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A variety of problems in device and materials design require the rapid forward modeling of
Maxwell’s equations in complex micro-structured materials. By combining high-order
accurate integral equation methods with classical multiple scattering theory, we have cre-
ated an effective simulation tool for materials consisting of an isotropic background in
which are dispersed a large number of micro- or nano-scale metallic or dielectric
substructures.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

We describe in this paper a simulation method for Maxwell’s equations suitable for microstructured materials consisting
of separated substructures which are embedded in a homogeneous background (Fig. 1). In practice, it is often the case that
the shape, permittivity and permeability of the substructures are fixed and that one seeks to optimize their placement to
create a specific electromagnetic response. Each new configuration, however, requires the solution of the full Maxwell equa-
tions. If there are thousands of substructures in an electrically large region (many wavelengths in size), the calculation is
generally too expensive to carry out within a design loop.

In order to accelerate such calculations, we have coupled complex geometry Maxwell solvers with multiple scattering
theory. Using the hybrid solver, calculations such as the one depicted in Fig. 1 require only a few minutes on a single
CPU, despite the fact that there are a million degrees of freedom needed to describe the full geometry (and there would
be orders of magnitude more points needed in a finite difference or finite element discretization).

Our method, which we refer to as fast multi-particle scattering (FMPS), is based on a two step procedure. First, we enclose
a representative scattering substructure, such as a single pair of gold nanorods in close proximity, within a sphere S. We then
build the scattering matrix for this substructure (described below) using integral equation techniques. In a second step, the
solution to the full Maxwell equations can be obtained in geometries with N substructures (N ¼ 200 in Fig. 1), by solving the
multiple-scattering problem where the substructures have been replaced by their scattering matrices. Not only does this re-
duce the number of degrees of freedom required, but we have effectively preconditioned the problem by applying the solu-
tion operator to each substructure in isolation. The linear system we solve by iteration on the multi-sphere system is,
therefore, well-conditioned. Further, the fast multipole method (FMM) reduces the cost of each iteration from OðN2Þ to
OðN log NÞ and is particularly efficient in this setting.
. All rights reserved.
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Fig. 1. Two hundred gold ellipsoid pairs are randomly oriented in the region ½0;100� � ½0;100� � ½0;20� and illuminated from above by a plane wave in TE
polarization. The transmitted z-component of the Poynting vector is plotted on planes at z ¼ �4 and z ¼ �8. The individual ellipsoid pairs are of
approximately unit length and the wavelength is 2p, so that the region is about 15� 15� 3 wavelengths in size (see Section 5).
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The principal limitations of the method are (1) that some modest separation distance between substructures is required
and (2) that some of the efficiency is based on the fact that only a few distinct substructure types are allowed. In many exper-
imental settings, both conditions are satisfied. We will return to a discussion of these limitations in our concluding remarks.

2. Maxwell’s equations and the Debye–Lorenz–Mie formalism

Working in the frequency domain and assuming a time dependence of e�ixt , Maxwell’s equations in a linear, isotropic
material take the form
r�Htot ¼ �ix�Etot; ð1Þ
r � Etot ¼ ixlHtot;
where Etot and Htot are the total electric and magnetic fields. � is the permittivity of the medium and l its permeability. We
are mainly interested in dielectric inclusions embedded in a background medium, but will consider perfect conductors
briefly at the end of this section. The total fields ðEtot ;HtotÞ can be written as the sums of the incident fields ðEin;HinÞ, defined
only in the exterior region, and scattered fields ðE;HÞ defined in both the inclusions and the exterior:
Etot ¼ Ein þ E;

Htot ¼ Hin þH: ð2Þ
It is well-known [17,23] that at dielectric interfaces, the Maxwell Eqs. (1) are uniquely solvable when supplemented by the
the continuity conditions:
n� Etot� �
¼ 0) n� E½ � ¼ � n� Ein

h i
n�Htot� �

¼ 0) n�H½ � ¼ � n�Hin
h i

ð3Þ
and the Silver–Müller radiation conditions on the scattered field. The expression ½n� F� is used to denote the jump in the
tangential components of the vector field F at a point on the interface.

2.1. Debye potentials

About a century ago, Debye [6], Lorenz [18] and Mie [20] independently solved the problem of scattering from a single
sphere by using separation of variables. Without entering into the derivation, it is straightforward to verify that
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EðxÞ ¼ r �r� ðxvðxÞ þ ix�r� ðxuðxÞÞ
HðxÞ ¼ r �r� ðxuðxÞÞ � ixlr� ðxvðxÞÞ ð4Þ
represent an electromagnetic field, where x denotes the position vector with respect to the sphere center, so long as the De-
bye potentials u; v satisfy the scalar Helmholtz equation
Duþ k2u ¼ 0; Dv þ k2v ¼ 0;
with Helmholtz parameter (wave number) k2 ¼ x2�l. In the exterior of a sphere, the Debye potentials u;v can be repre-
sented by the multipole expansions
uextðr; h;/Þ ¼
X1
n¼0

Xn

m¼�n

bn;mhnðkrÞYm
n ðh;/Þ

vextðr; h;/Þ ¼
X1
n¼0

Xn

m¼�n

an;mhnðkrÞYm
n ðh;/Þ ð5Þ
where ðr; h;/Þ are the spherical coordinates of the point x with respect to the sphere center, hnðrÞ is the spherical Hankel
function of order n, and Ym

n ðh;/Þ is the usual spherical harmonic of order n and degree m. The resulting electromagnetic field
then also satisfies the appropriate radiation conditions at infinity. In the interior of a sphere, u and v can be represented by
the local expansions
uintðr; h;/Þ ¼
X1
n¼0

Xn

m¼�n

dn;mjnðkrÞYm
n ðh;/Þ

v intðr; h;/Þ ¼
X1
n¼0

Xn

m¼�n

cn;mjnðkrÞYm
n ðh;/Þ ð6Þ
where jnðxÞ is the spherical Bessel function of order n.

Remark 2.1. To improve readability, we will abbreviate
X1
n¼0

Xn

m¼�n

as
X
n;m
and the truncated sum
Xp

n¼0

Xn

m¼�n

as
Xp

n;m

:

It is straightforward to verify that the total number of terms in the truncated summation is ðpþ 1Þ2.
2.2. Single sphere scattering

Suppose now that one is interested in scattering from a single dielectric sphere S of radius R with permittivity �1, perme-
ability l1, and Helmholtz parameter k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1l1

p
, in response to an incoming field ðEin;HinÞ. The external medium is as-

sumed to have permittivity �0, permeability l0, and Helmholtz parameter k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�0l0

p
. Then the scattered field can be

represented by (4) with k ¼ k1 in (6) for ðr; h;/Þ inside S and by (4) with k ¼ k0 in (5) for ðr; h;/Þ outside S.
Let us denote by E0;H0 the scattered field in the exterior domain and by E1;H1 the scattered field inside S. Then
E0ðxÞ ¼
X
n;m

an;mr�r� ðx/k0
n;mÞ þ ixl0

X
n;m

bn;mr� ðx/k0
n;mÞ

H0ðxÞ ¼
X
n;m

bn;mr�r� ðx/k0
n;mÞ � ix�0

X
n;m

an;mr� ðx/k0
n;mÞ
where /k
n;mðxÞ ¼ /k

n;m r; h;/½ � ¼ hnðkrÞYm
n ðh;/Þ and
E1ðxÞ ¼
X
n;m

cn;mr�r� ðxwk1
n;mÞ þ ixl1

X
n;m

dn;mr� ðxwk1
n;mÞ

H1ðxÞ ¼
X
n;m

dn;mr�r� ðxwk1
n;mÞ � ix�1

X
n;m

cn;mr� ðxwk1
n;mÞ
where wk
n;mðxÞ ¼ wk

n;m r; h;/½ � ¼ jnðkrÞYm
n ðh;/Þ.
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We may also expand ðEin;HinÞ in terms of spherical harmonics on the surface of S:
EinðxÞ ¼
X
n;m

an;mr�r� ðxwk0
n;mÞ þ ixl0

X
n;m

bn;mr� ðxwk0
n;mÞ

HinðxÞ ¼
X
n;m

bn;mr�r� ðxwk0
n;mÞ � ix�0

X
n;m

an;mr� ðxwk0
n;mÞ
All of the spherical harmonic modes uncouple for fixed n;m, allowing for the determination of ðan;m; bn;m; cn;m; dn;mÞ from the
data ðan;m; bn;mÞ by applying the interface conditions (3). After some algebra (see, for example, [3,21]), one obtains two uncou-
pled linear systems of the form
Hnðk0RÞ �Jnðk1RÞ
�0hnðk0RÞ ��1jnðk1RÞ

� �
an;m

cn;m

� �
¼

�Jnðk0RÞan;m

��0jnðk0RÞan;m

� �
ð7Þ

Hnðk0RÞ �Jnðk1RÞ
l0hnðk0RÞ �l1jnðk1RÞ

� �
bn;m

dn;m

� �
¼

�Jnðk0RÞbn;m

�l0jnðk0RÞbn;m

 !
ð8Þ
where HnðzÞ ¼ ½hnðzÞ þ zh0nðzÞ�, JnðzÞ ¼ ½jnðzÞ þ zj0nðzÞ�.

Definition 2.1. The mapping from incoming coefficients ðan;m; bn;mÞ to the outgoing coefficients ðan;m; bn;mÞ is referred to as
the scattering matrix and denoted by S.
2.3. Perfect conductors

If the sphere S is a perfect conductor, the corresponding boundary conditions are that the tangential components of the
total electric field are zero [17,23]:
n� Etot ¼ 0) n� E ¼ �n� Ein: ð9Þ
In that case, the interior field is identically zero and the scattered matrix is given by
an;m ¼ �ðJnðk0RÞ=Hnðk0RÞÞan;m

bn;m ¼ �ðjnðk0RÞ=hnðk0RÞÞbn;m ð10Þ
3. Scattering from multiple spheres

Suppose now that one is interested in scattering from M disjoint dielectric spheres, where each sphere Sl has radius Rl and
kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�lll

p
. The external medium and incoming field are as above. Then, the incoming field can be represented on the sur-

face of Sl by the expansion
Ein
l ¼

X
n;m

al
n;mr�r� ðxlw

k0
n;mðxlÞÞ þ ixl0

X
n;m

bl
n;mr� ðxlw

k0
n;mðxlÞÞ

Hin
l ¼

X
n;m

bl
n;mr�r� ðxlw

k0
n;mðxlÞÞ � ix�0

X
n;m

al
n;mr� ðxlw

k0
n;mðxlÞÞ;
while the scattered field in the interior of Sl can be represented by the expansion
El ¼
X
n;m

cl
n;mr�r� ðxlw

kl
n;mðxlÞÞ þ ixll

X
n;m

dl
n;mr� ðxlw

kl
n;mðxlÞÞ ð11Þ

Hl ¼
X
n;m

dl
n;mr�r� ðxlw

kl
n;mðxlÞÞ � ix�l

X
n;m

cl
n;mr� ðxlw

kl
n;mðxlÞÞ: ð12Þ
Here, wk
n;mðxlÞ ¼ jnðkrlÞYm

n ðhl;/lÞ is computed in terms of the spherical coordinates ðrl; hl;/lÞ of a point xl with respect to the
center of Sl.

The scattered field in the exterior of all the spheres can be represented by a sum of outgoing expansions, one centered on
each sphere:
E0 ¼
XM

l¼1

X
n;m

al
n;mr�r� ðxl/

k0
n;mðxlÞÞ þ ixl0

XM

l¼1

X
n;m

bl
n;mr� ðxl/

k0
n;mðxlÞÞ

H0 ¼
XM

l¼1

X
n;m

bl
n;mr�r� ðxl/

k0
n;mðxlÞÞ � ix�0

XM

l¼1

X
n;m

al
n;mr� ðxl/

k0
n;mðxlÞÞ;
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where /k0
n;mðxlÞ ¼ hnðk0rlÞYm

n ðhl;/lÞ. In the preceding expression, we assume that the target, say x, has spherical coordinates
xl ¼ ðrl; hl;/lÞ with respect to the center of sphere Sl. The coefficients ðal

n;m; b
l
n;m; c

l
n;m; d

l
n;mÞ are all unknowns. They are deter-

mined by a linear system that imposes the dielectric interface condition (3) on each sphere boundary. Unlike the case of a
single sphere, however, it is no longer trivial to solve for these unknowns, since the incoming field experienced on each sphere
is due, not only to the known incoming field ðEin;HinÞ, but to the field scattered by all the other spheres. This results in a dense
linear system involving all of the unknowns, whose solution accounts for all of these multiple scattering interactions.

3.1. Translation operators for multiple scattering

Fortunately, the outgoing Debye expansion on sphere Sj can be analytically converted to an incoming expansion on sphere
Sl for l – j.

Lemma 1. Let the outgoing expansion from sphere Sj be given by
Ej
0 ¼

X
n;m

aj
n;mr�r� ðxj/

k0
n;mðxjÞÞ þ ixl0

X
n;m

bj
n;mr� ðxj/

k0
n;mðxjÞÞ

Hj
0 ¼

X
n;m

bj
n;mr�r� ðxj/

k0
n;mðxjÞÞ � ix�0

X
n;m

aj
n;mr� ðxj/

k0
n;mðxjÞÞ:
Then, the corresponding field induced on the surface of sphere Sl can be represented in the form
El
0 ¼

X
n;m

cj;l
n;mr�r� ðxlw

k0
n;mðxlÞÞ þ ixl0

X
n;m

dj;l
n;mr� ðxlw

k0
n;mðxlÞÞ

Hl
0 ¼

X
n;m

dj;l
n;mr�r� ðxlw

k0
n;mðxlÞÞ � ix�0

X
n;m

cj;l
n;mr� ðxlw

k0
n;mðxlÞÞ:
We denote the mappings from the faj
n;mg and fbj

n;mg coefficients to the fcj;l
n;mg and fdj;l

n;mg coefficients by Ta;c
j;l ; T

b;c
j;l , Ta;d

j;l , and Tb;d
j;l ,

respectively. Each of these mappings depends on the vector from the center of sphere Sj to sphere Sl and the parameters ðl0; �0;xÞ.
For convenience, we will sometimes denote vectors of coefficients such as faj

n;mg by ~aj. The individual components of a
translated vector such as Ta;d

j;l
~aj will be denoted by ½Ta;d

j;l
~aj�n;m.

Remark 3.1. The formulae for the translation operators Ta;c
j;l ; T

b;c
j;l ; T

a;d
j;l , and Tb;d

j;l are rather involved [8,11,21]. If the expansions
are truncated at n ¼ p terms, there are 2ðpþ 1Þ2 nonzero coefficients in both the outgoing ðaj

n;m; b
j
n;mÞ and incoming

ðcj;l
n;m; d

j;l
n;mÞ representations. Each translation operator is dense and, therefore requires Oðp4Þ operations to apply. More

efficient schemes [11,1,7,9,16,25,27] reduces the cost to Oðp3Þ, while the diagonal-form of the FMM [5,24] reduces the cost to
Oðp2 log pÞ for well-separated spheres in the high-frequency regime.

Let us now assume that all outgoing and incoming expansion are truncated at n ¼ p terms. The choice of p is determined
by accuracy considerations. It must be sufficiently large to resolve the E and H fields on each sphere surface to the desired
precision.

Using the preceding lemma, the total field immediately exterior to sphere Sl can be written in the form
El
0 ¼ Ein

l þ
XM

j¼1
j–l

½Ta;c
j;l
~aj þ Tb;c

j;l
~
bj�n;mr�r� ðxlw

k0
n;mðxlÞÞ þ ixl0

XM

j¼1
j–l

½Ta;d
j;l
~aj þ Tb;d

j;l
~
bj�n;mr� ðxlw

k0
n;mðxlÞÞ þ

Xp

n;m

al
n;mr�r

� ðxl/
k0
n;mðxlÞÞ þ ixl0

Xp

n;m

bl
n;mr� ðxl/

k0
n;mðxlÞÞ ð13Þ

Hl
0 ¼ Hin

l þ
XM

j¼1
j–l

½Ta;d
j;l
~aj þ Tb;d

j;l
~
bj�n;mr�r� ðxlw

k0
n;mðxlÞÞ � ix�0

XM

j¼1
j–l

½Ta;c
j;l
~aj þ Tb;c

j;l
~
bj�n;mr� ðxlw

k0
n;mðxlÞÞ þ

Xp

n;m

bl
n;mr�r

� ðxl/
k0
n;mðxlÞÞ � ix�0

Xp

n;m

al
n;mr� ðxl/

k0
n;mðxlÞÞ: ð14Þ
The first terms in the preceding expressions for El
0;H

l
0 account for the incoming field, while the next two terms account for

the scattered field coming from all other spheres. The last two terms in each expression account for the fields being scattered
by Sl itself.

It is now clear how to apply the interface conditions (3). We simply equate the tangential components of El
0;H

l
0 defined in

(13), (14) with the tangential components of the interior representations ðEl;HlÞ defined in (11), (12). This yields a dense
linear system of dimension 4Mðpþ 1Þ2 for the coefficients ðal

n;m; b
l
n;m; c

l
n;m; d

l
n;mÞ. We will refer to this system as the multiple

scattering equations. Writing the equations out explicitly is not especially informative, and we omit it.
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Remark 3.2. The scattering matrix S (Definition 2.1) allows for the elimination of the interior variables ðcl
n;m; d

l
n;mÞ, so that

one can solve a modified system of dimension 2Mðpþ 1Þ2 for the coefficients ðal
n;m; b

l
n;mÞ describing the exterior field alone.
Fig. 2.
and use
al
n;m

bl
n;m

0
BB@

1
CCA ¼ S

al
n;m þ

PM
j¼1
j–l

½Ta;c
j;l
~aj þ Tb;c

j;l
~
bj�n;m

bl
n;m þ

PM
j¼1
j–l

½Ta;d
j;l
~aj þ Tb;d

j;l
~
bj�n;m

0
BBBBBBB@

1
CCCCCCCA

ð15Þ
It is worth emphasizing that the multiple scattering equations are hardly new. There is a vast literature on the subject,
which we do not seek to review here. We refer the reader to the textbooks [2,3,13,19,21] and the papers [11,27].
3.2. Iterative solution of the multiple scattering problem for a system of spheres

We will solve the multiple scattering equations iteratively, using GMRES [26] with a block diagonal preconditioner, each
block corresponding to the unknowns on a single sphere. In applying the preconditioner, we simply invert each of the M
diagonal blocks, which corresponds to solving the single sphere scattering problem described in Section 2.2. Since all M
spheres interact, however, the system matrix is dense. Each matrix–vector multiply in the iterative solution process, if car-
ried out naively, would require OðM2p3Þ work.

In order to accelerate the solution procedure, the wideband fast multipole method (FMM) [5] can easily be modified to
reduce the cost to OðMp3Þ work per iteration. This is discussed in the context of acoustic scattering in [12,14]. Since the lit-
erature on FMMs is substantial, we omit a detailed discussion of the technique, but present results in Section 6.

4. Scattering from an arbitrary structure

Suppose now that instead of a sphere, we are given a smooth substructure (which may involve more than one compo-
nent), denoted by D1. For the sake of simplicity, we assume each component of D1 has permittivity �1 and permeability
l1 and that D1 is embedded in the same infinite medium as above. We will suppose further that D1 can be enclosed in a
sphere S1 (Fig. 2). As before, at the material interface, the conditions to be satisfied are (3). The Debye-Lorenz–Mie formalism
cannot be applied in this case, and attempts to do so (called the T-matrix method) suffer from ill-conditioning when D1 is
sufficiently non-spherical. We, therefore, turn to the standard representation of electromagnetic fields in general geometries,
based on the vector and scalar potentials and anti-potentials [22,23,28].

The vector potential in domain l (l ¼ 0;1) is defined by
AlðxÞ ¼ �lll

Z
@D1

glðx� yÞJðyÞdsy
and glðxÞ ¼ eiklkxk=ð4pkxkÞwith kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2�jlj

q
. When the argument of the square root is complex, kl is taken to lie in the upper

half-plane. We define the vector anti-potential in domain l by
A pair of triangulated ellipsoids define a bounded domain D1 that lies with an enclosing sphere S1. The scattering matrix for D1 will be created on S1

d to represent the exterior field.
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~AlðxÞ ¼ �lll

Z
@D1

glðx� yÞKds:
From these, we may write
El ¼ �r/l þ ixAl �
1
�l
r� ~Al ð16Þ

Hl ¼
1
ll
r� Al �rwl þ ix~Al: ð17Þ
where
/l ¼
1

ix�lll
r � Al

wl ¼
1

ix�lll
r � ~Al:
We assume that J and K are surface currents, each with two tangential components. Thus, we have four degrees of freedom at
each point P 2 @D1, and four boundary conditions (the continuity of the tangential components of E and H). Imposing the
conditions (3) on J;K results in a resonance-free Fredholm equation of the second kind, so long as �;l and k lie in the closed
upper half of the complex plane.

In more detail, using the facts that
rx � ðglðx� yÞKðyÞÞ ¼ rxgl � KðyÞ;

a� b� c ¼ bða � cÞ � cða � bÞ;
and, for y0 2 @D1,
lim
x!y0
x2D0

Z
@D1

@gl

@ny0

ðx� yÞrðyÞdsy ¼ �
1
2
rðy0Þ þ

I
@D1

@gl

@ny0

ðy0 � yÞrðyÞdsy

lim
x!y0
x2D1

Z
@D1

@gl

@ny0

ðx� yÞrðyÞdsy ¼ þ
1
2
rðy0Þ þ

I
@D1

@gl

@ny0

ðy0 � yÞrðyÞdsy;
we obtain the following coupled set of equations.
�n� Ein ¼ ix
Z
@D1

½�0l0g0 � �1l1g1�ðn� JÞdsy þ
i
x

n�
Z
@D1

½rrg0 �rrg1�Jdsy �
Z
@D1

½l0rg0 � l1rg1�

� ðn � KÞdsy �
l0 þ l1

2

� �
Kþ

I
@D1

l0
@g0

@n
� l1

@g1

@n

� �
Kdsy ð18Þ

�n�Hin ¼ ix
Z
@D1

½l0�0g0 � �1l1g1�ðn� KÞdsy þ
i
x

n�
Z
@D1

½rrg0 �rrg1�Kdsy þ
Z
@D1

½�0rg0 � �1rg1�ðn � JÞdsy

þ �0 þ �1

2

� �
J�
I
@D1

�0
@g0

@n
� �1

@g1

@n

	 

Jdsy: ð19Þ
The equation above is, in some sense, the dual of Müller’s integral equation [22], in which the unknowns chosen are the tan-
gential components of E;H themselves, derived from the Stratton–Chu representation. Because the Eqs. (18, 19) form a sys-
tem of second kind Fredholm equations, the order of accuracy of the solution is that of the underlying quadrature rule. For
first order accuracy, we assume J and K are piecewise constant current densities on a flat triangulated surface. For second
order accuracy, we assume J and K are piecewise linear current densities on a piecewise quadratic surface with each curved
triangle defined by six points (Fig. 3). Higher order accurate codes are obtained by increasing the order of approximation of
both the surface and the current densities.

For each discretization node, we evaluate the relevant electromagnetic field component using a mixture of analytic and
numerical quadratures on each triangle. More precisely, we use the method of singularity subtraction - computing integrals
analytically for the kernel 1=r and its derivatives and using numerical quadrature for the difference kernel ½eikr � 1�=r, which is
smoother. This results in a complex linear system of dimension 4N � 4N for first order accuracy and of dimension 12N � 12N
for second order accuracy, where N denotes the number of triangles. For small N, say N < 1000, one can use direct
LU-factorization to solve the linear system. For larger values of N, iterative solution with FMM-acceleration becomes much
more practical [5].



t2
1t

Fig. 3. In the simplest geometric model, the surface of the scatterer @D1 is approximated by a collection of flat triangles, defined by the locations of its three
vertices in R3. On each triangle, there are two linearly independent tangent directions t1 and t2. The unknown electric and magnetic currents J and K on each
triangle are defined by j1t1 þ j2t2 and k1t1 þ k2t2, respectively, and the electromagnetic fields are evaluated at the triangle centroids. For higher order
accuracy, each quadratic surface patch is specified by six nodes: the three triangle vertices and three additional points, one on each curved triangle side.
Three ‘‘support nodes’’ x1; x2; x3 are then selected in the interior of each patch. Our representation for J and K at each support node xi is of the form ji

1ti
1 þ ji

2ti
2

and ki
1ti

1 þ ki
2ti

2, where ti
1; t

i
2 are linearly independent tangent vectors at xi . The support nodes are also the points where we evaluate the electromagnetic

fields and impose interface conditions.
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4.1. The scattering matrix for D1

Suppose now that we are interested in scattering from the two ellipsoids D1 shown in Fig. 2 due to an incoming field
which is regular in the enclosing sphere S1. Such an incoming field can be expanded within S1 in the form
EinðxÞ ¼
X
n;m

an;mr�r� ðxwk0
n;mÞ þ ixl0

X
n;m

bn;mr� ðxwk0
n;mÞ

HinðxÞ ¼
X
n;m

bn;mr�r� ðxwk0
n;mÞ � ix�0

X
n;m

an;mr� ðxwk0
n;mÞ;
as in Section 2.2. Each (vector) spherical harmonic modes, corresponding to a single an;m or bn;m, defines a particular incoming
field on D1. More precisely, we can solve the second kind Müller–like Eqs. (18, 19) for a right-hand side obtained by setting
the incoming field to be
Ein
a;n;mðxÞ ¼ r�r� ðxwk0

n;mÞ; Hin
a;n;mðxÞ ¼ �ix�0r� ðxwk0

n;mÞ; ð20Þ
corresponding to setting a fixed an;m ¼ 1 and all other coefficients to zero. Similarly, we can set the incoming field to be
Ein
b;n;mðxÞ ¼ þixl0r� ðxwk0

n;mÞ; Hin
b;n;mðxÞ ¼ r�r� ðxwk0

n;mÞ ð21Þ
corresponding to setting a fixed bn;m ¼ 1 and all other coefficients to zero. We can then store either the electric and magnetic
currents Ja;n;m;Ka;n;m; Jb;n;m;Kb;n;m induced by these (unit) incoming fields or just convert these currents to the coefficients of
the outgoing (scattered) fields:
Esc
a;n;mðxÞ ¼

X
n0 ;m0

aa;n;m
n0 ;m0 r �r� ðx/k0

n0 ;m0 Þ þ ixl0

X
n0 ;m0

ba;n;m
n0 ;m0 r � ðx/k0

n0 ;m0 Þ

Hsc
a;n;mðxÞ ¼

X
n0 ;m0

ba;n;m
n0 ;m0 r �r� ðx/k0

n0 ;m0 Þ � ix�0

X
n0 ;m0

aa;n;m
n0 ;m0 r � ðx/k0

n0 ;m0 Þ
and
Esc
b;n;mðxÞ ¼

X
n0 ;m0

ab;n;m
n0 ;m0 r �r� ðx/k0

n0 ;m0 Þ þ ixl0

X
n0 ;m0

bb;n;m
n0 ;m0 r � ðx/k0

n0 ;m0 Þ

Hsc
b;n;mðxÞ ¼

X
n0 ;m0

bb;n;m
n0 ;m0 r �r� ðx/k0

n0 ;m0 Þ � ix�0

X
n0 ;m0

ab;n;m
n0 ;m0 r � ðx/k0

n0 ;m0 Þ:
The formula for converting the currents Ja;n;m;Ka;n;m; Jb;n;m;Kb;n;m, to the coefficients can be obtained by orthogonal projection
of the induced field on the enclosing sphere [23].

By superposition, an incoming field defined by the vector of incoming coefficients fan;m; bn;mg results in a scattered field of
the form
EscðxÞ ¼
X
n0 ;m0

an0 ;m0r �r� ðx/k0
n0 ;m0 Þ þ ixl0

X
n0 ;m0

bn0 ;m0r � ðx/k0
n0 ;m0 Þ

HscðxÞ ¼
X
n0 ;m0

bn0 ;m0r �r� ðx/k0
n0 ;m0 Þ � ix�0

X
n0 ;m0

an0 ;m0r � ðx/k0
n0 ;m0 Þ;
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with the coefficients of the scattered field given by
an0 ;m0 ¼
X
n;m

an;maa;n;m
n0 ;m0 þ bn;mab;n;m

n0 ;m0

bn0 ;m0 ¼
X
n;m

an;mba;n;m
n0 ;m0 þ bn;mbb;n;m

n0 ;m0 :
The matrix mapping the incoming to the scattered coefficients is referred to as the scattering matrix for the structure D1.
Fixing the order of the expansions above at p, there are 2p2 þ 4p possible basis functions that span the space of all possible

incoming fields. We must, therefore solve 2p2 þ 4p integral equations on the detailed geometry defining D1. To store the cur-
rents induced by each incoming field requires OðNp2Þ memory, where N denotes the number of degrees of freedom used in
the discretization of the integral equation. The scattering matrix itself requires storing ð2p2 þ 4pÞ2 complex numbers. While
somewhat expensive, these can be viewed as pre-computation steps, in anticipation of simulating materials with thousands
or millions of substructures of the same identical shape, but well enough separated that the scattering matrices are accurate.
The parameter p must be sufficiently large to resolve the incoming and outgoing fields on S1. For modest separation of S1

from D1, the error decays exponentially as p increases.

5. Multiple scattering from well-separated non-spherical structures

Once the scattering matrix is known, the solution to the full Maxwell equations for geometries with N substructures
(N ¼ 200 in Fig. 1) can be turned into a multiple-scattering problem based only on the enclosing spheres. That is, the sub-
structures can be replaced by their scattering matrices and the multiple scattering method of Section 3 can be used with
trivial modifications.

There are two distinct advantages to be gained here. First, we have reduced the number of degrees of freedom from, say,
5000 or 10,000 unknown current density values per substructure to, say, 400 expansion coefficients. Just as important, how-
ever, is that we have precomputed the solution operator for each substructure in isolation, so that the linear system we solve
by iteration on the multi-sphere system is much more well-conditioned. Further, the FMM reduces the cost of each iteration
from OðN2Þ to OðN log NÞ and is particularly efficient here, since the complicated quadratures on triangulated surfaces have
been subsumed into the precomputation step.

The principal limitations of the method are (1) that some modest separation distance between substructures is required
and (2) that the bookkeeping becomes a bit awkward if more than a few distinct nanoparticle types are allowed. In many
experimental settings, both conditions are satisfied.

It is worth noting that the method of this paper can be viewed as a reduced order model for the scattering problem. In
broad terms, the idea is not new and there is substantial activity in this area in both electromagnetics and other fields
(see, for example, [4]). It is also worth noting that the method is ‘‘rigorous’’ in the sense that the error is determined in a
straightforward manner by the accuracy of the integral equation solver and the order of expansion of the scattering matrix.
It fails (or needs local modification) if and only if two enclosing spheres intersect.

6. Numerical examples

As discussed in Section 4, the Müller–like integral equation is an effective method for determining the scattering matrix
from a dielectric structure of arbitrary shape. To illustrate its performance, we consider the geometry in Fig. 2, consisting
of a pair of ellipsoids triangulated with piecewise quadratic triangles on which we allow piecewise linear current densities.
The lengths of the major and minor axes of the ellipsoids are 0:88� 0:29� 0:29 and the separation between them is 0.47. The
enclosing sphere is of unit radius and the wavelength is chosen to be 2p. We use the values �1 ¼ ð0:467þ 2:415iÞ2; l1 ¼ 1 and
�0 ¼ l0 ¼ 1 for D1 and the exterior region, respectively. Each triangle has three nodes with two degrees of freedom for each
current (electric and magnetic) at each point. With 180 triangles, the resulting linear system is of dimension 2160� 2160.
Creating the matrix requires about 1 s. A dense matrix based iterative solver (using GMRES) then requires 0.1 s for each pos-
sible incoming mode, With p ¼ 3, there are a total of 30 such modes in the scattering matrix.

With 720 and 2800 triangles, the linear systems have dimension 8640 and 34,560, respectively. Forming the dense matrix
requires 11 s. in the first case and 160 s. in the latter. The iterative solution times for each incoming mode is 3.5 s in the first
case and 87 s in the latter. We could accelerate these solution times using fast multipole-based codes (or any of a variety of
other ‘‘fast’’ algorithms), but we view this cost as an initialization step and the CPU times are acceptable. The errors are of the
order 10�3;10�4, and 10�5 for the successively finer discretizations, somewhat better than the expected second order con-
vergence. (All calculations and timings reported in this section have been carried out using a 12-core 2.93 GHz Intel Xeon
workstation, with OpenMP directives in the FMPS code.)

Remark 6.1. We have used a simple and robust test for estimating the accuracy of the integral equation method. Rather than
solve the true scattering problem, we can define interior and exterior electromagnetic fields due to fictitious sources. That is,
for x 2 D1, we assume the field is due to known electric and magnetic current dipoles located in the exterior region. Likewise,
for x in the exterior, we assume the field is due to known electric and magnetic current dipoles located within D1. We can
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then generate artificial jumps in the tangential components of E;H and solve for J;K to annihilate those jumps. The fields
induced by J;K can then be compared to the known analytic solution at any target. We have also used standard self-
consistent error estimation. Both approaches yield errors of the magnitude listed above.
Remark 6.2. The electric and magnetic fields are computed at any point from (16, 17). This step, too, can be accelerated with
the FMM, with some care taken in quadrature for target points that are close to the interface. For target points outside the
enclosing sphere, of course, it is more efficient to use the scattering representation (3).

To illustrate the performance of the FMPS algorithm, we consider a 21� 21� 2 array of scatterers, each consisting of an
ellipsoid pair with a scattering matrix of order p ¼ 3 derived from the integral Eqs. (18, 19). Using the same 12-core 2.93 GHz
Intel Xeon workstation, the time required was about 2 s per iteration, with six iterations required for GMRES to converge to 3
digits. The ‘‘slow’’ multiple scattering (SMPS) approach, without fast multipole acceleration, required about 7 s per iteration.
For a 21� 21� 4 array, the cost was about 6 s per iteration (28 s for SMPS) and for a 21� 21� 8 array, the cost was about
23 s per iteration (108 s for SMPS). For a 21� 21� 16 array (14,112 ellipsoid pairs), the cost was about 59 s per iteration
(440 s for SMPS).

The reason for the modest speedup of the FMPS over the SMPS approach is that the number of spheres is still rather small.
For one million scatterers, the speedup factor would be about 1000. Careful readers may note that the FMPS scaling appears
worse than OðN log NÞ in successively doubling the simulation from a 21� 21� 4 array to a 21� 21� 8 array to a
21� 21� 16 array. For those familiar with the FMM, the short explanation is that the ‘‘near neighbor’’ cost is not yet in
the asymptotic regime in the first two cases. Timings extrapolated from the last case are accurate for any volume-filling
distribution.

7. Conclusions

The FMPS method introduced in this paper (fast multi-particle scattering) combines an integral equation solver with mul-
tiple scattering theory, in order to permit the solution to the full Maxwell equations in configurations typical of engineered
composites. We assume that the geometry consists of a large number of scattering substructures embedded in a homoge-
neous background, assuming only that the permeabiliities, permittivities and wavenumber lie in the closed upper half of
the complex plane. This avoids the possibility of (non-physical) resonances in the inclusions.

While we have only included a single type of substructure (a nanorod pair) in our examples above, it is clear that the
method can easily be applied to allow for several such types, so long as there is a modest separation between substructures.
FMPS is enormously faster than a full FMM-based solver using the full discretization of the geometry. With 14,112 ellipsoid
pairs (the largest example in the preceding section), this would require about 30 million degrees of freedom, many minutes
per iteration, and many more iterations.

In its present form, the method cannot be used for tightly packed configurations, since the multiple scattering formalism
assumes that the embedding spheres are not overlapping. This can be overcome using more elaborate fast direct solvers
[10,15]. FMPS does, however, permit workstation-based simulation with millions of inclusions. We are currently working
on extending the method so that it can handle inclusions embedded in a layered medium.
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