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In [4], we developed a boundary treatment method for implicit-explicit (IMEX) Runge-Kutta 
(RK) methods for solving hyperbolic systems with source terms. Since IMEX RK methods 
include explicit ones as special cases, this boundary treatment method naturally applies 
to explicit methods as well. In this paper, we examine this boundary treatment method 
for the case of explicit RK schemes of arbitrary order applied to hyperbolic conservation 
laws. We show that the method not only preserves the accuracy of explicit RK schemes 
but also possesses good stability. This compares favorably to the inverse Lax-Wendroff 
method in [5,6] where analysis and numerical experiments have previously verified the 
presence of order reduction [5,6]. In addition, we demonstrate that our method performs 
well for strong-stability-preserving (SSP) RK schemes involving negative coefficients and 
downwind spatial discretizations. It is numerically shown that when boundary conditions 
are present and the proposed boundary treatment is used, that SSP RK schemes with 
negative coefficients still allow for larger time steps than schemes with all nonnegative 
coefficients. In this regard, our boundary treatment method is an effective supplement to 
SSP RK schemes with/without negative coefficients for initial-boundary value problems for 
hyperbolic conservation laws.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

To approximate time-dependent partial differential equations (PDEs), it is common to first discretize the spatial deriva-
tives to obtain a large system of time-dependent ordinary differential equations (ODEs). These ODEs are then discretized 
by suitable time-stepping techniques such as multistep or Runge-Kutta (RK) methods. For hyperbolic conservation laws, 
strong-stability-preserving (SSP) methods are often applied to maintain desired monotonicity properties of the underlying 
flow, particularly in the case of nonsmooth solutions [2,1,3]. The basic idea of SSP methods is to assume that the forward 
Euler method is strongly stable under a suitable time stepping restriction for some norm or semi-norm, and then to con-
struct higher order RK schemes as convex combinations of forward Euler steps with various step sizes. Thanks in part to 
the provable SSP property, these methods have found substantial use in the time discretization of PDEs.

Many SSP RK schemes are composed exclusively of nonnegative coefficients and the most widely used one is perhaps 
the three-stage third-order RK method in [2,1]. However, it is proved in [7] that there are no four-stage fourth-order SSP RK 
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schemes with all nonnegative coefficients. More seriously, it is impossible to construct an explicit SSP RK method of order 
greater than four with all nonnegative coefficients [8]. To address this issue, more stages or negative coefficients are taken 
into consideration. Research along this line can be found in, e.g. [7,9–12]. For RK schemes with negative coefficients, the 
SSP property can also be achieved if the spatial derivatives corresponding to the negative coefficients are approximated by 
a so-called downwind spatial discretization [2,12]. Notably, RK schemes involving negative coefficients may allow larger SSP 
coefficients and consequently can be even more efficient than those with all nonnegative coefficients [7,9–12].

This paper is concerned with the boundary treatment of general SSP RK schemes with/without negative coefficients for 
hyperbolic conservation laws. For SSP RK schemes with negative coefficients, [17] applies the Navier-Stokes characteris-
tic boundary conditions (NSCBC) method [16] to the boundary treatment of hyperbolic conservation systems. For SSP RK 
schemes with nonnegative coefficients, a popular boundary treatment method is to impose consistent boundary conditions 
for each intermediate stage [13]. Unfortunately, these boundary conditions are derived only for RK schemes up to third 
order. This is remedied for fourth-order schemes in [14,15], however, the methods therein only apply to one-dimensional 
(1D) scalar equations or systems with all characteristics flowing into the domain at the boundary. Different from this, we 
propose in our previous work [4] to use the RK schemes themselves at the boundary. This idea, combined with an inverse 
Lax-Wendroff (ILW) procedure in [5,6], preserves the accuracy and good stability of implicit-explicit (IMEX) RK schemes 
solving hyperbolic systems with source terms. Since IMEX RK methods include explicit ones as special cases, the method in 
[4] naturally applies to explicit methods as well.

In this paper, we examine the boundary treatment method in [4] for explicit high-order SSP RK schemes of hyperbolic 
conservation laws. Specifically, we use finite difference WENO schemes on a Cartesian mesh for the spatial discretization, 
where the corresponding downwind scheme is applied in the case of negative coefficients. We show that our method applies 
to general SSP RK schemes with/without negative coefficients. Furthermore, we show that it preserves the accuracy of the 
RK schemes and that it has good stability. These nice properties are verified on a selection of linear and nonlinear problems 
and third- and fourth-order RK schemes with and without negative coefficients. Additionally, when boundary conditions 
are present and the proposed boundary treatment is used, the SSP RK schemes with negative coefficients still allow larger 
time steps than those with all nonnegative coefficients. In this regard, the boundary treatment method in [4] is an effective 
supplement to the SSP RK schemes with/without negative coefficients for initial-boundary value problems for conservation 
laws.

In addition, we demonstrate that there exists some order reduction phenomena for the ILW approach in [5,6]. In that 
method [5,6], it is assumed that the numerical solutions in intermediate stages all satisfy the PDE and the correspond-
ing consistent boundary conditions [5,6]. However, this assumption is expected to result in some error since the solutions 
at intermediate stages of RK methods are generally not high-order accurate. By contrast, we use the fact that solutions 
at intermediate stages satisfy a semi-discrete scheme instead of the PDE and then apply the ILW procedure. We analyze 
the difference between our boundary treatment method and that given in [5,6] for the problem of imposing intermedi-
ate boundary conditions for the three-stage third-order SSP RK scheme. Our analysis shows the equivalence of the two 
methods for linear problems. However, for nonlinear equations there exist difference terms of O(�t2�x) between the two 
methods. As a consequence, the convergence order is only 17/3 for the method in [5,6] if using a seventh-order WENO 
scheme in space and the third-order SSP RK scheme in time with a time step-size �t = O(�x7/3). This is less than the ex-
pected seventh-order that we obtain with our boundary treatment method. These interesting findings are verified through 
numerical experiments as well.

This paper is organized as follows. In Section 2, we introduce the SSP RK schemes and the WENO scheme. In Section 3, 
we use the one-dimensional case to illustrate our idea of boundary treatment appearing in [4]. The method is compared 
with that in [5,6] for linear and nonlinear problems in Section 4. Numerical tests are presented in Section 5 to demonstrate 
the stability and accuracy of our method as well as the order reduction of the method in [5,6]. Finally, Section 6 concludes 
the paper. This paper also includes an appendix which gives some details of the boundary treatment.

2. Scheme formulation

2.1. RK methods for conservation laws

Consider a one-dimensional hyperbolic system of conservation laws for U = U (t, x) ∈RM

∂t U + ∂x F (U ) = 0 (2.1)

on a bounded domain 0 ≤ x ≤ 1 subject to appropriate boundary conditions and initial data. We assume that the Jacobian 
matrix FU (U (t, 0)) always has p positive eigenvalues and thus p independent relations among incoming and outgoing 
modes are given at the left boundary x = 0:

B(U (t,0), t) = 0. (2.2)

Similarly, the boundary conditions at x = 1 are also imposed properly.



W. Zhao et al. / Journal of Computational Physics 421 (2020) 109697 3
A general s-stage explicit SSP RK scheme for the hyperbolic system (2.1) is written as [1,2]

U (0) = Un, (2.3a)

U (i) =
i−1∑
k=0

αikU (k) + �tβik

{
L(U (k)) if βik > 0
L̃(U (k)) otherwise

, i = 1,2, . . . , s, (2.3b)

Un+1 = U (s), (2.3c)

where all the αik ≥ 0 and αik = 0 only if βik = 0. Here both L(U ) and L̃(U ) approximate −∂x F (U ), and the forward Euler 
method applied to U̇ = L(U ) is strongly stable under a certain time-step restriction, i.e., ||U + �tL(U )|| ≤ ||U || for all 
�t ≤ �tF E . Similarly, the backward-in-time Euler method applied to U̇ = L̃(U ) is strongly stable under a suitable time-step 
restriction, i.e., ||U − �t L̃(U )|| ≤ ||U || for all �t ≤ �tF E . In practice, L̃(U ) is formed using a reversal in the upwinding 
direction relative to L(U ), or, in other words, using downwinding (see [2,10,12] for more details). For convenience, we 
refer to such discretizations as downwind spatial discretizations (cf. [10,12]). It is shown in [10,12] that RK methods with 
negative coefficients may allow larger time steps (or CFL numbers) and even better efficiency than those with all non-
negative coefficients.

2.2. WENO scheme

For the spatial discretization, we use the finite difference WENO scheme with the Lax-Friedrichs flux splitting [18]. 
Denote by x j the j-th grid point of a uniform mesh and by U j the corresponding point value. Define �x = x j+1 − x j and 
x j+ 1

2
= 1

2 (x j + x j+1). The finite difference WENO scheme for the spatial derivative F (U )x at x = x j will take the conservative 
form

1

�x
( F̂ j+ 1

2
− F̂ j− 1

2
),

where F̂ j+ 1
2

is the numerical flux. Namely, L(U ) in (2.3) for βik > 0 is given by

L(U ) = − 1

�x
( F̂ j+ 1

2
− F̂ j− 1

2
). (2.4)

We use the global Lax-Friedrichs splitting

F±(U ) := 1

2

(
U ± F (U )

α

)
,

where α = max |λi| with λi being the i-th eigenvalue of the Jacobian matrix FU (U ). The maximum is taken over all the 
grid points at time level tn . Let L j+ 1

2
and R j+ 1

2
be the left and right eigenvector matrix of FU (U ) evaluated at U j+ 1

2
. These 

satisfy L−1
j+ 1

2
= R j+ 1

2
. Here U j+ 1

2
is some average of U j and U j+1, and we simply take U j+ 1

2
= 1

2 (U j + U j+1). The finite 
difference WENO scheme is formulated as follows.

At each fixed x j+ 1
2

:

1. Transform the cell average F±(Un
k ) for all k in a neighborhood of j to the local characteristic field by setting

(V±)n
k := L j+ 1

2
F±(Un

k ).

2. Perform the WENO reconstruction for each component of (V+)n
k to obtain the value of (V+)n at x j+ 1

2
on the left side 

and denote it as (V+)−
j+ 1

2
. Similarly, perform the WENO reconstruction for each component of (V−)n

k to obtain the value of 

(V−)n at x j+ 1
2

on the right side and denote it as (V−)+
j+ 1

2
.

3. Transform back to the physical space by

(F+)−
j+ 1

2
:= R j+ 1

2
(V+)−

j+ 1
2
, (F−)+

j+ 1
2

:= R j+ 1
2
(V−)+

j+ 1
2
.

4. Form the flux using

F̂ j+ 1
2

= α

[
(F+)−

j+ 1 − (F−)+
j+ 1

]
.

2 2



4 W. Zhao et al. / Journal of Computational Physics 421 (2020) 109697
2.3. Downwind space discretization

To implement the downwind spatial discretization for L̃(U ) in the case of βik < 0, we only need to define [12]

F̃+(U ) := F−(U ) = 1

2

(
U − F (U )

α

)
, F̃−(U ) := F+(U ) = 1

2

(
U + F (U )

α

)
. (2.5)

Using these expressions, the procedure to compute the flux is the same as that of the WENO scheme above. For convenience, 
we provide the details as well. At each fixed x j+ 1

2
:

1. Transform the cell average F̃±(Un
k ) for all k in a neighborhood of j to the local characteristic field by setting

(Ṽ±)n
k := L j+ 1

2
F̃±(Un

k ).

2. Perform the WENO reconstruction for each component of (Ṽ+)n
k to obtain the value of (Ṽ+)n at x j+ 1

2
on the left side 

and denote it as (Ṽ+)−
j+ 1

2
. Similarly, perform the WENO reconstruction for each component of (Ṽ−)n

k to obtain the value of 

(Ṽ−)n at x j+ 1
2

on the right side and denote it as (Ṽ−)+
j+ 1

2
.

3. Transform back to the physical space by

( F̃+)−
j+ 1

2
:= R j+ 1

2
(Ṽ+)−

j+ 1
2
, ( F̃−)+

j+ 1
2

:= R j+ 1
2
(Ṽ−)+

j+ 1
2
.

4. Form the flux using

˜̂F j+ 1
2

= −α

[
( F̃+)−

j+ 1
2

− ( F̃−)+
j+ 1

2

]
. (note the additional minus sign)

With the above flux ˜̂F j+ 1
2

, L̃(U ) in (2.3) for βik < 0 is computed as

L̃(U ) = − 1

�x
(
˜̂F j+ 1

2
− ˜̂F j− 1

2
). (2.6)

3. Boundary treatment

In this section, we introduce the boundary treatment method in [4] with the fifth-order finite difference WENO scheme. 
Here we take �t =O(�x).

3.1. Computation of solutions at ghost points

We focus on the left boundary x = 0 of the problem (2.1); the method can be similarly applied to the right boundary. 
Following the notations in [6], we discretize the interval [0, 1] by a uniform mesh

�x

2
= x0 < x1 < · · · < xN = 1 − �x

2
(3.1)

and set x j, j = −1, −2, −3, as three ghost points near the left boundary x = 0 (note that the boundary can be arbitrarily 
located). Denote by Un

j the numerical solution of U at position x j and time tn . Assume that the interior solutions U j, j =
0, 1, 2, . . . , N , have been updated from time level tn−1 to time level tn . Since the spatial discretization is fifth-order, we use 
a fifth-order Taylor approximation to construct the values at the ghost points,

Un
j =

4∑
k=0

xk
j

k! Un,(k), j = −1,−2,−3, (3.2)

where Un,(k) denotes a (5 − k)-th order approximation of the spatial derivative at the boundary point ∂k U
∂xk

∣∣
x=0,t=tn

. With 
this formula, Un

j at the ghost points can be obtained once Un,(k), k = 0, 1, 2, 3, 4 are provided. Full details on this procedure 
appear in [5,6] (see also the next subsection). Having found the ghost values, we can obtain U (1)

j at the interior points via 
the RK scheme (2.3).

The next task is to compute U (1)
j , j = −1, −2, −3, which is a key point of our method. Similar to the above procedure, 

we compute U (1)
j using the fifth-order Taylor expansion at the boundary point xb = 0:

U (1)
j =

4∑ xk
j

k! U (1),(k), j = −1,−2,−3, (3.3)

k=0
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where U (1),(k) denotes a (5 − k)-th order approximation of the spatial derivative ∂k U (1)

∂xk

∣∣
x=0. Next, we compute U (1),(k) for 

k = 0, 1, 2, 3, 4. To this end, we apply the first stage of the RK solver (2.3b) for U (1) at the boundary point xb = 0:

U (1)(xb) = α10Un(xb) − β10�t∂x F (Un(xb)). (3.4)

Notice that Un(xb) = Un,(0) + O(�x5) and ∂x F (Un(xb)) = FU (Un(xb))∂xUn(xb) = FU (Un,(0))Un,(1) + O(�x4) are already 
known. Substituting these into (3.4), we obtain an approximation of U (1)(xb) and denote it by U (1),(0) . Observe that the 
error between U (1),(0) and U (1)(xb) defined by (3.4) is O(�x5).

Taking derivatives with respect to x on both sides of (3.4) yields

∂U (1)

∂x

∣∣
x=xb

= α10∂xUn(xb) − β10�t∂xx F (Un(xb)). (3.5)

Here ∂xUn(xb) = Un,(1) + O(�x4) and ∂xx F (Un(xb)) = FU U (Un(xb))∂xUn(xb)∂xUn(xb) + FU (Un(xb))∂xxUn(xb) =
FU U (Un,(0))Un,(1)Un,(1) + FU (Un,(0))Un,(2) + O(�x3). With these approximations, ∂U (1)

∂x

∣∣
x=xb

can be computed with (3.5)

and the resulting solution U (1),(1) is a fourth-order approximation of ∂U (1)

∂x

∣∣
x=xb

.

By taking higher order derivatives on both sides of (3.4), one can also compute ∂k U (1)

∂xk

∣∣
x=xb

for k = 2. However, this 

procedure is quite complicated as it involves the Jacobian of a Jacobian. Here we simply approximate ∂k U (1)

∂xk

∣∣
x=xb

for k ≥ 2

by using a (5 − k)-th order extrapolation with U (1) at interior points. In this way, we obtain U (1),(k) for k = 0, 1, 2, 3, 4 with 
accuracy of order (5 − k). Then, U (1)

j for j = −1, −2, −3 can be computed by (3.3) with fifth-order accuracy. Having U (1) at 
the ghost points, we can then evolve from U (1) to U (2) using the interior difference scheme.

Repeating the same procedure for each U (i), 2 ≤ i ≤ s − 1, we can compute the solution at the ghost points in the i-th 
intermediate stage. Following this, we can update the solution at all interior points in the (i + 1)-th stage. Finally, we obtain 
Un+1 = U (s) , i.e., the solution at the end of a complete RK cycle. For clarity, we provide the computation of U (2)

j at ghost 
points j = −1, −2, −3 in the Appendix.

3.2. Computation of Un,(k) at the boundary

For the sake of completeness, we provide the method in [6] for computing Un,(k), 0 ≤ k ≤ 4, i.e., the (5 − k)-th order 
approximation of ∂k Un

∂xk at the boundary x = 0.

3.2.1. k = 0
We first do a local characteristic decomposition to determine the inflow and outflow boundary conditions as in [6]. 

Denote the Jacobian matrix of the flux evaluated at x = x0 by

A(Un
0) = ∂U F (U )

∣∣
U=Un

0

and assume that it has p positive eigenvalues λ1, λ2, . . . , λp and (M − p) negative eigenvalues λp+1, λp+2, . . . , λM with 
l1, l2, ...lp and lp+1, lp+2, ...lM the corresponding left eigenvectors, respectively. Define by V j,m the m-th component of the 
local characteristic variable at grid point x j, j = 0, 1, 2, 3, 4, i.e.,

V j,m = lmUn
j , m = 1,2, . . . , M, j = 0,1,2,3,4. (3.6)

We extrapolate the outgoing characteristic variable V j,m, m = p + 1, p + 2, . . . , M to the boundary xb (for smooth solutions, 
we use Lagrangian extrapolation, otherwise the WENO type extrapolation in [5,6] can be used to avoid possible oscillations), 
and denote the extrapolated k-th order derivative by

V ∗(k)
xb,m, k = 0,1,2,3,4. (3.7)

With V ∗(0)
xb,m and the boundary condition (2.2), Un,(0) at the boundary can be determined from the following equations

lmUn,(0) = V ∗(0)
xb,m, m = p + 1, p + 2, . . . , M,

B(Un,(0), tn) = 0.
(3.8)

3.2.2. k = 1
Having Un,(0) , we proceed to compute Un,(1) with the ILW procedure proposed in [5,6]. To do this, we differentiate the 

boundary condition (2.2) with respect to t

BU (Un,(0), tn)∂t Un,(0) + Bt(Un,(0), tn) = 0,
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which can be written as

BU (Un,(0), tn)∂t Un,(0) = g(Un,(0), tn)

with g(Un,(0), tn) := −Bt(Un,(0), tn). In addition, multiplying the equation (2.1) with BU (Un,(0), tn) from the left yields

BU (Un,(0), tn)∂t Un,(0) + BU (Un,(0), tn)A(Un,(0))Un,(1) = 0.

With the above two equations and V ∗(1)
xb ,m obtained by the extrapolation, Un,(1) can be determined by solving

lmUn,(1) = V ∗(1)
xb,m, m = p + 1, p + 2, . . . , M, (3.9a)

BU (Un,(0), tn)A(Un,(0))Un,(1) = −g(Un,(0), tn). (3.9b)

This is the ILW procedure in [5,6].

3.2.3. k ≥ 2
Following [6], we simply extrapolate ∂k Un

∂xk |x=0 for all k ≥ 2, a procedure that will not affect the stability [6]. First, note 
that we have already obtained the characteristic variables at grid points near the boundary in (3.6). Based on these charac-
teristic variables, Lagrangian extrapolation (for smooth solutions) or the WENO type extrapolation (for nonsmooth solutions) 
is employed to compute the derivatives V ∗(k)

xb,m, k ≥ 2 for each m = 1, 2, · · · , M . Following this step, the approximation of 
∂k Un

∂xk |x=0 is given by

Un,(k) = l−1 V ∗(k)
xb,m, (3.10)

where l is the local left eigenvector matrix composed of l1, l2, · · · , lM .
Our boundary treatment for the general RK scheme (2.3) is summarized as follows:

Step 1: Compute Un,(k) , the (5 − k)-th order approximation of ∂k Un

∂xk at the boundary x = 0 for k = 0, 1, 2, 3, 4 as in 
subsection 3.2. Next, impose grid values Un

j at the ghost points j = −1, −2, −3 using the Taylor expansion (3.2). This step is 
the same as that in [6]. With Un prescribed at the ghost points, we can evolve from Un to U (1) with the interior difference 
scheme.

Step 2: Compute U (1),(k) , the (5 − k)-th order approximation of ∂k U (1)

∂xk at the boundary x = 0 for k = 0, 1, 2, 3, 4, as 
in subsection 3.1. Specifically, U (1),(0) and U (1),(1) are obtained from the RK solver via (3.4) and (3.5), respectively, and 
U (1),(k), k = 2, 3, 4, are simply extrapolated. Next, impose grid values U (1)

j at the ghost points j = −1, −2, −3 with the 
Taylor expansion (3.3). Having U (1) at the ghost points, we can update U (2) at all interior points.

Step 3: Repeat the same procedure as in Step 2 for each U (i), 2 ≤ i ≤ s − 1, to compute the solution at the ghost points in 
the i-th intermediate stage. We can then update the solution at all interior points in the (i + 1)-th stage. Finally, we obtain 
Un+1 = U (s) , i.e., the solution at the end of a complete RK cycle.

4. Comparison with the method in [6]

In this section, we analyze the difference between our method and that in [6], where the intermediate boundary condi-
tions in [13] are employed. To this end, we consider the scalar conservation law

ut + f (u)x = 0, 0 < x < 1 (4.1)

with boundary condition

u(0, t) = g(t). (4.2)

Here f ′(u(0, t)) > 0 is assumed. We solve the problem with the third-order SSP RK scheme [1,2]

u(1) = un + �tL(un), (4.3a)

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)), (4.3b)

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)), (4.3c)

where L(u) = − f (u)x .
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The method in [6] assumes that un , u(1) and u(2) all satisfy the PDE (4.1) together with the boundary conditions [13]

un = g(tn), (4.4a)

u(1) = g(tn) + �tg′(tn), (4.4b)

u(2) = g(tn) + 1

2
�tg′(tn) + 1

4
(�t)2 g′′(tn). (4.4c)

Then, the first-order derivatives un
x , u(1)

x and u(2)
x at the boundary x = 0 are obtained by the ILW procedure:

un
x = − un

t

f ′(un)
= − g′(tn)

f ′(g(tn))
, (4.5)

u(1)
x = − u(1)

t

f ′(u(1))
= − (g(tn) + �tg′(tn))′

f ′(g(tn) + �tg′(tn))
= − g′(tn) + �tg′′(tn)

f ′(g(tn) + �tg′(tn))
, (4.6)

u(2)
x = − u(2)

t

f ′(u(2))
= − (g(tn) + 1

2 �tg′(tn) + 1
4 (�t)2 g′′(tn))′

f ′(g(tn) + 1
2�tg′(tn) + 1

4 (�t)2 g′′(tn))
= − g′(tn) + 1

2 �tg′′(tn) + 1
4 (�t)2 g′′′(tn)

f ′(g(tn) + 1
2 �tg′(tn) + 1

4 (�t)2 g′′(tn))
. (4.7)

4.1. Linear case

We first consider the linear case with f (u) = u. Here, the derivatives (4.5)–(4.7) for the method in [6] reduce to

un
x = −g′(tn), (4.8a)

u(1)
x = −g′(tn) − �tg′′(tn), (4.8b)

u(2)
x = −g′(tn) − 1

2
�tg′′(tn) − 1

4
(�t)2 g′′′(tn). (4.8c)

Instead of imposing intermediate boundary conditions, our method directly uses the RK scheme (4.3) at the boundary. This 
means

u(1)
x = un

x + �tun
tx,

= − un
t − �tun

tt,

= − g′(tn) − �tg′′(tn),

which is the same as (4.8b). Taking one more derivative gives

u(1)
xx = un

xx + �tun
txx,

= un
tt + �tun

ttt ,

= g′′(tn) + �tg′′′(tn)

and thereby

u(2)
x = 3

4
un

x + 1

4
u(1)

x − 1

4
�tu(1)

xx ,

= − 3

4
g′(tn) + 1

4
(−g′(tn) − �tg′′(tn)) − 1

4
�t(g′′(tn) + �tg′′′(tn)),

= − g′(tn) − 1

2
�tg′′(tn) − 1

4
�t2 g′′′(tn),

which is the same as (4.8c). Thus, our method and that in [6] are equivalent for linear equations.

4.2. Nonlinear case

Next, we consider the nonlinear case. Since our boundary treatment of un is the same as that in [6], we have

un
x = − g′(tn)

f ′(g(tn))
, (4.12)

un
xt = −un

tt f ′(un) − (un
t )

2 f ′′(un)

′ n 2
= − g′′(tn) f ′(g(tn)) − (g′(tn))

2 f ′′(g(tn))

′ 2
. (4.13)
( f (u )) ( f (g(tn)))
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For u(1) , the value at the boundary in our method is determined by the RK scheme (4.3a) (instead of (4.4b)). Thus

u(1) = u(n) + �tu(n)
t = g(tn) + �tg′(tn). (4.14)

It follows from (4.12)–(4.14) that the first order derivative u(1)
x is

u(1)
x = un

x + �tun
xt,

= − un
t

f ′(un)
+ �t

−un
tt f ′(un) + (un

t )
2 f ′′(un)

( f ′(un))2
,

= − g′(tn) f ′(g(tn)) + �tg′′(tn) f ′(g(tn)) − �t(g′(tn))2 f ′′(g(tn))

f ′(g(tn))2
.

We make a subtraction between the above u(1)
x and that in (4.6):

− g′(t) + �tg′′(t)
f ′(g(t) + �tg′(t))

+ g′(t) f ′(g(t)) + �tg′′(t) f ′(g(t)) − �t(g′(t))2 f ′′(g(t))

f ′(g(t))2

= 2 f ′(g(t)) f ′′(g(t))g′(t)g′′(t) + (g′(t))3
(−2( f ′′(g(t)))2 + f ′(g(t)) f (3)(g(t))

)
2( f ′(g(t)))3

�t2 +O(�t3).

It is clear that there exists a difference of O(�t2) between the values of u(1)
x used by the two methods. This implies that 

the solutions u(1) at ghost points computed by Taylor expansion will differ by O(�t2�x). Similarly, we can show that the 
difference between values of u(2)

x is also O(�t2) and that the solutions u(2) at ghost points will differ by O(�t2�x) as well.
The differences computed above show that if we use a seventh-order spatial discretization and take �t = O(�x7/3), 

then values of u(1) (and also u(2)) at ghost points will differ by O(�x17/3) between the two methods. Consequently, order 
reduction will arise for the method in [6]: the convergence order is only 17/3 which is less than the expected seventh-order. 
Numerical verification of these results appears in the next section.

5. Numerical validations

This section is devoted to the validation of our boundary treatment method. Unless otherwise stated, we use the fifth-
order WENO scheme [1] for the spatial discretization. Fifth-order Lagrangian extrapolation is employed except for the blast 
wave problem of the Euler equations. For time-stepping, four RK schemes are considered: the three-stage third-order SSP 
RK scheme in [1], the optimal five-stage fourth-order RK scheme with all nonnegative coefficients [11], and the three-stage 
third-order and five-stage fourth-order RK schemes with negative coefficients proposed in [12]. These four schemes are 
referred to as SSP(3,3), SSP(5,4), SSP∗(3, 3) and SSP∗(5, 4), respectively [11,12]. The coefficients defining the schemes and 
the corresponding SSP coefficients are given in Table 5.1. It should be noted that SSP∗(3, 3) and SSP∗(5, 4) are optimal under 
the restriction that both L(U ) and L̃(U ) arise simultaneously at one level j only, i.e., βi j, j + 1 ≤ i ≤ s, can be positive or 
negative (or zero) while βik ≥ 0 for k �= j.

With these four RK schemes, we approximate three 1D problems from [5] to test the accuracy and stability of our 
boundary treatment method. The order reduction of the method in [6] is verified as well.

5.1. 1D linear scalar equation

The first problem we consider is the linear scalar hyperbolic equation [5] where a boundary condition is prescribed at 
x = −1:

ut + ux = 0, x ∈ [−1,1], t > 0,

u(0, x) = 0.25 + 0.5 sin(πx), x ∈ [−1,1],
u(t,−1) = g(t), t > 0.

(5.1)

No boundary condition is needed at x = 1. As in [5], we first take

g(t) = 0.25 − 0.5 sin(π(1 + t)) (5.2)

so that the initial-boundary value problem (5.1) has the exact solution

u(t, x) = 0.25 + 0.5 sin(π(x − t)). (5.3)

With this analytical solution, we conduct a numerical convergence study for our boundary treatment method with different 
RK schemes. Using a fixed CFL number of 0.6, the L1 and L∞ errors at t = 1 are computed; see Table 5.2. We observe 
that the desired third-order convergence is obtained for both the SSP(3,3) and SSP∗(3, 3) schemes. For the fourth-order 
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Table 5.1
The coefficients of four RK schemes.

scheme coefficients SSP coefficient

SSP(3,3) αik

1
3
4

1
4

1
3 0 2

3

βik

1
0 1

4
0 0 2

3

1

SSP∗(3,3)

αik

1
0.410802706918667 0.589197293081333
0.123062611901395 0.251481201947289 0.625456186151316

βik

0.767591879243998
−0.315328821802221 0.452263057441777
−0.041647109531262 0 0.480095089312672

1.3027756

SSP(5,4)

αik

1
0.444370493651235 0.555629506348765
0.620101851488403 0 0.379898148511597
0.178079954393132 0 0 0.821920045606868

0 0 0.517231671970585 0.096059710526147 0.386708617503269

βik

0.391752226571890
0 0.368410593050371
0 0 0.251891774271694
0 0 0 0.544974750228521
0 0 0 0.063692468666290 0.226007483236906

1.5081800

SSP∗(5,4)

αik

1
0.210186660827794 0.789813339172206
0.331062996240662 0.202036516631465 0.466900487127873

0 0 0 1
0.097315407775058 0.435703937692290 0 0 0.466980654532652

βik

0.416596471458169
−0.103478898431154 0.388840157514713
−0.162988621767813 0 0.229864007043460

0 0 0 0.492319055945867
−0.047910229684804 0.202097732052527 0 0 0.229903474984498

2.0312031

Table 5.2
Error table for the linear equation (5.1) with solution (5.3).

�x SSP(3,3) SSP∗(3,3)

L1 error order L∞ error order L1 error order L∞ error order

1/20 3.45e-5 7.44e-5 3.83e-5 8.24e-5
1/40 3.51e-6 3.30 7.39e-6 3.33 3.63e-6 3.40 7.62e-6 3.43
1/80 4.16e-7 3.08 8.71e-7 3.08 4.20e-7 3.11 8.78e-7 3.11
1/160 5.12e-8 3.02 1.07e-7 3.03 5.14e-8 3.03 1.07e-7 3.04
1/320 6.39e-9 3.00 1.34e-8 3.00 6.39e-9 3.00 1.34e-8 3.00

�x SSP(5,4) SSP∗(5,4)

L1 error order L∞ error order L1 error order L∞ error order

1/20 1.02e-5 2.58e-5 1.12e-5 2.87e-5
1/40 3.23e-7 4.98 7.82e-7 5.04 3.56e-7 4.98 9.05e-7 4.99
1/80 1.02e-8 4.98 2.43e-8 5.01 1.13e-8 4.98 2.78e-8 5.02
1/160 3.28e-10 4.96 7.18e-10 5.08 3.64e-10 4.96 8.39e-10 5.05
1/320 1.09e-11 4.91 2.12e-11 5.08 1.21e-11 4.91 2.49e-11 5.07

RK schemes, the convergence orders are about five, an effect which may be due to the error of the spatial discretization 
dominating over that of the time discretization.

Next, we use the seventh-order WENO scheme and the SSP(3,3) scheme with �t = �x7/3 to investigate the accuracy of 
our method and that in [6]. As shown in Table 5.3, the errors of the two methods are very close to each other for different 
�x and the convergence order is about seven for both methods. These results agree with our earlier analysis showing that 
the method in [6] is equivalent to ours for linear equations. It should be noted that we use the ideal weights, which are also 
called the linear weights, for the seventh-order WENO scheme; using the original ones in [19], it seems difficult to achieve 
the intended seventh-order accuracy in practice [20].

Fixing �x = 1/80, we plot in Fig. 5.1 the L1 error with respect to the CFL number. We see from the figure that, with 
our boundary treatment method, the errors for all the RK schemes remain small until a critical CFL number is reached, 
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Table 5.3
Error table of our method and that in [6] for the linear equation (5.1) with solution (5.3). Here we use the 
seventh-order scheme with ideal weights and the SSP(3,3) scheme with �t = �x7/3.

�x our method method in [6]

L1 error order L∞ error order L1 error order L∞ error order

1/10 1.10e-5 3.56e-5 1.17e-5 3.79e-5
1/20 9.33e-8 6.88 3.38e-7 6.72 9.53e-8 6.94 3.53e-7 6.75
1/40 9.54e-10 6.95 3.77e-9 6.49 7.64e-10 6.96 3.88e-9 6.51
1/80 7.67e-12 6.62 5.97e-11 5.98 7.81e-12 6.61 6.01e-11 6.01

Fig. 5.1. L1 errors as a function of the CFL number for the linear system (5.1) with solution (5.3).

Fig. 5.2. Computational results for the linear scalar equation (5.1) with boundary condition (5.4). Here we take �x = 1/80.

after which the error grows sharply. As expected, the RK schemes with negative coefficients give better stability than those 
without negative coefficients.

Next we take [5]

g(t) =
{

0.25 t ≤ 1,

−1 t > 1
(5.4)

for which the exact solution is

u(t, x) =
⎧⎨
⎩

−1 x < t − 2,

0.25 t − 2 ≤ x < t − 1,

0.25 + 0.5 sin[π(x − t)] x ≥ t − 1.

(5.5)

For this definition of g(t), the exact solution has a slope discontinuity for t < 2. A second discontinuity (this time in the 
solution) enters the computational domain from the inflow boundary at t = 1 and persists until t = 3. It can be observed 
from Fig. 5.2 (left) that both types of discontinuities are well captured by our method for different RK methods. These results 
are comparable to those of the method in [5]. Note that the computational results remain good after the slope discontinuity 
passes through the right boundary; see Fig. 5.2 (right).
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Fig. 5.3. Computational results for the Burgers equation (5.6) with exact solution (5.7). Here we take �x = 1/80.

Fig. 5.4. L1 errors as a function of the CFL number for the Burgers equation (5.6) with nonsmooth solution (5.7).

5.2. 1D Burgers equation

The second problem is the Burgers equation

ut +
(

1

2
u2

)
x
= 0, t > 0 (5.6)

on the domain x ∈ [− 1
2 , 32 ]. For t < 1, this equation has the nonsmooth solution

u(t, x) =
⎧⎨
⎩

1 x < t,
1−x
1−t t ≤ x < 2 − t,

−1 x ≥ 2 − t.
(5.7)

In our computations, initial and boundary data are assigned according to this exact solution. Note that boundary conditions 
should be prescribed at both sides here since u(t, − 1

2 ) > 0 and u(t, 32 ) < 0.
With our boundary treatment method used at both boundaries, the computational results of the four RK schemes all 

agree well with the exact solution. To illustrate, solutions of the SSP∗(5, 4) scheme with CFL = 0.6 are presented in Fig. 5.3
for t = 0.4 and t = 0.99999. It can be seen that good results are obtained even after the discontinuity has entered from the 
right-hand boundary.

Next, we compare the errors at t = 0.4 of the four RK schemes as the CFL number is varied. For this discontinuous, 
nonlinear problem, the plots in Fig. 5.4 show that the RK schemes with negative coefficients still give better stability than 
those without negative coefficients, though the advantage is not as pronounced as that for the smooth solution of the linear 
equation.

5.3. 1D Euler equations

To conclude our experiments in 1D, we consider the 1D Euler equations⎛
⎝ ρ

ρu
E

⎞
⎠ +

⎛
⎝ ρu

ρu2 + p
u(E + p)

⎞
⎠ = 0, (5.8)
t x
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Table 5.4
Error table for the Euler equations (5.8) with solution (5.9) at t = 2.

�x SSP(3,3) SSP∗(3,3)

L1 error order L∞ error order L1 error order L∞ error order

π/20 5.56e-6 1.62e-5 8.33e-6 2.31e-5
π/40 1.89e-7 4.88 5.61e-7 4.85 2.75e-7 4.92 7.88e-7 4.87
π/80 8.85e-9 4.42 2.38e-8 4.56 1.15e-8 4.58 3.06e-8 4.69
π/160 6.42e-10 3.79 1.53e-9 3.96 7.26e-10 3.99 1.73e-9 4.14
π/320 6.57e-11 3.29 1.51e-10 3.34 6.82e-11 3.41 1.56e-10 3.47
π/640 7.75e-12 3.08 1.81e-11 3.06 7.82e-12 3.12 1.81e-11 3.11

�x SSP(5,4) SSP∗(5,4)

L1 error order L∞ error order L1 error order L∞ error order

π/20 5.33e-6 1.57e-5 7.02e-6 2.00e-5
π/40 1.59e-7 5.07 4.91e-7 5.00 2.11e-7 5.06 6.31e-7 4.99
π/80 5.00e-9 4.99 1.48e-8 5.05 6.61e-9 4.99 1.90e-8 5.05
π/160 1.56e-10 5.00 4.13e-10 5.16 2.07e-10 5.00 5.32e-10 5.16
π/320 5.01e-12 4.96 1.26e-11 5.03 6.33e-12 5.03 1.53e-11 5.12

where ρ, u, p and E are the fluid density, velocity, pressure and total energy, respectively. The equation of state has the 
form

E = p

γ − 1
+ 1

2
ρu2,

where γ = 1.4 is the specific heat ratio. The eigenvalues of the Jacobian matrix of the flux are u − c, u and u + c with 
c = √

γ p/ρ giving the sound speed.

5.3.1. Accuracy test
We first test the accuracy of our method for a smooth solution on the domain [−π, π ] [5]:

ρ(t, x) = 1 + 0.2 sin(x − t),

u(t, x) = 1,

p(t, x) = 2.

(5.9)

The initial condition is obtained by setting t = 0 in the above solution. It can be directly verified that u − c < 0, u > 0 and 
u + c > 0 at both boundaries. Thus, two boundary conditions are needed at x = −π and one is required at x = π . As in [5], 
we prescribe ρ and u at the left boundary:

ρ(t,−π) = 1 + 0.2 sin(t),

u(t,−π) = 1,

and ρ is given at the right boundary:

ρ(t,π) = 1 + 0.2 sin(t).

The errors and convergence orders of different RK schemes using a fixed CFL number of 0.6 are listed in Table 5.4 for this 
example. We see that for the third-order RK schemes, the convergence order is much larger than three for coarse meshes 
and that third-order convergence is achieved by taking very small �x-values. Similar to the linear problem, the convergence 
order is about five for the fourth-order RK schemes. As before, we conjecture that this is due to the error of the space 
discretization dominating over that of the time discretization.

5.3.2. Comparison with the method in [5]
We now verify our analysis of Section 4 where it was shown that order reduction arises when the method in [5] is 

applied to the nonlinear equations. To this end, we apply the SSP(3,3) RK method and the seventh-order WENO scheme to 
the 1D Euler equations with smooth solution (5.9). As in the computation for the linear scalar equation, the ideal WENO 
weights are used. Applying a fixed �t = �x7/3, we compare in Table 5.5 the errors of our method and that in [5]. It is 
clear that the designed seventh-order convergence is obtained for our method while the convergence order of the method 
in [5] is only about 17

3 (≈ 5.67). This agrees with our analysis: our boundary treatment method maintains the accuracy of 
the interior spatial and time discretizations while the method in [5] introduces order reduction.
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Table 5.5
Error table of our method and that in [6] for the Euler equations (5.8) with solution (5.9) at t = 2. Here we use 
the seventh-order WENO scheme with ideal weights and the SSP(3,3) scheme with �t = �x7/3.

�x our method method in [6]

L1 error order L∞ error order L1 error order L∞ error order

π/10 5.09e-6 1.31e-5 1.41e-5 4.52e-5
π/20 4.36e-8 6.87 1.23e-7 6.73 2.16e-7 6.03 8.04e-7 5.81
π/40 3.34e-10 7.03 1.00e-9 6.94 4.06e-9 5.73 1.49e-8 5.75
π/80 3.54e-12 7.04 7.37e-12 7.08 7.62e-11 5.73 2.88e-10 5.69

Fig. 5.5. L1 errors as a function of the CFL number for the Euler equations (5.8) with solution (5.9).

5.3.3. Stability test
We conduct another test of the stability of our boundary treatment method for the Euler equations with smooth solu-

tion (5.9) by fixing �x = 1/80 and varying the CFL number. The corresponding L1 errors are plotted in Fig. 5.5. Similar to 
the case of the linear equation, we see that the RK schemes with negative coefficients give better stability than those with-
out negative coefficients. Furthermore, with our boundary treatment method, the error for all RK schemes remains small 
until a critical CFL number is reached, after which the error grows sharply.

5.3.4. Performance for shock interactions
To conclude, we test our method for the Euler equations on a problem with shocks that arise through the interaction of 

two blast waves [21,5]. In this problem, the initial data are given by

(ρ, u, p)(0, x) =
⎧⎨
⎩

(1,0,103) 0 < x < 0.1,

(1,0,10−2) 0.1 < x < 0.9,

(1,0,102) 0.9 < x < 1
(5.10)

and the boundaries are solid walls, namely, u = 0 at x = 0 and x = 1. As time evolves, there are multiple reflections of shocks 
and rarefactions off the walls. The shocks and rarefactions also interact with each other and with contact discontinuities. 
Similar to [5], we use second-order Taylor expansion at the boundary. The WENO type extrapolation in [5] is employed to 
avoid oscillations.

Fig. 5.6 gives a plot of our numerical solutions at t = 0.038. We see that the results of the SSP∗(3, 3) and SSP∗(5, 4)

schemes coincide with each other. They also agree well with those of the method in [5]. These good results demonstrate 
the ability of our boundary treatment method to compute solutions to problems with complex shock interactions.

5.4. 2D Euler equations

Though our method is illustrated only for 1D equations in Section 3, it can be directly extended to 2D problems [4]. In 
the following we examine our method for the 2D Euler equations

∂t U + ∂x F (U ) + ∂y G(U ) = 0, (x, y) ∈ 
 (5.11)

with

U = (ρ,ρu,ρv, E)T ,

F (U ) = (ρu,ρu2 + p,ρuv, (E + p)u)T ,

G(U ) = (ρv,ρuv,ρv2 + p, (E + p)v)T
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Fig. 5.6. Computational results of the blast wave problem for the Euler equations (5.6) with �x = 1/1600.

and equation of state E = 1
2 ρ(u2 + v2) + p

γ −1 . Here ρ is the density, u and v are the velocities in x and y directions, E
is the total energy, p is the pressure, and γ = 1.4 is the specific heat ratio. Specifically, we simulate the vortex problem 
with analytical solutions to the above 2D Euler equations as in [5]. In this problem, the mean flow ρ = u = v = 1 is 
initially imposed with an isentropic vortex perturbation centered at (x0, y0) in (u, v) and in the temperature T = p/ρ , no 
perturbation in the entropy S = p/ργ :

(δu, δv) = ε

2π
e0.5(1−r2)(− ȳ, x̄),

δT = − (γ − 1)ε2

8γπ2
e(1−r2),

δS = 0.

Here (x̄, ȳ) = (x − x0, y − y0), r2 = x̄2 + ȳ2 and ε is the vortex strength. The exact solution U (t, x, y) of this problem is a 
passive convection of the vortex with the mean velocity, i.e., U (t, x, y) = U (0, x − ut, y − vt). As in [5], we set the spatial 
domain 
 = [−0.5, 1]2 and (x0, y0) = (0, 0), and take boundary conditions from the exact solution whenever needed.

In the computation, we use the fifth-order WENO scheme [1] for the spatial discretization. The tangential derivative 
∂y Un at the boundary is given by the exact solution and ∂y U (i), ∂xy Un, ∂xy U (i) are computed by numerical differentiation. 
We take ε = 1 so that the signs of the eigenvalues at the boundary, and thereby the number of boundary conditions, do not 
change before the terminal time t = 1. The recently proposed method in [22] may be used to deal with the situation where 
the signs of the eigenvalues vary at the boundary. In this case, the errors are given in Table 5.6. It can be seen that the 
convergence orders of the computational results are generally larger than those of the four RK schemes. This may be due to 
the error of the spatial discretization dominating over that of the time discretization. These results verify the effectiveness 
of our method for 2D problems.

6. Conclusions and remarks

In this paper, we examine the finite difference boundary treatment method proposed in our previous work [4] for the 
case of explicit high-order SSP RK schemes applied to hyperbolic conservation laws. Our spatial discretization uses a WENO 
scheme on a Cartesian mesh where the corresponding downwind scheme is applied in the case of negative coefficients. 
We show that our method applies to general SSP RK schemes with/without negative coefficients. Our method preserves 
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Table 5.6
Error table for the vortex problem of the 2D Euler equations at t = 1 with CFL=0.6. Fifth-order WENO scheme is used for 
the spatial discretization.

�x SSP(3,3) SSP∗(3,3)

L1 error order L∞ error order L1 error order L∞ error order

1.5/20 6.17e-7 6.09e-6 1.00e-6 1.62e-5
1.5/40 2.11e-8 4.87 3.94e-7 3.95 3.35e-8 4.91 1.69e-6 3.25
1.5/80 7.83e-10 4.75 1.62e-8 4.61 1.61e-9 4.38 3.65e-7 2.21
1.5/160 4.83e-11 4.02 1.76e-10 6.52 5.71e-11 4.82 8.21e-9 5.47

�x SSP(5,4) SSP∗(5,4)

L1 error order L∞ error order L1 error order L∞ error order

1.5/20 5.89e-7 4.71e-6 7.58e-7 8.38e-6
1.5/40 1.93e-8 4.93 2.62e-7 4.17 2.42e-8 4.97 6.37e-7 3.72
1.5/80 6.04e-10 5.00 7.52e-9 5.12 7.55e-10 5.00 4.87e-8 3.71
1.5/160 2.82e-11 4.42 1.99e-10 5.24 3.06e-11 4.62 2.75e-10 7.47

the accuracy of the RK schemes and has good stability. These nice properties are verified on linear and nonlinear problems 
using third- and fourth-order RK schemes with and without negative coefficients. In addition, when boundary conditions 
are present and our boundary treatment method is used, the SSP RK schemes with negative coefficients still allow for larger 
time steps than those with all nonnegative coefficients. In this regard, the boundary treatment method in [4] is an effective 
supplement to SSP RK schemes with/without negative coefficients for initial-boundary value problems of conservation laws.

It should be remarked that the key point of our method is to use the RK scheme itself at the boundary, instead of 
imposing intermediate boundary conditions as in [5,6]. The boundary conditions in those previous works [5,6] are derived 
only for RK schemes up to third order while our method applies to RK schemes of arbitrary order. In addition, we show 
the equivalence of our method and that in [5,6] for linear problems and the case of the third-order SSP RK scheme. On the 
other hand, for nonlinear equations, there exist difference terms of O(�t2�x) between the two methods, which result in 
order reduction for the method in [5,6]. These results have been numerically verified as well.
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Appendix

This appendix gives the computation of U (2)
j at ghost points j = −1, −2, −3. As for U (1)

j , U (2)
j is approximated with the 

fifth-order Taylor expansion at the boundary point xb = 0:

U (2)
j =

4∑
k=0

xk
j

k! U (2),(k), j = −1,−2,−3, (6.1)

where U (2),(k) denotes a (5 − k)-th order approximation of the spatial derivative ∂k U (2)

∂xk

∣∣
x=0. Next, we compute U (2),(k) for 

k = 0, 1, 2, 3, 4. To this end, we apply the second stage of the RK solver (2.3b) for U (2) at the boundary point xb = 0:

U (2)(xb) = α20Un(xb) + α21U (1)(xb) − β20�t∂x F (Un(xb)) − β21�t∂x F (U (1)(xb)). (6.2)

Notice that

Un(xb) = Un,(0) +O(�x5),

U (1)(xb) = U (1),(0) +O(�x5),

∂x F (Un(xb)) = FU (Un(xb))∂xUn(xb) = FU (Un,(0))Un,(1) +O(�x4),

∂x F (U (1)(xb)) = FU (U (1)(xb))∂xU (1)(xb) = FU (U (1),(0))U (1),(1) +O(�x4).

Substituting these into (6.2), we obtain an approximation of U (2)(xb) and denote it by U (2),(0) . Observe that the error 
between U (2),(0) and U (2)(xb) defined by (6.2) is O(�x5).
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Taking derivatives with respect to x on both sides of (6.2) yields

∂U (2)

∂x

∣∣
x=xb

= α20∂xUn(xb) + α21∂xU (1)(xb) − β20�t∂xx F (Un(xb)) − β21�t∂xx F (U (1)(xb)). (6.3)

With approximations

∂xUn(xb) = Un,(1) +O(�x4),

∂xU (1)(xb) = U (1),(1) +O(�x4),

∂xx F (Un(xb)) = FU U (Un(xb))∂xUn(xb)∂xUn(xb) + FU (Un(xb))∂xxUn(xb)

= FU U (Un,(0))Un,(1)Un,(1) + FU (Un,(0))Un,(2) +O(�x3),

∂xx F (U (1)(xb)) = FU U (U (1)(xb))∂xU (1)(xb)∂xU (1)(xb) + FU (U (1)(xb))∂xxU (1)(xb)

= FU U (U (1),(0))U (1),(1)U (1),(1) + FU (U (1),(0))U (1),(2) +O(�x3),

∂U (2)

∂x

∣∣
x=xb

can be computed with (6.3) and the resulting solution U (2),(1) is a fourth-order approximation of ∂U (2)

∂x

∣∣
x=xb

.

Furthermore, we simply approximate ∂k U (2)

∂xk

∣∣
x=xb

for k ≥ 2 by using a (5 − k)-th order extrapolation with U (2) at interior 

points. In this way, we obtain U (2),(k) for k = 0, 1, 2, 3, 4 with accuracy of order (5 − k). Then, U (2)
j for j = −1, −2, −3 can 

be computed by (6.1) with fifth-order accuracy. Having U (2) at the ghost points, we can then evolve from U (2) to U (3) using 
the interior difference scheme.
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