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Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion ex-
periments; if unchecked, these modes degrade plasma performance and may catastrophi-
cally destroy plasma confinement by inducing a disruption. Fortunately, the use of properly 
tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Nu-
merical modeling of this difficult multiscale problem requires the integration of separate 
mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the 
extended MHD model captures macroscopic plasma evolution while the RF model tracks 
the flow and deposition of injected RF power through the evolving plasma profiles. The 
scale separation enables use of the eikonal (ray-tracing) approximation to model the RF 
wave propagation. In this work we demonstrate a technique, based on methods of com-
putational geometry, for mapping the ensuing RF data (associated with discrete ray tra-
jectories) onto the finite-element/pseudospectral grid that is used to model the extended 
MHD physics. In the new representation, the RF data can then be used to construct source 
terms in the equations of the extended MHD model, enabling quantitative modeling of RF-
induced tearing mode stabilization. Though our specific implementation uses the NIMROD 
extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, 
the approach presented can be applied more generally to any code coupling requiring the 
mapping of ray tracing data onto Eulerian grids.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fusion plasmas in tokamaks – toroidal devices in which plasma is confined by external and self-generated magnetic 
fields wrapped about the major and minor axes of the torus – are susceptible to instabilities known as tearing modes (TMs) 
[1,2]. These modes alter the topology of the confining magnetic fields to produce helical magnetic islands that can grow to 
macroscopic scales (of order ∼10% of the toroidal minor radius) before the TM saturates due to nonlinear effects. Tearing 
modes reduce density and temperature in the plasma core [3,4] as the distortion of magnetic field lines imparts an increased 
radial component to the rapid transport of heat and particles along these field lines. In the worst case, low-helicity TMs 
may give rise to rapid termination of the plasma discharge [5–7] which can damage the material walls. The development 
of effective strategies to suppress these modes or mitigate their effects is thus required for the next generation of fusion 
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experiments such as the ITER tokamak [8], whose stored energy will exceed that of currently operating machines by at least 
an order of magnitude.

Because the initial island growth is brought about by changes to the plasma current profile, an approach to TM mitigation 
using electron cyclotron current drive (ECCD) has been developed. In this approach, radiofrequency (RF) waves are injected 
into the plasma. The wave properties are carefully chosen so as to resonate with the cyclotron motion of plasma electrons at 
or near the island center. Qualitatively, localized currents thus induced in the immediate neighborhood of the island counter-
act the TM’s alteration of the plasma current profile, such that island growth can be arrested and even reversed. ECCD-based 
TM stabilization strategies have been highly successful in multiple experiments [9–12], and sophisticated control strategies 
which rely on this approach [12–16] have demonstrated excellent capability to control TMs in high-beta, fusion-relevant 
regimes. Nevertheless, the potential severity and expense of TM-induced disruptions in large fusion devices such as ITER 
suggest the value of a more quantitative understanding of the physics through predictive computational modeling.

Recent theoretical work by Hegna and Callen [17] and Ramos [18,19] (hereafter, HCR) outlines a first-principles derivation 
of equations that can be used to simulate both TMs and the effects of externally imposed ECCD within the formalism of 
extended magnetohydrodynamics (extended MHD). The HCR approach, which is valid when distribution functions of the 
plasma species are nearly local Maxwellians, employs a multiscale ordering wherein the spatial and temporal scales of 
the RF fields are assumed to be much shorter than those corresponding to fluid quantities. One may thus calculate the 
propagation of RF fields through effectively static fluid density and temperature profiles and feed their effects back into 
the profile evolution equations. More specifically, fluid equations for density, momentum, and energy are supplemented 
by a drift-kinetic equation ordered appropriately for the low-collisionality, high-beta regime of interest. Closures for the 
fluid equations are obtained from solutions to this drift-kinetic equation; they include the neoclassical bootstrap currents 
important for TM growth in high-beta regimes. Independently, equations for the linear propagation of RF waves through 
the background profiles can be solved by ray tracing methods [20]. Finally, the RF-induced perturbations can be combined 
to form source terms which enter quasilinearly on the fluid scales, acting as sources of momentum and energy in the 
fluid equations and as thermodynamic drives in the drift-kinetic equation. Analytic forms for these sources, suitable for 
computational implementation, have recently been derived [21].

The present work presents solutions to a number of unique challenges encountered in developing a computational imple-
mentation of the coupled RF/extended MHD equations for ECCD-based NTM stabilization. Primarily, these are issues relating 
to spatial resolution and convergence. They arise in considering how datasets sampled along discrete ray trajectories can be 
transferred to a continuous fluid representation that incorporates finite-element and/or spectral basis functions. We show 
that physical quantities sampled along individual ray trajectories must be combined with geometric data of the collective 
ray bundle to carry out this transformation. We also discuss methods by which the latter data can be calculated. While the 
techniques we present are generally applicable whenever continuous representations of discrete ray data are needed, this 
work uses the NIMROD [22] and GENRAY [23] codes. NIMROD solves the extended MHD equations using a mixed spatial 
representation. In toroidal geometry, 2D high-order finite elements comprise the poloidal plane, while a discrete Fourier se-
ries forms the basis in the toroidal direction. A mixed implicit/semi-implicit leapfrog algorithm is used for the time advance. 
NIMROD has been used to investigate many problems of relevance to magnetic fusion, including disruption dynamics [24], 
energetic particle stabilization effects [25], ELM onset thresholds [26], runaway electron confinement [27], tearing mode dy-
namics [28], and MHD closures [29]. GENRAY calculates the propagation trajectories and power dissipation associated with 
the passage of electromagnetic waves through a plasma. It has likewise seen considerable use in the fusion community, in-
cluding the modeling of experimental lower hybrid [30,31] scenarios and the calculation of power deposition/current drive 
associated with injected electron Bernstein waves [32,33].

In Section 2 of this work, we present the underlying equations for the fluid and RF physics, and discuss their solutions in 
the NIMROD and GENRAY codes. In Section 3, we then explain the computational geometry techniques that are necessary 
to convert discrete RF solutions (valid only along individual rays) to the continuous quasilinear diffusion terms which drive 
the RF-induced fluid motion. Section 4 addresses the interpolation of the quasilinear diffusion data onto the NIMROD basis, 
treating both pseudospectral and finite element representations of this data. Finally, Section 5 presents some basic results 
of the computational simulations, summarizes the key aspects of this work, and discusses its relevance to future research.

2. Fluid and RF equations

2.1. Fluid equations and their NIMROD implementation

The extended MHD equations used in this work were derived formally in Ref. [21] for an ion–electron plasma. They are 
presented here in their quasineutral (ni ∼ ne ≡ ns) forms; the s subscript appearing on the density ns and other forthcoming 
quantities indicates variation only on the slower, longer spatiotemporal scales of extended MHD (in contrast to the short-
wavelength, rapid variation of the injected RF fields). In addition to a continuity equation in which the RF plays no role [see 
Eqs. (22), (73), and (74) of Ref. [21]], one obtains equations for the momentum and temperature evolution of each species

mαns

(
∂Vαs + (Vαs · ∇)Vαs

)
= −∇(ns Tαs) − ∇ · �α + qαns[E0s + Vαs × B0s] + Rα + krs Hαδα,e, (1)
∂t
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3

2
ns

(
∂Tαs

∂t
+ (Vαs · ∇)Tαs

)
+ ns Tαs∇ · Vαs = −∇ · qα − �α : ∇Vαs + Q α + ωHαδα,e; (2)

here qα and mα are the species charge and mass. The density, velocity, and temperature (ns, Vαs, Tαs) of species α evolve in 
response to collisional momentum and energy transfer (Rα, Q α), extended MHD-scale electric and magnetic fields (E0s, B0s), 
stress tensors and heat fluxes (�α, qα) associated with the extended MHD closures, and quasilinear terms (∝ Hα ) induced 
by the RF. Consistent with the HCR formalism [17], these quasilinear terms are valid only for electrons and are thus marked 
by the Kronecker delta δα,e . Quasineutral Maxwell equations [see Eqs. (14)–(15), and subsequent discussion, in Ref. [21]] 
determine the self-consistent response of the extended MHD-scale electromagnetic fields. Apart from the quasilinear terms 
and the details of the closures, Eqs. (1)–(2) and the other equations described (not explicitly stated as they are not of direct 
relevance to this work) are standard fluid equations covered by introductory texts [34]. We will not discuss the closure 
calculations or their associated drift-kinetic equation here (see Refs. [18,19,35] for a rigorous treatment of these issues). 
Rather, our focus is on computational representations of the quasilinear terms which appear as momentum and energy 
sources in the fluid equations (1)–(2). In these expressions, ω and krs are the frequency and real component of the RF 
wavevector, ks ≡ krs + ikis , and He = Hαδα,e takes the form [21]

He = ε0

4

∞∑
n=−∞

ω2
pes

ω2
ξ0s

√
π exp(−ξ2

ns − λes)

×
[
[In(λes) − In+1(λes)]

(
2λes|E ys|2 + n

∣∣∣∣Exs − iE ys +
√

λes(ω − n
es)Ezs

nk‖rs vtes

∣∣∣∣
2
)

+ [In(λes) − In−1(λes)]
(

2λes|E ys|2 − n

∣∣∣∣Exs + iE ys +
√

λes(ω − n
es)Ezs

nk‖rs vtes

∣∣∣∣
2
)]

. (3)

Here, ω2
pes ≡ q2

i ns/ε0me is the square of the electron plasma frequency, with ε0 the permittivity of free space and qi the 
elementary charge. The argument of the modified Bessel function In(λes) is λes ≡ k2⊥rs v2

tes/
2
es , and ξns ≡ (ω − k‖rs V‖es −

n
es)/
√

2k‖rs vtes is the real part of the conventional argument of the plasma dispersion function [36]. The quantity v2
tes ≡

Tes/me is the square of the electron thermal velocity, 
e ≡ qe|B0s|/me is the electron cyclotron frequency, and k‖rs, k⊥rs , 
and V‖es are the components of krs and Ves parallel or perpendicular to the background magnetic field B0s . The RF field 
amplitudes {Exs, E ys, Ezs}, obtained from GENRAY along discrete ray trajectories, are expressed in a coordinate system whose 
basis vectors are constructed from krs and B0s (see Ref. [21]). Quantities marked with the s subscript may vary on the spatial 
and temporal scales of extended MHD and are not generally constant along ray trajectories.1 Also, because of the Gaussian 
dependence of He on ξns , it is typical that every term but one in the infinite sum is approximately zero everywhere. 
Furthermore, the remaining term is typically negligible except at those points along the RF trajectories where ξns ≈ 0. This 
behavior is a physical consequence of the Doppler-shifted RF wave frequency locally aligning with a cyclotron resonance; 
relatively narrow spatial localization of momentum and energy sources arising from the RF ensues.

In NIMROD, Eq. (1) is implemented by (a) summing over species to yield an expression for the total momentum, and (b) 
approximating the electron equation to form a generalized Ohm’s law. For the total momentum, we obtain

mins

(
∂Vs

∂t
+ (Vs · ∇)Vs

)
= Js × B0s − ∇p − ∇ · � + krs He, (4)

where Vs ≈ Vis is the center-of-mass flow velocity, p ≈ ns(Ti + Te) is the generalized pressure, Js ≡ qins(Vis − Ves) is the 
plasma current, and � ≈ �i + �e is the generalized stress tensor. For Ohm’s law, various approximations to

E0s = −Vs × B0s + ηJs + Js × B0s

nsqi
+ krs He

nsqi
+ me

nsq2
i

[
∂Js

∂t
+ ∇ · [JsVs + VsJs] − qi

me
[∇(ns Te) + ∇ · �e]

]
(5)

may be employed within NIMROD to include resistive dissipation (with resistivity η), the dynamics of Hall MHD, inertia 
and two-fluid advection, and the neoclassical physics contained in �e . A good overview of the physics inherent in these 
approximations is provided in Ref. [37]. Much of this physics introduces computational difficulties [38] which are unrelated 
to the physics of TM feedback stabilization; we are interested primarily in a numerical implementation of the quasilinear 
terms in Eqs. (2), (4), and (5) and this can be computed in the resistive MHD limit. We will thus use model closures (as in 
Ref. [39]) with kinematic viscosity ν and anisotropic heat diffusivities κ‖, κ⊥ , together with a simplified Ohm’s law,

� = −minsν∇Vs, (6)

qα = −3ns

2
[κ‖b̂b̂ + κ⊥(I − b̂b̂)] · ∇Tα, (7)

1 Note that although we have previously described the “short-wavelength, rapid variation” of the RF fields, the RF field amplitudes {Exs, E ys, Ezs} of 
Eq. (3) vary only on the longer spatiotemporal scales of the MHD quantities; the short-wavelength, rapid variation arises from a complex phase function 
exp(iks · x − ωt) which is multiplied by these amplitudes to produce the total RF field. Ref. [21] can be consulted for more details.
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Fig. 1. Typical trajectories of a few RF rays in a bundle are shown (a) in a three-dimensional cutaway section of the torus; (b) as projected into the poloidal 
(R–Z ) plane of the torus; and (c) as projected into the midplane (Z = 0, i.e. the view from the top) of the torus. For frequencies near electron cyclotron 
resonance, trajectories are typically nearly straight except near the constant-R resonant surface of the tokamak where power is deposited.

E0s = −Vs × B0s + ηJs + krs He

nsqi
, (8)

wherein b̂ ≡ B0s/|B0s| is the direction of the background magnetic field and I is the unit tensor. Numerical values for 
ν, κ‖, κ⊥ , and η, along with other relevant numerical parameters, will be given in Appendix A.

In NIMROD, plasma densities, temperatures, and flows, together with the associated electromagnetic fields, are spatially 
represented as continuous quantities. Two-dimensional, high-order finite elements form the basis for these fields in the 
poloidal plane, while a discrete Fourier representation is used to represent their toroidal variation. The quasilinear source 
terms of Eqs. (2), (4), and (8) must also be represented in this basis.

2.2. RF equations and their GENRAY implementation

The RF equations we use in this work were also derived formally in Ref. [21], and are valid for the high frequencies 
and small length scales associated with eikonal-approximated wave propagation through complex media. Their solutions 
are considerably different from the continuous fields which arise from solutions of the extended MHD equations. The RF 
wave equation can be written as a matrix operation on the rapidly varying RF electric field vector:[

NsNs + I(1 − N2
s ) +

∑
α

χα

]
· Es ≡ Ds · Es = 0, (9)

wherein Ns ≡ ksc/ω is the complex refractive index of the plasma (with ks the complex wavevector and c the speed of 
light), and χα is a species susceptibility tensor whose hermitian and antihermitian components vary in time and space and 
satisfy the relation χα = χh

α + iχa
α . The precise form of χα is derived in Ref. [21], which also discusses in detail how the 

quantity He is obtained from the antihermitian component χa
α . Equation (9) is solved by tracking surfaces of constant phase 

ψ = ks · x − ωt along their characteristic trajectories. Calculating the determinant det[Ds] ≡ Ds(x, t, ω, ks) and expanding 
assuming that imaginary components of ks and Ds are small, one may derive the ray tracing equations [20] in the form

dkrs

dt
= ∂ Drs

∂x

/
∂ Drs

∂ω
, (10)

dx

dt
= −∂ Drs

∂krs

/
∂ Drs

∂ω
, (11)

wherein Drs = Re[Ds(x, t, ω, krs)] and the t-dependence reflects the slow (relative to the RF period) alteration of charac-
teristic ray trajectories, and the linear dispersion thereon, as the plasma through which the RF passes evolves on the slow 
MHD timescales. More general ray tracing techniques [40] may also be employed if the imaginary terms noted above are 
not small, but the ensuing solutions are still the trajectories of surfaces of constant phase. A typical trajectory plot is shown 
in Fig. 1, together with various projections of this path into the poloidal and x–y planes. Electric field component ampli-
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Fig. 2. Variation with respect to major radius, for a subset of rays in the ray bundle, of (a) the real part of the parallel index of refraction N‖ (= k‖rsc/ω); 
(b) the real part of the perpendicular index of refraction N⊥ (= k⊥rsc/ω); (c) the fractional power content P/Pmax , where Pmax is the power of the central 
ray in the bundle as it exits the RF launcher, and (d) the normalized electromagnetic flux. Rays propagate from larger to smaller R values; the deposition 
of power in the plasma is indicated by the sharp drop-offs in (c) as the rays intersect the resonant surface.

tudes, local power content, components of the group velocity (≡ vg), and other physical variables can also be determined 
pointwise along these trajectories. GENRAY also calculates the normalized flux

� = |�P |
ε0c|E0|2 (12)

in terms of normalized (complex) RF electric fields {exs ≡ Exs/|E0| , e ys ≡ E ys/|E0|, ezs ≡ Ezs/|E0|}; here,

�P =
(

|Bs|2
2μ0

+ ε0|Es|2
2

+
∑
α

ε0

2
E∗

s · ∂

∂ω
(ωχh

α) · Es

)
vg . (13)

The square of the normalizing field amplitude |E0| is proportional to the local power content P of the wave,

P ∝ �ε0c|E0|2. (14)

GENRAY also calculates P along the trajectories. This quantity will be used later to match the input power of the RF source 
(i.e. the gyrotron power entering the plasma chamber) to the power deposited into the plasma.

For frequencies near electron cyclotron resonance, a conceptual picture of the salient RF physics can often be attained by 
tracing only a few rays in accordance with Eqs. (10)–(11). For these frequencies, the ray trajectories are generally straight 
except near the relevant resonant layer; near this layer, RF power is deposited and the rays are reflected. Trajectory, power 
deposition, and flux plots akin to those in Fig. 2 convey the general behavior of the injected RF fields. Such datasets, 
however, represent only discrete samples of a continuous solution – although the physical RF fields are defined everywhere, 
tracing a few rays provides values for the continuous physical solution only along the few corresponding trajectory paths. 
Approximate continuous solutions are obtained only by taking many samples (in this case, by gathering data along many 
rays) and then considering the global properties of the ensuing large dataset. In particular, the localized deposition of RF 
power in the plasma – associated with changes in the local power content along the many sampled rays – is a collective 
property of the set of all of the rays. We will call this set of rays the “ray bundle”; our goal is to assess the properties of 
the bundle (e.g. number/spacing of rays) which are needed for accurate numerical calculations.

To illustrate, suppose that p2 = N rays (for integer p) are used in GENRAY to model vacuum plane wave propaga-
tion in the ẑ direction. Assuming periodic boundary conditions and characteristic width a in the x and y directions, we 
place the wave launcher in the z = 0 plane pointing toward positive z and concern ourselves only with the intervals 
x ∈ [0, a], y ∈ [0, a], and {z ≥ 0}. Let the rays be spaced such that the initial position of the i-th such ray is given by

(xi, yi) =
(

ai

p
− a

2p
− a

⌊
i

p
− 1

2p

⌋
,

a

p

⌈
i

p

⌉
− a

2p

)
(15)

where �. . .� and �. . .� are the floor and ceiling functions respectively (this method of spacing is illustrated in Fig. 3). 
The dispersion relation Ds(x, t) = k2

z c2 − ω2 = 0 yields, from the ray tracing equations (10)–(11), the results ∂kz/∂t = 0; 
∂z/∂t = kzc2/ω = c; the plane waves propagate in the ẑ direction at the speed of light and with constant wavelength. 
Without loss of generality, we assume the fields take the form E = E0s exp(iω[z − ct]/c)x̂, cB = E0s exp(iω[z − ct]/c) ŷ (i.e., 
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Fig. 3. Spacing and labeling of the p2 = N initial points in the x–y plane for various values of N , in the plane wave example. Waves propagate in the 
z-direction (out of the page); the spacing of the rays is chosen such that the cross-sectional area-perpendicular-to-propagation is equal for each ray. 
Consequently, while the fraction of total power P0 assigned to each ray (= P0/N) varies with N , the power flux �i through this cross-sectional area 
remains constant (= P0/a2) for any value of N at all z > 0.

infinitely slowly varying amplitude functions which multiply rapidly varying phase functions). Because the plane wave car-
ries a time-averaged total power P0, the local power content along any individual ray trajectory is thus (in the absence 
of dissipation) a constant fraction P0/N of this total power. Though this local power content is not a physically relevant 
quantity (since it varies with N), a local power flux which is independent of N can be determined along individual ray tra-
jectories. It is evident from Fig. 3 that each ray is effectively responsible for modeling the physics within a box semi-infinite 
in z and with cross-sectional area

A =
(

a

p

)2

= a2

N
(16)

within an arbitrary (z > 0) x–y plane. Consequently, the local power flux �i along the i-th ray trajectory can be directly 
calculated by taking the ratio of the local power content to the (constant) cross-sectional area-perpendicular-to-propagation 
associated with that trajectory. We obtain

�i = P0/N

a2/N
ẑ = P0

a2
ẑ , (17)

which correctly represents the total power flux along the trajectory regardless of the number of rays involved in the calcu-
lation. Further, because this total power flux is constant, we may also write

�P = ε0cE2
0s ẑ = P0

a2
ẑ = P0/N

a2/N
ẑ (18)

to reveal that the factor relating the two sides of Eq. (14), for a single trajectory, is the cross-sectional area a2/N associated 
with that trajectory at every point.

What if the N rays of this example were not regularly spaced or did not contain equal shares of the total power P0? 
In either case, we know that the power flux �i remains constant since the nature of the plane wave we are modeling is 
unchanged. It follows that the local power content associated with a particular ray is inextricably linked with an effective 
area – i.e., some portion of the cross-section of the ray bundle – which correctly relates the local power in the ray with 
its contribution to the local flux. In more general cases, this flux may be an unknown, spatially varying quantity, but the 
use of an adequately large number of densely packed rays (such that the average ray separation is much less than the scale 
length on which the variation occurs) allows the relationship between local power content and local flux to persist, so long 
as the effective area can be determined. In physically realistic cases, the rays in question are nonparallel and their local 
power content varies along trajectories as power is dissipatively transferred to the plasma. In such cases, the local power 
flux and effective area may likewise vary along the trajectories. We will demonstrate, in Section 3, that the effective area 
can be calculated by applying methods of computational geometry to the collective data of the ray bundle.

In summary, GENRAY solutions to the RF ray tracing equations are obtained only along discrete spatial trajectories which 
are the characteristics of ordinary differential equations. Variation in the plasma wavenumber, electric field components, 
fluxes, and local power content along the trajectories is also computed. The collective geometric properties of the discrete 
trajectory paths must be used to map this discrete data onto NIMROD’s continuous representation. The use of a sufficiently 
large number (typically hundreds) of rays enables the detailed spatial resolution needed to construct a smooth model for 
the RF-induced effects in NIMROD’s fluid evolution equations.
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3. Computational geometry

We have discussed how the coupled RF/MHD system can be modeled using NIMROD to evolve the fluid variables and 
GENRAY to calculate the RF physics. Because RF rays propagate through the MHD profiles, alterations to their trajectories 
(and the corresponding physical variables sampled along these trajectories) will ensue as the plasma evolves. These vari-
ations, though nonnegligible, are generally minor, and the transfer of updated profile data to be used in new trajectory 
calculations (i.e. the transfer of MHD profile data to GENRAY) is straightforward. The opposite process – namely, the transfer 
of RF data to NIMROD – requires us to map the discrete ray data to NIMROD’s continuous representation by construction of 
the effective area elements. Brief, heuristic explanations of the computational geometry methods we will use are provided 
in this section.

We again consider a bundle of N nearly parallel rays emitting from a point representing the RF launcher; the trajec-
tories through the plasma are calculated from Eqs. (10)–(11). We represent the trajectory of the pth ray by xp(s), where 
s parametrizes the distance along the trajectory and is discretized such that s ∼ sm = m�s for integer m. At every point 
xp(sm) at which the physics of RF deposition is nonnegligible [a relatively small number of points due to the exp(−ξ2

ns)

factor in Eq. (3)], we determine a value for the area perpendicular to the direction of propagation as follows:

1. Determine the local direction of ray propagation n̂p,m by interpolation,

n̂p,m = xp(sm+1) − xp(sm−1)

|xp(sm+1) − xp(sm−1)| . (19)

2. Define the plane P p,m which contains the point xp(sm) and is perpendicular to n̂p,m . Some portion of this plane will 
be the desired area.

3. Construct the set S p,m of points in P p,m which are intersected by rays in the bundle. This set includes xp(sm) and may 
include as many as N − 1 other points (though there may be fewer since an arbitrary ray does not necessarily intersect 
an arbitrary plane). Fundamentally, S p,m is a set of coplanar points akin to the dots in Fig. 4(a), and we are assigning 
an area to one such point by considering the position of its neighbors.

4. Construct the Voronoi tessellation of S p,m (the solid black lines in Fig. 4(a)). The Voronoi tessellation decomposes the 
plane P p,m into separate regions corresponding to the individual members of S p,m . All points within a region are closer 
to their particular member of S p,m than they are to any other member of the set. This defines ‘neighborhoods’ about 
the members of S p,m to which the points in the plane most naturally belong.

5. Calculate the area Ap,m of the region of the Voronoi tessellation corresponding to the desired point.

For a certain subset of points in S p,m this method fails to yield finite areas. An arbitrary point in the plane P p,m may 
be infinitely far away from the ray bundle and yet be nearer to one point in the bundle than to any others; consequently, 
regions of the Voronoi tessellation which correspond to the outermost points of S p,m may extend to infinity. To circumvent 
this issue, ghost boundary points can be appended to S p,m in the following manner:

3(a). Determine the convex hull of S p,m . The convex hull is effectively the outer boundary of S p,m in the plane P p,m . 
(Heuristically, envision surrounding S p,m with a rubber band and then allowing the band to contract until it is taut.) 
The vertices of the convex hull are the points where the previous method fails, as the semi-infinite regions of Fig. 4(a) 
suggest.

3(b). Construct the Delaunay triangulation of S p,m , the dashed lines of Fig. 4(b). The Delaunay triangulation subdivides the 
region of P p,m within the convex hull into triangles whose minimum interior angles are collectively maximized. Its 
vertices form a dual mesh complementary to the vertices of the Voronoi tessellation. A circle which circumscribes 
the vertices of an arbitrary triangle in the Delaunay triangulation will contain no other points in S p,m ; long, skinny 
triangles are thus discouraged.

3(c). Each line segment between members of S p,m on the convex hull forms an edge of a triangle in the Delaunay triangu-
lation. For each such segment, mirror the corresponding triangle across the segment in the plane (effectively ’folding’ 
the triangle across the convex hull, as in Fig. 4(c)). This creates a new triangle, two of whose vertices are already in 
the set S p,m . We add the third vertex point (marked with the + symbol in the figure) to a new set S ′

p,m .
3(d). When all items of S ′

p,m have been determined, append S ′
p,m to S p,m and proceed to step 4 above. Vertices of the con-

vex hull of the expanded set will all be members of S ′
p,m , and thus, only these ‘ghost boundary points’ will correspond 

to unbounded regions of the Voronoi tessellation (see Fig. 4(d)). All members of the original set S p,m can then be put 
into correspondence with bounded regions of this tessellation, and the area of these regions can be calculated.

The computational geometry calculations (Delaunay triangulation, convex hull identification, Voronoi tessellation) are 
carried out using the QHULL software package [41]. Using the foregoing methods, representations for the source terms 
krs He, krs He/nsqi , and ωHe can be obtained from the discrete data computed along the ray trajectories. We explicitly 
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Fig. 4. (a) A set of coplanar points representing the intersection of a ray bundle with a plane are shown together with the Voronoi tessellation (solid black 
lines) corresponding to these points. Note that the Voronoi regions corresponding to the outermost points extend to infinity. (b) Delaunay triangulation of 
the points in (a). (c) Convex hull (solid black lines) of the points in (a), together with the reflection across the hull of the Delaunay triangles whose edges 
lie on the convex hull. Ghost points (+ symbols) are thus created outside the convex hull. (d) Voronoi tessellation of the set of original and ghost points. 
Note that all original data points now correspond to Voronoi regions of finite area.

write He in terms of variables known along these trajectories (here parametrized by the discrete quantity s j) in the 
form

He(s j) =
∞∑

n=−∞

q2
i ns(s j)

√
π

4ω2√me

[c − N‖rs(s j)V‖es(s j)]√
2N‖rs(s j)

√
Tes(s j)

P (s j)

�(s j)ε0c A(s j)

× exp

(
−[ωcme − ωN‖rs(s j)V‖es(s j)me + nqi |B0s(s j)|c]2

2ω2N‖rs(s j)
2Tes(s j)me

)
exp

(
− N⊥rs(s j)

2ω2Tes(s j)me

q2
i |B0s(s j)|2c2

)

×
{[

In

(
N⊥rs(s j)

2ω2Tes(s j)me

q2
i |B0s(s j)|2c2

)
− In+1

(
N⊥rs(s j)

2ω2Tes(s j)me

q2
i |B0s(s j)|2c2

)]

×
(

−2ωN⊥rs(s j)
√

me
√

Tes(s j)

cqi|B0s(s j)| |e ys(s j)|2

+ n

∣∣∣∣exs(s j) − ie ys(s j) − N⊥rs(s j)[meω + nqi |B0s(s j)|]ezs(s j)

nN‖rs(s j)qi|B0s(s j)|
∣∣∣∣
2
)

+
[

In

(
N⊥rs(s j)

2ω2Tes(s j)me

q2
i |B0s(s j)|2c2

)
− In−1

(
N⊥rs(s j)

2ω2Tes(s j)me

q2
i |B0s(s j)|2c2

)]

×
(

−2ωN⊥rs(s j)
√

me
√

Tes(s j)

cqi |B0s(s j)| |e ys(s j)|2

− n

∣∣∣∣exs(s j) + ie ys(s j) + N⊥rs(s j)[meω + nqi |B0s(s j)|]ezs(s j)

nN‖rs(s j)qi|B0s(s j)|
∣∣∣∣
2
)}

, (20)

where P (s j) is the local power content at discrete points along the trajectory and A(s j) is the computed area of the 
corresponding Voronoi tessellation at these points.

Having obtained a discretized representation for the source terms along the GENRAY trajectories, we turn to a discussion 
of how these source terms are to be transformed to NIMROD’s spectral/finite element representation.
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Fig. 5. The normalized function He projected into the poloidal plane, akin to plot (b) of Fig. 1, together with corresponding projections of the ray trajectories. 
The grid boundaries corresponding to finite element cells in the poloidal plane are also displayed; within the finite element cells, high-order bivariate 
polynomials model physical quantities. Grid packing has been employed and results in nonuniform cell sizes. The grid resolution shown (48 radial and 64 
poloidal grid cells with fourth-order polynomials) is adequate to capture variation in He in the plane.

4. Interpolation to finite element and spectral basis functions

NIMROD uses a discrete spectral representation in the toroidal direction. For a fixed position in the R–Z poloidal plane, 
the toroidal representation has the form

A(R, Z , φ) ≈ An(R, Z) = Ã0(R, Z) +
N∑

p=1

[ Ãp(R, Z)eiπnp/N + Ã∗
p(R, Z)e−iπnp/N ], (21)

and represents the phases and amplitudes of N modes in the Fourier space. Functionally, this representation is equivalent 
to a sample of the toroidally varying function taken on 2N discrete, regularly spaced poloidal planes in real space [at values 
φ = πn/N , n ∈ −N . . . (N − 1)]. Aliasing errors are prevented in NIMROD by zeroing Fourier components for |n| > �2N/3�; 
however, this does not fundamentally alter the representation in real space. Within poloidal planes, physical quantities are 
expanded using high-order finite elements. Grid packing of the finite elements can be used to locally increase resolution 
in regions of interesting physics within the poloidal plane. In contrast, the discrete spectral representation samples this 
variation only at uniformly spaced toroidal intervals. Often, a relatively small number of Fourier modes are needed in 
NIMROD tokamak simulations because of the dominant toroidal magnetic field.

For ECCD injection in a tokamak, however, the exp(−ξ2
nr) factor of Eq. (3), together with the typically narrow width 

of the ECCD launch cone [42], lead to power deposition over extremely narrow spatial regions (see Figs. 5 and 7). The 
momentum/energy/current sources induced in NIMROD will be correspondingly localized. Within the poloidal plane, grid 
packing – as shown in Fig. 5 – is used, together with biquartic polynomials on a finite element grid (a 48 ×64 grid is typical 
for NIMROD runs) to enable resolution of He in this plane. However, the localized toroidal variation of this function presents 
some difficulty. Quantitative estimates for toroidal resolution requirements can be made by considering the function

A(φ) =
⎧⎨
⎩

1

φc
cos

(
π(φ − φ0)

2φc

)2

, |φ − φ0| ≤ φc

0, otherwise,

(22)

which is a smooth, localized function with unit area and variable toroidal width. This function is shown in Fig. 6a; both the 
function and its derivative are zero at the bounding points |φ − φ0| = φc . Using the Fourier representation for a continuous 
function on a finite interval, one can write

Ãl = 1

2π

2π∫
0

A(φ)eilφdφ = e−ilφ0

2π

sin(π yl)

(1 − y2
l )π yl

(23)

where yl ≡ lφc/π . These Fourier coefficients (shown in normalized form in Fig. 6(b)) fall off rapidly for large yl , and never 
exceed 0.03 of the fundamental (l = 0) amplitude for yl > 2. Suppose that after dealiasing, we retain all Fourier components 
for which yl ≤ 2 to ensure that the general functional form of A(φ) is approximately preserved. Demanding that our chosen 
relation yl = lφc/π ≤ 2 is at least as restrictive as the dealiasing relation l < 2N/3, we have

2π
<

2N ; 6

(
2π

)
< 2N. (24)
φc 3 2φc
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Fig. 6. (a) General function for describing toroidal variation using parameters {φc, φ0}, as in Eq. (22). (b) Fourier coefficients [neglecting a phase factor 
and (2π)−1 normalization constant] corresponding to this form. The coefficients are non-negligible for yl < 2; dealiasing below this limit will introduce 
inaccuracy.

Fig. 7. Midplane projection, akin to plot (c) of Fig. 1, of the normalized function He atop the ray trajectories. Planes of constant φ corresponding to an 
N = 512 Fourier sampling, which resolves the centimeter-scale toroidal variation of He , are also displayed.

Because 2N ≡ 2m is the number of discrete poloidal planes on which the function is sampled in real space, and 2φc/2π ≡ s
is the fractional width of the function relative to the toroidal period (0 ≤ s ≤ 1), we may also write

m >
ln(6)

ln(2)
− ln(s)

ln(2)
, (25)

which gives the power-of-two needed to resolve physics occurring on toroidal scales of fractional width s. For Fig. 7, in 
which the angular width of the RF deposition is approximately π/64, this corresponds to s = 1/128 and m > 9.58. Thus, 
a minimum of N = 29 = 512 toroidal Fourier modes (corresponding to 1024 poloidal planes) are needed.

NIMROD has demonstrated scaling capability on high-performance clusters and is fully capable of running with hun-
dreds of toroidal Fourier modes. Weak scaling results obtained on the Cray XK7 (Titan, at ORNL) are shown in Fig. 8 for 
N = 2p such modes (p ∈ [6 . . . 9]) in simulations which make use of 5632 to 43,776 cores. The NIMROD time-advance loop 
kernel time is shown, along with non-overlapping subset-kernel times from SuperLU (preconditioner), finite-element ma-
trix, and finite-element right-hand-side computations. Good scaling is seen for both the SuperLU and FE matrix kernels, 
since the latter performs no communication and the SuperLU processor grid size is unchanged between runs. As additional 
Fourier modes are added, the number of processors participating in the all-to-all calls for FFTs is increased proportionally 
to the problem size, as reflected in the increased FE RHS kernel times. Despite an eight-fold increase in problem size, the 
computation time required for 50 steps of NIMROD’s main time loop is increased only by ∼ 35%, with the additional time 
and communication requirements for computing increasingly larger fast Fourier transforms contributing substantively to the 
increase. Though the weak scaling is imperfect, the increased computation time associated with higher numbers of modes 
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Fig. 8. Weak scaling on the Cray XK7 (Titan) high-performance cluster as the toroidal resolution of the NIMROD simulation is increased commensurate 
with the processor count, together with ideal scaling metrics. The time required to traverse 50 steps of NIMROD’s main time loop is shown, together with 
non-overlapping subset-kernel times from preconditioning (Super LU), finite-element matrix assembly (FE matrix), and right-hand-side (FE RHS, including 
the fast Fourier transforms associated with toroidal resolution) computations. With an eight-fold increase in toroidal resolution, total computation time is 
increased only by ∼35%, deviating from ideal scaling predominantly due to the larger, more communication-intensive Fourier transform operations required 
at higher resolutions.

is far from prohibitive. It should also be noted that the toroidal resolution required for conventional NIMROD use cases 
involving simulation of core modes is much lower than was needed for the cases shown in Fig. 8; the high Fourier mode 
count is required only to toroidally resolve the RF source used in this work.

We turn now to the issue of transforming data associated with discrete rays which intersect a plane into a continuous 
representation within that plane.

4.1. Poloidal interpolation

As mentioned previously, NIMROD uses a 2D finite-element representation in the poloidal plane. This representation is 
nodal with coefficients of the 2D basis functions taking on the value of the dependent variables at nodes in the grid. This 
section contains a description of a method to project GENRAY data onto NIMROD’s finite-element nodes. It uses polynomial 
interpolation along the ray trajectory and an efficient bivariate (2D) interpolation algorithm due to Renka [43,44] in the 
poloidal plane.

Recall that the spacing of data along a single ray trajectory is dense compared to the density of the rays themselves. 
Using this fact, we use low-order polynomial interpolation along the rays to project data onto constant-φ poloidal planes. 
This results in relatively sparse, non-uniformly distributed planar data sets. Fig. 9(a) shows the NIMROD finite element node 
points along with a set of Nr = 331 such crossing points (Ri, Zi) (where i = 1, . . . , Nr ) for the underlying function He in 
Eq. (20). Fig. 9(b) contains the same data, but with additional rays added at the periphery of the ray cone (Nr = 661) for 
reasons that will be explained later in this section. A modified Shepard’s algorithm [45] is applied to these 2D data sets 
according to the interpolatory formula:

He(R, Z) =
Nr∑

k=1

W̄k(R, Z)Q k(R, Z). (26)

Here the bivariate, quadratic interpolation function satisfies Q k(Rk, Zk) = He(Rk, Zk), and fits values of He on a subset 
of nearest neighbor nodes in a weighted least squares sense. The weight functions satisfy W̄k(R j, Z j) = δ jk and are in-
versely proportional to the squared distance between (R, Z) and (Rk, Zk). The CSHEP2D [44] routine, which implements 
this interpolation, includes an efficient search algorithm for finding nearest neighbors.

Figs. 9(c) and 9(d) show contours of He evaluated using NIMROD’s 2D finite-element representation following bivariate 
interpolation of the data in Figs. 9(a) and 9(b) to grid nodes. The oscillations at the periphery of the ray bundle in Fig. 9(c) 
are tied to the fact that a limited number of data points were associated with the outer region of the ray cone where He
is close to zero. For this case, the local interpolatory functions, Q k , rely too much on data near the center of the ray cone 
– that is, the subset of nearest neighbors does not well-represent the small values of the function near the exterior of the 
ray cone. For the contours in Fig. 9(d), additional rays were added in the outer region. Though these rays carry virtually 
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Fig. 9. (a) Value of the function He at Nr = 331 points where the RF rays intersect a poloidal (constant-φ) plane. (b) The same data, but with additional 
rays added at the periphery of the ray bundle; Nr = 661 points. (c) Contours of the bivariate Shepard interpolation of the data in (a) onto NIMROD’s 
Gaussian quadrature points (also shown, together with the finite element grid nodes). Inadequate data at the periphery of the ray cone prevents accurate 
representation of the vanishing of the He function in this region; the Shepard interpolation thus introduces spurious oscillations away from the region of 
RF deposition. (d) When the interpolation procedure used in (c) is applied to the larger bundle in (b), the additional rays quell the spurious oscillations and 
yield a smooth, accurate representation of the RF source in the NIMROD basis. Differences in the maximum He values between (a/c) and (b/d) arise from 
differing fractional RF power content within the rays. Wider ray cones compute slightly larger values for the total RF power (by integrating over a wider 
portion of its angular distribution); thus, rays at a fixed angle will have slightly lower fractional power content for the wider cone.

no power, the near-zero data they contain effectively constrains the Shepard interpolation at the periphery of the ray cone, 
thus preventing the spurious oscillations.

5. Results and discussion

With accurate models for the RF sources, we are now in position to model the suppression of tearing modes by RF. In this 
work, as in Ref. [39], we focus on low-β plasmas wherein tearing modes are dominated by resistive (rather than neoclassical) 
effects; this choice allows us to demonstrate the numerical methods we have developed here while still allowing the use 
of reasonably simple closures for the extended MHD equations. (Expressions for the closures are given in Appendix A.) In 
Fig. 10, Fourier components of the magnetic energy (corresponding roughly to the fourth power of island width) are shown 
in a regime unstable to a magnetic island of helicity (2, 1). Following a period of linear growth, RF waves resonant with the 
second electron cyclotron (EC) harmonic at the island center are injected, wholly arresting the mode growth. As in Ref. [39], 
this stabilization arises from modifications of the underlying equilibrium current profile, with consequent modification of 
the tearing stability parameter �′ , by the injected RF; when the injected RF is shut off, mode growth resumes. As we have 
previously noted, experimental mitigation and control of tearing modes is generally carried out via sophisticated control 
systems [12–16]. The approaches developed in this work, in tandem with the theoretical foundations laid in Refs. [17–19,
21], facilitate the development of numerical analogues for such control systems [46]. We anticipate exploring this topic in 
greater depth in subsequent publications; investigation of the relationship of experimentally observed Fisch and Boozer [47]
and Ohkawa [48] currents to RF-induced modifications of the closures is also a topic of interest. The recent development 
and implementation of continuum closure capabilities in NIMROD [49], via the solution of species drift-kinetic equations, 
is expected to enable significant progress in these efforts. In particular, the accurate inclusion of critical neoclassical effects 
such as bootstrap current, via the computation of parallel electron stresses and collisional friction in higher-β plasmas, 
will be crucial for modeling experimentally relevant NTM dynamics and stabilization in tandem with the methods we have 
proposed here.

Computational requirements associated with GENRAY and the geometric calculations discussed in Section 3 have not 
been discussed extensively in this work. For the coupled case presented here, these requirements are negligibly small in 
comparison with the NIMROD computational requirements. The latter require hundreds to thousands of processors for 
order-tens of hours to simulate tearing mode growth, while the geometric and ray tracing computations we have presented 
typically make use of no more than 20–30 processors for order tens of seconds. Increased resolution of the RF sources, 
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Fig. 10. Fourier components of magnetic energy B2/2μ0 are shown during the initial linear growth phase of a resistivity-dominated tearing mode with 
(2, 1) helicity. The introduction of electron-cyclotron (EC)-resonant RF at the center of the induced magnetic island, using the numerical methods outlined 
herein, arrests the growth of the mode until the RF is shut off. The development of more sophisticated control algorithms for the RF is a topic of ongoing 
research.

and thus higher computational requirements, may be necessary in future simulations exploring high-β NTM stabilization 
scenarios or the interaction of RF with other neoclassical effects. However, the associated need for continuum closure com-
putations in such simulations (as noted in the preceding paragraph), together with the large initial disparity between RF 
and MHD computation requirements in the coupled case shown here, suggest that computational requirements for such 
coupled RF/MHD simulations will continue to be dominantly determined by the requirements for the extended MHD code.

In this work, we have demonstrated that physical quantities associated with discrete ray trajectories – the characteristic 
solutions of ordinary differential equations used in ray-tracing applications – can be interpolated onto continuous finite-
element and pseudospectral representations via methods of computational geometry. The use of these methods to compute 
the effective area-perpendicular-to-propagation associated with any such ODE trajectory, using the collective properties of 
the ray bundle, forms the basis of the interpolation scheme. The effective areas can then be used in the construction of 
fluxes and other (not necessarily linear) physical quantities associated with the ray propagation, in the desired continuous 
representation. Spatial convergence of the interpolation scheme thus relies on the smallness of the inter-ray spacing relative 
to the scale length of the physics under consideration; we have also demonstrated that the bundle must be broad enough 
that the interpolation methods do not introduce spurious physics at its edge. Temporal convergence is less of a concern, 
as the dominant time variation of RF source terms which enter the NIMROD equations arises from alterations to NIMROD 
profiles on the slower timescales relevant to extended MHD dynamics. For the cases considered here, variation of order 1% 
in these source terms generally ensues only after order-hundreds of NIMROD timesteps. Simulation of more sophisticated 
experimental control techniques, such as the use of time-modulated RF or real-time steering of RF launchers, will alter the 
position and strength of RF sources on more rapid timescales and will thus require better metrics for assessing convergence 
in the time domain. We are hopeful that such techniques can be further explored in future publications.

Because the ray bundle consists essentially of values attached to an arbitrarily-sized, spatially unstructured mesh which 
will be interpolated to a spatially structured finite-element mesh, developing quantifiable convergence metrics for spatial 
resolution of the coupled NIMROD and GENRAY codes is a nontrivial exercise, and no one metric lends itself well to a de-
scription of the process. As a general rule, a series of steps must be carried out in order to characterize the scale lengths of 
the physics to be modeled relative to the various spatial metrics of the two codes. One first focuses on the GENRAY inputs, 
modifying the spacing of points �s (using the notation of Section 3) along the ray trajectory until smooth variation of 
relevant physical quantities (e.g., those in Fig. 2) along this trajectory is obtained. Thereafter, estimates of the parallel scale 
length L‖ associated with this smooth variation should be compared with the perpendicular scale length L⊥

p,m ≡ √
Ap,m , 

obtained from the square root of the effective area A p,m corresponding to a given point along the ray trajectory. More rays 
should be added to the GENRAY computation if the condition L‖ >∼ L⊥

p,m is not met. Subsequent interpolation of the con-
verged ray data onto NIMROD’s finite-element basis functions generates a finite-element representation for the source term 
[see Eq. (26)] with its own characteristic scale length Lsource . Additional rays must be added to the periphery of the GENRAY 
bundle, and the whole process begun anew, if this source does not smoothly drop to zero outside the deposition region. 
Finally, comparison of the source scale length with the characteristic spacing of nodes on the NIMROD finite-element grid 
can be made using plots akin to those of Fig. 9. Spacing between nodes of the bivariate polynomials (in this case, biquartic) 
associated with individual finite-element grid cells should be sufficiently small that the scale length Lsource can be well 
resolved. In general, the process for checking spatial convergence is somewhat cumbersome and does not lend itself well 
to representation by a single metric. Nevertheless, the foregoing process appears to reliably produce smooth source terms 
consistent between GENRAY and NIMROD representations.
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While we have applied the interpolation techniques discussed herein for the modeling of RF-induced instability mitiga-
tion in fusion devices, the methods we have presented can be generally applied to generate new representations for any 
sufficiently dense bundle of characteristic ODE trajectories. Models of radar, acoustic, optical, or other phenomena satisfying 
an eikonal approximation may thus also profitably make use of the interpolation methods shown here.
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Appendix A. Numerical parameters

Exact solutions to the fluid closure problem require the determination of values for heat fluxes (q) and stresses (�) as 
functions of lower-order fluid moments. In addition to the complexities of the standard closure problem [50], the calculation 
of a physically consistent closure for the coupled ECCD/MHD model presented here and in Ref. [21] must also take into 
account the presence of the quasilinear terms in the kinetic equation [Eq. (31) of the latter work]. As previously noted, our 
focus here is on the numerical implementation of RF-induced momentum and energy sources, and it thus suffices to use 
simple models for the closure relations and model tearing modes whose dominant physics arises from resistivity, rather than 
from neoclassical physics. We use Eqs. (6)–(7) with parameters ν, κ‖ , and κ⊥ � κ‖ (respectively, the kinematic viscosity, 
parallel heat diffusivity, and perpendicular heat diffusivity) taking the respective values 4.2 × 10−1 m2/s, 4.2 × 107 m2/s, 
and 4.2 × 101 m2/s. The underlying Miller equilibrium, obtained from an inverse Grad–Shafranov solve, has a mild pressure 
gradient [p ∼ (1 − ψ)4] atop a gauge pressure of 4005.0 Pa; the magnetic profile has on-axis safety factor q(0) = 1.6
and q95 = 6.14. Other parameters relevant to these simulations include the plasma’s Lundquist number S = 2.4 × 106, the 
Alfvén and resistive times (respectively τA ≡ √

μ0mini R0/B0 ≈ 4.2 ×10−7 s and τR ≡ a2μ0/η ≈ 1.0 s), the plasma resistivity 
η/μ0 = 0.423 m2/s, the major radius R0 = 1.69 m, the mean minor radius a = 0.65, the mean ion density ni = 5.0 × 1019, 
the magnetic field strength at the magnetic axis (B0 ≈ 1.84 T) and the poloidal grid resolution (48 radial by 64 axial 
meshpoints). Fourth-order polynomial interpolation was used within individual finite elements in the poloidal plane.
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