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The problem of through-the-wall imaging is considered. A numerical method for Maxwell’s 
Equations is developed and implemented with the goal of generating an approximate 
solution to this problem. The forward problem is solved using the Yee Scheme, and this 
solver is used in the inverse problem of detecting and analyzing objects inside a room, 
with no direct vision of the inside. It is shown how different sizes and shapes of objects 
have different responses to source waves, and these differences can be used to approximate 
the object. Numerical results show that this reconstruction procedure gives an accurate 
approximation to the boundary of the object.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Inverse problems have many applications to physics and engineering problems, and thus have always been a highly 
researched area in mathematics. In various types of these problems, one can analyze how to reconstruct material properties 
from the response to a given input, or try to determine under what conditions there is a unique set of material properties 
that define a given input response. One particular instance of an inverse problem is through-the-wall imaging. In this case, 
there is a transmitter and receiver set-up outside of a walled room, with no direct vision of the inside. Using electromagnetic 
waves, one wants to determine if there is an object inside the room, where the object is located, and potentially what it is.

In most applications of through-the-wall imaging, researchers are interested in human detection and analysis. Many 
sources have looked at using Doppler-type radar effects to study human motion, either using standard Doppler radar [11] or 
using noise waveforms, which can have the same levels of resolution, with a smaller chance of being noticed by an external 
party [7]. There has also been work using so-called micro-Doppler, to analyze smaller scale movements with the through-
the-wall method, from arm movement (isolated from torso movement) [6] to the small bodily fluctuations associated with 
breathing and heart beats [2]. Similar analysis has also been used to analyze human gait, and distinguish between human 
and animal gait patterns [9,10]. More similar to this paper, Wang et al. used a finite difference time domain method to 
analyze human movement in a room, but used an incident plane wave for analysis, as opposed to the circular source used 
here [13].

Some of the most recent work in through-the-wall imaging was performed in the master’s thesis [4]. The author there 
performed a series of experiments involving through-the-wall imaging. With the use of a Support Vector Machine, it was 
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Fig. 1. Model sketch of the problem.

shown that the response data generated from a through-the-wall situation can be used to determine the presence of an 
object in the room, as well as identify some properties of the object. This last result gives hope that through-the-wall 
imaging is a well-defined problem, and that numerical and mathematical analysis of this problem could lead to fruitful 
results.

To that end, in this paper, we develop a numerical method to analyze the through-the-wall imaging problem. We outline 
the physical system we are trying to analyze in Section 2. In Section 3, we discuss the basic numerical methods involved 
in approximating Maxwell’s Equations in this particular situation. In Section 4, we discuss the adjustments that need to 
be made to the basic methods in order to accurately approximate the given problem. The facts that material properties 
are discontinuous and the scattering problem is infinite need to be addressed to ensure that we have the highest order of 
accuracy possible for our numerical method. In Section 5, we discuss the method for detecting and analyzing the object 
inside the domain. In Section 6, we show some of the numerical results from these methods, and conclude the paper in 
Section 7.

2. Model problem

In this paper, we are considering the two-dimensional version of this problem, assuming that all materials are invariant 
in the z-direction. Our room can be represented by a rectangle of size lx by l y . We assume that the walls are of a uniform 
thickness h, with relative electric permittivity εw . The object that we are trying to detect is a convex domain O  ⊂ [0, lx] ×
[0, l y] that has uniform relative electric permittivity εo . The methods developed here, with a little more work, will function 
for objects in motion, or objects with varying electric permittivity.

To model the actual physical problem, we will record and use data that could be gathered from a set of antenna trans-
mitters and receivers. Thus, for any given simulation, we will assume that the electromagnetic waves are generated from 
a source antenna (S) positioned outside of the room and the data is recorded from a (finite) set of receivers (R), also 
positioned outside the room as shown in Fig. 1.

3. Numerical methods

For this particular version of through-the-wall imaging, we are using electromagnetic radar waves. Therefore, Maxwell’s 
Equations can be used to model this system. Since we are only dealing with electromagnetic waves and have no free charges, 
the form of Maxwell’s Equations we are considering is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ �E
∂t = 1

ε ∇ × �H
∂ �H
∂t = − 1

μ∇ × �E
∇ · �E = 0

∇ · �H = 0

For this problem, we are considering a 2-dimensional problem in the transverse magnetic (TM) mode. In general, most 
physical situations use transverse electro-magnetic (TEM) waves. Since the TM waves arise naturally from considering this 
problem, we will study those instead. In order to extend the problem to 3 dimensions and implement it in a physical system, 
the code will need to be rewritten and implemented for TEM waves. Since we are assuming the problem is invariant in the 
z direction, only the fields Ez , Hx , and H y are non-zero. Therefore, we are looking at the 3 equations
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ Ez
∂t = 1

ε

(
∂ H y
∂x − ∂ Hx

∂ y

)
∂ Hx
∂t = − 1

μ
∂ Ez
∂ y

∂ H y
∂t = 1

μ
∂ Ez
∂x

(1)

These are the equations that will be used in the numerical methods presented in Sections 3.2 and 3.3. However, there 
is another partial differential equation that the components of Maxwell’s Equations satisfy. If we take the curl of the ∂ �E

∂t
equation, we get

∂(∇ × �E)

∂t
= 1

ε
∇ × ∇ × �H

Using the magnetic field equation,

∇ × �E = −μ
∂ �H
∂t

and the vector identity

∇ × ∇ × �V = ∇(∇ · �V ) − � �V
we are left with

−μ
∂2 �H
∂t2

= 1

ε
[∇(∇ · �H) − � �H].

However, ∇ · �H = 0, so this reduces to

∂2 �H
∂t2

= 1

εμ
� �H = c2� �H c = 1√

εμ
.

Thus, every component of Maxwell’s Equations also satisfies a wave equation. These equations will be important when we 
start to consider the necessary improvements to the model in Section 4.1.

3.1. Finite difference approximations

In order to approximate the equations (1), we will use a finite difference scheme. To get the highest accuracy in our 
system, we would like to use a centered difference approximation to the derivative, namely, for a function f (x),

f ′(x) ≈ f (x + �x) − f (x − �x)

2�x

By using Taylor’s Theorem, we can show that, as long as f is smooth enough, this is a good approximation to the 
derivative. It tells us that there exist points η and ξ with x − �x ≤ η ≤ x ≤ ξ ≤ x + �x satisfying

f (x + �x) = f (x) + (�x) f ′(x) + (�x)2

2
f ′′(x) + (�x)3

6
f ′′′(ξ)

f (x − �x) = f (x) − (�x) f ′(x) + (�x)2

2
f ′′(x) − (�x)3

6
f ′′′(η)

as long as f is at least C3. Subtracting these two equations and rearranging terms gives the desired result that

f ′(x) = f (x + �x) − f (x − �x)

2�x
+ O (�x2) (2)

For general electromagnetism problems, it would be safe to assume that the component functions of �H and �E are C3. 
However, as will be discussed in Section 4.2, if material properties are discontinuous, then our function will not be more 
than C1. Therefore, we need to modify the situation to retain the second order accuracy of this approximation.

3.2. Yee scheme

To create a system where every derivative in (1) can be approximated by a centered difference, we need to use a stag-
gered grid system. The setup we will use is called the “Yee Scheme” after its creator [14]. Even though this scheme is 
50 years old, there have been many improvements to the base scheme discussed in [12] that have been implemented 
here. The specifics of some of these improvements, along with more recent ones, are discussed in section 4. The scheme 
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Fig. 2. Diagram of the Yee Scheme [12].

uses a specific staggered grid so that, as desired, every spatial derivative can be computed as a centered difference. How-
ever, we also have time derivatives involved in the equations. The setup in the Yee scheme also alternates computing the 
electric and magnetic fields in half time-steps so that all time derivatives can also be approximated by centered differ-
ences.

As can be seen in the Fig. 2, for every point where we calculate Ez , there are points where we calculate Hx directly 
above and below, and points directly to the left and right where we calculate H y . Thus, we can approximate ∂ H y

∂x at the 
point where we want to calculate Ez by a centered difference. The same goes for ∂ Hx

∂ y and all other spatial derivatives in (1). 
For the time derivatives, we will calculate Ez at integer multiples of �t , and the magnetic fields at half-integer multiples 
of �t . Thus, if we denote the Ez grid by indices (i, j) in the x and y coordinates respectively and k in the t coordinate, we 
can approximate

Ek+1
z (i, j) − Ek

z(i, j)

�t
≈ ∂ Ez

∂t

k+1/2

(i, j)

as a centered difference. Since the Hx and H y values are given at time value k + 1/2, the right hand side of that equation 
is also specified at the point (i, j) in the x and y-coordinates, and time value k + 1/2. Thus, setting these two sides equal 
makes sense, and gives us the basic scheme for modeling Maxwell’s Equations.

3.3. Numerical implementation

Working with the Ez equation in (1), we can replace every derivative by the corresponding centered difference.

Ek+1
z (i, j) − Ek

z(i, j)

�t
= 1

ε

[
Hk+1/2

y (i + 1/2, j) − Hk+1/2
y (i − 1/2, j)

�x
− Hk+1/2

x (i, j + 1/2) − Hk+1/2
x (i, j − 1/2)

�y

]

(3)

For all of the work here, we will assume that we have a square grid, namely, that �x = �y. Rearranging 3, we get an 
expression to update Ez by

Ek+1
z (i, j) = Ek

z(i, j) + �t

ε�x

[
Hk+1/2

y (i + 1/2, j) − Hk+1/2
y (i − 1/2, j) − Hk+1/2

x (i, j + 1/2) + Hk+1/2
x (i, j − 1/2)

]

(4)

and the same process can be carried out for the other two equations. For the implementation of the algorithm, the time-
stepping will be implicit, and the array values will update at each time step instead of recording the data from previous 
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Fig. 3. Model sketch of the Perfectly Matched Layers system and where it is applied.

times. Thus, if we define arrays by

Ez(i, j) = Ez(i, j) Hx(i, j) = Hx(i, j + 1/2) Hy(i, j) = H y(i + 1/2, j) (5)

we get iterative equations for each of these arrays in the form,

Ez(i, j) = Ez(i, j) + �t

ε�x

[
Hy(i, j) − Hy(i − 1, j) − Hx(i, j + 1/2) + Hx(i, j − 1)

]
Hx(i, j) = Hx(i, j) − �t

μ�x
[Ez(i, j) − Ez(i, j − 1)]

Hy(i, j) = Hy(i, j) − �t

μ�x
[Ez(i, j) − Ez(i − 1, j)]

which defines the basic Yee Scheme for modeling Maxwell’s Equations.

4. Improvements to the basic algorithm

Now that we have a basic algorithm, we can model the propagation of waves. However, there are a few adjustments 
that need to be made in order to retain the same level of accuracy for this particular system we are trying to model. These 
are discoveries that have been developed after the initial definition of the Yee Scheme that help improve its accuracy and 
ability to model physical situations.

4.1. Perfectly matched layers

The first of these adjustments involves the edges of the computational domain. In general, the scattering problem that 
is being modeled is infinite; once the waves leave the room, they keep heading off to infinity. Any reflections caused by 
the boundary of the computational domain would not show up in the physical problem, and so would make the numerical 
model significantly different from the physical situation. However, the computational domain needs to be truncated in order 
to carry out the necessary calculations. In order to truncate the computational domain but prevent unnatural reflections, we 
use the method of Perfectly Matched Layers (PML) [1,5].

In order to formulate the PML, we will use a slightly varied formulation of Maxwell’s Equations, where we write the 
permittivity and permeability as matrices, P E and P M so that⎧⎨

⎩P E
∂ �E
∂t = ∇ × �H

P M
∂ �H
∂t = −∇ × �E

In the case of standard, non-lossy, isotropic material, we have

P E = ε I P M = μI,

so this gives a generalization of the original equations that is easier to understand in the anisotropic case.
The idea of PML is to add a layer of lossy material near the edge of the computational domain, as shown in Fig. 3, so 

that any waves heading towards the boundary decay away before they get there. Since the waves have decayed, we can then 
put a hard boundary at the edge of the computational domain (Ez = 0), causing a negligible reflection, but the reflection is 
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significantly smaller than the same system without the PML. However, we also need to make this boundary of this region 
with the interior reflectionless so as to not significantly change the value of the wave in the internal region. This lossy 
region does not exist in the physical problem, and so should not affect the numerical solution inside the room.

The portion of a wave incident on an interface that is reflected at the boundary is determined by the impedance of the 
material

η =
√

μ∗
ε∗ .

If the impedance of the material on both sides of an interface are equal, there will be no reflection at that interface, and 
the entire wave will be transmitted. We know the impedance on the plain material side is 

√
μ
ε . In order to make the media 

reflectionless, we define new permeability and permittivity matrices P̃ E and P̃ M with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃∗
E =

⎡
⎢⎣

εε∗
Fx

(x, y, z) 0 0

0 εε∗
F y

(x, y, z) 0

0 0 εε∗
Fz

(x, y, z)

⎤
⎥⎦

P̃∗
M =

⎡
⎢⎣

μμ∗
Fx

(x, y, z) 0 0

0 μμ∗
F y

(x, y, z) 0

0 0 μμ∗
Fz

(x, y, z)

⎤
⎥⎦

(6)

where the new factors (ε∗
Fx

etc.) are the fake coefficients needed to form the PML. For the reflectionless condition to be 
satisfied, we need that, for m = x, y, z,

ε∗
Fm

(x, y, z) = μ∗
Fm

(x, y, z). and ε∗
Fm

(x, y, z) = 1 outside the PML region. (7)

From this construction, we also see that the P̃ E and P̃ M matrices coincide with the free space ε and μ coefficients 
outside the PML region. In this particular situation, the PML equations for the transverse magnetic 2-dimensional problem 
reduce to⎧⎪⎪⎨

⎪⎪⎩
iωεε∗

Fz
(x, y)Ez = ∂ Hx

∂ y − ∂ H y
∂x

iωμμ∗
Fx

(x, y)Hx = − ∂ Ez
∂ y

iωμμ∗
F y

(x, y)H y = ∂ Ez
∂x

(8)

Making some simplifying assumptions as outlined in [12] and following the implementation of the PML as a lossy 
material, these equations become⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

iωε
(

1 + σ (x)
iωε

)(
1 + σ (y)

iωε

)
Ez = ∂ Hx

∂ y − ∂ H y
∂x

iωμ
(

1 + σ (x)
iωε

)−1 (
1 + σ (y)

iωε

)
Hx = − ∂ Ez

∂ y

iωμ
(

1 + σ (x)
iωε

)(
1 + σ (y)

iωε

)−1
H y = ∂ Ez

∂x

(9)

The Hx and H y equations are symmetric. Starting with the Hx equation, we can move the inverted term over to the 
other side, giving

iωμ

(
1 + σ(y)

iωε

)
Hx = −∂ Ez

∂ y
− σ(x)

iωε

∂ Ez

∂ y
.

Distributing everything, we get

iωμHx + σ(y)μ

ε
Hx = −∂ Ez

∂ y
− σ(x)

iωε

∂ Ez

∂ y
.

The first term is a time derivative once brought back to the time domain, the next two are standard terms, and the last 
one represents an integral. Thus, the time domain version of this equation is

μ
∂ Hx

∂t
+ μσ(y)

ε
Hx = −∂ Ez

∂ y
− σ(x)

ε

t∫
∂ Ez

∂ y
(s) ds
0
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When we try to discretize this equation, two terms cause issues. The last term, the integral, is going to need to be 
approximated, but we can use the earlier values of Ez (in particular ∂ Ez

∂ y ) to continually update this integral as a Riemann 
Sum. The other problematic term is the Hx on the left hand side. Every other term in this equation is evaluated at the kth 
time step, but Hx is evaluated at (k + 1/2) time steps. This allowed the easy set up of the Yee Scheme and the staggered 
evaluation of the magnetic and electric fields. In order to get a centered difference approximation, we need the value of Hx

at the kth time step. We can approximate this value by the average of the values of Hx at the (k + 1/2) and (k − 1/2) time 
steps. Carrying out the discretization of this equation and using this approximation for the Hx term, we get

μ

�t
(Hk+1/2

x (i, j + 1/2) − Hk−1/2
x (i, j + 1/2)) + σ(y)μ

2ε
(Hk+1/2

x (i, j + 1/2) + Hk−1/2
x (i, j + 1/2))

= − �t

μ�x
(Ek

z(i, j + 1) − Ek
z(i, j) + σ(x)�t

ε
Icurlx(k))

with

Icurlx(k) = Icurlx(k − 1) + Ek
z(i, j + 1) − Ek

z(i, j).

The other two equations can be handled similarly to get discretized equations. The Ez one is a slightly different, because 
the integral shows up in a different term, but the techniques are the same. This process gives us modified equation that we 
can implement in the computer for modeling this problem.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ik
curlx(i, j) = Ik−1

curlx(i, j) + Ek
z(i, j + 1) − Ek

z(i, j)

Ik
curly(i, j) = Ik−1

curly(i, j) + Ek
z(i + 1, j) − Ek

z(i, j)

Ik
Ez(i, j) = Ik−1

Ez (i, j) + Ek
z(i, j)

Hk+1/2
x (i, j + 1/2) =

(
1− σ (y)�t

2ε

1+ σ (y)�t
2ε

)
Hk−1/2

x (i, j + 1/2)−(
1

1+ σ (y)�t
2ε

)[
�t

μ�x (Ek
z(i, j + 1) − Ek

z(i, j) + σ (x)�t
ε Ik

curlx(i, j))
]

Hk+1/2
y (i + 1/2, j) =

(
1− σ (x)�t

2ε

1+ σ (x)�t
2ε

)
Hk−1/2

y (i + 1/2, j)+(
1

1+ σ (x)�t
2ε

)[
�t

μ�y (Ek
z(i + 1, j) − Ek

z(i, j) + σ (y)�t
ε Ik

curly(i, j))
]

Ek+1
z (i, j) = 1

1+ σ (x)�t
2ε + σ (y)�t

2ε + σ (x)σ (y)(�t)2

ε2

[[
1 − σ (x)�t

2ε − σ (y)�t
2ε

]
Ek

z(i, j)

−σ (x)σ (y)(�t)2

ε2 Ik
Ez(i, j) + �t

ε�x

(
Hk+1/2

y (i + 1/2, j) − Hk+1/2
y (i − 1/2, j))

− �t
ε�y (Hk+1/2

x (i, j + 1/2) − Hk+1/2
x (i, j − 1/2)

)]

(10)

Or, using the array implementation discussed in (5) and noting that we can calculate Icurlx and Icurly from I Ez , these can 
be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Icurlx(i, j) = I Ez(i, j + 1) − I Ez(i, j)

Icurly(i, j) = I Ez(i + 1, j) − I Ez(i, j)

Hx(i, j) =
(

1− σ (y)�t
2ε

1+ σ (y)�t
2ε

)
Hx(i, j) −

(
1

1+ σ (y)�t
2ε

)[
�t

μ�x (Ez(i, j + 1) − Ez(i, j) + σ (x)�t
ε Icurlx(i, j))

]

Hy(i, j) =
(

1− σ (x)�t
2ε

1+ σ (x)�t
2ε

)
Hy(i, j) +

(
1

1+ σ (x)�t
2ε

)[
�t

μ�y (Ez(i + 1, j) − Ez(i, j) + σ (y)�t
ε Icurly(i, j))

]

Ez(i, j) = 1

1+ σ (x)�t
2ε + σ (y)�t

2ε + σ (x)σ (y)(�t)2

ε2

[[
1 − σ (x)�t

2ε − σ (y)�t
2ε

]
Ez(i, j) − σ (x)σ (y)(�t)2

ε2 I Ez(i, j)

+ �t
ε�x (Hy(i, j) − Hy(i − 1, j)) − �t

ε�y (Hx(i, j) − Hx(i, j))

]

I (i, j) = I (i, j) + E (i, j)

(11)
Ez Ez z
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Fig. 4. Diagram of the subpixel smoothing procedure.

Finally, we need to choose what σ is going to be. Following the work in [12], we choose σ so that

σ̄ = σ�t

2ε0

is zero in the interior region and has a cubic turn-on rate as it approaches the boundary. Substituting this in for σ in (11)
gives us a method to model these equations with PML on the boundary. Numerical results for this formulation can be seen 
in Section 6.

4.2. Subpixel smoothing

Another issue that needs to be dealt with in simulating this problem is the fact that the material properties we are 
looking at are discontinuous [3,8]. The fact that the finite difference approximations are “close” to the actual derivatives 
comes from Taylor’s Theorem as in (2). However, if ε is not continuous, then the perpendicular component of the electric 
field at the interface will also be discontinuous, and so we can not apply Taylor’s Theorem with remainder to know that the 
error term is order (�x)2. Therefore, we need a way to make these properties continuous in order to ensure the accuracy 
of our method. We do this by an averaging method.

Assume we want to find the electric permittivity at some point (x, y). We can calculate the value at exactly that point 
(it is either in the object, or it is not), but as (x, y) changes, this function will not vary continuously. In order to make a 
version of the permittivity that is continuous, we construct a square S centered at (x, y) with side length equal to our grid 
spacing in the Yee Scheme. We then define our smoothed permittivity by the average value of the permittivity on S ,

ε̃(x, y) = 1

|S|
∫
S

ε(r, t) dr dt.

If S is entirely contained inside the object, or entirely contained in the free space portion of the room, the value of 
ε̃ will be the same as ε(x, y), which is what we want. However, if the square spans the boundary of the two regions as 
shown in Fig. 4, the value of ε̃ will be somewhere between that of the object and that of free space. This function ε̃ is now 
a continuous function of position, giving us the smoothing that we need to apply Taylor’s Formula to the finite difference 
scheme.

The key assumption in carrying out these calculations is that we are trying to do object detection for things that are 
orders of magnitude larger than our grid size. Thus, we can approximate the boundary of the object by a straight line cutting 
through the square. We want to assign the permittivity value at the center of the square to be the average of the permittivity 
over the entire square. Since we are dealing with uniform space, and a uniform object, this just amounts to finding the area 
of the region of the square contained in the object. A simple geometric calculation gives a fairly straightforward way to do 
this in most cases, assuming that we know what the normal vector to the object is at each point. There are a few cases 
where this method fails, but that can only occur when one region takes up a very small corner of the square. In this case, 
we just set the value of the permittivity to that of the center of the square, ignoring the small error this causes.

5. Object reconstruction

In the previous sections, we have been discussing the forward problem; that is, knowing where the objects and sources 
are, and calculate the value of Ez at every point on the grid. The more interesting problem, specifically for through-the-wall 
imaging, is the inverse problem. For this case, we assume that we know the size and shape of the room, but nothing 
about the object inside. From the scattering data, we want to locate and characterize the object in the room. To make this 
simulation more applicable to a physical scenario, we will also assume that we can only gather scattering data at a finite 
number of points on the outside of the room: a finite number of receivers placed in appropriate locations.
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Fig. 5. Illustration of the ellipse procedure.

5.1. Object location

Since we know the shape and size of the room, we can use our calculations from the forward problem to calculate 
what the wave propagation would look like in an empty room. The only difference between the empty room and the data 
gathered by the receivers is the presence of the object. Therefore, the difference between the empty room data and the data 
on the receivers is due to the object inside the room. Since Maxwell’s Equations (and wave equations in general) have finite 
speed of propagation, we can use the first moment in time that the receiver data differs from the empty room calculations 
to determine how far the object is away from the source and receiver, assuming that the wave front that hits the object and 
returns to the receiver travels in straight lines as shown in Fig. 5. The black line shows the actual path the wave traveled, 
and the thinner orange lines show other possible paths that have the same length.

If we find the first difference was observed at a time T , then the nominal distance the wave traveled is given by cT , 
where c = 1√

ε0μ0
is the speed of light in the room. However, since the wave also passes through a wall with a relative 

electric permittivity εw , the speed of light is slower in that region. Therefore, this time needs to be adjusted. Since the 
speed of light goes as 1√

εr
, we know that the speed the wave traveled inside the wall is given by c0/

√
εw . Thus, the total 

distance traveled by the wave can be calculated as

d = tout · c0 + tin · c0√
εw

where tout denotes the time spent outside of the wall (in free space), and tin is the time spent within the wall. However, 
we know tout + tin = T , and tin ≈ 2 ∗ h/(c0/

√
εw ) where h is the thickness of the wall, since the wave passes through the 

wall twice, on the way out and returning to the receiver. This approximation ignores the fact that the wave is most likely 
going to pass through the wall at an angle, but since we don’t know where the object is, we have no way to adjust for this. 
Plugging this in and simplifying gives that

d = T · c0 + 2 · h · (1 − √
εw).

This distance d lets us construct an ellipse with foci at the source and receiver to which the object must be externally 
tangent. Creating these ellipses for each pair of source/receiver data gives an approximate outline as to where the object is. 
However, the accuracy of our reconstruction is limited by the range resolution of our radar scheme. In this case, standard 
calculations give that the resolution is around 5 cm, since we use a 600 MHz wave with a pulse length of 2 cycles. Depend-
ing on the physical situation being modeled, this error may be insignificant, particularly if we are looking to identify objects 
on a meter scale. From the data at one receiver, it is not possible to determine where on the ellipse the wave bounced 
back from, but by combining the data from multiple ellipses, we can get an idea of where the object is, as we will see in 
Section 6.

5.2. Object characterization

Once these ellipses have been drawn, it is possible to get a rough idea of the shape and size of the object. To do this, 
we look for the ‘center’ of the object, and try to find the point on each ellipse that is closest to that center. In general, 
this could be the center of mass of the object, but we are basically looking for some point contained inside the domain 
of the object. The basic idea of this process is similar to a trilateration procedure. In the standard method, knowing the 
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Fig. 6. Illustrations for the iterative method for finding the center of an object. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

distance of each receiver to the object allows circles or spheres to be constructed. The object must be on all of the spheres, 
so their intersection points give the possible options for the location of the object. In the particular case we have here, the 
source and receiver are in two distinct places, which means that instead of circles, we generate ellipses. Since the object 
is significantly larger than the wavelength and we calculated distance to the outside edge of the object, the distance data 
we obtain does not all refer to the same point. Therefore, we need to carry out this sort of averaging procedure to find an 
approximation to a single reference point that we can use to pick the desired points on each ellipse. In order to find this 
point, we use an iterative method.

1. Make a guess for the center point. The initial guess is the center of the room.
2. Calculate the closest point on each ellipse to the current center point guess.
3. Average the x and y coordinates of these closest points to get a new guess for the center point.
4. Repeat this procedure from step 2 until the center points converge to within a desired accuracy.

This method is fairly successful at getting close to the center point. Assume our object O is a convex domain in the 
room. If, in the ideal case, our selected point on each ellipse is the point of tangency with the boundary of O , our new 
guess for the center point, defined as the average of the x and y coordinates of these selected points, will be inside of O
by convexity. Since the ellipses are also convex, the two domains can only touch in at most one point, so the ‘closest’ point 
on the ellipse to this new center will be fairly close to the actual point of tangency. Since the points on the ellipses didn’t 
move much, the new center point can not move very far either, as illustrated in Fig. 6. In this figure, the green points are 
the points of tangency with the ellipses. In the first, the black point is the average of the darker green points. In the second, 
the black is a previous guess for the center point, and the lighter yellow points are the closest points on the ellipses to 
it. As can be seen here, the yellow points are fairly close to the green points, and this holds for any guessed center point 
within O . Thus, once the center point gets inside the object O , it remains fairly constant.

On the other hand, assume we start with a center point far away from O . This point will most likely be contained in 
several of the ellipses, so they will have ‘closest’ points in random positions around the curve. However, there are also other 
ellipses that are very far away from this point, because they made contact with the far side of O , and do not extend to this 
side. The point on this ellipse may or may not be close to the point of tangency with O , but it lies on the opposite side 
of O . Therefore, the average will be pulled towards O , assuming that the set of sources and receivers is fairly well spaced 
around the object.

Thus, the iterative process defined above has the potential to converge to a point inside of O , where the “closest points” 
on each ellipse are fairly close to the tangency points with O . More interestingly, these “closest points” give a reasonable 
outline of the object, allowing us to see what the object looks like from this data. Whether or not we find the actual center 
of the object and how close we get to the boundary of O depends on the set of sources and receivers. For example, if there 
is no data from the top side of the object, this method will have no reason to move the center point closer to the top side, 
because there is nothing pulling it that way. This may result in skewed results, but the system works well if there is data 
coming from all sides.

As shown in the numerical results, this procedure gets us fairly close to the actual center point of the object, as well as 
give a decent outline of the object, providing an approximation to its shape.

6. Numerical results

For these numerical calculations, we will take our room to be 4 m × 3 m, surrounded by concrete walls of thickness 
0.15 m, with relative permittivity εw = 5. The object in the room will be of varied sizes and shapes, with εo = 80. The 
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Fig. 7. Perfectly Matched Layers on the boundary prevent the edges of the computation domain from causing extra reflections.

source will be monochromatic with ω = 600 MHz, and will be a pulse wave, emitting two full cycles of the wave before 
turning off.

6.1. Forward problem calculations

First, we demonstrate the forward problem solver. Fig. 7 shows a toy problem with and without the implementation 
of the Perfectly Matched Layers scheme derived in Section 4.1. In an ideal case, the waves would be perfectly spherical, 
because they radiate off to infinity. This is attained in the images with PML, but far from the case when PML is not used.

Figs. 8 and 9 show the forward problem wave propagation once we have set up the walls of the room. Fig. 8 shows 
a room with nothing in it, while Fig. 9 has a circular object in the room. The walls of the room are the two rectangles 
outlined in red, and the circular object (if present) is shown with a cyan outline.

6.2. Inverse problem calculations

With the forward solver verified, we now look to solve the inverse problem. Using the method from Section 5, Fig. 10
shows the ellipse generated from a single source/receiver pair.

In Fig. 10 and the rest of the figures in this section, the walls of the room are outlined in red and the object, if drawn, is 
in cyan. Ellipses from the reconstruction method are shown in a dashed blue line. Sources will be drawn in green dots, and 
receivers will be black. From this single picture alone, we know that the object should be externally tangent to this ellipse. 
However, at this point, we do not know where on the ellipse the object is. By adding in more sources and receivers, we 
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Fig. 8. Wave propagation in an empty room.

Fig. 9. Wave propagation in a room with a circular object. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

Fig. 10. A single ellipse drawn with the reconstruction algorithm. The ellipse is almost tangent to the object, within a small amount of error.



544 M. Charnley, A. Wood / Journal of Computational Physics 313 (2016) 532–548
Fig. 11. Object reconstruction algorithm. The ellipses are all close to being externally tangent to the object, giving an idea of where the object has to be.

Fig. 12. All of the ellipses from Fig. 11 in one image. The set of ellipses encircles the object, so we have a good idea of where it is.

can get a better idea of this. Fig. 11 shows the ellipses constructed from a set of four receivers on each side of the room. 
Combining all of these together gives an idea of where the object is in the room.

Fig. 12 combines the pictures from Fig. 11 to show the ellipses surrounding the object, telling us almost exactly where 
the object is.

Although it is easy for us to see where the object is given this pictures, it still remains to have the program figure out 
where it is. Applying the methods in Section 5.2 allow us to do this. Fig. 13 outlines this process, starting from the initial 
guess in the center of the room and the closest points on each ellipse to it. After the iteration procedure, it can be seen that 
the “closest points” found by the algorithm line up fairly well with the circular object that was used for the simulation.
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Fig. 13. Object reconstruction procedure for a circular object.

Fig. 14. Object reconstruction algorithm for a larger, circular object.

Seeing the success of this method, we extend to several different situations. Fig. 14 does the reconstruction procedure 
on a larger circular object. Fig. 15 does the same process on a square object, and Figs. 16 and 17 use triangular objects for 
the reconstruction. For these figures, we only show the set of “closest points” found at the end of the iteration procedure 
and how closely they line up with the actual object being imaged.
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Fig. 15. Object reconstruction algorithm for a square object.

Fig. 16. Object reconstruction algorithm for a small triangular object.

Fig. 17. Object reconstruction algorithm for a large triangular object.
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Fig. 18. All ellipses for the large triangle reconstruction, with closest points marked.

As can be seen in these images, the circles and squares are reconstructed fairly accurately, but the triangular region has 
some issues. This can be attributed to the sharp corners on the triangle and the length of the line segments in the large 
triangle. Fig. 18 shows the final set of ellipses constructed for the triangle algorithm, along with the “closest points” to 
the approximated center. As can be seen, the ellipses that are tangent to the triangle at either of the bottom corners have 
different points, marked in red, that are closer in absolute distance to the center point than the corresponding corner of the 
triangle. A different method would be needed to find the boundary of the triangle, and the same method could probably be 
used to improve the reconstruction of the square as well.

7. Conclusion

Inverse problems are an important area of research in physics and engineering, and this paper presents a numerical 
reconstruction method to approximate a solution to one of these problems. We first construct a numerical algorithm to 
solve the forward problem of electromagnetic scattering in a 2-dimensional room. Implementing Perfectly Matched Layers 
and a subpixel smoothing method allows the truncation of the computation domain and the presence of discontinuities in 
the permittivity to have little to no effect on the accuracy of the numerical simulation. Using this forward problem solver, 
we construct the inverse problem solution using the difference from collected radar data and the solution to the forward 
problem in an empty room. In using this method, we have seen that objects of different shapes and sizes show up differently 
in this method, and the results are fairly consistent with the objects being analyzed. Therefore, we have developed a reliable 
method of using radar data to discover and analyze objects of several different shapes in a through-the-wall setting for TM 
waves. In order to extend this to the full 3-dimensional case, this code will need to be modified, both to extend to a 
3-dimensional problem, but also to implement TEM waves. For other shapes, a new method will be needed to reconstruct 
points on the boundary of the object. Of particular interest moving forward would be the problem of characterizing the 
permittivity of the object from collected radar data. This analysis would allow for a full characterization of a single object 
in a through-the-wall system.
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