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The mass matrix for Gauss–Lobatto grid points is usually approximated by Gauss–Lobatto 
quadrature because this leads to a diagonal matrix that is easy to invert. The exact mass 
matrix and its inverse are full. We show that the exact mass matrix and its inverse differ 
from the approximate diagonal ones by a simple rank-1 update (outer product). They can 
thus be applied to an arbitrary vector in O (N) operations instead of O (N2).

© 2014 Elsevier Inc. All rights reserved.

1. Motivation

With the increased emphasis on higher-order methods for solving partial differential equations, methods that divide 
the domain into subdomains and represent the solution as an expansion in basis functions have become more and more 
important. These include spectral element methods (penalty-based or continuous) and discontinuous Galerkin methods. 
To handle nonlinearities, collocation schemes are often the method of choice. In such methods, the expansion coefficients 
are replaced by function values at specially chosen grid points as the fundamental unknowns. In one dimension, the grid 
points are universally chosen to be the Gaussian quadrature points corresponding to the basis functions. This connects the 
expansion coefficients in spectral space to the function values in physical space by a discrete transform and leads to rapidly 
convergent and stable methods for smooth solutions.

In two and three dimensions, if the subdomains can be mapped to squares or cubes, then basis functions that are tensor 
products of one-dimensional basis functions are almost always used because of the resulting simplification of element-wise 
operations. Unless the problem requires the flexibility of grids constructed using triangles or tetrahedra, this approach is 
again almost universal. The key result of this note applies to any one-dimensional set of grid points that define a Gaussian 
quadrature or are part of a tensor product of such grid points. It does not apply to typical basis sets for triangles, where the 
quadrature rule and the choice of grid points are not directly connected.

For many problems, the simplest formulation uses Gauss–Lobatto collocation points since having grid points on the 
boundaries makes it easy to impose boundary conditions. In such a formulation, the exact mass matrix and its inverse are 
full. Thus it is natural to approximate the mass matrix by Gauss–Lobatto quadrature, which leads to a diagonal matrix that 
is easy to invert. By contrast, using Gauss collocation points with ordinary Gauss quadrature gives the exact mass matrix, 
which is diagonal. This makes the comparison between the two choices tricky. On the one hand, Gauss–Lobatto avoids 
interpolation from the interior points to the boundaries, but on the other hand it may require more collocation points 

E-mail address: saul@astro.cornell.edu.
http://dx.doi.org/10.1016/j.jcp.2014.12.012
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.12.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:saul@astro.cornell.edu
http://dx.doi.org/10.1016/j.jcp.2014.12.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.12.012&domain=pdf


S.A. Teukolsky / Journal of Computational Physics 283 (2015) 408–413 409
to achieve the same accuracy as using Gauss points if you use the approximate mass matrix for efficiency. This point is 
discussed further in Section 4.3.

We show that there is a simple expression for the exact mass matrix and its inverse for Gauss–Lobatto collocation. 
Multiplying a vector by one of these expressions can be done in O (N) operations, just as for a diagonal matrix. This 
suggests that efficiency versus accuracy results for implementations of spectral methods should be reconsidered. Of course, 
for large values of N the spectral convergence of Gaussian quadrature is likely to make the difference between the exact 
and approximate mass matrices irrelevant. However, for small or moderate N the situation is not clear.

2. Spectral approximation

This section summarizes some standard material [1–4] on spectral approximations in order to derive the key result in 
the next section.

Consider approximations of functions by expansions in orthogonal polynomials:

u(x) =
N∑

k=0

bk pk(x) (1)

where

1∫
−1

p j(x)pk(x)W (x)dx = hkδ jk (2)

The associated inner product is

〈u|v〉 ≡
1∫

−1

u(x)v(x)W (x)dx (3)

For simplicity, we will take the weight function W (x) = 1, in which case the basis functions are Legendre polynomials. 
However, almost everything in this note goes through for other systems of orthogonal polynomials.

The set of orthogonal polynomials determines a Gaussian quadrature formula with weights w j and grid points x j :

1∫
−1

f (x)dx ≈
N∑

j=0

w j f (x j) (4)

The Gauss–Lobatto version of this quadrature arranges for the endpoints of the interval to be included in the set x j . Having 
collocation points on the boundary can make the application of boundary conditions easier. The quadrature (4) is exact for 
polynomials of degree no more than 2N + 1 for the Gauss case and 2N − 1 for the Gauss–Lobatto case. Use the quadrature 
to define the discrete inner product as the analog of (3):

〈u|v〉G =
N∑

j=0

w ju(x j)v(x j) (5)

The continuous and discrete inner products are the same if the product uv is a polynomial of degree no more than 2N + 1
(Gauss) or 2N − 1 (Gauss–Lobatto).

Eq. (1) is called a modal expansion. In collocation methods, instead of regarding the N + 1 modal coefficients bk as 
fundamental, we choose a set of N +1 collocation points x j . Typically these are the Gauss or Gauss–Lobatto points associated 
with the orthogonal polynomials. The corresponding nodal expansion is

u(x) =
N∑

j=0

u j� j(x) (6)

where u j ≡ u(x j). The basis functions � j(x) are called cardinal functions and are simply the Lagrange interpolating polyno-
mials based on the grid points x j , with � j(xi) = δi j :

� j(x) =
N∏

i=0
i �= j

x − xi

x j − xi
(7)

The nodal expansion (6) is just an approximation of a continuous function u(x) by its interpolating polynomial, so 
that u(xi) = ui . Note that in the discrete inner product (5) of any two continuous functions, we may replace u, say, by its 
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interpolating polynomial, since only the values u j contribute to the sum. Thus with collocation methods we don’t distinguish 
between a function and its expansion when using discrete inner products.

Since the discrete and continuous inner products are the same for polynomial integrands up to degree 2N − 1, the pk ’s 
satisfy the discrete orthogonality condition

〈p j|pk〉G = γkδ jk (8)

where

γk ≡ 〈pk|pk〉G =
N∑

j=0

wk pk(x j)
2 (9)

For Gauss–Legendre quadrature,

γk = hk = 2/(2k + 1) (Gauss–Legendre) (10)

where hk is the normalization defined in (2):

hk ≡ 〈pk|pk〉 (11)

This is because the integration in (9) is exact since the degree of the polynomial in the integrand in (11) is 2N .
For Gauss–Legendre–Lobatto (GLL) points, by contrast,

γk =
{

2/(2k + 1), 0 ≤ k < N

2/N, k = N
(12)

In this case, the degree of exactness is only 2N − 1, and so γN �= hN . This simple fact is at the root of the “difficulties” of 
using GLL points.

In a collocation method, we regard the expansion (1) not as an independent alternative, but as the corresponding expan-
sion of the interpolating polynomial (6). Evaluating the expression (1) at the grid points gives the relation

ui =
N∑

k=0

bk pk(xi) (13)

This can be regarded as a discrete transform from spectral space, characterized by the representation bk , to physical space, 
characterized by the ui . To find the inverse transform, consider

〈u|pk〉G =
N∑

j=0

b j〈p j|pk〉G =
N∑

j=0

b jγkδ jk = bkγk (14)

Thus

bk = 1

γk
〈u|pk〉G = 1

γk

N∑
j=0

w j pk(x j)u j (15)

This is the transform from physical to spectral space.
The cardinal functions � j(x) are polynomials of degree N and so they can be expanded as

� j(x) =
N∑

k=0

ak pk(x) (16)

where by (15)

ak = 1

γk

N∑
i=0

wi pk(xi)� j(xi) = 1

γk

N∑
i=0

wi pk(xi)δi j = 1

γk
w j pk(x j) (17)

Substituting this in Eq. (16) gives

� j(x) = w j

N∑
k=0

1

γk
pk(x j)pk(x) (18)

This expansion for the cardinal functions will be extremely useful in what follows.
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3. Exact expressions for the mass matrix and its inverse

3.1. The mass matrix

The mass matrix is defined as

Mij =
1∫

−1

�i(x)� j(x)dx = 〈�i|� j〉 (19)

Here we have taken the range of x to be [−1, 1]. The derivation below goes through even when a weight function W (x) �= 1
is included in (19).

Evaluating the mass matrix by Gaussian quadrature gives a diagonal matrix:

Mij =
N∑

k=0

wk�i(xk)� j(xk) =
N∑

k=0

wkδikδ jk = wiδi j (20)

This expression is exact for Gaussian quadrature, but not for the Gauss–Lobatto case because the integrand is of degree 2N .
Let’s derive an exact expression for the Lobatto case. Substituting expression (18) for the cardinal functions gives

Mij =
N∑

k=0

N∑
l=0

wi w j
1

γkγl
pk(xi)pl(x j)

1∫
−1

pk(x)pl(x)dx

=
N∑

k=0

N∑
l=0

wi w j
1

γkγl
pk(xi)pl(x j)δklhk

=
N∑

k=0

wi w j
hk

γ 2
k

pk(xi)pk(x j)

=
N∑

k=0

wi w j
1

γk
pk(xi)pk(x j) +

(
hN

γ 2
N

− 1

γN

)
wi w j pN(xi)pN(x j) (21)

= wi� j(xi) +
(

hN

γ 2
N

− 1

γN

)
wi w j pN(xi)pN(x j)

= wiδi j + αwi w j pN(xi)pN(x j) (22)

where we have defined

α = hN − γN

γ 2
N

(23)

Eq. (21) follows from the previous line because γk = hk for k < N .
Eq. (22) reduces to Eq. (20) if γN = hN , as for Gauss points. But we see that for the Lobatto case, where it is convenient 

to use the diagonal expression (20) because it is easy to invert, we introduce an error because of our “quadrature crime”. 
Since the error in applying the approximate mass matrix to a vector converges away spectrally fast for smooth problems 
as we increase N , it is customary to ignore this error because of the other benefits of Lobatto points. However, there is 
no need to do this: the extra term in Eq. (22) is proportional to the outer product of the vector wi pN (xi) with itself. This 
means that in applying the mass matrix to a vector in a matrix–vector multiply, the extra term can be computed as a dot 
product of w j pN (x j) with the vector and then a scaling of the vector αwi pN (xi) by the dot product. The operation count 
is O (N), the same as from the diagonal term wiδi j .

More importantly, the inverse of the mass matrix is equally simple, as we now show.

3.2. Inverse mass matrix

The inverse of the mass matrix follows from the Sherman–Morrison formula:

(A + u ⊗ v)−1 = A−1 − (A−1 · u) ⊗ (v · A−1)

1 + v · A−1 · u
(24)

In our case,

A = diag(wi), ui = wi pN(xi), vi = αui (25)
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We find

M−1
i j = 1

wi
δi j + βpN(xi)pN(x j), β ≡ −hN − γN

γNhN
(26)

The simple form of the extra off-diagonal term in Eq. (26) makes it easy to use the exact inverse in applications. Once again, 
applying the inverse matrix to a vector is an O (N) operation.

4. Applications

4.1. The differentiation matrix

As a trivial application, consider the differentiation matrix that appears when solving partial differential equations:

Dij = �′
j(xi) (27)

where a prime denotes a derivative. The differentiation matrix typically appears via the stiffness matrix S:

D = M−1 · S (28)

where

S jk =
1∫

−1

� j(x)�′
k(x)dx = 〈

� j
∣∣�′

k

〉 = 〈
� j

∣∣�′
k

〉
G (29)

The last equality follows since the degree of the polynomial in the integrand of (29) is 2N −1. So carrying out the quadrature 
gives the exact result

S jk =
∑

m

wm� j(xm)�′
k(xm) =

∑
m

wmδmj�
′
k(xm) = w j�

′
k(x j) (30)

It is well known (e.g., [5]) that if the approximate mass matrix (20) is used in (28), one gets the exact result for the 
differentiation matrix:

∑
j

(
M−1

GLL

)
i j S jk =

∑
j

1

wi
δi j w j�

′
k(x j) = �′

k(xi) = Dik (31)

But why exactly do we get the right answer without using the exact mass matrix? One way of seeing this is to show 
explicitly that the “extra” terms in (26) give no additional contribution:∑

j

βpN(xi)pN (x j)S jk ∝
∑

j

pN(x j)w j�
′
k(x j) = 〈

pN
∣∣�′

k

〉
G = 0 (32)

Here the quadrature gives zero by orthogonality because the degree of �′
k is less than the degree of pN .

4.2. Projection in hp-refinement

An advantage of methods like the DG method is that it is relatively straightforward to implement adaptive mesh refine-
ment, including full hp-refinement. With refinement, there are two methods for communicating fluxes across subdomain 
faces: interpolation and projection. Interpolation is simpler, but for marginally resolved problems the inherent aliasing can 
lead to an instability. Moreover, interpolation does not guarantee conservation and so can be less robust than projection, 
especially for problems with shocks.

A convenient way to implement projection is with mortars, auxiliary slices inserted at boundary interfaces. A full dis-
cussion with explicit formulas is given in [6,7]. We note here that when projecting the solution from the subdomain to the 
mortar to be able to compute the flux, one gets the exact projection matrix using Gauss–Lobatto quadrature even when 
using the approximate mass matrix. The proof of this result is similar to that of Section 4.1: the extra outer product terms 
give no contribution. The resulting expression then shows that the result is the same as using interpolation. It is only when 
transferring the flux back from the mortar to the subdomain that there is a difference between projection and interpolation, 
and only when the polynomial degree of the subdomain is less than that of the mortar. This observation can be used to 
greatly simplify the implementation of projection for DG fluxes as given, for example, in [6,7]. In retrospect, it is “obvi-
ous” that interpolation from a coarse grid to a finer one introduces no aliasing, and so projection should be the same as 
interpolation, but this fact has not been used before in the literature on hp-refinement, to the best of my knowledge.
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4.3. Efficiency of finite element methods

The question of whether to use Gauss points or Gauss–Lobatto points in spectral collocation methods is not always 
clear-cut, especially for small or moderate numbers of grid points. Gauss points typically require interpolation to impose 
boundary conditions, but their higher degree of exactness may allow a smaller number of points to be used for a given 
accuracy. There have been a number of studies of this question [8,9]. Kopriva and Gassner [8] concluded that for a simple 
linear wave equation, the two approximations have comparable efficiency, but for a nonlinear steady-state example Gauss 
approximation was faster for a desired error. Bassi et al. [9] concluded that Gauss nodes have “a clear advantage” for 
steady-state problems, and ascribed this to under-integration with Gauss–Lobatto nodes. As already mentioned in Section 1, 
this question should be re-examined in the light of the result of this paper, which allows the exact mass matrix or its 
inverse to be used efficiently in the Lobatto case.

4.4. Dispersion and dissipation

For wave propagation problems, dispersion and dissipation errors are important properties of any numerical scheme. 
Gassner and Kopriva [10] showed that the error introduced by using the approximate Gauss–Lobatto mass matrix can be 
interpreted as a modal filter applied to the highest polynomial mode (since γN �= hN ). This filtering greatly increases the 
dispersion and dissipation errors compared to the Gauss case. It would be worthwhile to re-examine this question with the 
exact mass matrix.

4.5. Roundoff errors

It has been noted in [11] that different ways of computing the terms in a spectral element or DG method can affect 
roundoff errors as N increases. It may be worth examining whether the numerical behavior is affected by the different 
ways of computing the mass matrix.
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