) and heavy
ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given
for components of the derivation that already exist in the literature, and discussions are
given for details that may have been absent in the past. The present paper provides a com-
plete description of the numerical methods currently used in the code and is identified as a
key component of the verification process. Next, a new numerical method for light particle
transport is presented, and improvements to the heavy ion transport algorithm are dis-
cussed. A summary of round-off error is also given, and the impact of this error on previ-
ously predicted exposure quantities is shown. Finally, a coupled convergence study is
conducted by refining the discretization parameters (step-size and energy grid-size). From
this study, it is shown that past efforts in quantifying the numerical error in HZETRN were
hindered by single precision calculations and computational resources. It is determined
that almost all of the discretization error in HZETRN is caused by the use of discretization
parameters that violate a numerical convergence criterion related to charged target frag-
ments below 50 AMeV. Total discretization errors are given for the old and new algorithms
to 100 g/cm2 in aluminum and water, and the improved accuracy of the new numerical
methods is demonstrated. Run time comparisons between the old and new algorithms
are given for one, two, and three layer slabs of 100 g/cm2 of aluminum, polyethylene,
and water. The new algorithms are found to be almost 100 times faster for solar particle
event simulations and almost 10 times faster for galactic cosmic ray simulations.

Published by Elsevier Inc.
1. Introduction

As human exploration moves beyond Earth’s orbit into radiation environments where measured data are sparse and test-
ing is difficult, models will be heavily relied upon to make decisions regarding vehicle design and mission planning. This reli-
ance on model results requires a systematic effort of verification, validation, and uncertainty quantification. Verification is
the process of determining that a computational model accurately represents the underlying mathematical model and its
solution; validation is the process of determining if the underlying mathematical model accurately represents physical real-
ity, and uncertainty quantification is the process of identifying all relevant sources of uncertainties and quantifying their im-
pact on the inputs and outputs of the model [13]. This paper addresses verification of the deterministic radiation transport
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code HZETRN (High charge (Z) and Energy TRaNsport) [26,27,30,18] with a focus on documentation, improving efficiency
and stability, and quantifying discretization error through convergence testing.

Documentation is a critical component of verification [15] and has been emphasized in the NASA standard for modeling
and simulation tools [13]. While there have been many papers published that describe the transport model and physical
parameters [21–23,26,29,30,3] as well as the marching algorithms and numerical methods [25,26,29,30,9,10,16] used in
HZETRN, various gaps still exist in the documentation. This statement is not a criticism of past efforts in developing or doc-
umenting HZETRN; rather, it is a reflection of an increased focus on model verification [13]. In this paper, a detailed review
and derivation is given for the existing light particle (n, p, 2H, 2H, 3He, 4He) and heavy ion (A > 4) marching algorithms used in
HZETRN. References are given for components of the derivation that already exist in the literature, and discussions are given
for details that may have been absent in the past. As a result of the review, a numerical convergence criterion is identified
that, to the authors’ knowledge, has yet to be documented or examined. It is shown later in the paper that the discretization
parameters (spatial step-size and energy grid-size) commonly used in HZETRN violate this criterion and cause a systematic
under-prediction of light charged target fragments below 50 AMeV.

This detailed derivation and review of the numerical methods also resulted in the development of a new light particle
marching algorithm that is almost 100 times faster than its predecessor for solar particle event (SPE) simulations. Though
computational efficiency (compared to Monte Carlo approaches) has long been a core feature of HZETRN, there were certain
extreme applications for which the existing algorithms resulted in long run-times. For example, consider the interpolation or
ray-by-ray methods used to compute mass averaged quantities in human phantoms exposed to space radiation. Interpola-
tion methods are quite fast once the interpolation database has been generated, but in an extreme case, it takes the current
code over seven hours to generate a detailed database on a single processor. Similarly, the ray-by-ray method can take over
20 h to compute the mass averaged particle fluence spectra at a single point in the body on a 192 core cluster. Approximately
1000 body points have been identified by Slaba et al. [19] as sufficient for computing whole body effective dose in human
phantoms exposed to SPE and galactic cosmic rays (GCR)-indicating a significant computational cost. To help reduce these
run-times and increase code efficiency, a new numerical method is presented for the light particle marching algorithm that
reduces the required number of interpolations and removes the need for integral fluence to be calculated at each step. Run
time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm2 of alumi-
num, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event (SPE) sim-
ulations and almost 10 times faster for galactic cosmic ray (GCR) simulations.

Controlling round-off error is another important component of code verification. Though previous convergence studies
[16,20] and benchmark comparisons [24,26,29,30,6,7] would indicate that round-off error has already been controlled, such
comparisons were generally made at moderate shielding depths where round-off errors are assumed to be small. However,
as HZETRN is increasingly used in atmospheric and surface applications with large material thicknesses (>50 g/cm2) [12,28],
round-off error could be a major concern and needs to be investigated. Selected light particle cross sections are calculated in
single and double precision, and the impact of round-off error in the single precision calculations is shown to be large in cer-
tain cases. The interpolation routine [27] frequently used in the transport algorithms is also examined, and a new routine is
developed that is faster, has improved extrapolation procedures, and has the capability of interpolating around certain dis-
continuities. The improved code stability attained by using double precision calculations and the improved interpolation
routine is demonstrated.

Finally, in many computational models or algorithms, continuous variables are discretized to reduce a differential equa-
tion into an algebraic expression that is evaluated numerically. The algorithm is said to converge if the numerical solutions
reach an asymptotic limit as the discretization parameters approach zero. In order to show convergence and quantify dis-
cretization error, the discretization parameters are refined several times and the differences between the various solutions
are compared. Such studies are often referred to as convergence tests. As part of a larger verification and validation effort,
configuration controlled convergence tests are created which can be re-run when significant changes are made to the codes.
The ability to re-run such tests will help prevent the introduction of errors into the code as modifications are made in the
future. In HZETRN, the spatial variable x and energy variable E are discretized. Two convergence tests have previously been
published [16,20]; however, those tests were primarily focused on verifying code stability and were limited by computa-
tional resources. In the first analysis, Shinn et al. [16] conducted a coupled convergence test in both space and energy. How-
ever, only two step-sizes (h = 0.5 g/cm2 and h = 1.0 g/cm2) and two energy grids (N = 30 and N = 60, where N is the number of
grid points) were considered; only nucleons were transported, and all calculations were in single precision. No attempt was
made to quantify discretization error, and numerical convergence was not clearly demonstrated. It should be noted that
these early studies and early versions of HZETRN were executed on computers with limited capability by modern standards.
Single precision calculations were used instead of double precision to reduce memory requirements and allow storage of
large nuclear databases. In the more recent analysis, it was determined that at least 100 energy grid points are needed to
control energy discretization error [20], but spatial discretization error was not considered. Neither the codes nor the results
were configuration managed in these previous studies. It will be shown here that even step-sizes of h = 0.01 g/cm2 can result
in moderate errors for low energy target fragments with small residual ranges. In this work, a convergence study is con-
ducted in both step-size and energy grid-size. The spatial discretization parameter, h, is reduced by factors of 2 from its com-
mon value of 0.5 g/cm2 down to 2�11 g/cm2. Similarly, the number of energy grid points is increased by factors of �1.5 from
100 up to 753. Particle fluence, dose, and dose equivalent values are then computed at various depths in aluminum and
water slabs exposed to SPE and GCR environments using the old and new transport algorithms and each of the discretization
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parameters. The resulting data are used to show that the new algorithms reach an asymptotic solution as the discretization
parameters are refined. The improved accuracy of the new methods is also demonstrated. Discretization errors are also given
for the discretization parameters commonly used in HZETRN (h = 0.5 g/cm2 with 100 energy grid points). These errors are
expressed as percent differences from the converged numerical solutions obtained with the finest discretization parameters.

2. Transport equations

In this section, the physical approximations used to obtain numerical procedures in HZETRN are reviewed. The time inde-
pendent linear Boltzmann transport equation with the continuous slowing down and straight ahead approximations is given
as [26]
@

@x
� 1

Aj

@

@E
SjðEÞ þ rjðEÞ

� �
/jðx; EÞ ¼

X
k

Z 1

E
rjkðE; E0Þ/kðx; E0ÞdE0; ð1Þ
with the boundary condition /j(0,E) = fj(E). In Eq. (1), /j(x,E) is the fluence of type j particles at depth x with kinetic energy E,
Aj is the atomic mass number of a type j particle, Sj(E) is the stopping power of a type j ion with kinetic energy E, rj(E) is the
total macroscopic cross section for a type j particle with kinetic energy E, and rjk(E,E0) is the macroscopic differential pro-
duction cross section for interactions in which a type k particle with kinetic energy E0 produce a type j particle with kinetic
energy E. The summation limits in Eq. (1) will be discussed shortly. The boundary condition spectrum, fj(E), is considered to
be a known function over a broad energy spectrum. Throughout the rest of this paper, E is always the kinetic energy ex-
pressed in AMeV or AGeV (except for nucleons, where the ‘‘A” notation is unnecessary). The units of fluence for GCR envi-
ronments are particles/(cm2 AMeV day), and for SPE environments, the units of fluence are integrated over the event to
obtain units of particles/(cm2 AMeV).

Consider the continuous slowing down operator
1
Aj

@

@E
SjðEÞ

� �
/jðx; EÞ; ð2Þ
which represents the rate at which charged particles lose energy as they interact with the electron clouds in the target med-
ia. Although atomic interactions cause charged particles to lose energy in discrete increments as they pass through a mate-
rial, there are a sufficient number of these interactions in a unit path length to justify a continuous approximation [26]. It is
advantageous to approximate this term by considering the relation from Bethe stopping power theory [2]
mkrk � mjrj; ð3Þ
where the scaling parameter is mj ¼ Z2
j =Aj, with Zj being the atomic charge of a type j particle, and the range of a type j ion, rj,

is given by the range–energy relationship
rj � Aj

Z E

0

dE0

SjðE0Þ
: ð4Þ
From Eqs. (3) and (4), the proton stopping power, S, can be approximated as
mjSðEÞ �
1
Aj

SjðEÞ: ð5Þ
Eq. (5) is less accurate at low energy (<10 AMeV) or low residual range and has been discussed previously by Wilson et al.
[26].

Eq. (5) allows the transport equation to be written as
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The motivation, justification, and physical implications associated with approximating each ion stopping power with a
scaled proton stopping power has been discussed in detail elsewhere [30]. Ultimately, the approximation allows significant
numerical simplifications, as will be shown later.

There are two paths taken (for light particles and heavy ions) in developing numerical procedures for Eq. (6). For heavy
ions, it is noted that projectile fragments have energy and direction very near that of the projectile, while target fragments
are produced nearly isotropically with low energy and travel only a short distance before being absorbed [22,23,26,27,30].
The approximate decoupling of target and projectile fragments is discussed in detail by Wilson et al. [22,26,27] and suggests
that target fragments can be neglected in the heavy ion transport procedure (their contribution to dose is approximately ac-
counted for after the transport procedure). The equal velocity assumption for heavy ions can be expressed in the production
cross section as [17]
rjkðE; E0Þ ¼ rjkðE0ÞdðE� E0Þ; ð7Þ
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where rjk(E) is the production cross section for interactions in which a type k particle with kinetic energy E produce a type j
particle. The absence of target fragments in the heavy ion transport procedure allows one to take the summation in Eq. (6)
over all projectiles with mass greater than that of the fragment. If all the transported particles are ordered according to mass,
then Eq. (6) can be succinctly written as
@

@x
� mj

@

@E
SðEÞ þ rjðEÞ

� �
/jðx; EÞ ¼

X
k>j

rjkðEÞ/kðx; EÞ; ð8Þ
which is the transport equation found in Wilson et al. [23,26,27,30] and will be referred to as the heavy ion transport equa-
tion. The upper summation limit in Eq. (8) can vary, but it is common to use no fewer than 59 ions. See Cucinotta et al. [4] for
a discussion of isotope selection.

Alternatively, for light particles (n, p, 2H, 2H, 3He, 4He) both projectile and target fragments are included in the transport pro-
cedure. The broad energy distribution in collision events also indicates that the equal velocity assumption in Eq. (7) cannot be
used. In this case, no simplifications to Eq. (6) are used, and the summation is taken over all light particles. Hereafter, Eq. (6) will
be referred to as the light particle transport equation which includes both neutrons and light ions. It should be noted that for SPE
environments with a negligible heavy ion component, only the solution to the light particle transport equation is required. For
GCR environments, there are both heavy ion and light ion components, and solutions to the light particle and heavy ion trans-
port equations must be evaluated simultaneously. The coupling of these two equations will be discussed later.

3. Light particle marching equation

The following formulation of the light particle marching equation was taken from Wilson et al. [21,25,26,30], Shinn et al.
[16], Lamkin et al. [9,10], Cucinotta [3]. A detailed derivation with references has been given by Slaba et al. [18]. Further ref-
erences in this section will be given only for mathematical techniques and physical arguments.

To develop a numerical marching procedure for the light particle transport equation, the differential operator on the left
hand side of Eq. (6) is inverted using the method of characteristics [5]. To perform the inversion, define the scaled fluence and
scaled production cross section
wjðx; rÞ � �mjSðEÞ/jðx; EÞ ð9Þ
sjkðr; r0Þ � SðEÞrjkðE; E0Þ; ð10Þ
where the proton range, r, is defined in terms of the proton stopping power, S(E), by the range–energy relationship in Eq. (4),
and the modified scaling parameter is given by
�mj �
1; j ¼ n;
mj; j – n:

�
ð11Þ
The quantity �mj is used in fluence scaling to avoid a trivial solution for the neutrons. Notice that we have used the scaled
proton range in Eq. (9) to allow the function wj(x,r) to be defined over the common proton range, r, for each particle type j.

The light particle transport equation is given in terms of the scaled quantities as
@
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where the term rj(E) has been replaced with rj(r), since for a given value of r, Eq. (4) can be inverted to determine E. Note
that even though several values of E may map to the same value of S(E), the function, r(E), defined by the integral in Eq. (4), is
one-to-one. Thus, the inverse mapping from E to r is well defined.

Eq. (12) is inverted using the method of characteristics to obtain a Volterra integral equation and written as an implicit
marching procedure in terms of the step-size, h, as
wjðxþ h; rÞ ¼ e�bjðr;hÞwjðx; r þ mjhÞ þ
X

k

�mj

�mk

Z h

0

Z 1

rþmjx0
e�bjðr;x0 Þsjkðr þ mjx0; r0Þwkðxþ h� x0; r0Þdr0dx0; ð13Þ
with the integrating factor defined
bjðr; xÞ �
Z x

0
rjðr þ mjtÞdt: ð14Þ
The scaled fluence on the left hand side of Eq. (13) represents particles at position x + h with range r. The scaled fluence on
the right hand side represents particles at position x with a range (energy) downshift caused by atomic interactions within
the step-size, and the multiplied exponential term represents attenuation due to nuclear absorption. The summation and
integral terms represent production of light particles with nuclear attenuation and atomic slowing down over the step-size.
The scaled fluence in the integrand of Eq. (13) is approximated as [26]
wjðxþ h; rÞ ¼ e�bjðr;hÞwjðx; r þ mjhÞ þ OðhÞ: ð15Þ



T.C. Slaba et al. / Journal of Computational Physics 229 (2010) 9397–9417 9401
The scaled fluence on the left hand side represents particles at position x + h with range r. The scaled fluence on the right
hand side represents particles at position x with range r + mjh, with the difference in range values representing an energy
down shift caused by atomic interactions within the step-size. The exponential term represents attenuation due to nuclear
absorption. Eq. (15) without the O(h) term is the exact solution to the homogeneous form of Eq. (12). The homogeneous
equation neglects secondary particle production through nuclear interactions and accounts only for the slowing down of par-
ticles due to atomic interactions and the loss of particles due to nuclear absorption. If the step-size is taken to be sufficiently
small such that
h� 1
rjðrÞ

ð16Þ
(i.e. much less than the nuclear mean free path), then the local truncation error will be negligible as the particles will not
have travelled far enough to suffer a nuclear collision [26]. Eq. (16) is the first convergence criterion and has been well doc-
umented in the literature [21,25,26,30]. It is worth noting that nuclear mean free path lengths are on the order of many
g/cm2, while the step-sizes usually taken in HZETRN are less than 1 g/cm2.

Eq. (15) is used to approximate the integrand in Eq. (13) [21,25,26,30]. This approximation produces the explicit marching
procedure for light particles
wjðxþ h; rÞ ¼ e�bjðr;hÞwjðx; r þ mjhÞ

þ
X

k

�mj

�mk

Z h

0

Z 1

rþmjx0
e�bjðr;x0 Þ�bkðr0 ;h�x0 Þsjkðr þ mjx0; r0Þwkðx; r0 þ mkðh� x0ÞÞdr0dx0 þ Oðh2Þ; ð17Þ
where the O(h2) terms are small. This is the light particle marching equation given by Wilson et al. [30] for which numerical
procedures will be developed and studied later. Hereafter, the O(h2) will be assumed in the marching equations and not
written.

4. Heavy ion marching equation

The following derivation of the heavy ion marching equation was taken from Wilson et al. [22,23,26,27,30] and Shinn
et al. [17]. A detailed derivation with references has been given by Slaba et al. [18]. Further references will only be given
for mathematical techniques. Any variables and symbols used in this section that were defined in the previous section hold
their respective definitions.

The heavy ion trzansport equation was given previously in Eq. (8). The heavy ion fluences are scaled with mjS(E), and the
term rjk(E) is replaced with rjk(r) since, for a given r, Eq. (4) can be inverted to find E. Following the procedure outlined in the
previous section, Eq. (8) is written in terms of the scaled fluence and inverted using the method of characteristics to obtain a
Volterra type integral equation. The integral equation is then written as an implicit marching procedure in terms of the step-
size, h, as
wjðxþ h; rÞ ¼ e�bjðr;hÞwjðx; r þ mjhÞ

þ
X
k>j

mj

mk

Z h

0
e�bjðr;x0 Þrjkðr þ mjx0Þwkðxþ h� x0; r þ mjx0Þdx0: ð18Þ
The scaled fluence on the left and right hand sides of Eq. (18) have the same physical meanings as in Eq. (13); however, the
summation and integral terms represent production and transport of projectile fragments with nuclear attenuation and
atomic slowing down over the step-size. As before, the O(h) homogenous solution [30] is used to approximate the scaled
fluence in the integrand to obtain the final marching procedure
wjðxþ h; rÞ ¼ e�bjðr;hÞwjðx; r þ mjhÞ

þ
X
k>j

mj

mk

Z h

0
e�bj r;x0ð Þ�bkðrþmjx

0 ;h�x0Þrjk r þ mjx0
� �

wkðx; r þ mjx0 þ mkðh� x0ÞÞdx0 þ Oðh2Þ: ð19Þ
The integral over x0 from 0 to h is approximated by expanding the production cross section and scaled fluence in a Taylor
series neglecting all second order terms. The remaining integrals in the argument of the exponentials are similarly handled
by expanding in a Taylor series neglecting all second order terms. This approximation allows the integral to be evaluated
exactly, resulting in the final marching procedure given by
wjðxþ h; rÞ ¼ e�bjðr;hÞwjðx; r þ mjhÞ

þ
X
k>j

mj

mk
rjk r þ mjh=2
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rkðr þ ðmj þ mkÞh=2Þ � rjðr þ mjh=2Þ þ Oðh2Þ; ð20Þ
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where the O(h2) terms are small. This is the heavy ion marching equation given by Wilson et al. [30] for which numerical
procedures will be studied later. Hereafter, the O(h2) will be assumed in the marching equations and not written.

5. Existing light particle marching equation numerical methods

In this section, the numerical methods developed to evaluate Eq. (17) are reviewed, and the error analysis found in the
literature for those methods is summarized. The following notation and terminology will be used extensively throughout the
remainder of the paper. An energy grid (E-grid) refers to a discrete set of energy values distributed in some manner between
a minimum energy value, Emin, and a maximum energy value, Emax. The ith component of the E-grid is denoted as Ei. A range
grid (r-grid) refers to a discrete set of proton range values distributed in some manner between a minimum range value, rmin,
and a maximum range value, rmax. The ith component of the r-grid is denoted as ri. The number of grid points in a grid, or
grid-size, is denoted by N. It will be assumed that all grid indexing is from i = 1 to i = N. Equal-log spacing is also used exten-
sively; the ith component of an equal-log spaced E-grid is evaluated as
Ei ¼ 10logðEminÞþDEði�1Þ; ð21Þ
where the energy spacing parameter is defined as
DE �
logðEmaxÞ � logðEminÞ

N � 1
; ð22Þ
and the logarithms are base 10. Note that an energy grid can be converted to a range grid, and vice versa, using Eq. (4).
In the light particle marching Eq. (17), the quantity wj(x,r + mjh) will have to be evaluated for range values not on the pre-

scribed r-grid. Wilson et al. [26] and Lamkin et al. [9] have shown that a log–log cubic Lagrange interpolating polynomial
provides sufficient accuracy with a minimal number of grid points. The terminology ‘‘log–log” refers to taking the logarithm
of both the dependent and independent variables prior to interpolating. The interpolated value is then exponentiated to ad-
just for the initial logarithm. It has been shown that higher order Lagrange polynomials offer little more in accuracy, and
higher order splines can introduce uncontrollable oscillatory behavior that is problematic in marching procedures [9].

To evaluate the source integrals, the integral over x0 from 0 to h is simplified by using a modified single point midpoint
rule for integrable functions a(x), b(x), and c(x) of the form
Z h

0
aðxÞbðxÞcðxÞdx � aðh=2Þ

Z h

0
bðxÞdx

" #
cðh=2Þ: ð23Þ
This approximation will be accurate if the functions a(x) and c(x) are nearly constant over the interval [0,h]. When applied to
Eq. (17), this approximation yields [26,30]
wjðxþ h; rÞ ¼ e�bjðr;hÞwjðx; r þ mjhÞ þ
X

k

�mj

�mk

Z 1

rþmjh=2
e�bj r;h=2ð Þ�bkðr0 ;h=2Þ

Z h

0
sjkðr þ mjx0; r0Þdx0

" #
wkðx; r0 þ mkh=2Þdr0: ð24Þ
The modified midpoint rule has decoupled the source integrals in Eq. (17); however, the approximation will only be accurate
if the step-size is sufficiently small to satisfy
h� r=mj � rj: ð25Þ
Eq. (25) is the second convergence criterion. Recall that the first criterion was identified previously in Eq. (16) and re-
quired the step-size to be smaller than the nuclear mean free path length. The second criterion in Eq. (25) is a numerical
constraint that only exists because of the approach taken to decouple the source integrals in the light particle marching
equation. To the authors’ knowledge, this second criterion has never been explicitly stated or addressed in the literature.
To put the second criterion in context, note that the range of a 100 MeV proton produced in aluminum is �10 g/cm2, so a
step-size of 0.5 g/cm2 will be sufficient in this approximation. However, a 10 MeV proton produced in aluminum will travel
�0.17 g/cm2 before coming to rest, and a 1 MeV proton produced in aluminum will travel �0.004 g/cm2 before coming to
rest. This indicates that step-sizes of 0.5 g/cm2 and 1.0 g/cm2 studied previously [16] do not accurately transport low energy
target fragments. It will be shown later that even step-sizes near 0.01 g/cm2 will systematically under-predict the source
integral by neglecting the particle production from projectiles with low ranges near that of fragments. This approximation
will be tested in detail when the coupled energy grid and step-size convergence study is conducted.

The light particle transport equation is further simplified for charged particle fragments
Z h

0
sjkðr þ mjx0; r0Þdx0 ¼ 1

mj

Z eðrþmjhÞ

0
rjkðE; E0ÞdE�

Z eðrÞ

0
rjkðE; E0ÞdE

" #
� FD

jkðr; r0; hÞ: ð26Þ
The term e(r) is the energy associated with the proton range r. For neutron fragments, denoted by j = n,
Z h

0
snkðr þ mnx0; r0Þdx0 ¼ hsnkðr; r0Þ � FD

nkðr; r0; hÞ: ð27Þ
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The remaining exponential attenuation terms in Eq. (24) are simplified by using a first order series expansion [16,9]. These
approximations are exact for neutrons and have been shown [16,9] to produce negligible errors for charged particles with
step-sizes up to h = 0.5 g/cm2. The light particle transport equation is now reduced to
wjðxþ h; rÞ ¼ e�rjðrÞhwjðx; r þ mjhÞ

þ
X

k

�mj

�mk

Z 1

rþmjh=2
e�rjðrÞh=2�rkðr0 Þh=2FD

jkðr; r0; hÞwkðx; r0 þ mkh=2Þdr0: ð28Þ
The final integral is simplified by considering a composite quasi-midpoint rule defined over several sub-intervals within a
given region
Z b

a
f ðxÞgðxÞdx �

XN�1

i¼1

f ð�xiÞ
Z xiþ1

xi

gðxÞdx; ð29Þ
where x1 = a, xN = b, and �xi ¼ ðxiþ1 þ xiÞ=2. This approximation is similar to the multi-group method commonly used in nucle-
ar reactor transport theory and requires the sub-intervals [xi,xi+1] to be sufficiently small such that f(x) is nearly constant
over the sub-interval [11]. The composite quasi-midpoint rule in Eq. (29) can be applied to the integral in Eq. (28) to obtain
wjðxþ h; riÞ ¼ e�rjðriÞhwjðx; ri þ mjhÞ

þ
X

k

�mj

�mk

XN�1

m¼i

e�rjðriÞh=2�rkðrmÞh=2FD
jkðri;�rm þ mjh=2; hÞ Wjðx; rm þ ðmj þ mkÞh=2Þ �Wjðx; rmþ1 þ ðmj þ mkÞh=2Þ

� �
;

ð30Þ
where the integral fluence is defined as
Wjðx; rÞ �
Z 1

r
wjðx; r00Þdr00 ¼ �mj

Z 1

E
/jðx; E00ÞdE00; ð31Þ
and �rm � ðrmþ1 þ rmÞ=2. Slaba et al. [20] have recently shown this approximation to be poor for neutron elastic interactions in
which the energy loss between the pre-collision and post-collision neutron is very small. They have modified the neutron
elastic component, FD;el

nn , so that it is now evaluated as
FD;el
nn ðri;�rm; hÞ ¼ hSðEÞhrel

nnðri;�rmÞi; ð32Þ
with the average value of the neutron elastic production cross section is defined over the interval [rm,rm+1]
hrel
nnðri;�rmÞi �

1
eðrmþ1Þ � eðrmÞ

Z eðrmþ1Þ

eðrmÞ
rel

nnðeðriÞ; E0ÞdE0: ð33Þ
In Eq. (33), e(r) denotes the energy associated with the range value r. Eqs. (30)–(33) define the light particle marching pro-
cedure used in HZETRN and tested in this report. Two things should be noted about the original light particle marching equa-
tion. First, evaluation of Eq. (30) requires the integral fluence to be computed and interpolated for each particle at each step.
Second, historically, in this algorithm, all of the computations were carried out in single precision due to computational con-
straints, as discussed previously. More will be said about both of these points later.
6. New light particle marching equation numerical methods

In this section, new numerical methods are presented to evaluate the light particle marching equation. The approxima-
tions used in the previous section to get from Eqs. (17)–(28) are all used in this section; therefore, we begin with Eq. (28) and
change integration variables so that the light particle transport equation becomes
wjðxþ h; rÞ ¼ e�rjðrÞhwjðx; r þ mjhÞ

þ
X

k

Z 1

r
e�rjðrÞh=2�rkðr0�mkh=2Þh=2FD

jkðr; r0 � mkh=2; hÞwkðx; r0Þdr0; ð34Þ
where we include the scaling parameters in the definition of the integrated light particle cross sections
FD
jkðr; r0; hÞ �

�mj

�mk
FD

jkðr; r0; hÞ: ð35Þ
In the new method, the scaled fluence in the integrand, wk(x,r0), is approximated by a linear combination of log-linear
basis splines as
wkðx; r0Þ �
XN

m¼1

BðlÞm ðr0Þwkðx; rmÞ; ð36Þ
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with the log-linear spline
BðlÞm ðrÞ ¼
lnðr=rm�1Þ= lnðrm=rm�1Þ; r 2 ½rm�1; rm�;
lnðrmþ1=rÞ= lnðrmþ1=rmÞ; r 2 ½rm; rmþ1�;
0; otherwise:

8><
>: ð37Þ
Upon substitution of Eq. (36) into Eq. (34) one obtains
wjðxþ h; rÞ ¼ e�rjðrÞhwjðx; r þ mjhÞ þ
X

k

XN

m¼1

wkðx; rmÞ
Z 1

rþðmjþmkÞh=2
e�rjðrÞh=2�rkðr0�mkh=2Þh=2FD

jkðr; r0 � mkh=2; hÞBðlÞm ðr0Þdr0: ð38Þ
In Eq. (38), the integrand and the integral no longer depend on the scaled fluence or the depth in the material. The integral
can be treated as a constant matrix of production coefficients depending only on the step-size and the r-grid. If we evaluate
Eq. (38) at the ith r-grid value, then the production coefficients can be defined as
aimðhÞ �
Z 1

riþðmjþmkÞh=2
e�rjðriÞh=2�rkðr0�mkh=2Þh=2FD

jkðri; r0 � mkh=2; hÞBðlÞm ðr0Þdr0; ð39Þ
so that the transport equation is now greatly simplified
wjðxþ h; riÞ ¼ e�rjðriÞhwjðx; ri þ mjhÞ þ
X

k

XN

m¼1

aimðhÞwkðx; rmÞ: ð40Þ
This approach casts the production integral as a linear combination of terms computed on the original r-grid requiring no
further interpolation or integration.

The production coefficients, aim, are further simplified by noting that the basis spline, BðlÞm ðr0Þ, is non-zero only in the region
[rm�1,rm+1]. Therefore,
aimðhÞ ¼
Z rb

ra

e�rjðriÞh=2�rkðr0�mkh=2Þh=2FD
jkðri; r0 � mkh=2; hÞBðlÞm ðr0Þdr0; ð41Þ
where the limits of integration are defined
ra �maxfri þ ðmj þ mkÞh=2; rm�1g; ð42Þ
rb �minfrN; rmþ1g; ð43Þ
and min and max refer to the minimum and maximum values, respectively. For neutron elastic interactions, the upper limit
has been adjusted to
rb �minfrN; rmþ1; rag; ð44Þ
where ra is the proton range associated with the energy Ea = e(ri)/aT, e(ri) is the energy associated with the proton range ri,
and aT is the target dependent parameter given by
aT ¼
AT � 1
AT þ 1

	 
2

; ð45Þ
and AT is the mass of the target nucleus. To understand from where the term ra was taken, note that Wilson et al. [26] have
parameterized the neutron elastic production cross section to be non-zero in the energy region
aT E0 < E < E0; ð46Þ
where E0 is the energy of the pre-collision neutron, and E is the energy of the post-collision neutron. For heavy targets, in
which aT ? 1, the non-zero region of the neutron elastic production cross section can become smaller than the spacing of
the E-grid (or r-grid). Including the upper bound of the elastic cross section in the selection of the upper limit of integration
will properly account for such occurrences.

Similarly, for quasi-elastic interactions involving 4He projectiles, the lower limit of integration has been adjusted to
ra ¼max ri þ ðmj þ mkÞh=2; rm�1; r
ðBÞ
i þ h=2

n o
; ð47Þ
where rðBÞi is the proton range associated with the energy e(ri) + EB, and EB is the binding energy of the struck nucleus. The
term rðBÞi þ h=2 was obtained by noting that in 4He quasi-elastic interactions, secondary 4He ions have energy E bounded
above by the difference between the projectile energy, E0, and the binding energy of the struck nucleus, EB. In Eq. (41),
the cumulative production cross section, FD

jk, is evaluated at r0 � mkh/2, and since mk = 1 for 4He, the minimum projectile en-
ergy must be eðrðBÞi þ h=2Þ.

The production coefficients are evaluated using a 10-point Gauss Legendre integration scheme to obtain a high level of
accuracy with a minimal number of quadrature points. Even though the numerical integrations are carried out over small
sub-intervals of the r-grid, the production coefficients are still computationally expensive to calculate for a single h value;
therefore, they are approximated by using the log-linear interpolation
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aimðhÞ � exp aðlÞimðhpþ1Þ þ aðlÞimðhpþ1Þ � aðlÞimðhpÞ
h i

ðhðlÞ � hðlÞp Þ=ðh
ðlÞ
pþ1 � hðlÞp Þ

n o
� a�im; ð48Þ
where aðlÞim � logðaimÞ and h(l) � log(h). This requires the coefficients aim(h) to be pre-computed for several values of h from
0.0 g/cm2 to 0.5 g/cm2. The h-grid has been taken to be
hp ¼ f0:0;0:001;0:005;0:01;0:05; 0:1; 0:25;0:5g: ð49Þ
The values of h were chosen to adequately cover the necessary range of step-sizes, while minimizing the number of points.
The final marching equation for light particles is now written as
wjðxþ h; riÞ ¼ e�rjðriÞhwjðx; ri þ mjhÞ þ
X

k

XN

m¼1

a�imwkðx; rmÞ: ð50Þ
The new marching Eq. (50) is much simpler than the original Eq. (30). Specifically, there is no longer a need to compute or
interpolate on integral fluence. The entire source calculation has been reduced to a simple matrix–vector multiplication. The
most computationally expensive portion of the new algorithm is the interpolation at ri + mjh. The interpolation routine [27]
used in previous versions of HZETRN was reviewed, and several modifications were made to improve efficiency and robust-
ness. The updated routine still performs log–log cubic interpolation with Lagrange polynomials but is more efficient and has
improved logic for interpolation around certain discontinuities and extrapolations past rmax. A comparison of the routines
will be given later. It should also be noted that in the new algorithm, all of the computations are carried out in double pre-
cision; the need for double precision will be shown later. The updated algorithm is much simpler and faster than its prede-
cessor. An estimate of the improvements can be obtained by counting the number of interpolations in a single iteration of the
light particle transport equation. Assuming there are six particles to transport and N grid points in the r-grid, the number of
interpolations in the new algorithm scales linearly with N, while the old algorithm scales quadratically with N.
7. Heavy ion marching equation numerical methods and coupling for GCR

The heavy ion marching equation was given previously in Eq. (20). The only numerical technique required to evaluate this
equation is interpolation. The interpolation routine used in the heavy ion marching algorithm [27] is the same routine used
in the light particle marching algorithm. Thus, to improve efficiency and robustness, this routine has been replaced with the
updated version mentioned in the previous section. A comparison of the routines will be given shortly.

The GCR environment is composed of energetic protons, alpha particles, and heavier ions with Z > 2. In order to simulta-
neously transport all of these particles using the methods outlined above, the light particle and heavy ion marching algo-
rithms must be coupled. This coupling has never been explicitly documented, but has existed in HZETRN for some time.
The complete marching algorithm for GCR environments can be succinctly written as
wjðxþ h; riÞ ¼ e�rjðriÞhwjðx; ri þ mjhÞ þ HðJ � jÞ
X

k

XN

m¼1

a�imwkðx; rmÞ

þ
X
k>J�

mj

mk
rjk r þ mjh=2
� �

wkðx; r þ ðmj þ mkÞh=2Þ e�rjðrþmjh=2Þh � e�rkðrþðmjþmkÞh=2Þh

rkðr þ ðmj þ mkÞh=2Þ � rjðr þ mjh=2Þ : ð51Þ
The index J refers to the heaviest light ion (4He), the function H(J � j) is the Heaviside function, and the lower limit of the
single summation term is J* = max{j, J}. The double summation term is the source calculation for light projectiles and light
fragments using the new method described in the previous section. Eq. (51) can be written in terms of the old light particle
marching algorithms by replacing the double summation term in Eq. (51) with the double summation in Eq. (30).

The physical interpretation of Eq. (51) is straightforward. The double summation term is the source for light particles pro-
duced from light projectiles and is only evaluated if the particle subscript j refers to a light particle. The single summation
term is the source for light and heavy projectile fragments produced from heavy ion projectiles. This is the coupling mech-
anism between the light particle and heavy ion transport equations.
8. Round-off error and interpolation

In this section, the impact of single precision round-off error and interpolation on exposure quantities and overall code
stability is examined. First, the errors caused by single precision calculations in the light particle cross sections are analyzed.
These errors are significant enough to cause instabilities in the transport algorithms that are problematic for material thick-
nesses >50 g/cm2. Finally, the new interpolation routine mentioned in previous sections is compared to the original routine
[27], and the improved efficiency and robustness of the updated algorithm is shown. Though this section points out the dis-
advantages of using single precision in the evaluation of the light particle production cross sections, it should be mentioned
that single precision calculations were necessary in the early development of HZETRN in order to satisfy memory constraints
that were common to computers of that time.



Fig. 1. Integrated production cross section for a 1 AGeV 4He ion producing 3He and 3H in aluminum.

Fig. 2. Secondary 3H and 3He fluences computed using single and double precision cross sections at 100 g/cm2 in aluminum exposed to the 4He component
of the 1977 solar minimum GCR spectrum.
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Subtractive cancellation can occur in computational algorithms when the difference is computed between two numbers
that are nearly equal in a given precision. This problem occurs for some of the light particle cross section calculations. The
integrated light particle production cross sections, defined in Eq. (26), are computed as a difference of two cumulative pro-
duction spectra. For large fragment energies, when e(r + mjh) � e(r), the two integrals in Eq. (26) become nearly equal. Thus, in
single precision, the difference will lose numerical precision and may be evaluated as zero. An example of this is shown in
Fig. 1, where the integrated light particle production cross section, FD

jkðr; r0; hÞ, for 1 AGeV 4He ions producing 3H and 3He in
aluminum [3] are evaluated in single and double precision. For fragment energies larger than �53 AMeV, the single precision
results are zero and are therefore not visible on the plot. Similar results were also found for other reactions and projectile
energies. The impact of this round-off error on particle fluence spectra can be seen in Fig. 2, where the secondary 3H and
3He fluences at 100 g/cm2 in aluminum exposed to the 4He component of the 1977 solar minimum GCR spectrum [14]
are shown. The instabilities in the single precision results above 10 AGeV are clear. As these results are propagated to larger
depths, the instabilities grow in magnitude, reach lower energies, and eventually cause algorithm failure.

Lastly, the interpolation routine used in previous versions of HZETRN is compared to a new interpolation routine that is
faster and more robust. Both routines used cubic Lagrange interpolating polynomials. The interpolation routine previously
used in the transport algorithms [27] performed log–log cubic interpolation and extrapolation. The search procedure used to
find the abscissa points closest to the interpolation point was linear and searched in one direction from the origin (started
from the first data point and searched forward one point at a time). All logarithms and exponentials were computed within



Fig. 3. Comparison of old and new interpolation routines in 2 g/cm2 of aluminum exposed to a modified form of the August 1972 King SPE.
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the algorithm. No logic was included to ensure that extrapolated results matched the trends of the data within the domain
(i.e. increasing or decreasing). Also, no logic was included to check for non-smooth data.

In the updated algorithm, the search procedure used to find the abscissa points is linear and searches in either direction
from the previously used interpolation point. Thus, when the routine is called repeatedly with an ordered or sequential set of
interpolation points, the search algorithm uses previous results to find the nearest abscissa points. The new algorithm also
avoids the use of logarithms and exponentials. Instead, the natural log of the data points is computed once prior to interpo-
lation and used repeatedly. The extrapolation procedure has been switched to log–log linear. This will ensure that extrap-
olated results always match the trend of the data near the end of the domain. Logic has also been included to check for
non-smooth data. In the event that the interpolated result does not lay between its nearest two data points, the interpolated
value is re-computed using linear interpolation. Slaba et al. [18] have shown that the new routine is almost 3.5 times faster
than its predecessor.

To show the improved robustness of the updated algorithm, a modified form of the August 1972 King SPE [8] is propa-
gated through 2 g/cm2 of aluminum using a step-size of h = 0.5 g/cm2. The King spectrum was originally defined as
fp(E) = Nexp(�(E � 30)/26.5), where the subscript p refers to protons and the constant N = 2.98 	 108. The modified spectrum
has been adjusted so that the proton fluence above 50 MeV is 1.0 particles/(cm2 MeV). The results are shown in Fig. 3. Note
that the original discontinuity imposed at 50 MeV (not shown) has been shifted to approximately 30 MeV because of atomic
interactions in the target. The benefit of the added logic for non-smooth data is clear. The old algorithm over-predicts results
below 30 MeV, especially near the discontinuity; it also sharply under-predicts the results just past the discontinuity. This
oscillatory behavior is characteristic of cubic polynomials and can be problematic when such errors are propagated to larger
depths. Conversely, the new algorithm properly interpolates through a discontinuity and introduces no oscillatory behavior.
9. Convergence study for light particle transport in SPE environments

In this section, the total discretization error associated with the old and new light particle transport algorithms in HZETRN
is examined by conducting a detailed convergence analysis in both step-size (h) and energy grid-size (N). For all compari-
sons, the round-off errors and interpolation routines mentioned in the previous section have been fixed in the original algo-
rithms. This will allow a direct comparison between the original and updated transport methods. The convergence analysis is
completed by transporting the August 1972 King SPE spectrum through 100 g/cm2 of aluminum and water. Six different en-
ergy grids were used with minimum and maximum energy values of Emin = 0.01 AMeV and Emax = 2500 AMeV. The grids
were equally log spaced in energy and contained 100, 149, 223, 335, 502, and 753 points; these grids will be referred to
as E-100, E-149, E-223, E-335, E-502, and E-753. Each grid represents a refinement of 1.5 in the grid spacing parameter
defined in Eq. (22).

Along with these different energy grids, the following step-sizes (in g/cm2) were used to propagate the boundary condi-
tion into the slabs: h = 2�1,2�2,2�3, . . .,2�11. Each step-size is a refinement of two in h. These eleven step-sizes, six energy
grids, two materials, and two transport algorithms, were used to obtain fluence, dose, and dose equivalent values at various
depths in the target media. These data are used to show that both algorithms converge as a function of step-size and energy
grid-size for SPE boundary conditions. Total discretization error estimates are given for the discretization parameters



Fig. 4. Dose equivalent versus depth in aluminum (left pane) and water (right pane) exposed to the August 1972 King SPE computed with both transport
algorithms and all discretization parameters.

Fig. 5. Dose equivalent versus energy grid-size at 100 g/cm2 in aluminum (left pane) and water (right pane) exposed to the August 1972 King SPE. Both
transport algorithms were used with three different step-sizes.
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(h = 0.5 g/cm2 with 100 energy grid points) commonly used in HZETRN. The errors are expressed as percent difference from a
converged numerical solution. It is also determined that the new algorithm is more accurate than its predecessor.

In Fig. 4, dose equivalent as a function of depth in aluminum and water is given for both of the algorithms and all of the
discretization parameters. The plot legends have been removed because there are 132 different curves (6 energy grids, 11
step-sizes, 2 algorithms), many of which are overlapping. The spread in the data at 100 g/cm2 in aluminum is �3 cSv
(�39%), and the spread in the data at 100 g/cm2 in water is �0.2 cSv (�26%). In these plots, both methods with the various
discretization parameters produce similar results and the errors appear to be slowly increasing as a function of depth in the
material. Slightly larger errors are also found in aluminum. These errors will be discussed in detail later.

In Fig. 5, the dose equivalent at 100 g/cm2 in aluminum and water is plotted as a function of the energy grid-size, N, for
three step-sizes. The three step-sizes were chosen to reduce data overlap and improve plot clarity. In Fig. 6, the dose equiv-
alent at 100 g/cm2 in aluminum and water is plotted as a function of the step-size, h, for all of the energy grids. Figs. 5 and 6
show that both algorithms reach an asymptotic solution for step-sizes less than 0.01 g/cm2 and energy grids with greater
than 300 points. The use of step-sizes larger than 0.01 g/cm2 results in a systematic under-prediction of dose equivalent
regardless of the method or energy grid used. The figures also show that if larger energy grids and smaller step-sizes were
considered, the methods would generate almost identical solutions. The percent difference between the dose equivalent



Fig. 6. Dose equivalent versus step-size at 100 g/cm2 in aluminum (left pane) and water (right pane) exposed to the August 1972 King SPE. Both transport
algorithms were used with six different energy grids.
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values generated by the old and new algorithms with the finest discretization parameters (h = 2�11, N = 753) is 0.4% at 100 g/
cm2 in aluminum and 0.2% at 100 g/cm2 in water. Thus, it is concluded that both methods converge to the same value as a
function of step-size and energy grid-size for this SPE in aluminum and water.

Fig. 6 indicates that there is little difference in spatial discretization error between the old and new algorithms. This is
expected since the only difference between the algorithms is in the calculation of the source integral over energy. The
new method appears to have a smaller energy discretization error in aluminum. This can be quantified by computing the
percent difference between the E-100 and E-753 dose equivalent results from both algorithms with a step-size of h = 2�11

g/cm2 at 100 g/cm2. The percent difference between the E-100 and E-753 results for the old algorithm is 10.7% in aluminum
and 2.4% in water, while the percent difference between the E-100 and E-753 results for the new algorithm is 2.5% in alu-
minum and 2.6% in water. The improvement in aluminum was achieved primarily because the new algorithm more accu-
rately handles the sharply peaked production cross sections in aluminum, especially the neutron elastic cross sections
that are important at large depths. The negligible accuracy loss in water shows that the methods are comparable when
the production cross sections are relatively smooth, as is the case when hydrogen is present.

While one would like to use the fully converged results in all future applications, the fine discretization parameters result
in an inefficient algorithm that may be impractical. Thus, a smaller grid and larger step-size is chosen, and the results gen-
erated with these coarse discretization parameters are compared to the converged results to quantify the discretization er-
ror. As stated previously, HZETRN is commonly run with 100 energy grid points and a step-size of 0.5 g/cm2. Therefore,
h = 0.5 g/cm2 and N = 100 are chosen as the coarse discretization parameters. The converged solution is defined as the results
obtained with the new method using 753 energy grid points and a step-size of 2�11 g/cm2. This choice is justified in Figs. 5
and 6 where it appears that both methods are asymptotically approaching a common solution. It is also important to note
that the difference between the methods with the fine discretization parameters is very small. The discretization error is ex-
pressed as the percent difference between the results obtained with the coarse parameters and the converged solution. This
expression of discretization error is relevant for space radiation applications where physics modeling errors, numerical er-
rors, and uncertainties are often expressed in terms of percents. The results are given in Fig. 7. The new algorithm has a lower
discretization error than the old algorithm out to 100 g/cm2. This figure also shows that characteristically different errors are
generated in aluminum and water targets.

Notice that in Fig. 7, there is a slight bend in the curves near 40 g/cm2. This bend is the approximate depth at which the
contribution to dose equivalent by the primary protons is overtaken by the contribution from secondary neutrons and
charged target fragments, as shown in Fig. 8. In aluminum, the error curve continues to increase past the bend, while in
water, the error curve decreases past the bend. This is due to the number and energy of secondary neutrons and charged
target fragments produced in each material. In aluminum, there are a moderate number of neutrons produced as a result
of nuclear collisions between the primary protons and target media, and the many elastic collisions which dominate neutron
transport result in only small energy transfers (compared to neutron collisions with hydrogen atoms in water). Thus, the sec-
ondary neutrons are left with sufficient energy to continue producing charged target fragments well past 40 g/cm2. Con-
versely, in water, there are far fewer neutrons produced, and the elastic collisions result in much larger energy transfers
that render many of the neutrons incapable of producing further target fragments. It is important to note that the error
curves in Fig. 7 do not grow without bound; they reach a maximum of about 75% near 725 g/cm2 and then decline rapidly
as the remaining neutrons have insufficient energy to produce any further target fragments. Error estimates for material



Fig. 7. Discretization error for dose equivalent as a function of depth for the light particle transport algorithms in aluminum (left pane) and water (right
pane) exposed to the August 1972 King SPE.

Fig. 8. Dose equivalent by particle type using the converged results at 100 g/cm2 in aluminum (left pane) and water (right pane) exposed to the August
1972 King SPE.
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thicknesses greater than 100 g/cm2 are computationally expensive due to the long run-times associated with fine discreti-
zation parameters and large depths. This topic will be investigated in future work.

As stated previously, Fig. 6 shows that both methods, for a given energy grid, systematically under-predict dose equiva-
lent values if step-sizes larger than 0.01 g/cm2 are used. These step-sizes, including the coarse discretization parameter,
h = 0.5 g/cm2, commonly used in HZETRN, result in a systematic under-prediction of secondary target fragments; this un-
der-prediction is the dominant source of discretization error in HZETRN.

Recall from Section 5 that two convergence criteria were identified for the light particle transport equation. The first cri-
terion, in Eq. (16), (step-size much smaller than the nuclear mean free path) is trivially satisfied since nuclear mean free path
lengths are typically on the order of many centimeters, but the second criterion, in Eq. (25), (step-size much smaller than the
range), which has been identified in the present work, is not satisfied for low energy particles unless h is taken several orders
of magnitude below 0.5 g/cm2.

To show the error induced by choosing discretization parameters that violate the second criterion, a portion of the con-
vergence test outlined previously is re-run with the minimum energy increased to 50 AMeV. This energy was chosen because
50 MeV protons have a range �2.9 g/cm2, which should allow step-sizes of 0.5 g/cm2 to be used with only minimal error.



Fig. 9. Discretization error (%) caused by target fragments with energy less than 50 AMeV in aluminum exposed to the August 1972 King SPE.
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Since the systematic under-prediction has been shown to be independent of the numerical algorithm, only the new light par-
ticle transport equation was used. Also, since the error was most prevalent in aluminum, the water target was not consid-
ered. For this comparison, the modified converged solution is defined as the results generated by the new method with a
step-size of 2�11 g/cm2 and the 753 point modified energy grid (Emin = 50 AMeV instead of 0.01 AMeV). The results generated
by the new method using a step-size of 0.5 g/cm2 and the modified 100 point energy grid will be compared to the modified
converged results. The error comparisons are given in Fig. 9 along with the previous error curve shown in the left pane of
Fig. 7. It is clear that neglecting the target fragments with energy less than 50 AMeV significantly reduces the discretization
error in the light particle transport algorithm. The new error curve has a maximum of �0.07% near 30 g/cm2 of aluminum.
Analytic solutions have been developed for low energy light and heavy target fragments [26,3]; however, these approaches
include physical assumptions that may be less accurate for light particles at low energies. Future work will focus on resolving
the low energy target fragment fluxes in HZETRN.

10. Convergence study for HZETRN in GCR environments

For GCR environments, the primary spectrum is composed of protons, 4He, and heavier ions with energies extending up to
50 AGeV. In HZETRN, the heavy ion transport algorithm is used to transport the heavy ions along with their secondary frag-
ments through the target media, and the light particle transport algorithm is used to transport the primary protons and 4He
along with the light projectile and target fragments. The light projectile fragments produced from the heavy ions are also
included in the light particle transport algorithm, as discussed previously. A convergence analysis has never been performed,
to the authors’ knowledge, for the heavy ion or light particle transport algorithms in GCR environments. The convergence
analysis described in the previous section is repeated for the heavy ion and light particle transport algorithms for GCR
boundary conditions.

In this section, the total discretization error associated with the heavy ion transport algorithm and the old and new light
particle transport algorithms in HZETRN is examined by conducting a coupled convergence analysis in step-size, h, and en-
ergy grid-size, N. For all comparisons, the round-off errors and interpolation routines mentioned in Section 5 have been fixed
in the original algorithms. This will allow a direct comparison between the original and updated transport algorithms. The
convergence analysis is identical to the one in Section 9 except that the 1977 solar minimum GCR environment is used, and
the maximum energy is increased to Emax = 50 AGeV. The same step-sizes and energy grid-sizes are used. It is first shown
that the heavy ion transport algorithm converges as a function of step-size and energy grid-size. The discretization error
associated with the heavy ion transport algorithm for the discretization parameters (h = 0.5 g/cm2 with 100 energy grid
points) commonly used in HZETRN is also given. Next, the two light particle transport algorithms are compared. The new
algorithm is shown to converge as a function of step-size and energy grid-size. It is also determined that the old algorithm
converges as a function of step-size, but that larger energy grids are required to determine if the old algorithm converges as a
function of energy grid-size. Finally, total discretization error estimates are given for discretization parameters commonly
used in HZETRN. The errors are expressed as percent difference from a converged numerical solution.

In Fig. 10, dose equivalent as a function of depth in aluminum and water is given for the heavy ion transport algorithm
coupled to both of the light particle transport algorithms and all of the discretization parameters. The plot legends have been
removed because there are 132 different curves, many of which are overlapping. The spread in the data at 100 g/cm2 in



Fig. 10. Dose equivalent versus depth in aluminum (left pane) and water (right pane) exposed to the 1977 solar minimum GCR computed with both
transport algorithms and all discretization parameters.

Fig. 11. Dose equivalent from heavy ions versus energy grid-size at 100 g/cm2 in aluminum (left pane) and water (right pane) exposed to the 1977 solar
minimum GCR environment. Five different step-sizes were used.
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aluminum is �0.024 cSv/day (�17%), and the spread in the data at 100 g/cm2 in water is �0.013 cSv/day (�15%). As before,
both methods with the various discretization parameters produce similar results, and the errors appear to be slowly increas-
ing as a function of depth in the material. Slightly larger errors are once again found in aluminum.

In Fig. 11, the contribution to dose equivalent from heavy ions at 100 g/cm2 in aluminum and water is plotted as a func-
tion of the energy grid-size, N, for five step-sizes. The step-sizes were chosen to reduce data overlap and improve plot clarity.
In Fig. 12, the contribution to dose equivalent from heavy ions at 100 g/cm2 in aluminum and water is plotted as a function of
the step-size, h, for all of the energy grids. Figs. 11 and 12 show that the heavy ion marching algorithm reaches an asymptotic
solution for step-sizes less than 0.01 g/cm2 and energy grids with greater than 250 points. It is concluded that the heavy ion
transport algorithm converges as a function of step-size and energy grid-size.

In order to quantify the discretization error associated with the heavy ion transport algorithm, consider the contribution
to dose equivalent from heavy ions only, and define the converged heavy ion solution as the results obtained using 753 en-
ergy grid points and a step-size of 2�11 g/cm2. The step-size, h = 0.5 g/cm2, and energy grid-size, N = 100, are once again cho-
sen as the coarse discretization parameters.

The discretization error is expressed as the percent difference between the results generated with the coarse parameters
and the converged solution. As before, this expression of discretization error is relevant for space radiation applications
where physics modeling errors, numerical errors, and uncertainties are often expressed in terms of percents. To be clear,



Fig. 12. Dose equivalent from heavy ions versus step-size at 100 g/cm2 in aluminum (left pane) and water (right pane) exposed to the 1977 solar minimum
GCR environment. All of the different energy grids were used.

Fig. 13. Discretization error for dose equivalent as a function of depth for the heavy ion transport algorithm in aluminum (left pane) and water (right pane)
exposed to the 1977 solar minimum GCR environment.
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these discretization error estimates were obtained using only the heavy ion contribution to dose equivalent. The error caused
by the light particle transport algorithm has not been included yet. The results are shown in Fig. 13 for the aluminum and
water targets. The discretization errors are bounded over the depths shown by 0.3% in aluminum and 1.1% in water. Future
work will focus on quantifying the discretization error depths greater than 100 g/cm2.

In Fig. 14, total dose equivalent from heavy ions and light particles at 100 g/cm2 in aluminum and water is plotted as a
function of the energy grid-size, N, for three step-sizes. The step-sizes were chosen to reduce data overlap and improve plot
clarity. In Fig. 15, dose equivalent at 100 g/cm2 in aluminum and water is plotted as a function of the step-size, h, for all of the
energy grids. Figs. 14 and 15 show that the new light particle transport algorithm coupled to the heavy ion transport algo-
rithm reaches an asymptotic solution for step-sizes less than 0.01 g/cm2 and energy grids with greater than 300 points. It is
concluded that the new light particle transport algorithm converges as a function of step-size and energy grid-size. Con-
versely, while the old algorithm appears to converge as a function of step-size, it has not converged as a function of energy
grid-size if 753 grid points are used. This does not mean that the old algorithm will not converge. All that can be said is that
an asymptotic solution is not achieved by the old algorithm if as many as 753 energy grid points are used. This would indi-
cate that the new method is more accurate and converges faster as a function of energy grid-size.

In order to quantify the discretization error associated with the algorithms, define the converged solution as the results
obtained with the new light particle transport algorithm (coupled to the heavy ion algorithm) using 753 energy grid points
and a step-size of 2�11 g/cm2. The step-size, h = 0.5 g/cm2, and energy grid-size, N = 100, are once again chosen as the coarse
discretization parameters. The discretization error is expressed as the percent difference between the results generated with



Fig. 14. Dose equivalent versus energy grid-size at 100 g/cm2 in aluminum (left pane) and water (right pane) exposed to the 1977 solar minimum GCR
environment. Both transport algorithms were used with three different step-sizes.

Fig. 15. Dose equivalent versus step-size at 100 g/cm2 in aluminum (left pane) and water (right pane) exposed to the 1977 solar minimum GCR
environment. Both transport algorithms were used with six different energy grids.

9414 T.C. Slaba et al. / Journal of Computational Physics 229 (2010) 9397–9417
the coarse parameters and the converged solution. These error estimates were obtained using total exposure quantities (hea-
vy ions and light particles included), thus the discretization error from the heavy ion transport algorithm, though small, is
included. The results are shown in Fig. 16 for the aluminum and water targets. The discretization errors are bounded over the
depths shown by 6.5% in aluminum and 3.9% in water.

The errors shown for the old method are misleadingly small. First, recall that the old method has not reached an asymp-
totic solution if 753 energy grid points are used; thus, it converges more slowly than the new algorithm as a function of en-
ergy grid-size. Second, the errors reported here are dependent on the choice of the converged solution. In this case, the
energy discretization error and the spatial discretization error in the old algorithm are competing errors and therefore pro-
duce misleading error estimates when compared to the given converged solution. As before, the errors are slowly increasing
as a function of depth in the material, and it is expected that these errors will reach a maximum after the majority of the
primary ions and secondary projectile fragments have come to rest. Future work will focus on quantifying the discretization
error depths greater than 100 g/cm2.

11. Run time comparisons

In this section, the run-times of the old and new transport algorithms are compared for three applications in which
HZETRN is commonly used. All simulations were run on a desktop computer with 4 quad-core AMD Opteron Processor



Fig. 16. Discretization error (%) for dose equivalent as a function of depth for both algorithms in aluminum and water exposed to the 1977 solar minimum
GCR environment.

Table 1
Run time comparisons for old and new algorithms in one, two, and three layer slabs exposed to SPE and GCR environments. The reduction factor is the ratio of
the old method run-time to the new method run-time.

1 layer (s) 2 layers (s) 3 layers (min)

SPE GCR SPE GCR SPE GCR

Old method 62.0 77.0 1272 926 440 173
New method 0.7 9.0 15 108 5 21
Reduction factor 88.5 8.5 85 9 88 8
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8356 chips and 131 GB of memory. The discretization parameters used in each case were h = 0.5 g/cm2 and 100 energy grid
points.

In the first application, HZETRN is used to compute fluence, dose, or dose equivalent as a function of depth in a single layer
of some material. This type of calculation might be done to analyze the radiation protection properties of a slab of some
material or to generate a simplified interpolation database. In this case, consider separately aluminum exposed to the August
1972 King SPE and the 1977 solar minimum GCR spectrum. For the SPE environment, results are stored at 21 depths from
0.0 g/cm2 to 100.0 g/cm2. For the GCR environment, results are stored at 11 depths from 0.0 g/cm2 to 100.0 g/cm2. The dif-
ference in the number of depths is related to the rapid decline of the SPE dosimetric quantities over the first few g/cm2 of
shielding [1]. The next application is a two-layer simulation in which results are stored on a two dimensional grid of points
covering every combination of first layer thicknesses followed by second layer thicknesses. In this case, consider a first layer
of aluminum followed by a second layer of water. This simulation is typically used to model a shielding structure (alumi-
num) surrounding a human phantom (water). The spatial grids mentioned above for the SPE and GCR environments are used
in this application. The final application is a three-layer simulation in which results are stored on a three dimensional grid of
points covering every combination of first, second, and third layer thicknesses. In this case, consider a first layer of alumi-
num, a second layer of polyethylene, and a third layer of water. This simulation is typically used to model a shielding struc-
ture (aluminum) with a secondary shield (polyethylene) surrounding a human phantom (water). The spatial grids mentioned
above for the SPE and GCR environments are used in this application. The run-times for all three cases are given in Table 1.

The run-times in Table 1 show that the new method is much faster than the old method in both SPE and GCR environ-
ments. The new method is nearly 90 times faster for SPE simulations and nearly 10 times faster for GCR simulations. It
should be noted that run-times in the old method are dependent on the atomic complexity of the target material. For targets
with many atomic species, the cross sections computed within the transport procedure will require more time and therefore
slow the transport procedure. However, in the new method, cross sections are pre-computed, and therefore, increased atom-
ic complexity does not affect the run-times. Since the materials considered here had at most two atomic species (water, poly-
ethylene), the reduction factors given here are conservative.
12. Conclusions and future work

In this paper, a detailed derivation of the numerical marching algorithms used for light particles and heavy ions in
HZETRN was given. Components of the derivation that were previously absent in the documentation were discussed in
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detail. A new numerical method was presented for the light particle transport algorithm. In general, the new method re-
quires fewer interpolations per step.

The impact of single precision round-off error and interpolation on code stability and accuracy was discussed. Round-off
error was shown to be problematic for some of the light particle production cross sections. A new interpolation routine used
in both the heavy ion and light particle transport algorithm was presented, and the improved efficiency and robustness of the
routine was demonstrated.

A convergence study was conducted to determine if the old and new algorithms converge as a function of step-size and
energy grid-size and to quantify the discretization error associated with both algorithms. The old and new algorithms were
shown to converge to the same results for the SPE environment, and the improved accuracy of the new method was dem-
onstrated. Total discretization error on dose equivalent at 100 g/cm2 was reduced from 31% to 21% in aluminum and from
20% to 15% in water for commonly used energy grids. For the GCR environment, the heavy ion transport algorithm was first
shown to converge as a function of step-size and energy grid-size, and discretization error estimates were bounded over the
depths shown by approximately 1% at 100 g/cm2 in aluminum and water. The new light particle transport algorithm was
also shown to converge as a function of step-size and energy grid-size. The old algorithm was shown to converge as a func-
tion of step-size, and it was concluded that energy grids with more than 753 points are required to show convergence in the
energy domain. This indicates that the new method converges faster and is more accurate in GCR environments. Total dis-
cretization error on dose equivalent at 100 g/cm2 was 6% in aluminum and 4% in water for the new method.

The importance of low energy target fragments on discretization error was shown by neglecting all particles with energy
less than 50 AMeV in the transport procedure. The error estimates for the cut-off energy grid were negligible compared to
the full energy grid. This indicates that the dominant source of discretization error in HZETRN is caused by low energy target
fragmentation. Further, to the author’s knowledge, only the convergence criterion in Eq. (16) (step-size smaller than the nu-
clear mean free path length) has been addressed in the literature. The second convergence criterion in Eq. (25) (step-size
smaller than the fragment range), found here in the derivation of the numerical procedures, has never been explicitly written
until now. This work definitively shows the presence of two convergence criteria, and that previous convergence studies
never addressed the second criterion.

Run time comparisons between the old and new algorithms showed large improvements for three applications in which
HZETRN is commonly used. The new algorithm was found to be approximately 90 times faster for SPE simulations and
approximately 10 times faster for GCR simulations.

Future work should focus on further reducing discretization error in HZETRN by developing more robust methods for han-
dling the transport of low energy target fragments. While physics modeling errors associated with the straight ahead
approximation may exceed the current numerical error at depths past 100 g/cm2, there is still a need to reduce the numerical
error as long as the current model is used in studies with such large material depths [12,28].
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