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Sheared E × B flow in a tokamak, driven by external torque from neutral beam injection, 
is known to have an important stabilizing effect on drift-wave turbulence. In gyrokinetic 
codes, flow shear can be implemented directly on a radial mesh with nonperiodic boundary 
conditions. The mesh-based implementation is straightforward, but carries the possibility 
of spurious effects related to simulation boundaries. Alternatively, flow shear has been 
implemented in spectral solvers using a wavenumber shift method. Although the spectral 
representation has numerous computational benefits, the wavenumber shift method for 
treating flow shear is of questionable accuracy. Efforts to compare mesh-based solutions 
with spectral ones have met with limited success. In particular, significant differences in 
the critical shear required to stabilize turbulence are sometimes observed. We outline a 
new approach to treat flow shear spectrally. The method is simple to implement, matches 
the nonperiodic results more closely, and predicts a critical shear that is less sensitive to 
radial wavenumber resolution.

© 2017 Published by Elsevier Inc.

1. Introduction and background

1.1. History

External torque from neutral beam injection in tokamak plasmas can produce toroidal rotation velocities comparable 
to the ion sound speed. The radial variation (shear) in the corresponding E × B velocity is known to have an important 
stabilizing effect on drift-wave turbulence, thereby improving tokamak confinement. The importance of including this effect 
in nonlinear simulations of tokamak turbulence has long been known [1–5]. However, the way the effect is implemented 
depends on the simulation type; this can be either a radially-nonperiodic annulus [6], or a radially-periodic flux-tube [7]. In 
the former case, the shearing can be calculated simply and directly on a radial mesh with nonperiodic boundary conditions, 
such that calculated fluxes converge as the mesh is refined. In the latter case, however, the situation is more complicated. 
To understand the nature of this complication, note first that spectral flux-tube gyrokinetic solvers are computationally 
very efficient for certain problems since they work directly in wavenumber space and employ periodic radial and toroidal 
boundary conditions. In particular, simulations that require simultaneous resolution of electron-scale and ion-scale turbu-
lence [8,9] benefit greatly from spectral algorithms. Unfortunately, periodic radial boundary conditions are fundamentally 
incompatible with flow shear. The standard method (herein called the wavenumber-shift method, and elsewhere called the 
wavenumber-remapping method [10]) gets around this problem by making use of the fact that toroidal harmonics return to 
radial periodicity at integer multiples of a critical time [11,12]. For a fixed radial domain size, however, the discretization 
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error is fixed and cannot be reduced by resolving higher wavenumbers. Thus, proving convergence via mesh refinement 
is not possible. Efforts to compare results from real-space and spectral implementations have been minimal, and in some 
cases significant differences in predictions of the critical shearing rate to stabilize turbulence have been observed [10,13]. 
In this work, we outline a new approach to the spectral shearing method that is very simple to implement, matches the 
global method more closely for a standard nonlinear test case, and predicts a critical shear that is relatively insensitive to 
wavenumber resolution.

1.2. Theoretical considerations

In the recursive formulation of nonlinear electromagnetic gyrokinetic theory [14,15], fluctuations are represented in 
eikonal (ballooning) form as

ha(R) =
∑
k⊥

eiSk(R,t)ha,k⊥ , (1)

where k⊥
.= ∇⊥Sk is the perpendicular wavenumber, R is the location of a gyrocenter, and a is the species index. When the 

plasma has a flow velocity V0, the eikonal becomes time dependent [16,2,14,15], such that

∂Sk

∂t
= −k⊥ · V0 . (2)

In a tokamak, any mean flow on the order of a thermal ion velocity must be purely toroidal and of the form V0 =
R2ω0(ψ)∇ϕ [17]. In terms of the nonrotating part of the eikonal, Sk(0), we have

Sk(t) = Sk(0) + nω0t , (3)

k⊥(t) = k⊥(0) + n∇r
∂ω0

∂r
t , (4)

where n .= −R2k⊥ · ∇ϕ , and r is the midplane minor radius (the half-width of the flux surface at the elevation of the 
centroid [18]). In this paper, we use the non-orthogonal field-aligned coordinate system (ψ, θ, α) together with the Clebsch 
representation for the magnetic field [19], B = ∇α × ∇ψ . Here, α .= ϕ + ν(ψ, θ), where ϕ is the toroidal angle, ψ is the 
poloidal flux divided by 2π , and θ is the poloidal angle. The safety factor, q, is defined as

q(ψ)
.= 1

2π

2πˆ

0

B · ∇ϕ

B · ∇θ
dθ = 1

2π

2πˆ

0

(
−∂ν

∂θ

)
dθ = ν(ψ,0) − ν(ψ,2π)

2π
. (5)

With these results, the eikonal can be put into a more useful and intuitive form by introducing the poloidal wavenumber
kθ = nq/r and the Waltz shearing rate [1],

γE
.= − r

q

dω0

dr
, (6)

to yield

Sk(t) = Sk(0) + nω0(r0)t − (r − r0)kθγEt , (7)

k⊥(t) = k⊥(0) − ∇rkθγEt . (8)

To arrive at this result, we have expanded the rotation frequency ω0 about the center of the simulation domain r = r0:

ω0 ∼ ω0(r0) +
[

dω0

dr

]
r=r0

(r − r0) . (9)

In what follows we will neglect the ω0(r0) term in Eq. (7) since it represents a simple Doppler shift in the frequency.

2. Periodic and nonperiodic series

For numerical simulation, fluctuations for plasma species a can in principle be decomposed using an explicit double 
Fourier series with time-dependent eikonal

ha(x,α, t) = f0a

N∑ M∑
eipxe−ixγste−inα ĥa(n, p, t) . (10)
n=−N p=−M
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This representation implies Sk(t) = (p −γst)x −nα. However, in practice this decomposition is not used; rather, an expansion 
in terms of a time-independent eikonal is preferred

ha(x,α, t) = f0a

N∑
n=−N

M∑
p=−M

eipxe−inα h̃a(n, p, t) , (11)

where Sk(0) = px − nα. In these expressions, f0a is the zeroth-order equilibrium Maxwellian distribution for species a. The 
time-independent representation in Eq. (11) is clarified further in Section 3 of Ref. [20]. In both Eqs. (10) and (11), we have 
defined an angular radial variable x = 2π(r − r0)/L ∈ [0, 2π), where L is the radial width of the simulation domain. The 
domain shearing rate, defined as

γs
.= kθ L

2π
γE , (12)

increases as L is increased at fixed shearing rate. Inspection of Eq. (10) indicates that the shear flow manifests itself as an 
apparent time-dependence of the radial wavenumber: p −γst . The presence of shear flow makes ha(x, α, t) nonperiodic in x
and significantly complicates the approach to numerical simulation. Note however that if one transforms to a frame moving 
with the flow, x′ = x, α′ = α + x(γs/n)t , then Eq. (10) can be interpreted as a periodic representation in the moving coordi-
nates. Working in this periodic, moving frame is the basis of the popular method, developed by Rogallo [21], for simulating 
homogeneous turbulent shear flow in fluids. In Rogallo’s approach, the time-dependent wavenumber is retained in the fluid 
equations, and the system periodically remeshed in order to counteract the deformation of the moving frame with respect 
to the stationary frame. In Fourier space, the remeshing is equivalent to shifting wavenumbers [22]. We will describe this 
shifting approach in more detail below. Because the remeshing step can lead to a significant loss of turbulent kinetic energy 
in fluid simulations, sometimes the remeshing is avoided and the simulation carried out in the highly-deformed sheared 
coordinates.

Ultimately, Eqs. (10) and (11) represent two fundamentally different representations for the distribution; the former is 
nonperiodic in x, whereas the latter is periodic. To clarify the differences, we summarize the various representations of the 
nonlinear gyrokinetic equation. First, the real-space form is written symbolically as

Real-space, nonperiodic with flow:
∂ha

∂t
= ixγsha + G , (13)

where G represents the total righthand side of the nonlinear gyrokinetic equation. The effect of flow in this case is included 
explicitly as a nonperodic shearing term ixγsha , and the solution ha is a nonperiodic function. When writing the equation 
in this form, the principle difficulty is related to development of efficient boundary conditions (see Chapter 7, Ref. [23]), 
whereas treatment of the shearing term itself is straightforward. The spectral gyrokinetic equation with shear flow, based on 
the expansion in Eq. (10), takes the symbolic form

Spectral, nonperiodic with flow:
∂ĥa

∂t
= G(n, p − γst, ĥa) . (14)

To clarify the meaning of this equation, we emphasize that no explicit shearing term appears in G; instead, the effect of 
flow shear is captured entirely by the time-dependent wavenumber. This representation has been used with success for the 
short-time simulation of ordinary fluids by Brucker [24], with negligible added cost required to implement a time-dependent 
wavenumber in the Navier–Stokes equations. Unfortunately, due to their complexity, existing flux-tube gyrokinetic solvers 
have only been formulated using some variation of the periodic, time-independent spectral representation, Eq. (11). Cer-
tainly, the case without shear can be treated this way by solving the equation

Spectral, periodic without flow:
∂h̃a

∂t
= G(n, p, h̃a) . (15)

The above form, Eq. (15), describes the way that CGYRO is formulated, as written in Eq. (57) of Ref. [20]. We can make 
contact with Ref. [20] by writing(

a

cs

)
G(n, p, h̃a)

.= i
(
�θ + �ξ + �d

)
H̃a + i�∗
̃a − 2πa

L

qρs

r
h̃a ∗ 
̃a + a

cs

∑
b

C L
ab

(
H̃a, H̃b

)
, (16)

where cs = √
Te/mD is the deuteron sound speed, Te is the electron temperature, and mD is the deuteron mass. Explicit 

forms for H̃a , �θ , �ξ , �d, �∗ , 
̃a , C L
ab and ∗ (a generalized convolution) are given in Ref. [20].

So, the situation presents a conundrum: in the limit of no flow shear, numerical gyrokinetic solvers for the spectral 
equations are relatively simple, have low truncation error, and are free of complex, artificial radial boundary conditions. 
Conversely, flow shear can be represented spectrally in a conceptually simple way using the time-dependent wavenumber 
p − γst , but a direct numerical implementation is judged to be computationally prohibitive. For example, many expensive 
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function evaluations which are normally precomputed would need to be recalculated every timestep. For this reason, no 
codes (to our knowledge) implement a time-dependent wavenumber in G . Early particle-in-cell simulations by Dimits [3]
employed sheared coordinates to treat equilibrium flow, but with a nonspectral representation in real space.

2.1. Existing global implementations on a radial mesh

As previously explained, if the equations are solved on a radial mesh using nonperiodic boundary conditions, it is 
straightforward to implement the shear explicitly as in Eq. (13). This is the numerical approach used in GYRO [6] and 
more recently in GKW [25]. A significant number of nonlinear simulations were carried out using the nonperiodic GYRO 
implementation by Kinsey [26,27] in order to inform the development of an E × B shear quench rule for the TGLF model 
[28].

2.2. Wavenumber shift method

As noted above, retaining the time-dependent wavenumber p −γst in G would in principle allow solution of the problem. 
Indeed, the time-dependent wavenumber approach has been used with success to treat homogeneous turbulent shear flow 
in ordinary fluids [24], but as we have noted, it would introduce a significant computational expense to existing flux-tube 
gyrokinetic codes. For example, all k⊥-dependent terms, particularly the Bessel functions associated with gyroaveraging, 
would need to be recomputed for every timestep. For this reason, the shearing is normally implemented using an approxi-
mate wavenumber shift method developed by Hammett and coworkers [11]. The shift method makes use of the observation 
that the system will return to periodicity after a time �t = 1/γs . To implement this approach, we note at time t = 0, the 
radial dependence for a single value of n is∑

p

ĥ(n, p,0)eipx . (17)

After a time �t , the system evolves to∑
p

ĥ(n, p,�t)eipxe−ixγs�t =
∑

p

ĥ(n, p,�t)ei(p−1)x =
∑

p

ĥ(n, p + 1,�t)eipx. (18)

Thus, after a time �t , the (p + 1)th amplitude has both evolved according to Eq. (14) and shifted into the position of the 
pth amplitude. The essence of the wavenumber shift method is to account for this shift, but to approximate G(n, p − γst, ̂h)

by G(n, p, ̂h) for 0 ≤ t ≤ 1/γs . In other words, the time-dependence of k⊥ in G is ignored, and wavenumbers are shifted 
after each �t time interval (i.e., a Rogallo-type remesh but neglecting the time-dependent wavenumber in G). The boundary 
conditions to be applied after each shift are ̂h(n, p, t) = 0 for |p| > M . This algorithm is simple to implement and imposes 
a negligible cost on the simulation. Unfortunately, it is not possible to demonstrate convergence of this algorithm using 
standard mesh-refinement techniques. One can approach the continuum limit only by taking L → ∞, whereas at finite L
there is a fixed, irreducible error. No rigorous error analysis has been attempted, thus the hope is that the dominant effect 
of shear is captured by the amplitude shift while neglect of the time-dependence of the wavenumber represents a relatively 
smaller error.

The wavenumber shift method has been previously implemented in numerous flux-tube codes including GKW [12], GS2 
[29,30] and GENE [31], and subsequently employed for physics studies [32,10,33]. Although some work has been done to 
assess the accuracy of the method, no definitive analysis of the properties of the algorithm has been published. The most 
detailed numerical studies have been carried out by Casson [10] who presents numerous radial and binormal resolution 
scans. The key findings are: (a) the critical shear at which turbulence is quenched varies significantly as binormal resolution 
is changed, (b) the agreement between global GYRO and flux-tube GKW results is marginal.

We remark that the shift method has an additional negative aspect; namely, that the time-history of simulations is 
discontinuous due to the discrete nature of the shift algorithm. This means that time-dependent curves of fluctuations, 
transport coefficients, simulation error, etc, will show small discontinuities at times where the shifts are implemented. 
Nevertheless, Fig. 1 indicates that the method is in reasonably good agreement with GYRO. Specifically, plots of the ion 
energy flux, Q i , and ion momentum flux, �i , versus shearing rate γE are shown, comparing global GYRO simulations (with 
nonperiodic boundary conditions) with flux-tube CGYRO simulations (with the wavenumber shift method). We give the 
general definitions of the various fluxes in Appendix A, and summarize the nonlinear simulation parameters in Appendix B. 
The shift method is shown to perform well for intermediate shearing rates, but exhibits a spurious increase in Q i at low 
shearing rate and overestimates the turbulence quench point at high shearing rate. The overestimate of the location of the 
quench point has previously been observed by Casson (see Fig. 4 of Ref. [10]). As Casson has also shown, and we have 
verified, the flux will eventually collapse. However, the critical shear for this collapse is highly dependent on resolution 
and for this reason we do not extend the plot out to the quench point. Hammett [11] asserts that the method should be 
well-converged if γE � γL , where γL is a measure of the linear growth rate. This estimate is consistent with the increasing 
discrepancy in Q i (see Fig. 1) as γE → 0. The momentum flux trend is well-reproduced by the wavenumber-shift method, 
but the magnitude is about 20% higher than the GYRO prediction. We believe it is more likely that these differences are due 
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Fig. 1. Ion energy flux, Q i , and ion momentum flux, �i , versus shearing rate γE for the GA standard case parameters [1] (see Appendix B). Reference global 
GYRO simulations with nonperiodic boundary conditions are shown in black. Flux-tube CGYRO simulations with the wavenumber shift (Hammett) method 
are shown in blue. The latter agree very well with GYRO for intermediate shearing rates, but exhibit a spurious increase in Q i at low shearing rate, and 
over-estimate the quench point at high shearing rate. The momentum flux trend is well-reproduced by the wavenumber-shift method, but the magnitude 
is about 20% higher than the GYRO prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

to inaccuracies of the shift method rather than inaccuracies in the GYRO solution. This is a speculation that we will attempt 
to further justify.

3. A new wavenumber advection method

As an alternative to the wavenumber shift method, we wish to treat the shearing term explicitly, in the spirit of the non-
periodic real-space formulation of Eq. (13), but using the spectral, time-independent representation of fluctuations defined 
in Eq. (11). We do this by employing a periodization of the nonperiodic function x. Then we can write a periodic spectral 
GK equation with flow shear as

Spectral, periodic with flow:
∂h̃a

∂t
= iγs Xh̃a + G(n, p, h̃a) . (19)

The operator X is defined in accordance with a real-space sine series

x ∼ xP(x)
.= 2

∑
k

ak sin(kx) , (20)

where xP(x) is the periodized shearing profile. According to this periodization, the spectral shearing operator is

i Xh̃(p)
.=

∑
k

ak
[̃
h(p − k) − h̃(p + k)

]
, (21)

where above, and hereafter, we suppress dependence on the species and toroidal wavenumber. Symbolically, X is repre-
sented as an antisymmetric matrix, whereas in a numerical simulation it is implemented in the same way as a finite-
difference stencil.

3.1. Taylor methods

It now remains to determine the optimal choice for the coefficients ak . The simplest approach is to choose the ak so that 
the Taylor expansion of

x − 2a1 sin(x) + 2a2 sin(2x) + 2a3 sin(3x) + · · · (22)

about x = 0 vanishes to a given order. Choosing a1 = 1/2 and ak = 0 for k > 1 generates the 2nd-order Taylor method,

∂h̃(p)

∂t
+ γs

2

[̃
h(p + 1) − h̃(p − 1)

] = G(p) . (23)

It is interesting to note that this is equivalent to the 2nd-order centered difference approximation to the continuous one-way 
wave equation
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Fig. 2. Periodized shearing functions, xP, as defined in Eq. (20). Plot (a) shows the 2nd (red) and 4th (blue) order Taylor approximations, and plot (b) shows 
the 1-term (red) and 2-term (blue) Fourier triangle approximation. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

∂h̃

∂t
+ γs

∂h̃

∂ p
= G(p) . (24)

More generally, matching the Taylor polynomials to successively higher order gives difference equations which are the exact 
analogs of higher-order finite-difference discretizations to the continuous one-way wave equation. For example, matching 
up to O(x3) gives a1 = 2/3 and a2 = −1/12, which is the 4th-order Taylor method, or equivalently the 4th-order centered 
difference approximation to the continuous wave equation. We plot the periodized functions xP(x) for the 2nd and 4th-
order Taylor approximations in Fig. 2. Although the approach might appear promising, nonlinear simulations indicate that 
the Taylor methods, instead of converging with order, give progressively greater suppression of transport as the order is 
increased. The 6th and higher-order methods perform badly and thus Taylor methods are not recommended.

3.2. Triangle methods

As an alternative to the Taylor methods – and motivated by the known result that the stabilization of turbulence is 
insensitive to the sign of γs (when the linear spectrum is symmetric in p) [34] – we set xP equal to the partial Fourier-series 
representation of a triangle wave, T (x), where

T (x) =
∑

k=1,3,5,...

4

πk2
sin(kx) . (25)

The triangle wave has constant magnitude of the shearing rate, namely |dT /dx| = 1 (except at the corners) but is periodic 
and continuous. The series convergence is also rapid and, because the underlying function is continuous, there is no Gibbs 
phenomenon. Thus, in a qualitative sense, the triangle method represents two simulations: one with positive shear and 
one with negative shear. However, as we will discuss shortly, some long-range correlations are induced by zonal flows. 
Proceeding, we can numerically implement the 1-term triangle method according to

∂h̃(p)

∂t
+ 2γs

π

[̃
h(p + 1) − h̃(p − 1)

] = G(p) . (26)

Comparison with Eq. (23) shows that the 1-term triangle method is equivalent to the 2nd-order Taylor method, but with an 
effective shearing rate of (4/π)γs 
 1.27 γs . The 2-term triangle method takes the form

∂h̃(p)

∂t
+ 2γs

π

[̃
h(p + 1) − h̃(p − 1)

] − 2γs

9π

[̃
h(p + 3) − h̃(p − 3)

] = G(p) . (27)

Because retaining only 2 terms in the Fourier series yields a very good global approximation to T (x), as shown in Fig. 2, our 
expectation is that the 2-term triangle method will be sufficient for simulation purposes. This limitation serves to avoid ex-
cessively wide difference stencils, and also to ensure that the shearing is driven by only the two longest (equilibrium-scale) 
waves in the system. Nonlinear tests (not shown) yield very minor differences between 2 and 3-term results. However, 
before showing numerical results for the triangle method, further modifications are required. Implementation of the new 
advection term has roughly the same computational requirements as implementing the wavenumber-shift method. As long 
as wavenumbers are not distributed in memory (i.e., by MPI), the added computational cost is insignificant.

3.3. Momentum transport and zonal mode filtering

With a straightforward implementation of the triangle method, the calculation of energy flux is relatively accurate. 
This was an a priori expectation since, as discussed in the previous section, the energy flux is insensitive to the sign 
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Fig. 3. Illustration of radial dependence of energy and momentum fluxes for shearing rate γE = 0.1. The green shaded zone shows the physical shearing 
region. Green horizontal lines show the full-domain averages. For the momentum flux, we estimate the value over physical region using the overshoot 
method; namely, the amplitude of the cos x component of the flux divided by 4/π . This value is shown in red. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

of γE (it is exactly invariant for the simple up-down-symmetric flux-surface shape studied here). However, the sign of the 
E × B-shear-generated momentum flux depends on the sign of γE [34,35], so simulations with the triangle method give rise 
to profiles of momentum flux with the correct sign over half of the simulation domain, and the opposite sign over the other 
half; that is, with an approximate cos x shape. While one could compute the momentum flux by a partial-domain average 
(for example, an average over the region x ∈ [−0.2, 0.2]), we can alternatively use an approximation based on the Fourier 
triangle expansion. Since the derivative of the triangle function is the step function, we expect that the cos x part of the flux 
will overshoot the total flux by the correction factor 4/π of Sec. 3.2. The average as determined by the overshoot estimate 
is illustrated in Fig. 3. We also computed the momentum flux by partial-domain average and the result is within 2% of the 
overshoot method. The formal approach used to compute radially-dependent fluxes is outlined in Appendix A.

Numerical simulations indicate that the partial domain average will yield the correct γE -driven momentum flux, but only 
in the limit of very large domain sizes L – much larger than that required to obtain a well-converged energy flux. The need 
for excessively large L is related to excitation of the two longest-wavelength zonal harmonics: (n, p) = (0, ±1). In unsheared 
flux-tube simulations that are converged with respect to box size, these modes represent negligible long-scale correlations. 
Thus the filtering process prevents spurious generation of these modes. The filter we propose will typically give rise to only 
a small correction to the momentum flux. The method modifies the equations for (n, p) = (0, 1) and (0, −1) according to

∂h̃a(0,1, t)

∂t
+ η |γE | [̃ha(0,1, t) − h̃a(0,−1, t)

] = G(0,1, h̃a) , (28)

∂h̃a(0,−1, t)

∂t
+ η |γE | [̃ha(0,−1, t) − h̃a(0,1, t)

] = G(0,−1, h̃a) , (29)

where ̃ha = h̃a(n, p, t). The damping terms can be implemented straightforwardly using the same time integrator as for the 
unsheared part of the problem, with no need for operator splitting or other techniques. With this correction, one can fol-
low the standard box-size convergence tests required by standard gyrokinetics. Note that the E × B shearing term does not 
appear in Eqs. (28) or (29) because γs = 0 for n = 0. Subtracting the two equations shows that only the longest-wavelength 
antisymmetric zonal mode is damped. We find that a scaling parameter η = 0.2 is adequate, and results essentially invari-
ant for η > 0.2. With this zonal-damping correction implemented, the agreement between GYRO (global nonperiodic) and 
CGYRO (spectral periodic) – for both the energy and momentum fluxes – is excellent, as shown in Fig. 4. Note that for the 
chosen domain size, the periodic CGYRO simulations give a slightly larger flux than the nonperiodic GYRO simulations at 
γE = 0. The nominal interpretation is that there is a small amount of spurious shear in the GYRO simulations due to the 
nonperiodic boundary conditions. This effect is quickly washed away as γE increases.

For realistic tokamak parameters, the γE -driven momentum flux is significantly smaller than that driven by the parallel 
velocity shear, γp [34]. Moreover, the shear γp is easily implemented in a periodic flux-tube with usual methods. Similarly, 
momentum flux can also be driven by up-down asymmetric flux-surface geometry, as well as other rotation terms like 
the Coriolis drift and centrifugal force. Although these added terms will predominantly introduce a radially-constant offset 
to the momentum flux, there are subtle aspects to the dynamics that preclude use of the overshoot method. Thus the 
partial-domain average should be used in the general case for computing fluxes in all transport channels. Although we have 
verified the accurate performance of the present scheme for finite γp by comparison with GYRO, we defer presentation of 
the results to a subsequent publication.
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Fig. 4. Ion energy flux, Q i , and ion momentum flux, �i , versus shearing rate γE for the GA standard case parameters. Reference global GYRO simulations 
with nonperiodic boundary conditions are shown in black. Flux-tube CGYRO simulations with the 2-term triangle method are shown in magenta. Both the 
momentum and energy fluxes are in good agreement despite the use of different codes and significantly different algorithms and boundary conditions. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.4. Sawtooth method

For completeness, we note that yet another – perhaps obvious – choice would be to replace x by its periodic extension; 
that is, to choose a sawtooth wave as the periodization xP(x). In fact, the sawtooth representation is not new and has been 
considered in theoretical treatments of the shear stabilization problem [36] and also implemented in nonlinear gyrofluid 
simulations [1]. While the sawtooth wave has the virtue of maintaining a single sign of the shear over most of the domain, 
it introduces a region of very high shear at the point of discontinuity. Moreover, the Fourier series for a sawtooth wave con-
verges slowly (the coefficients decay as ak ∼ 1/k because of the discontinuity) and the waveform exhibits Gibbs phenomena 
there. When applied to the GA standard case, the sawtooth representation gives far too much turbulence stabilization. More 
specifically, for the nonlinear case of Fig. 1, the sawtooth method leads to complete stabilization by γE = 0.1. This is a 
significant error and indicates the sawtooth method should not be used.

4. Summary

The wavenumber advection method described in this work offers a new approach for the inclusion of E × B shear in 
flux-tube simulation of tokamak plasmas. By treating the shear explicitly as a difference operator on the discrete wavenum-
ber grid, the effect of shear can be included simply and accurately. The method overcomes three principal disadvantages 
of the existing wavenumber shift method. First, a spurious increase in flux at low E × B shear seems to be eliminated; 
second, the value of γE at which turbulence is fully quenched is in better agreement with nonperiodic simulations; and 
third, discontinuities in the time-history of the simulation are eliminated. The last result is critical if one wishes to integrate 
the gyrokinetic equations with a linear multi-step time integrator. We recommend the 2-term triangle method, Eq. (27), 
because it strikes a good balance between accuracy and a compact stencil width.

Not only is the method suitable for the simulation of electric field shear, but the method can, in principle, be directly 
adapted to the simulation of shear in the temperature and density profiles [35] – stabilizing mechanisms which may be 
important for pedestal gyrokinetic simulations. At the same time, because the approach is spectral, the use of ad hoc radial 
boundary conditions are avoided and the entire domain is treated with spectral accuracy. This too makes the present 
approach suitable for pedestal multiscale simulations that treat ion-scale and electron-scale turbulence simultaneously.
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Appendix A. Global flux profile

The fluxes of particles (�a), momentum (�a) and energy (Q a) have the universal structure

F (x,α) =
〈ˆ

d3 v wa(R)Ha(R)∗
〉

(30)

where the angle brackets denote a flux-surface average, defined as

〈 · 〉 .=

˛
dθ dϕJψ ·

˛
dθ dϕJψ

. (31)

In these coordinates, the Jacobian determinant is Jψ
.= (∇ψ × ∇θ · ∇α)−1. Explicit expressions for wa are given in Eq. (49) 

of Ref. [15]. More specifically, in the latter reference, ŵa1 gives the particle flux, ŵa2 the heat flux, ŵa3 the momentum 
flux, and ŵa4 the anomalous exchange. By averaging over the binormal direction we obtain the radial flux profile

F (x) =
ˆ

dα

2π
F (x,α) =

∑
�

ei�x F� (32)

where reality requires F� = F ∗−� . Some algebra shows

F� =
∑
n,p

〈ˆ
d3 v f0a H̃∗

a (n, p)w̃a(n, p + l)

〉
, (33)

where

wa(R) =
∑
n,p

eipxe−inα w̃a(n, p) . (34)

These Fourier coefficients can be used to reconstruct the radial flux profile F (x). Normally, in a flux-tube simulation, only 
the mean flux is reported; this is

F0 =
∑
n,p

〈ˆ
d3 v f0a H̃∗

a (n, p)w̃a(n, p)

〉
. (35)

The total ensemble-averaged flux [37] can then be obtained by computing a time-average of F0.

Appendix B. Nonlinear simulation parameters and resolution

The physical case simulated with both GYRO and CGYRO is the General Atomics (GA) standard case [4] with adiabatic 
electrons: R0/a = 3, r/a = 0.5, q = 2, Ti = Te , a/Lni = 1, a/LT i = 3. Here, the temperature and density gradient inverse scale 
lengths are defined as

1

LT a
= −d ln Ta

dr
and

1

Lna
= −d ln na

dr
. (36)

The gradients in the toroidal velocity are taken to be zero (i.e., γp = 0). The geometry is a local Grad–Shafranov unshifted 
circular equilibrium generated using the Miller formalism [38,39]. All simulations retained 16 discrete complex toroidal 
modes

kθρs = 0.0, 0.05,0.1, . . . , 0.75 . (37)

Both codes used a timestep of (cs/a)�t = 0.04. The binormal box size was fixed for all cases at L y 
 126 ρs . GYRO simula-
tions used a nonperiodic radial domain size of L 
 220 ρs with 260 radial gridpoints. This included two radial buffer zones 
of width 9ρs each. The CGYRO simulations used a periodic radial domain size of L 
 200 ρs with 180 radial wavenumbers. 
We introduce an effective magnetic field Bunit [18,40], which is defined with reference to a global equilibrium through the 
relation

Bunit(r) = q

r
ψ ′ , (38)

where ψ ′ is defined as ∂ψ/∂r. In terms of Bunit , we define an effective ion-sound gyroradius

ρs
.= cs

. (39)

eBunit/(mD c)
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For nonlinear simulations, because the energy and momentum fluxes have a natural gyroBohm scaling, we normalize them 
to a reference gyroBohm level

Q GB = ne Tecs
ρ2

s

a2
and �GB = neaTe

ρ2
s

a2
. (40)
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