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Abstract
A standard inverse problem is to determine a source which is supported in an unknown
domain D from external boundary measurements. Here we consider the case of a time-
independent situation where the source is equal to unity in an unknown subdomain D of a
larger given domain 2 and the boundary of D has the star-like shape, i.e.

dD = {q(#)(cosO,sin )" : 6 € [0, 2n]}.

Overposed measurements consist of time traces of the solution or its flux values on a set of
discrete points on the boundary 9€2. The case of a parabolic equation was considered in [6].
In our situation we extend this to cover the subdiffusion case based on an anomalous diffusion
model and leading to a fractional order differential operator. We will show a uniqueness result
and examine a reconstruction algorithm. One of the main motives for this work is to examine
the dependence of the reconstructions on the parameter «, the exponent of the fractional op-
erator which controls the degree of anomalous behaviour of the process. Some previous inverse
problems based on fractional diffusion models have shown considerable differences between
classical Brownian diffusion and the anomalous case.

Keywords: fractional diffusion equation, inverse problem, uniqueness, unknown discontinuous
source, Newton’s method, Tikhonov regularization.

AMS subject classifications: 35R11, 35R30, 656M32.

1 Introduction

Our aim is to recover the location and shape of an extended source function /' = x, in a diffusion
problem from making time-trace boundary measurements,

Dpu— Mu= xy. (1) €D x [0,T];
uw(z,0) =0, zel (1.1)
u(z,t) =0, (z,t) € 0Q x[0,T].

*rundell@math.tamu.edu
tzhidong.zhang@helsinki.fi



Q) C R? is the unit disc, y ., is the characteristic function on D which is the source domain we need
to recover with D C €. The overposed data is a time trace of the flux at a (small) finite number m
of points located on the boundary 0f2,

%(a,t} =ql(t), t€0,T], L=1,...,m.
In this paper, we restrict the set of admissible boundaries to be star-like domains with respect to a
point within €,
0D = {q(0)(cosf,sind)" : 6 € [0,27]}
with a smooth, periodic function 0 < () < 1. In equation (1.1) “D® denotes the Djrbashian-
Caputo fractional derivative of order o, 0 < av < 1 which will be defined in the next section.

We have described (1.1) in the simplest setting in the sense we have taken the exterior boundary
to be the unit circle and have chosen homogeneous initial and boundary data. This simplifies the
exposition and, in particular, many of the representation formulae. Adding in nonhomogeneous
initial /boundary conditions: wu(z,0) = wo(z) and u(z,t) = f(z,t) for z on 00 and sufficiently
smooth f, would be completely straightforward. Taking €2 to be a simply connected domain with
C? boundary 9f is also possible in theory but we have used the specific eigenfunction expansion
for —A for a circle in both the uniqueness result and the reconstruction algorithm. The key change
would be to equations (3.5) and (3.10) where the trigonometric function would have to be replaced
by the values of the Laplace eigenfunctions for €2 evaluated on 0€). While these share the same
properties when € is the unit circle, this extension would require some further analysis.

The model (1.1) represents a so-called anomalous diffusion process generalizing classical, Brow-
nian diffusion based on the heat equation. This latter model can be viewed as a random walk in
which the dynamics are governed by an uncorrelated, Markovian, Gaussian stochastic process. The
key assumption is that a change in the direction of motion of a particle is random and that the
mean-squared displacement over many changes is proportional to time, i.e. (x?) = Ct. This easily
leads to the derivation of the underlying differential equation being the heat equation. On the other
hand, when the random walk involves correlations, non-Gaussian statistics or a non-Markovian
process (for example, due to “memory” effects) the classical diffusion equation will fail to describe
the macroscopic limit. For example, if we replace the space-time correlation by (z?) = Ct* then it
can be shown that this leads to a subdiffusive process and, importantly leads to a tractable model
where the partial differential equation is replaced by the nonlocal equation (1.1).

This paper is a generalisation of [6] where the same problem was considered for the classical
parabolic case, & = 1. Our approach will be the same, but here we must deal with the technical
issues of replacing the far simpler classical time derivative by the nonlocal operator D¢. Thus
while in the case @ = 1 (1.1) is pointwise defined and the Markovian property dictates that for
any time step ¢ the solution can be uniquely obtained from any single previous step ¢ — dt, this is
far from the case if & < 1 where the complete time history of the function u has to be retained in
the evolution. In some previous cases involving fractional derivatives the inverse problem has very
different properties, especially with respect to degree of ill-conditioning, from the classical case. See
[10] for an overview. The poster child here is the backward diffusion problem. This is severely ill-
conditioned for the heat equation, but for 0 < a < 1 is only moderately so (equal to a 2-derivative
loss) , [2]. Thus an important aspect of our studies here is to determine, if any, the differences made
by the anomalous diffusion operator from that of the classical one. For some other works in this
direction we refer to [13, 16] which use Bayesian formulation to study fractional inverse problems,
and [9] which concerns an inverse Sturm-Liouville problem and [11] in which a strong maximum
principle for fractional diffusion equations is deduced. We will also investigate the influence of the
number m of measurement points on both the question of uniqueness and reconstruction.



2 Preliminary material

2.1 Fractional derivatives

The (left-sided) fractional integral of order « is defined for f € L'(a,b) by

1 T
N = F [ =T 0 s (2.)
and leads naturally to a fractional derivative in one of two ways. The (left-sided) Riemann-Liouville
fractional derivative of order 0 < v < 1, is defined by

IR0 = g [ ) b

and the (left-sided) Djrbashian-Caputo fractional derivative of order a by

1 ! & .
m/a(t—s) 1'(s)ds.

In both cases note the specific dependence on the endpoint a. Some references are 3, 4, 1, 14, 15].

The Djrbashian-Caputo derivative is more restrictive than the Riemann-Liouville since it requires
the classical derivative to be absolutely integrable and we implicitly assume that this condition holds.
Generally, the Riemann-Liouville and Djrbashian-Caputo derivatives are different, even when both
derivatives are defined, and we only have to consider the constant function to see this. Nonetheless,
as we must expect, they are closely related to each other and under the assumption that the function
to which they are applied vanishes at the starting point they are equal. Thus in (1.1) as stated
we could have equally replaced D& by ¥D®. However, in the face of a non-homogeneous initial
condition the regularity of the solution of the direct problem for (1.1) would change.

<Dy f(t) =

2.2 Mittag-Leffler function

This function plays a central role in fractional diffusion equations. It is a two-parameter function
defined as
o0 k

z
E.z5(2) = —, z € C.
82) ;F(ka—l—ﬂ)
The Mittag-LefHler function generalizes the exponential function since Ej ;(z) = e and as o — 1
the fractional diffusion process recovers classical diffusion as described by the heat equation. The
following property will be used later. The proof can be found in standard references, for example,
[14, Lemma 3.2].

Lemma 2.1. For A >0, a >0 and n € N, we have

dn

%E%l(—/\ta) = —Ata_nEa@,nJrl(—)\ta), t > 0.

In particular, %Eml(—)\to‘) = —XNE, o(—AtY), t>0.



2.3 The direct problem for equation (1.1)

For the unit disc €2, denote the eigensystem of the Laplacian —/\ with the Dirichlet boundary
condition by {(An, ¢n(z)) : n € Nt} Here, {\, : n € N} is indexed by nondecreasing order
and strictly positive, and {p,(z) : n € NT} constitutes an orthonormal basis in L*(€2). The polar
representation of ¢, is

©n(r,0) Jon(\/ Anr) cos (mb + ¢,,), (2.2)

where m = m(n), the phase ¢, is either 0 or 7/2 and w, is the normalized weight factor. Here
Jm(z) is the first kind Bessel function with degree m.
With the above, [14] gives the following theorem for the direct problem of (1.1). Here H*(Q)

are the usual Sobolev spaces.

Theorem 2.1. There exists a unique weak solution u € L*(0,T; H*(2) N HY(Q)) of (1.1) with the
representation

o) =30 ([ [ eutadt =71 B M= )y ) o) (23)

n=1
and the reqularity estimate
[wll 20,7 m2(0)) + ”CD?UHLQ(QX(O,T)) <C(T,D),
where the notation C(T, D) indicates the dependence on the final time T and the domain D.

Proof. This theorem is a specific case of [14, Theorem 2.2| based on the fact that the source term
is independent of ¢. See a later paragraph about generalizing the situation in (1.1) to include an
unknown time-dependent factor in the source term. O

3 Main results

In this section we will prove the main theoretical result: under suitable restrictions, two observation
points are sufficient to determine the internal domain D uniquely.

3.1 Harmonic basis

Let £5°%(r, 0) = %Tm{COS mb,sinmf : m € N} denote the set of harmonic functions in Q. With the
given normalization it forms a complete orthonormal basis in L? (89) First, we show that this basis
can be used to gain a convergent approximation to the flux data ?(zg, t) for z, € 09.

Define the smooth approximation ¥} € C(€) of the delta distribution at z, as

= (208 (x) + €, (2060 (@),

m=1
and let the set of functions {u)’} be weak solutions of the fractional diffusion equations
“Dru)t — Aup! =0, (x,t) € Qx (0,7);
M _ 0, (z,t) € 0Q x (0,T);
=), (z,t) € Qx {0}.

It follows from [14] that we have the regularity results u}! € C((0,T]; H*(Q2) N H}(Q)), “Deu}!
C((0,T7; L*(2)).



Lemma 3.1. Define
w)" =yt + )7, (3.1)

then w € C((0,T); HX(Q) N HL(Q)), “Dew) € C((0,T); LA(Q)) and

ou

. M _
A/llgnoo Dwe (x,t)de = ﬁ(zz)

Proof. The regularity follows from those of u}! and ). Since ¥} are linear combinations of

harmonic functions, they satisfy the equations “D2yM — Ay = 0. Hence, w}! are weak solutions

of “Dew) — Aw} =0, (x,t) € Q x (0,T) subject to the boundary condition w}!|sq = 1M and the
initial condition w}?(-,0) = 0. Then for each v € L?(0,T; H}(Q2)),

//CDa o+ Vw)-Vodrdr = 0. (3.2)

A direct calculation gives

t t
//wéw(ﬁc,T) dZEdT:/ /wé”(x,t—T) dz dr
0o Jp 0o Jp

t
= / /[CDf‘u(:r,T) = Au(:v,T)]wéW(Lt —7) dz dr
0o Ja
= ]1 + _[2.

For I}, by the regularity of the functions w}’ and wu, it holds that
L = / /CDQ u(z, 7w} (x,t — 1) do dr = / “Deu(x,t) * w) (z,t) do
Q

_/m gt(x B w (2, 1) dx:/gr(%&m (g;‘(x ) wM (x,t)) dz,

where * represents the convolution in ¢. Due to the zero initial conditions of u and w}!, we have

ou ow
a(a:,t) s wpl (z,t) = u(w,t) * 8; (x,t).

Hence,

|\ ¢ =« owM I
Il—/ 1—a)* 5 (x,t)>e<u(:c,t)dac—/Q Dew) s u(x,t) do

/ / “Drw (z,t — 7)u(x, 7) dz dr.

For the term I, Green’s first formula and the boundary condition of w)! give that

¢
I, = / / —Au(z, 7w} (x,t — 1) do dr

//Vua:r Vw)! (v, t —7) dxdT—/ ?xT%()dxdr
o0 0



The results of I; and I, (3.2) and the definition of ¥} now show that

//we T, T dxdT—//CDa (z,t — T)u(x,7) +

Vuw (z,t — 1) -Vu(z,7)] dedr

_/O/ag%(x,r)wéw(a:) dx dr
_ /0 3 e (M) (=) + € ()€ () dr

where ¢} }( ) are the Fourier coefficients of ?(x 7) with respect to the basis {finc’s}(x) :m € N}

in L?(0Q). Taking derivative with respect to ¢ in the above yields

/D wi (2,1) dw = = Y[, (€6 (20) + (B (20)],

m=1

which together with the pointwise convergence of the Fourier series gives

ou
li M(x,t) do = — t
R Dwe (z,1) do ﬁ(ze, )
and completes the proof. O

Since )" € L*(Q), we can represent its Fourier expansion as 1) = > | aj! ¢,. This result,
Lemma 2.1, (2.3) and [6, Theorem 3.1] lead to the following corollary.

Corollary 3.1. The spectral representation of w}! defined by (3.1) is

Zaen - —Ant®)]n (), (3-3)

where

= i agt, = (Wn/An) T (V) €5 (20). (3.4)

3.2 Uniqueness theorem

Theorem 3.1. Denote the solutions of (1.1) with respect to Dy and Dy by u;, j = 1,2, and
21 = (cos By, 8in6y), 2o = (cos by, sin by) satisfy the condition

01— 0, ¢ TQ (3.5)

where Q s the set of rational numbers. Then

ou ou
ajnl(zéat) - ajl’l?(ze,t)’ te [07T]’ t=1,2

implies that Dy = Ds.



Proof. Without loss of generality we can let §; = 0. By Lemma 3.1 and (3.3), we obtain

iaan[l — Ea1(=Ant®)] (/191 Pn(z) do — /[)2 On () dx) =0, tel0,7], ¢=1,2.  (3.6)

The analyticity of the Mittag-Leffler function E, ;(—\,t%) gives

o0

> apna[l = Eaa(=Mt®)] =0, t€0,00), (3.7)

n=1
where

I, = /D on(z) do — /D () dz.

Denoting the distinct eigenvalues of the Laplacian again by {)\; : £ € N*} and taking the Laplace
transform ¢ — s in (3.7), we have

00 )\k
Z Z aonly | ———<= =0, Re{s}>0.
k=1 <An=Ak > (5% + M)
Letting n = s* shows that the function

- = A
=(n) = Z ( Z ag,nfn> 77+k)\k; =0, Re{n} >0, (3.8)

k=1 \An=\p

is analytic in n with poles at n = {—\;} and corresponding residues { A\ > A agnly}i. However,
since Z(n) vanishes identically for 7 real and positive, it follows that these residues must be zero.
Then by the strict positivity of Ay we see that > a=xy, @ndn =0 for £ = 1,2 and each eigenvalue
A of the Laplacian.

For a fixed eigenvalue A;, denote its corresponding eigenfunctions by ¢,, and ¢,, +1. These have
different phases and hence

> anl, =0, (=12 (3.9)
n=ng,nr+1

For the case of ¢,, = 0, since 6, = 0, 6, — 6, ¢ 7Q, then (3.4) implies a1 ,, # 0, a1 41 = 0
and as ., +1 # 0. Inserting this into (3.9) yields I,,, = 0. The above result means as ,, +1/n,+1 = 0,
which together with as,,, +1 # 0 gives I,,, -1 = 0. Analogously, for the case of ¢,, = 7/2, we can
prove I,,, = I, +1 = 0. Hence, we can conclude that for each eigenvalue Ay € {\, : n € NT},
I, = I,,+1 = 0, which means

/Dl nlz) du = /D () do = /Q(XDI — Xp,) (@) dz =0, n € N'.

This result, the completeness of {¢,(z) : n € N*} and the continuity of the boundaries of D; and
D2 give that D1 = DQ. L]

In practice, it is certainly possible that the measured data can only be obtained after some
initial time Tp has elapsed, i.e. only g,(t), t € [Ty, T] is obtained. Hence, the following corollary is
important; its proof follows immediately from the analyticity of the Mittag-Leffler function and the
proof of Theorem 3.1.



Corollary 3.2. With the same conditions of Theorem 3.1 and a constant Ty € (0,T),

ou ou
aﬁnl(%t) = ﬁf(%i) on [Ty, T], £=1,2

will also imply Dy = Ds.

Remark 3.1. The condition 0, — 0y ¢ 7Q is almost impossible to be satisfied in practice. However,
as we will show, in the numerical section, we only use the partial sum of the solution series to
approzimate the exact spectral representation. By taking a truncated basis, that is spectral cut-off of
the functions used to represent 0D, we can show that satisfying (3.5) is feasible. Since in this case
the number of eigenvalues is finite, the upper bound M of the degrees for the corresponding Bessel
function will also be finite. Hence, in numerical reconstructions the condition 61 — 05 ¢ 1Q can be

weakened to
sinm(6; —02) #0, m=1,2,..., M. (3.10)

3.3 The operators G and G’

In order to use Newton’s method to recover D, we need to construct the operator G which maps D
to the flux data —T{v(Zg, t) then compute and demonstrate needed properties of its derivative G’. In
particular, to show the injectivity of G'.

Recall that we have assumed the boundary of D is star-like, i.e.

0D = {q(0)(cosf,sind)" : 6 € [0, 2x]}.

Then by (2.3), the representation of u(z,t) will be

2 (/ /XD% —T)a_lEa,a(—)\n(t—T)a)dydT> on(2)
i”l_ a1 (= Ant” %TH/QW/ s)pdpds.

Now we can define the operator G as G : ¢ — (0,u(1,0;,t),0.u(1,0s,t)), where 0,, ¢ = 1,2 are
the polar angles of the observation points z, on 92. The polar representation of ¢, is ¢, (r,0) =
Wy I (VA 1) cos(mb + ¢,,) and we use the relation J! (2) = —J,,11(2) + ™ Jm(2) and the fact that
v\, is a zero of the m-th Bessel function J,, to see that the radial derivative of the radial part of
©On 18 W/ Andmi1(VAn). Thus a direct calculation from (3.11) yields the ¢-th component of G as

(3.11)

Go(q)(t) = Z bu[l — Eu1(—Aut®)] cos (mby—¢y,) /0 ﬂq)n(q(s)) cos (ms — ¢y,) ds, (3.12)

n=1

where

o/ An
by = — 2N (W), Bula) = / 0 Tn(p) dp.
0

To compute w, we require the integral fo% fol I (v Anp)?dp. The recursion formulae [t~ ., (1)) =

— 7" Joy1 (t) and [t ], (8)] = ™ J,—1(t) give the relations 2tJ,,(t)? = [t*J,n(t)? — Jmi1Jm—1) and
/ 2 1 2

Jm-1(t) = J;,(t) = = Jpms1(t). These and the fact that J,,(v/A,) = 0 show that [;" [; pJm(VAnp)?dp =



s Imi1(VAnp)?. Thus [|¢, |3 = 1/w2 = 30,7 Jpi1 (v Anp)? where 1, = 1if m(n) = 0 and 1 if m > 0.
Combining all of these shows that

- 1
! nnﬂ)\i/QJm—i-l( V /\n> ‘

These computations mirror those of [6] for the parabolic case. From (3.12), with the notation '
which indicates the index over distinct eigenvalues, we obtain

Go(q)(t) = ZI bn(1 — Eu1(—=Ant?)) [cos (mby) /0 ’ ®,,(q(s)) cos (ms) ds

=1

+ sin (mb) /027T ®,,(q(s))sin (ms) ds] (3.13)

3

=> " ba(1— EaJ(—Anta))/O " ®,(q(s)) cos (m(s — 6)) ds,

=1

3

and
GHlalh(0) = = Maba(1 = Baa(0t) [ als) I/ N9 cos (m(s = B)h(5) ds,— (3.14)

where h denotes the direction operated by G}[g]. We can now define G and G’ by
Definition 3.1.

G1(q)(t)
Ga(q)(t)
where Gy, Gy, £ =1,2 are defined in (3.13) and (3.14).

Gla)(t) = , Glalh(t) =

3.4 Injectivity of G’
We are now able to show the injectivity of G'.
Corollary 3.3. Under the condition (3.5), G'[q].h(t) = 0 implies that h = 0.

Proof. G'[q].h(t) = 0 leads to G'[q].h(t) = G5[q].h(t) = 0. Following the proof of Theorem 3.1, we
have

2
/ q(8) (v Anq(s)) cos (m(s — 6;))h(s)ds =0, ne N, (=12
0
Applying the proof in [6, Section 4] shows that A = 0. N

An interesting question arises if the source contains a time-dependent term; for example, a(t)x,,
where the time dependent function a(t) has to be determined in addition to D. Even in the case
a(t) is constant more than two observation points would now be needed, but it is easy to see that
three would suffice. It is a reasonable conjecture that three points would also suffice to determine in
addition a(t) although this isn’t immediately clear. Although the unknown source would still give
rise to a linear fractional equation with the advantage that representation results would still hold,
the fact that the two unknowns a(t) and D are coupled in a nonlinear fashion adds considerable
complexity to the new operators G and G’.



4 Numerical reconstruction

4.1 TIterative algorithm

Using the operator GG, the reconstruction approach requires the solution of the equation
where g is the measured data. Newton’s method gives the iteration scheme

Gns1 = Gn + [(G'(@n))" G'(@0)] (G (n))"(9 — Glan))-

Here, Corollary 3.3 ensures that (G'(qn))" G'(¢,) is invertible. However, the ill-posedness will
guarantee that the singular values of the matrix [(G'(¢,))* G'(¢,)] will tend to zero rapidly, any noise
in the measured data gs will cause large errors in the approximation. Hence, some regularization
scheme must be included and we use Tikhonov’s approach adding a penalty matrix P with a
regularized parameter 5. Now the iteration becomes one of the Levenberg-Marquardt-type:

Gu1 = Gn + [(G'(40))" G'(an) + BPI7HG ()" (9" — G(an))- (4.1)

Here, ¢° denotes the perturbed measured data with ||(g = ¢°)/gllcor) < 0, ¢» is the n-th approx-
imation of the radial term of the star-like boundary, J is the regularized parameter and P is the
penalized matrix. In this section, we only consider the unknown ¢ to be taken from the trigonometric
polynomial space with dimension up to degree M, i.e.

M
1
q(f) = §qo + ; (g cosnb + q; sinnb) .

As will be seen, the effective value for M that can be obtained will be quite small. This itself
provides a regularization by spectral cut off, but if used alone it leads to a quite limited regularization
possibility; hence the combination with (4.1).

We also want to ensure the approximated ¢, is sufficiently smooth and so we set the penalty
term be the H? semi-norm of ¢,, which implies that P is a (2M + 1) x (2M + 1) diagonal matrix
with

P1,1 =1, -P'H—L'H—l = P1+M+1 i+M+1 — =i’ i= L,...,M.

The stopping criterion used was ||¢° — G(,)||z201) < €, € = 0(5). A good initial approximation is
often essential for the convergence of Newton schemes in such interior domain reconstructions and
the current case is no different. Fortunately, we have a simple method of achieving this as noted in
[6]. We take go to be a circle of radius 7 with centre = (Z1,Z3). An extended circular source has
exactly the same boundary effect as a delta-function point source at its centre. Such a pole would
generate a disturbance equal to G (Z—z, t) where G, is the fundamental solution for the subdiffusion
operator in (1.1). This solution is available as a Wright function, G, (z,t) = t~*/2M(|z|/t*/?)
where M(z) =3 N l_g (n ATy See [12]. However, we do not require such precision for the initial

approximation purpose. We can take the time-independent version by approximation of the steady
state values for each flux g,(¢,). This gives m values at positions z, and we simply perform a least-
squares fit to obtain the centre z and weight p of the pole based on Laplace equation for a circle.
Then, since p = 772, we readily obtain our approximating circle. In the case of only two observation
points there is insufficient information in general and then we simply assume the approximating
circle has centre the origin.

10



4.2 Decomposition of G and G’

From the definitions of G and G’ we can see the convergence rates of their series representations
should be slow since the time-dependent term 1 — E,, 1(—\,t*) does not converge to zero for n large.
Hence, we split GG, G’ into their steady states and transient components as

2

Gala) 1) =) = D buEaal=0t*) [ ulg(e))cos (s~ 60) s,
0~ (50
_ i' AnbnEg 1 (—Ant®) /02 Jn(V Anq(s)) cos (m(s — 6,))h(s) ds,

where v is the solution of the equation

_AU<I> =Xp,» TE Q;
v(z) =0, x €.

From [7] we can obtain % (z) and a% (£ (2)) from the following Fourier expansions

81}

a [o@)
— a;, cosnby + a; sinnf
a 9 + nZ:; ¢+ n f) )

8%] (% ) —5—#; (b5, cosnby + b sinnby) ,
where
e [Tu@resnnan, o - —L [T snngas
" (n+2)7 Jo 4 ’ " (n+2)7 S, 1 ’
1 2 V4 1 2 o
b = — [q(0)]""" cosnd do, by = — [q(0)]""" sinnb d6.
T Jo T Jo

4.3 Forward problem and L! time-stepping

To obtain the measured data g and also to compute the forward map we need to solve the (1.1)
numerically. The spectral representation of the solution u(x,t) gives insight to the problem but as
our forcing function is discontinuous, the convergence, in particular that of the boundary derivative,
is very slow. This forces an extremely large number of eigenfunctions to be taken in order to
obtain sufficient accuracy. As an alternative to the spectral representation we use a finite difference
representation in space and the L' time-stepping method [8] to discretize the fractional derivative
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b= (G +1D"7"=5")/T2=a), j=01,...,N-1

For the Laplace operator A, the polar form Au = % + %% l Tlg % is used since the domain 2
is the unit disc in R?. With uniformly partitions {r;}, {6} on the radius r € (0,1) and the angle

0 € [0, 27) respectively, the discretized form of —A is

1
—Au(l, k,tN) h2[ (l + 1 k tN) + u(l < 1 k tN> — 2U(l k tN)]

1
B 21 h2 [U(l + 17 kvtN) - U(l - 1, k’,t]v)]
1
— gk L)+l k=1, tv) = 2u(l, K, ty)]
"0

1 1 1 1
2 2 u(l,k+1,ty)  u(l,k—1,tx)

2 (k) — AR LN
pz g0k ) Eh2h2 BT

+(

where u(l, k,tn) = u(r;, Ok, ty), and h,, hg are the step sizes of the partitions on r and 6 respectively.
Hence, the finite difference scheme of the forward problem of (1.1) is

Y 2 2 1 1
(T7%0 + — 2 l2h2h2) (l’k’tN>+(_h_$+TfL$)“<l_1’k’tN>
1 1 1 1

- (—h—% - ﬂh—%)u(l + 1k ) + (—m)u(l, k+1,ty) + (—m)u(z, E=Lix)  (g9)

=7 %y _u(l, k, to) — ZT*Q (b — by )ull, k, tan—j) + x, (1, k).

Remark 4.1. For the truncation errors of the discretization schemes for “Deu(x, ty) and —Au(l, k, ty)

12



we have

N-1
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—Au(l, k,ty)+ h2[ u(l 4+ 1,k tn) +u(l — 1,k ty) — 2u(l, by ty)]

1
+ g a1k t) —ull = Lk tw)] + alul b+ 1y tw) +ulk = 1, t) = 2u(l by )

1 0%u
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= O(h,) + O(h2) + O(hg) = O(h, + hy).

Hence, the truncation errors vanish as T, h,.,hg — 0, which indicates the consistency of the finite
difference scheme (4.2).
Returning to (4.2), the left side can be written as Aty, where the vector Uy denotes the solution
vector at t = tx. Since

—ab+2 2 N |1, 1)
07 p2 l2h2h2 h2 " 20h?

the matriz A is strictly diagonally dominant. By Gershgorin circle theorem, we have that for any
eigenvalue X of A, it satisfies

L1
h2 202

1 —_—
12h2h2

1
12h2h2

= T_abo > O,

1
R

1
|z

\, 1
)\—7' bo—f— + ZZthg

h2  I2h2h2 w2 Tome| T

h2 " 21h2
_2, 2
T2 R2hY

‘ 2 2

‘ 1 1
<

which implies X > 7=%qy. The small time step size T ensures that A > 1. Hence, we have proved that
for each eigenvalue \ of A, X\ > 1 is valid. This gives the stability of the finite difference scheme
(4.2).
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4.4 Numerical results

The purpose of this section is to investigate our ability to perform reconstructions and in particular
to investigate the difference as a function of a. We will also look at the effect of different placements
of the measurements points, of the noise level in the data. This will be accomplished by a series of
experiments to be outlined below.

In all the figures to be shown, the legend is the following: the (blue) dotted line is the exact
curve; the (red) dashed line is the reconstructed curve; and the (blue) solid circle with the two black
dots representing the exterior boundary 02 and the observation points z, respectively.

We set @ = 0.9 and the final time 7" = 1. For the regularized parameter 3, large values will
smooth the approximation excessively and small values will not sufficiently correct the ill-posedness
of the inverse problem. It is possible to match the value to 5 to the perceived noise level in the data,
for example using Morozov’s principle or by the L-curve method, [5], but this is always to some
extent an ad hoc process. We suppose the data g,(¢) has uniform random added noise of ¢ times
the value. After several tests, we chose 3 = 1072 for the case of an error level § = 1%. The results
for other (inappropriate ) values of /5 can be seen in Figure 3. Then the following experiments were
constructed.

15 19

Ei, : q(0) =0.640.1cosf +0.1sin20, 0 = ™ 0y = 6™ €= 5/2;
3 55

Ey: q(0) =0.64+0.1cosf 4 0.1sin20, 6, = Z?T, 0y = 3—27'(', e=19/2.

Experiments F;, and Ej, have the same exact radius function ¢(0). However, the locations of
observation points are different and this leads to the difference between reconstructions of these two
experiments. See Figure 1 for an illustration of the fact that the reconstructed domain D depends
strongly on the location of the observation points.

The left figure here is with 1% noise, but actually even a significant change in the noise level
(5% against 1%) has little bearing in this respect, the former being only slightly worse. The change
of the observation points in E;;, shown in the middle and rightmost figures makes an enormous
difference here; reconstructions are considerably improved.

Figure 1: Exact ¢ and numerical approximation, a = 0.9.
Left: Fq4, 0 = 1%; Middle: E1p, § = 1%; Right: Eqp, 6 = 5%.

This prompts us to redo this experiments to find the relation between curve features and obser-
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vation points in the reconstruction.

31

B, : q(#) =0.540.05cos 0 + 0.3sin20, 6, =0, Oy = 3™ €= 5/10;
. 23 27

Eoy : q(0) =0.540.05cos0 + 0.3sin20, 6, = 3™ 0y = 6™ €= 6/10.

The reconstruction pairs in Figure 2 express the expected outcome; both the proximity and
alignment of the observation points are to the critical features of the exact ¢, the better is the
obtained approximation.

051

B

1 05 0 05 1 1 05 0 05 1

Figure 2: Results of experiments Es, (left) and Foq (right), 6 = 1%, a = 0.9.

05 05

051

05 05

05+

A

1 05 0 05 1 1 05 0 05 1
Figure 3: Fy (top) and Eyy, (bottom) for 8 = 10~ (left) and 8 = 1 (right) with § = 1%.

A rigorous theoretical proof of this would be extremely useful but the observation is widely
reported in other situations. For example, in inverse obstacle scattering there is a shadow region
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e=9 €e=0/b e=0/10
Ne =25 | 13.589 (1 iteration) | 24.904 (4 iterations) | 28.714 (5 iterations)
Ng =50 | 19.947 (1 iteration) | 36.798 (3 iterations) | 52.219 (5 iterations)
Ng =100 | 34.023 (1 iteration) | 88.292 (4 iterations) | 107.743 (5 iterations)

Table 1: CPU times (in second) for different choices of € and Ng.
Experiment Fo, 6 = 1%.

on the reverse side of an incident wave from a given direction. While all these problems do have
strong diffusion and the theoretical ability to “wrap around” obstacles, this is still limited.

Moreover, we investigate the dependence of the running time of this algorithm on controlling
parameters € and N, where Ng means the amount of the eigenvalues we use in the approximation
of the operators G and GG'. The stopping criterion ¢ can affect the amount of iterations and Ng
determines the cost of the calculations of the matrices G'(g,) and G(g,). Table 1 is given which
displays the CPU time of the experiment Fs, for different choices of € and Ng.

4.5 Fractional vs classical diffusion reconstructions

An obvious question is how the reconstructions will depend on the fractional diffusion parameter
«. First we consider what the profile of a typical data measurement g(t) should be.

The model (1.1) has the positivity property; the nonhomogeneous forcing function and initial
value are nonnegative and this implies the solution u(z,¢) be nonnegative for all (x,t), see [11]. Thus
the (exact) overposed flux values consisting of the outer normal derivative on 02 will be negative
for all . In fact these values must start at 0 and monotonically increase to the steady state value
predicted by the equation —Awu = x,, with the same Dirichlet condition on 92 as imposed by (1.1).
From equation (3.3) and the monotonicity of the Mittag-Leffler function on the negative real axis
the term 0,,,(t) := 1 — E,1(—A,t") is monotone and the range of this is within [0, 1) for all ¢. Even
if the time interval is truncated to [0, T, since A, — oo linearly in n, most of the modes will have
the property that o, ,(t) covers a substantial part of the range (0,1]. However, this will not be
independent of a as the growth of E, ;(—At*) depends on «. The larger the «, the initially the
slower, but finally the faster the decay of E, 1(—At%) to zero. Thus, as we have seen in Figure 4,
the heat equation with o = 1 will reach steady state faster than for « < 1 and the smaller the «
the longer it will take to reach steady state. Of course the high frequency modes (large \,) will
reach steady state much faster and this is true for all a.

The explanation of why this is important is clear from (3.3) and perhaps more apparent with the
heat equation and the resulting exponential function F;; although the identical argument applies
to the Mittag-Leffler function F, ; albeit to a slightly different degree. For the term e *»! to remain
sufficiently large to contain extractable information we require the argument A,t to be sufficiently
small. If A, < A and ¢ > Tj then e ™! < e < € for A < —1In(e)/Ty showing that for a
given e and value T}, we are restricted to a maximum A; that is we cannot effectively use the n'®
eigenfunction mode in equation (3.3) if A\, > A.

Figure 4 shows the function ¢(t) for both & = 1 and o = %, for the case of a circular inclusion
with centre the origin. In each case g(t) goes to the same steady state value but how it approaches
this is quite different. In the case of the heat equation the effective steady state is reached long
before the endpoint chosen here of T' = 2. Indeed, by ¢ = 0.5, 99% of the steady state value has
been achieved and is typical of the behaviour expected by the exponential term in the solution
representation when o = 1. When o = % the situation is quite different; the Mittag-Leffler function

16



4 T T
logy(sv(G"))
o2 g
ol
+ 0]
2|
+ o
*
o
4r * i o
o
6 + o
* o
_8 |-
* +
O =1
R o Y « *
* =01 +
o ‘ ‘ ‘ 0 P
0 0.5 1 15 2 1 2 3 4 5 6 7 8 9 10
Figure 4: The data g, (t). Figure 5: Singular values of G’.

decays only linearly for large (negative) values of the argument and so steady state is achieved much
more slowly. In consequence, for & = 1 only time measurements made for small ¢ offer any utility
in providing information, but for @ < 1 this is not the case (at least in theory).

What this figure illustrates is the very narrow time interval where a large part of the diffusion
takes place for @ < 1 as against @ = 1 and, in fact, becomes more extreme the smaller the value
of a. Thus for an source whose representation requires high frequency eigenfunctions, for a given
measurement set {ty,ts,...}, we should expect poorer reconstruction in the anomalous diffusion
case over the heat equation and this effect will be greater the smaller the o«. Numerical experiments
bear this out.

Figure 5 displays the singular values oy of the operator (G’)* o G’ for experiment FEy,. Note the
obvious exponential decay of o for all . This is to be expected due to the extreme ill-conditioning
of the problem. However, the rates do depend on «; the smaller the « the greater the decay rate and
hence degree of ill-conditioning. Again, this must be expected as for small « the diffusion is initially
extremely rapid and the transient information cannot be adequately captured. Thus, while all cases
require ¢(t) for small values of ¢ this is even more important the smaller the o. The slower growth
of the profile g(t) for larger ¢ cannot compensate. Although this seems anomalous at first glance,
the factor 1 — E, 1(—z) for large argument z = \,t* approaches unity with behaviour < + % + ...
where ¢, = ¢x(a). Hence for modest values of ¢, say near ¢ = 1 but large A, this is dominated by
the first term with a rapidly diminishing contribution to further terms 1/z2 1/2% ... and so also
offers relatively little information to be picked up from g(?).

Note that while it is important to take a small step size initially in the measurement of g(t)
this need not be continued for the entire interval. Thus if we take say the first few measurements
with dt = 0.001 then this can be steadily increased so that (say) over the last half of [0,7] we
use a step size of dt = 0.1; with this the reconstructions differences will be imperceptible. In fact,
the optimal measurement points {¢;} should be chosen to give approximately equal arc lengths of
ur(1,0,t) = g(t). This will mean a far greater concentration of point for small values of ¢ and this
effect will be stronger the smaller the o value. We point out here that our time variable is actually a
scaled version and physically incorporates a diffusion constant that can be quite small (for example,
of the order of 107 for a metal). Thus the actual time measurements can be over the order of
seconds or longer.

What if we delay the flux measurements until a later time, that is we measure only over [Ty, T
for some Ty > 07 There are certainly physical situations where this might be required. Note that
Corollary 3.2 indicates uniqueness will still hold but the question is the resulting change in condition
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number over incomplete intervals. Of course, the expected outcome is a decrease in the ability to
construct higher modes as short-time information is lost. Further, when larger time values are
missing the effect is greater for larger a and in particular, for the heat equation. This is again
consistent with the above analysis.

In summary, the optimal time-measurement intervals for recovering the source support D in (1.1)
depend strongly on a. Taking small initial time steps is advantageous in all cases but particularly
important the smaller the value of a.. If we are lacking such small-time measurements then or ability
to reconstruct will be limited in any practical sense to a rough estimate of size and location with
relatively little usable information for shape. Here the advantage shifts towards the fractional case
as opposed to the heat equation.

4.6 More than two measurement points

We should expect superior reconstructions with a greater number of observation points since we
have additional data for which to average out measurement error. However, (3.10) shows much
more is possible since we see that if the difference ; —; is near to a rational number 2 times 7 with
some 7 < M, then the 7" mode will be expressed very poorly from this combination. For a given
M, the more observation points taken, the greater the opportunity to avoid this situation. This
allows an often significant increase in the resulting singular values and correspondingly a better
inversion of GG' and hence of the reconstruction.
In experiment FEj., we use four observation points.

q(#) = 0.5+ 0.05cos 0 + 0.3 sin 26,

23 57 1 39
EQC. 91—57'(', 92—3—27&', 03—177', 94—3—2

B=3x1072 6 =1%, e =4/10.

T,

Il
R 05 0 05 1 -4 -05 0 05 1

Figure 6: Results of experiments Fgy, (left) and Es. (right) with o = 0.9.

The result is shown in Figure 6 and a vast improvement can be seen.
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