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Highlights

• A semi-analytical nonlinear sparse Bayesian algorithm is developed.
• This algorithm permits the inclusion of prior parameter knowledge.
• Numerical examples demonstrate the usefullness of the proposed algorithm.



Nonlinear sparse Bayesian learning for physics-based models

Rimple Sandhua,∗∗, Mohammad Khalilb,∗, Chris Pettitc, Dominique Poireld, Abhijit Sarkara,

aDepartment of Civil & Environmental Engineering, Carleton University, Ottawa, ON, Canada
bQuantitative Modeling & Analysis Department, Sandia National Laboratories, Livermore, CA, United States

cDepartment of Aerospace Engineering, United States Naval Academy, Annapolis, MD, United States
dDepartment of Mechanical & Aerospace Engineering, Royal Military College of Canada, Kingston, ON, Canada

Abstract

This paper addresses the issue of overfitting while calibrating unknown parameters of over-parameterized
physics-based models with noisy and incomplete observations. A semi-analytical Bayesian framework of
nonlinear sparse Bayesian learning (NSBL) is proposed to identify sparsity among model parameters during
Bayesian inversion. NSBL offers significant advantages over machine learning algorithm of sparse Bayesian
learning (SBL) for physics-based models, such as 1) the likelihood function or the posterior parameter
distribution is not required to be Gaussian, and 2) prior parameter knowledge is incorporated into sparse
learning (i.e. not all parameters are treated as questionable). NSBL employs the concept of automatic
relevance determination (ARD) to facilitate sparsity among questionable parameters through parameterized
prior distributions. The analytical tractability of NSBL is enabled by employing Gaussian ARD priors and
by building a Gaussian mixture-model approximation of the posterior parameter distribution that excludes
the contribution of ARD priors. Subsequently, type-II maximum likelihood is executed using Newton’s
method whereby the evidence and its gradient and Hessian information are computed in a semi-analytical
fashion. We show numerically and analytically that SBL is a special case of NSBL for linear regression
models. Subsequently, a linear regression example involving multimodality in both parameter posterior
pdf and model evidence is considered to demonstrate the performance of NSBL in cases where SBL is
inapplicable. Next, NSBL is applied to identify sparsity among the damping coefficients of a mass-spring-
damper model of a shear building frame. These numerical studies demonstrate the robustness and efficiency
of NSBL in alleviating overfitting during Bayesian inversion of nonlinear physics-based models.

Keywords: Inverse problems, sparse learning, Bayesian inference, automatic relevance determination,
Gaussian mixture-model, Bayesian model selection, physics-based modelling

1. Introduction

Bayesian inference has gained widespread acceptance in solving the ill-conditioned inverse problem of
assimilating noisy observations with imperfect mathematical models, resulting in a posterior probability
density function (pdf) of unknown model parameters [1–10]. Incomplete knowledge of underlying physics
and the increasing demand to enhance model predictive capabilities often result in over-parameterized models
(more unknown parameters than required), which suffer from overfitting during Bayesian inversion. This
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paper is devoted to resolving this issue of overfitting during Bayesian inversion of nonlinear-in-parameter
models (observations nonlinearly related to unknown parameters). For dynamical systems, the unknown
time-invariant parameters are considered as model parameters, while the unknown time-varying parameters
are considered encapsulated in the state vector. We also assume that significant prior knowledge exists
regarding some unknown parameters, a scenario prevalent among models derived from laws-of-physics. We
hereby refer to such models as physics-based models.

Previously, the authors have attempted to resolve the issue of overfitting for a nonlinear aeroelastic
system by executing an evidence-based Bayesian model comparison on a set of equations nested under an
over-parameterized, nonlinear, stochastic differential equation [11]. However, Bayesian model comparison
among nested models (or equations) was found to be sensitive to 1) the width of prior parameter pdf, and
2) the choice of nested models considered for comparison. It has been well established that Bayesian model
comparison tends to favor simpler models with increasing prior widths [9, 12]. Recently, the authors [13]
exploited the concept of automatic relevance determination (ARD) to alleviate these practical issues by
converting the Bayesian model comparison task into a sparse learning problem, which then transformed
the model comparison problem from a discrete model domain into a continuous hyperparameter (ARD-
prior parameters) domain. This transformation enabled the implicit comparison of all models nested under
an over-parameterized model. To handle non-Gaussian posterior parameter pdfs resulting from nonlinear
models, the model evidence was estimated using Markov chain Monte Carlo (MCMC) posterior parameter
samples, followed by a gradient-free maximization of the evidence estimate to obtain the sparse model
parameter structure. This approach is in contrast to data-driven techniques of sparse Bayesian learning
(SBL) [14, 15] and Bayesian compressive sensing (BCS) [16] which are only applicable to linear-in-parameter
models and conjugate priors.

Despite its many practical advantages, the MCMC-powered ARD approach [13] involved a sampling-
within-optimization step, which significantly degraded the overall computational efficiency of the inversion
process. This degradation intensified with an increasing model dimension (state or parameter space) and
with an increasing cost of likelihood function computation. For instance, when dealing with nonlinear
dynamical systems and sparse observations, the likelihood computation often requires a subtask of sampling-
based state estimation (or data-assimilation), which further exacerbates the computational efficiency of the
sampling-within-optimization task [13, 17]. Besides, the accuracy of sparse learning relies on the goodness of
MCMC sampling. Since the posterior parameter pdf varies with a changing hyperparameter of ARD prior,
the subsequent tuning and monitoring of the MCMC sampler during evidence maximization is rendered
impractical.

In this paper, we propose a semi-analytical Bayesian inversion framework that aims to address these
computational issues with the MCMC-powered ARD approach [13] while retaining its practical benefits.
We call this new framework nonlinear sparse Bayesian learning (NSBL) since it is partially motivated by
the analytical Bayesian apparatus of SBL, but applies to nonlinear physics-based models (unlike SBL). The
key difference between NSBL and our previous ARD approach [13] is that the Bayesian entities (evidence,
posterior parameter pdf) are available semi-analytically (in terms of Gaussian kernels). This semi-analytical
tractability of the Bayesian apparatus is powered by a Gaussian mixture-model (GMM) approximation of the
entity consisting of the product of likelihood function and the known prior pdf of a priori relevant parameters
(i.e parameters with significant prior knowledge). Consequently, the sampling-within-optimization step of
the previous ARD-based approach [13] is replaced with Newton’s iteration that exploits the semi-analytically
tractable gradient and Hessian information to expedite evidence maximization. Figure 1 provides an overview
of the NSBL algorithm.

NSBL is in contrast to the previous Bayesian inversion approaches reported in the literature involving
cheap surrogates for the computationally intensive model or the likelihood function or the posterior pdf [18–
21]. Most notably, Marzouk et al. [18] exploited an intrusive stochastic spectral technique to reformulate
the governing equations using a prior-informed polynomial chaos expansion (PCE) of model parameters
and then sampling the PCE coefficients instead of model parameters. Also, Galbally et al. [21] proposed
the projection of a high-fidelity model on a reduced subspace using proper orthogonal decomposition to
expedite MCMC sampling in high-dimensional parameter space. The underlying goal of these approaches
has been to compute the posterior parameter pdf faster. In contrast, NSBL is primarily aimed at identifying
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Figure 1: Overview of the NSBL algorithm.

sparse parameter representation among physics-based models. The fact that the posterior parameter pdf is
available analytically through NSBL is an added benefit. Also, we do not offer NSBL as a replacement for
SBL or BCS for linear-in-parameter models. NSBL is primarily aimed towards physics-based applications
where SBL and BCS are inapplicable.

To this end, the following contributions are reported in this paper (listed section-wise):

◦ In Section 2 we provide a detailed mathematical derivation into the semi-analytical apparatus of
NSBL, followed by the numerical implementation details regarding GMM construction and Newton’s
method for optimizing evidence. We also show analytically that SBL is a special case of NSBL for
linear-in-parameter models while Gaussian ARD priors are assigned to all unknown parameters.

◦ In Section 3.1, we consider a linear regression setting involving the construction of a sparse polynomial
chaos expansion (PCE) surrogate for the strongly nonlinear Ishigami function. This numerical exercise
is aimed at validating the semi-analytical formulation of NSBL against SBL since both the algorithms
are expected to produce similar results in a linear regression setting. Also, computationally efficiency
of NSBL is contrasted with SBL and BCS when dealing with high-dimensional models.

◦ In Section 3.2, we consider a nontrivial linear regression setting wherein the posterior parameter pdf
and the model evidence are both multimodal. These special circumstances are synthetically generated
using a multimodal prior pdf on a regression model parameter. This numerical investigation highlights
the applicability of NSBL to physics-based inverse problems involving multimodality in both parameter
and hyperparameter space. SBL and BCS are inapplicable to such cases.

◦ In Section 3.3, we consider a structural dynamics example consisting of a three degree-of-freedom
(dof) mass-spring-damper model of a shear building frame. NSBL is applied to identify the sparse
damping structure of the three-dof system using a sparse, noisy and incomplete realization of floor
displacement during free vibration. This numerical exercise demonstrates the benefits of NSBL in
alleviating overfitting during the inversion of nonlinear-in-parameter differential equations.

2. Methodology: Nonlinear sparse Bayesian learning

Consider that a system model f : φ 7→ y is proposed to model a physical system, where the model
operator f maps the unknown model parameter vector φ ∈ RNφ to the observed entity y ∈ RNy . The Nd

3



number of observations of y are denoted as D. The observations D are allowed to be noisy, sparse, and
incomplete (i.e. the entire system state is not measured). It is assumed that the likelihood function p(D|φ) is
known for any φ value, and the estimation of hidden variables (or unobserved state variables) is encapsulated
within the likelihood function. Hence, for the sake of inversion, the likelihood function is considered known
for a given φ value, while the model parameter vector φ is considered the unknown. The goal of NSBL is to
eliminate redundant model parameters and obtain a sparse representation of φ during Bayesian inversion,
leading to an optimally-fitted predictive model. The reader is referred to Section 3.3 wherein Figure 11
and Figure 14 contrasts the predictive performance of an overfitted model with an optimally-fitted model,
respectively. Next, we detail the Bayesian setup that empowers the semi-analytical apparatus of NSBL.

2.1. Hybrid prior pdf

Following our previous work [13], the unknown parameter vector is decomposed as φ = {φα,φ-α} (in
that order), where φα ∈ RNα contains parameters with no prior knowledge (and hence questionable), and
φ-α ∈ RNφ−Nα contains parameters with a known prior pdf p(φ-α). Following SBL, φα is assigned a
Gaussian ARD prior p(φα|α) = N (φα|0,A

−1), where A = Diag(α) is the prior precision matrix, and
α ∈ RNα is the unknown hyperparameter vector. Notice that the matrix A is diagonal, implying the prior
independence among questionable parameters. The marginal ARD prior pdf for parameter φi ∈ φα can be
written as p(φi|αi) = N (φi|0, α−1

i ). Note that hyperparameter αi controls the contribution of parameter φi
in the model since setting αi = ∞ would force both the prior and posterior pdf of φi to be a Dirac-delta
pdf N (φi|0, 0) centered at zero. In other words, α controls the complexity of the model.

The choice of Gaussian ARD priors is dictated by two reasons. First, Gaussian priors enable the semi-
analytical computation of Bayesian entities. Second, using the principle of maximum entropy, a Gaussian
pdf contains minimum information or maximum entropy for a random variable with finite mean and finite
variance [10]. This property of a Gaussian ARD prior will ensure minimum interference from the modeler on
the posterior distribution of sparse relevant parameters identified through sparse learning. This property is
desired since a zero-mean prior pdf tends to pull the posterior parameter space towards the origin. Employing
a Gaussian ARD prior over other types of priors will minimize this pull.

The joint prior pdf of φ is summarized as

p(φ|α) = p(φ-α)p(φα|α) = p(φ-α)N (φα|0,A
−1). (1)

This hybrid prior pdf enables sparse learning of questionable parameters in φα through ARD prior p(φα|α)
while incorporating prior knowledge about φ-α through p(φ-α).

2.2. Gaussian mixture-model approximation

Given observations D and hyperparameter vector α, the parameter posterior pdf p(φ|D,α) is obtained
using Bayesian inference as

p(φ|D,α) =
p(D|φ)p(φ|α)

p(D|α)
=

p(D|φ)p(φ-α)N (φα|0,A
−1)

p(D|α)
, (2)

where p(D|φ) is the likelihood function, p(D|α) is the model evidence (or marginal likelihood or type-II
likelihood), and p(φ|α) is the joint prior pdf from Eq. (1). NSBL operates by building a GMM approximation
for the entity p(D|φ)p(φ-α) in Eq. (2) as

p(D|φ)p(φ-α) ≈
K∑
k=1

a(k)N (φ|µ(k),Σ(k)), (3)

where K is the total number of kernels, a(k) ∈ R is the kernel coefficient (a(k) >0) and N (φ|µ(k),Σ(k)) is a

Gaussian pdf with mean vector µ(k) ∈ RNφ and covariance matrix Σ(k) ∈ RNφ×Nφ .
Note that only one kernel (K = 1) is sufficient in Eq. (3) under the special circumstances of 1) linear

regression with Gaussian likelihood p(D|φ) and Gaussian prior p(φ-α) (same setup as SBL), or 2) ‘large’

4



number of observations in D such that p(D|φ)p(φ-α) can be approximated as a Gaussian (Laplace approx-
imation [22]). For any other case, the approximation in Eq. (3) will require more than one Gaussian kernel

and unknown entities a(k), µ(k) and Σ(k) need to estimated numerically. For instance, a kernel density
estimation (KDE) approximation using Gaussian kernels can be employed to construct the GMM in Eq. (3).
Section 2.6 provides specific implementation details behind Eq. (3).

The GMM approximation in Eq. (3) offer the following benefits for sparse learning among physics-based
models:

• The use of Gaussian kernels in Eq. (3), in combination with Gaussian ARD priors, enables analytical
evaluation of parameter posterior pdf p(φ|D,α), model evidence p(D|α), and the gradient and Hessian
of evidence with respect to hyperparameters α. The semi-analytical apparatus of NSBL is powered
by this analytical tractability of Bayesian entities.

• Entity p(D|φ)p(φ-α) in Eq. (3) is much well-behaved (in terms of identifiability [4]) than the likelihood
function p(D|φ) due to the regularization effect of the known prior p(φ-α). In other words, the known
prior p(φ-α) helps restrict p(D|φ)p(φ-α) in the φ space that makes physical sense and complies with
the prior knowledge. This property is desired when generating stationary samples from p(D|φ)p(φ-α)
for the sake of constructing a GMM. This is one of the key differences between NSBL and purely
data-based techniques that solely rely on the likelihood function.

• Since p(D|φ)p(φ-α) is independent of α, the GMM approximation in Eq. (3) is only needed to be built
once for the sake of sparse learning.

• The kernel-based GMM approximation in Eq. (3) allows for representing non-Gaussian or multimodal
p(D|φ)p(φ-α) encountered in engineering applications. This property of the GMM allows for the
handling of multimodal or skewed likelihood function p(D|φ), or a non-Gaussian prior pdf p(φ-α).
Although Eq. (3) can handle any p(φ-α) choice, it is considered best practice to classify parameters
with limited prior knowledge as ‘questionable’, instead of assigning them a uniform prior with broad
support. We expect that the GMM approximation will be best useful and easier built when p(φ-α)
regularizes p(D|φ)p(φ-α).

• Eq. (3) facilitates direct handling of the likelihood function instead of the model f(φ). This model-free
property of NSBL is desired for inverse problems where the model f(φ) is only available as a black-box
numerical solver. In other words, NSBL algorithm only needs access to the likelihood function, and a
closed-form expression for the physical model is not required.

Next, we define the sparse learning problem in mathematical terms.

2.3. Sparse learning optimization problem

Using the hierarchical Bayes approach, the hyperparameter posterior pdf p(α|D) is obtained as [10]

p(α|D) =
p(D|α)p(α)

p(D)
∝ p(D|α)p(α), (4)

where p(D|α) is the model evidence from Eq. (2), p(α) is the hyper-prior (prior for hyperparameter α),
and p(D) is just a normalization constant for a fixed D. Note that our interest in the sparsity of φα
requires us to obtain an optimal α value and not the entire posterior distribution p(α|D) from Eq. (4). The
maximum a posteriori (MAP) estimate αmap provides such an optimal choice, obtained by maximizing the
hyperparameter posterior p(α|D) from Eq. (4) as

αmap = arg max
α

{p(α|D)} = arg max
α

{p(D|α)p(α)}. (5)

For a sparse φα, many αmap
i will approach infinity, thereby forcing the marginal posterior pdf of φi to be a

Dirac-delta function centered at zero. A finite αmap
i will imply a relevant parameter φi ∈ φα.
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Following SBL [14], the hyperparameters in α are assumed to be a priori independent and the marginal
hyperprior pdf p(αi) is chosen to be a Gamma distribution. The joint hyperprior p(α) is written as

p(α) =

Nα∏
i=1

p(αi) =

Nα∏
i=1

G(αi|ri, si) =

Nα∏
i=1

srii
Γ(ri)

αri−1
i e−siαi , (6)

where G(αi|ri, si) denotes a univariate Gamma distribution with shape parameter ri > 0 and rate parameter
si > 0. Aside from enforcing positivity constraint for the precision parameter αi, a Gamma distribution can
be reduced to many simplified informative or non-informative distributions by varying r and s values, as
detailed in Table 1. In this work, we will employ Jeffrey’s prior (flat prior over logαi) for all αi ∈ α, which
is obtained by using values of s ≈ 0 and r ≈ 0 in Eq. (6). Note that when using a non-informative prior
for α (such as Jeffrey’s prior), the optimal value of αmap is solely dictated by model evidence p(D|α). This
approach of maximizing model evidence is also known as type-II maximum likelihood [10].

Prior type Parameters in Eq. (6) Type of pdf p(α)

Informative
r = 1, s = λ Exponential λe−λα

r > 0, s→∞ Dirac-delta δ(α− r/s)

Non-informative
r → 0+, s→ 0+ Jeffery’s prior p(α) ∝ 1/α or p(logα) ∝ 1
r → 1+, s→ 0+ Flat prior p(α) ∝ 1 or p(logα) ∝ |α|

Table 1: Special cases of a Gamma hyperprior pdf.

Note that Eq. (13) is a non-convex optimization problem for any given combination of likelihood function
p(D|φ), prior pdf p(φ|α) and hyperprior pdf p(α) [22]. In the SBL/RVM setup for linear regression models
with Gaussian errors, Faul and Tipping [23] showed analytically that log p(D|α) has a unique global optimum
with respect to an individual hyperparameter αi (not the entire α vector) when all other hyperparameters
are held fixed. SBL and BCS exploited this property to propose a semi-analytical re-estimation procedure
derived by setting the gradient of log-evidence with respect to αi to zero. Faul and Tipping [23] also
showed that the optimal α obtained through this re-estimation procedure will be a joint optimum for all αi.
However, the uniqueness of this optimal α was put in question by Faul and Tipping [23], pointing towards
the non-convex nature of the evidence optimization. Nevertheless, the models encountered in engineering
mechanics are far from linear regression, where SBL and BCS are inapplicable and a unique global optimum
of log-evidence with respect to αi or α is not guaranteed. We will also demonstrate this non-uniqueness of
αmap (computed using Eq. (5)) through a numerical example in Section 3.1. Next, we provide a detailed
mathematical exposition into the analytical calculation of Bayesian entities.

2.4. Semi-analytical calculation of Bayesian entities

2.4.1. Model evidence

Given the the joint prior pdf in Eq. (1), the model evidence in Eq. (2) is written as

p(D|α) =

∫
p(D|φ)p(φ|α)dφ =

∫
p(D|φ)p(φ-α)p(φα|α)dφ. (7)

An estimate p̂(D|α) of model evidence is obtained by substituting Eq. (3) and ARD prior p(φ|α) =
N (φα|0,A

−1) in Eq. (7) as

p̂(D|α) =

∫ { K∑
k=1

a(k)N (φ|µ(k),Σ(k))

}
N (φα|0,A

−1)dφ

=
K∑
k=1

a(k)

∫
N (φ|µ(k),Σ(k))N (φα|0,A

−1)dφ. (8)
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Note that the integral in Eq. (8) involves the product of two multivariate Gaussian pdfs with different
dimensions (φα vs φ). Using the parameter decomposition φ = {φα,φ-α}, Eq. (8) is simplified to obtain
(details in Appendix B.1)

p̂(D|α) =
K∑
k=1

a(k)N (µ(k)
α |0,B

(k)
α ), (9)

where B(k)
α = Σ(k)

α + A−1 and a(k), µ
(k)
α , and Σ(k)

α are obtained from the GMM approximation in Eq. (3)
(details in Appendix B.1). As noted from Eq. (9), the dependence of model evidence on α is through matrix

B(k)
α = Σ(k)

α + A−1 as A = Diag(α).
This computation of model evidence for varying α without accessing the likelihood function or the

model is a powerful tool in itself. This tool offers a significant computational relief for high-dimensional
models (large Nφ or large Nα) as it eliminates the need for performing time-consuming sampling of posterior
parameter pdf (like MCMC) for estimating evidence for varying α values.

2.4.2. Posterior parameter pdf

An estimate p̂(φ|D,α) of the posterior parameter pdf is obtained by substituting p(D|φ)p(φ-α) from
Eq. (3) in Eq. (2) to obtain

p̂(φ|D,α) =
K∑
k=1

a(k)N (φ|µ(k),Σ(k))N (φα|0,A
−1)

p̂(D|α)
. (10)

Substituting N (φ|µ(k),Σ(k)) from Eq. (B.2a) reduces Eq. (10) to

p̂(φ|D,α) =
K∑
k=1

a(k)N (φ-α|µ̃(k)
-α , Σ̃

(k)

-α )N (φα|µ
(k)
α ,Σ(k)

α )N (φα|0,A
−1)

p̂(D|α)

=
K∑
k=1

(
a(k)N (µ

(k)
α |0,B(k)

α )∑K
r=1 a

(r)N (µ
(r)
α |0,B(r)

α )

)
︸ ︷︷ ︸

w(k)

N (φ-α|µ̃(k)
-α , Σ̃

(k)

-α )N (φα|m(k)
α ,P(k)

α )︸ ︷︷ ︸
N (φ|m(k),P(k))

, (11)

where 0 ≤ w(k) ≤ 1 is the weight coefficient, m(k) is the posterior mean of φ, and P(k) is the posterior
covariance of φ; all pertaining to the kth kernel. Notice that the sum of all weight coefficients is one, i.e.∑
k w

(k) = 1.
The posterior pdf from Eq. (11) is rewritten in an expanded form as

p̂(φ|D,α) =
K∑
k=1

w(k)N (φ|m(k),P(k)) =
K∑
k=1

w(k)N

({
φα
φ-α

} ∣∣∣∣∣
{

m
(k)
α

m
(k)
-α

}
,

[
P(k)
α D(k)

(D(k))T P(k)
-α

])
(12)

where m
(k)
α and P(k)

α are the posterior entities pertaining to φα; m
(k)
-α and P(k)

-α pertain to φ-α; and D(k) is
the posterior cross-covariance of φα and φ-α. The semi-analytical calculation of these posterior entities is
detailed in Appendix B.2.

2.4.3. Gradient vector and Hessian matrix

To facilitate the semi-analytical calculation of gradient and Hessian, the optimization problem in Eq. (5)
is reposed in terms of log p(α|D). In addition, the optimization is performed with respect to logα instead
of α, which automatically enforces the positivity constraint of α during the optimization.

Following these modifications, the optimization problem in Eq. (5) is rewritten as

logαmap = arg max
log α

{L(logα)} = arg max
log α

{log p(logα|D)}

= arg max
log α

{log p̂(D| logα) + log p(logα)}, (13)
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where the model evidence estimate p̂(D| logα) is available from Eq. (9), and L(logα) is the objective function
(or log-evidence as a function of logα) that needs to be optimized for identifying the sparse structure of φ.

Given p(α) in Eq. (6), hyperprior p(logα) required in Eq. (13) is obtained using the univariate trans-
formation of random variables as [24]

p(logα) =

Nα∏
i=1

p(logαi) =

Nα∏
i=1

srii
Γ(ri)

αrii e
−siαi . (14)

Subsequently, the objective function L(logα) from Eq. (13) is rewritten using Eq. (14) as (ignoring constant
terms)

L(logα) = log p̂(D| logα) +

Nα∑
i=1

(ri logαi − siαi) . (15)

Notice that when using Jeffrey’s prior (p(logαi) ∝ 1) for αi, hyperprior parameters ri and si will be
close to zero, and the objective function in Eq. (15) will be solely dictated by the log-evidence estimator
log p̂(D| logα).

The ith element of the gradient vector J(logα), denoted as Ji(logα), is obtained by differentiating
Eq. (15) with respect to logαi as

Ji(logα) =
∂L(logα)

∂ logαi
=

∂

∂ logαi

{
log p̂(D| logα) +

Nα∑
i=1

(ri logαi − siαi)

}

=
∂ log p̂(D| logα)

∂ logαi
+ ri − siαi . (16)

The log-evidence log p̂(D| logα) from Eq. (9) is differentiated with respect to logαi to obtain

∂ log p̂(D| logα)

∂ logαi
=

1

p̂(D| logα)

∂

∂ logαi

{
K∑
k=1

a(k)N (µ(k)
α |0,B

(k)
α )

}

=
1

p̂(D| logα)

K∑
k=1

a(k) ∂

∂ logαi

{
exp

(
logN (µ(k)

α |0,B
(k)
α )
)}

=
K∑
k=1

(
a(k)N (µ

(k)
α |0,B(k)

α )

p̂(D| logα)

)
︸ ︷︷ ︸

w(k)

(
∂ logN (µ

(k)
α |0,B(k)

α )

∂ logαi

)
︸ ︷︷ ︸

v
(k)
i

, (17)

where the weight coefficient w(k) has been previously defined in Eq. (11), and factor v
(k)
i is analytically

tractable and is obtained as (details in Appendix B.3)

v
(k)
i = −1

2

{
−1 + αiP

(k)
ii + αi(m

(k)
i )2

}
=
γ

(k)
i − αi(m(k)

i )2

2
, (18)

where γ
(k)
i = 1 − αiP (k)

ii is defined as the relevance indicator for parameter φi corresponding to the kth

kernel. As demonstrated later in Section 2.5, the relevance indicator γ
(k)
i provides a quantitative measure

for determining the relevancy of φi for a given value of αi. Nevertheless, the semi-analytical solution to
gradient Ji(logα) is obtained as

Ji(logα) =

{
K∑
k=1

(
a(k)N (µ

(k)
α |0,B(k)

α )

p̂(D| logα)

)(
γ

(k)
i − αi(m(k)

i )2

2

)}
+ ri − siαi (19a)

=
K∑
k=1

w(k)v
(k)
i + ri − siαi, (19b)
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Similarly, the (i, j) element of the Hessian matrix H(logα), denoted as Hij(logα), is evaluated by
differentiating Eq. (19b) as

Hij(logα) =
∂2L(logα)

∂ logαi∂ logαj
=
∂Jj(logα)

∂ logαi
=

∂

∂ logαi

{
K∑
k=1

w(k)v
(k)
j + rj − sjαj

}

=
K∑
k=1

{
w(k)

∂v
(k)
j

∂ logαi
+ v

(k)
j

∂w(k)

∂ logαi

}
− δijsiαi (20)

where δij = 1 when i = j and δij = 0 when i 6= j. This final solution to Hij(logα) is obtained as (details
in Appendix B.4)

Hij(logα) =
K∑
k=1

[
w(k)

{
αiαj

(
(P

(k)
ij )2

2
+m

(k)
i m

(k)
j P

(k)
ij

)
+ δij

(
v

(k)
i −

1

2

)}

+ v
(k)
j

{
w(k)

(
v

(k)
i − v̄i

)}]
− δijsiαi. (21)

Table 2 summarizes the semi-analytical Bayesian framework of NSBL.

Entity Solution

Parameter decomposition φ = {φα,φ-α}

GMM approximation p(D|φ)p(φ-α) ≈
K∑
k=1

a(k)N (φ|µ(k),Σ(k))

Hybrid prior pdf p(φ|α) = p(φ-α)p(φα|α) = p(φ-α)N (φα|0,A−1)

Hyperprior p(α) =

Nα∏
i=1

G(αi|ri, si)

Model evidence p̂(D|α) =

K∑
k=1

a(k)N (µ
(k)
α |0,B

(k)
α ) ; B

(k)
α = Σ

(k)
α + A−1

Parameter posterior pdf p̂(φ|D,α) =

K∑
k=1

w(k)N (φ|m(k),P(k)) ; w(k) =
a(k)N (µ

(k)
α |0,B

(k)
α )

p̂(D| logα)

m(k) and P(k) solution in eqs. (12), (B.11), (B.14), (B.4c), (B.4d) and (B.8b)

Objective function L(logα) = log p̂(D| logα) +

Nα∑
i=1

(ri logαi − siαi)

Gradient of L(logα) Ji(logα) =

K∑
k=1

w(k)v
(k)
i + ri − siαi = v̄i + ri − siαi

v
(k)
i = (γ

(k)
i − αi(m

(k)
i )2)/2 ; γ

(k)
i = 1− αiP

(k)
ii

Hessian of L(logα) Hij(logα) =
K∑
k=1

w(k)

αiαj
 (P

(k)
ij )2

2
+m

(k)
i m

(k)
j P

(k)
ij

+ v
(k)
i v

(k)
j − v̄iv̄j


+δij

{
v̄i −

1

2
− siαi

}
Table 2: Summary of the analytical Bayesian apparatus of NSBL.

2.5. Relevance indicator

Once the hyperparameter MAP estimate logαmap is computed by solving the optimization problem in
Eq. (13), the relevance of each questionable parameter φi ∈ φα needs to be determined using the corre-
sponding logαmap

i values. In SBL [14], the relevance of each questionable parameter φi was determined
using the relevance indicator γi = 1 − αiPii where Pii is the posterior variance of φi. However, in NSBL,

9



there exist a relevance indicator γ
(k)
i pertaining to each Gaussian kernel a(k)N (φ|µ(k),Σ(k)) from Eq. (3).

The true nature of γ
(k)
i is revealed by substituting P

(k)
ii from Eq. (B.4c) to write

γ
(k)
i = 1− αi

(P
(k)
ii )−1

= 1− αi

αi + {(Σ(k)
α )−1}(i,i)

∈ [0, 1], (22)

where {(Σ(k)
α )−1}(i,i) is the (i, i) element of precision matrix (Σ(k)

α )−1. For an irrelevant parameter φi, the
prior precision αi will be large (low prior variance) and the posterior will be dictated by the prior so that

(P
(k)
ii )−1 ≈ αi or γ

(k)
i ≈ 0. Alternatively, for a relevant parameter φi, the posterior precision (P

(k)
ii )−1 will

be dictated by observations, thereby forcing P−1
ii ≈ (Σ

(k)
i )−1 or γ

(k)
i ≈ 1. In other words, γ

(k)
i indicates the

percentage of posterior precision that is due to observations D in the kth kernel. Also, γ
(k)
i varies between

zero and one and therefore provides a consistent quantitative measure of relevance for φi ∈ φα according to
the kth kernel.

We extend this idea of relevance indicator to a multi-kernel setting by taking root-mean-square (RMS)

of K relevance indicators γ
(k)
i as

γrms
i =

(
1

K

K∑
k=1

(γ
(k)
i )2

)1/2

=

(
1

K

K∑
k=1

(
1− αiP (k)

ii

)2
)1/2

. (23)

This summarized measure γrms
i in Eq. (23) will also vary in range [0, 1] since each γ

(k)
i ∈ [0, 1] from Eq. (22).

A γrms
i value close to zero will imply irrelevance and a γrms

i value close to one will imply relevance. Notice that

γrms
i is a scale-invariant measure since it involves the ratio of prior (αi) and posterior ((P

(k)
ii )−1) precision.

As a result, γrms
i should be preferred over αi values for monitoring parameter relevance during and after

optimization. We also propose a predefined tolerance γtol for γrms
i where a γrms

i value greater than γtol will
imply relevance. The impact of γtol on sparsity levels produced by the NSBL algorithm is investigated in
Section 3.1.

2.6. Numerical implementation details

NSBL involves following two numerical tasks: 1) GMM construction of p(D|φ)p(φ-α) in Eq. (3), and 2)
optimization of L(logα) in Eq. (13). Lets first focus on the task of building a GMM for p(D|φ)p(φ-α). The

unknown entities a(k),µ
(k)
α ,Σ(k) and K of the GMM in Eq. (3) can be estimated using a set of stationary

samples generated from the unnormalized pdf p(D|φ)p(φ-α). These samples can be easily generated using
an MCMC sampler [25]. For example, random-walk Metropolis (RWM) [24] and its variants are best suited
to sample from unimodal pdfs while transitional MCMC (TMCMC) [26] can sample from multimodal pdfs.
Note that this MCMC sampling needs to be executed only once for the purpose of sparse learning.

Vast literature exists in the machine learning practice on ways to estimate the GMM parameters follow-
ing the availability of training data (in this case, stationary MCMC samples). Kernel density estimation
(KDE) approach is a rudimentary but quick way to construct a GMM for p(D|φ)p(φ-α) as its parameters

a(k),µ
(k)
α ,Σ(k) and K are exactly known given the stationary samples [27]. Expectation-maximization (EM)

algorithm is the preferred algorithm in machine learning for building GMMs with minimum number (K) of
kernels [22]. Pettit and Wilson [28] demonstrated the applicability of variational Bayesian inference as an
alternative to EM algorithm for the case of limited training data. Also, a Monte Carlo based approximation
of p(D|φ)p(φ-α) can be considered as a special type of GMM where the Gaussian kernels are reduced to
Dirac-delta functions centered at individual φ values. In this case, evidence from Eq. (7) reduces to the
average of ARD prior N (φα|0,A

−1) values computed at stationary φ samples from p(D|φ)p(φ-α). Al-
though computationally efficient, such an approach needs to be carefully adjusted for cases when samples
from p(D|φ)p(φ-α) are located far from the prior space N (φα|0,A

−1), which in turn varies with changing
α value.

In this work, we employ the KDE approach to build the GMM in Eq. (3) since the model dimensionality
considered in the numerical investigations is manageable. However, we recommend using EM or the varia-
tional Bayesian inference approach for large model dimensionality (Nφ) cases to ensure the computational
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efficiency of NSBL since the number of kernels K is significantly lower than the number of stationary samples
used to estimate the GMM. However, any inaccuracies in GMM approximation resulting from choosing K
value lower than necessary could result in erroneous sparsity levels and, therefore, adequate care should be
taken in deciding the kernel size K. Nevertheless, NSBL is independent of the algorithm used to build the
GMM for p(D|φ)p(φ-α), and therefore we leave it to the end-user to choose an appropriate algorithm for
GMM construction. This paper is primarily aimed at introducing the analytical apparatus of NSBL, and
the performance characteristic of different GMM building algorithms will be investigated in future studies.

The second numerical task involved in NSBL is the optimization of L(logα) in Eq. (13). Due to the
unconstrained, non-convex nature of the optimization [23], we pursue a multistart Newton’s method to
estimate αmap in Eq. (13). Newton’s method operates by generating a sequence of iterates {logαi} using
the gradient vector J(logαi) and the Hessian matrix H(logαi) from Eq. (19) and Eq. (21), respectively.
Denoting L(logαj) = Lj , J(logαj) = Jj and H(logαj) = Hj , a Newton’s iteration to obtain the new
iterate αj+1 is written as

logαj+1 = logαj + βjpj , where Hjpj = −Jj (24)

and βj is the step-length determined by satisfying Wolfe, Goldstein, or Armijo backtracking conditions [29].

Nocedal and Wright [29] provide a detailed discussion on many variants of Newton’s algorithm designed
for solving non-convex optimization problems where the Hessian is not guaranteed to be a positive definite
matrix. Most of these variants of Newton’s method fall under two categories:

1. Modified Newton method [29]: Instead of solving Hjpj = −Jj , the modified Newton method solves
(Hj + Ej)pj = −Ji where Ej is an appropriate matrix added to the Hessian matrix Hj to make it
positive definite.

2. Trust-region Newton method: The trust-region approach relies on building a quadratic approximation
of L(logα) around the current iterate logαi, and determining an appropriate search direction pj by
solving a constrained optimization subproblem

min

(
Lj + JTj p +

1

2
pTHjp

)
such that ||p|| ≤ ∆j (25)

where ∆j is the trust-region radius [30]. See Conn et al. [30] for a detailed review of trust-region
methods.

In general, both these algorithms should perform similarly given a reasonable choice of the additive
matrix Ej in the modified Newton method. In this work, we opt for trust-region Newton method so as to
avoid this additional step of choosing Ej (which is often problem specific). Nevertheless, any non-convex
optimizer that can exploit the readily-available gradient and Hessian information is well-suited for NSBL.
We will use the Scipy library [31] implementation of the trust-region algorithms to execute the Newton
iteration. The resulting algorithm of NSBL is summarized in Algorithm 1.

2.7. Relation to SBL

In this section, we demonstrate the relationship between NSBL and SBL (or RVM) for the case of linear
regression models and Gaussian errors. Consider the model d = Ψφ + ε, where φ ∈ RNφ is the unknown
coefficient vector, D ≡ d ∈ RNd×1 is the measurement vector, Ψ ∈ RNd×Nφ is the design matrix, and
ε ∼ N (0, ρ−1INd) is the model error where ρ is the error precision. SBL operates by conditioning the
sparse learning apparatus on ρ, and then estimating it iteratively following each SBL update in α. This
explicit conditioning on ρ is not shown here for brevity. SBL treats all parameters in φ as questionable,
and so Nφ=Nα and φ=φα in the NSBL setup outlined in Section 2.1. Consequently, φ-α is a null vector
and the prior pdf p(φ|α) in Eq. (1) is just the ARD prior N (φ|0,A−1). Under these circumstances, the
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Algorithm 1: NSBL algorithm

Decompose φ as {φα,φ-α} and assign a known prior pdf p(φ-α) to a priori relevant parameters φ-α;

Build a Gaussian kernel-based approximation for p(D|φ)p(φ-α) by estimating a(k),µ
(k)
α ,Σ(k) in

Eq. (3);
Choose a hyperprior G(φi|ri, si) for each φi ∈ φα using Table 1;
Choose a starting hyperparameter value logα0; set j=0;
while not converged do

Given αj , compute m(k),P(k),B(k)
α using Eq. (B.4);

Compute weight w(k) using Eq. (11) and factor v
(k)
i using Eq. (18);

Compute gradient vector J(logαj) using Eq. (19);
Compute Hessian matrix H(logαj) using Eq. (21);
Compute the new iterate logαj+1 using Newton’s iteration as per Eq. (24);
Compute relevance indicator γrms

i using Eq. (23);
Set j=j+1;

end

approximation for p(D|φ) in Eq. (3) is known analytically from maximum likelihood estimation (MLE) or
ordinary least-square (OLS) theory [22] as

p(D|φ) = N (d|Ψφ, ρ−1INd) = p̂(D|φ) = a(1)N (φ|µ(1),Σ(1)) (26)

where µ(1) = (ΨTΨ)−1ΨTd is the MLE/OLS estimate, and Σ(1) = (ρΨTΨ)−1 is the covariance matrix of

the MLE estimate µ(1). Note that the sampling distribution N (φ|µ(1),Σ(1)) produced from MLE/OLS is
same as the posterior pdf obtained using Bayesian linear regression with no or flat priors [32]. Given µ(1)

and Σ(1), the coefficient a(1) in also available analytically from Eq. (26).
The model evidence from Eq. (9) is obtained as p(D|α)=N (d|0,ΨA−1ΨT + ρINφ). Given the sin-

gle kernel (K=1) representation of the likelihood function in Eq. (26), the only weight coefficient w(1) in

Eq. (11) is equal to one. The posterior pdf from Eq. (12) is available as p(φ|D,α)=N (φ|m(1),P(1)), where

P(1)=(ρΨTΨ + A)−1 and m(1)=ρP(1)ΨTd from Eq. (B.4). The gradient Ji(logα) of L(logα) in Eq. (19a)
is obtained as

Ji(logα) =
γ

(1)
i − αi(m

(1)
i )2

2
+ ri − siαi (27)

Setting this gradient Ji(logα) to zero leads to

αi =
γ

(1)
i + 2ri

(m
(1)
i )2 + 2si

(28)

This solution to αi is exactly the expression exploited in SBL to perform iterative re-estimation of αi [14].
In summary, NSBL and SBL possess the same sparsity-inducing Bayesian apparatus for linear regression

models; the only difference being the way the model evidence or L(logα) is optimized. SBL operates by
setting the gradient with respect to αi (Eq. (27)) to zero, while NSBL exploits the gradient and Hessian
information to execute a multistart Newton iteration. Notice that while SBL updates only a single αi per
iteration, NSBL updates the entire hyperparameter vector α at each Newton iteration. In Section 3.1 we
explore how this difference affects the numerical performance of the two algorithms. Nevertheless, NSBL
is applicable to nonlinear physics-based models, while SBL is designed for data-based modelling involving
linear-in-parameter models (regression or classification).
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3. Numerical investigations

3.1. Linear regression: Sparse PCE expansion of Ishigami function

In this section, we consider a linear regression testbed for investigating the performance of NSBL in
comparison with SBL and BCS. Since NSBL is similar to SBL for a linear regression setting (as illustrated
in Section 2.7), we expect similar sparsity levels from both the algorithms. We acknowledge that the
conclusions from this exercise may not be transferable to physics-based sparse learning where the models
are typically in the form of nonlinear, stochastic differential equations. This exercise is also intended to
contrast the efficiency of these algorithms in terms of the number of evidence computations required to
reach the optimal sparse solution.

The linear-in-parameter model considered here is a Polynomial Chaos Expansion (PCE) surrogate. PCE
surrogates have become omnipresent in computational physics applications as a cheap replacement for high-
fidelity, time-consuming numerical solvers for the forward propagation of uncertainties. As reported in
Appendix C, a slight increase in PCE order p or the dimension d creates a tremendous increase in the
number of PCE terms. Estimation of these large numbers of PCE coefficients demands a proportionally
large number of model evaluations from time-consuming computer codes. This creates a computational
bottleneck commonly known as the curse of dimensionality. Since the PCE coefficients are inherently
sparse (only a few PCE terms are consequential), this computational bottleneck is remedied by seeking a
sparse PCE representation. See Ghanem [33] for a comprehensive text on PCEs.

Ishigami function is a popular test bed for benchmarking sparse PCE construction algorithms due to its
nonlinear and non-monotonic behaviour with respect to input variables [34]. Ishigami function is written
as [34]

Y = sinX1 + a sin2X2 + bX4
3 sinX1 (29)

where the input vector is X = {X1, X2, X3} and the output quantity-of-interest is Y . Each input Xi is
uniformly distributed within [−π, π] and parameters a = 7.0 and b = 0.1 are known. Given the uniformly
distributed germs ξi, Legendre polynomials are employed for constructing a PCE surrogate of the Ishigami
function.

An inverse problem is posed by generating 250 samples of input X = {X1, X2, X3} using Latin Hypercube
Sampling (LHS) [34]. These samples are then pushed forward through the Ishigami function in Eq. (29) to
generate the corresponding samples for output Y . Next, multiple PCE surrogates with varying orders are
proposed to fit this data. The order of PCE surrogates is varied as p = 1, 2, 3, 4, 5, 6, 7. Notice that the
number of PCE terms for a 7th-order PCE surrogate will be P = (7 + 3)!/(7!3!) = 120. Next, NSBL, SBL,
and BCS are employed to seek the sparse representation of PCE coefficients. The numerical implementation
of SBL and BCS algorithms considered here involves iterative addition-deletion of basis, also known as
fastSBL [15] and fastLAPLACE [16], respectively. More details regarding SBL and BCS are provided in
Appendix A. For both SBL and BCS, we employ flat hyperpriors, and αi at each iteration of fastSBL or
fastLAPLACE is chosen in a deterministic fashion by iterating index i from zero to Nα.

The NSBL algorithm employed for this exercise is summarized in Algorithm 1. Since PCE surrogates
are linear-in-parameter and all the unknown parameters (PCE coefficients) are assigned ARD priors, the
GMM approximation in Eq. (3) is known analytically, as detailed in Section 2.7. Hence, the number of
Gaussian kernels in Eq. (3) is one, and the mean and covariance of this kernel are known using MLE theory.
Furthermore. the sparsity levels produced from NSBL are determined using the relevance indicator γrms

i

defined in Section 2.5. Three different values will be chosen for tolerance γtol for implementing NSBL,
wherein γi < γtol will imply the corresponding PCE basis is irrelevant. Using Table 1, hyperprior for αi
in NSBL is chosen to be flat in log-space, i.e. p(logαi) ∝ 1 by assigning ri=si=1e-05. The model error
variance ρ−1 is estimated in similar fashion as in SBL and BCS as (Nd −

∑
γi + 2a)/(||d −Ψm||2 + 2b)

where m is the posterior mean. A large starting value of logαi = 5.0 is chosen to ensure all PCE basis are
absent from the surrogate at the start of the NSBL algorithm. The mean coefficient is set at logα0 = 0.0
to ensure a non-zero mean of Y is captured in the beginning.

Figure 2a shows the index-of-sparsity identified by SBL, BCS and NSBL. The index of sparsity is defined
as the ratio of relevant coefficients with the total number of coefficients (Nφ or Nα). For example, SBL
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identified 45 relevant PCE basis for the sixth-order PCE surrogate having a total of 84 terms, resulting in
an index-of-sparsity of 0.536. As evident from Figure 2a, BCS produces sparser solution than SBL. This
increased sparsity in BCS is at the expense of lower model evidence at the optimum (as seen in Figure 2c).
This fact about SBL vs BCS has been previously proven through analytical means [16]. The index-of-sparsity
for NSBL is reported for relevance indicator tolerance γtol set at 0.25, 0.50 and 0.75. For instance, when
γtol = 0.50, any questionable parameter having the relevance indicator γrms

i value less than 0.5 is deemed
irrelevant.

As evident from Figure 2a, the index-of-sparsity from NSBL with γtol=0.25 resembles closely to those
obtained using SBL. This observation provides reassurance in NSBL methodology as both NSBL and SBL
are optimizing the same cost function (as per Section 2.7). Also, as γtol increases, NSBL tends to produce a
sparser solution. NSBL with γtol = 0.75 results in similar sparsity levels as BCS. Also, the index-of-sparsity
decreases with increasing PCE order (or number of PCE basis). This observation implies that the addition
of a higher-order PCE basis does not contribute much to the understanding of the Ishigami function, and
most of these PCE bases end up being irrelevant.

Figure 2b reports the number of iteration counts or the number of times the model evidence is computed
to reach the optimum. NSBL involves significantly less evidence count since each iteration updates with
entire vector α using analytically available gradient and Hessian information. On the contrary, SBL and
BCS iterate through individual αi’s and exploit only the gradient information, leading to a higher iteration
count to reach the optimum. Figure 2d shows the model error variance pertaining to the optimum. The
model error variance decreases continuously with increasing PCE order as the models are getting better,
even if they are getting sparser (as per Figure 2a). The model error variance stagnates beyond sixth-order
PCE as no significant knowledge remains to be gained regarding the Ishigami function. Note that the
results reported in Figure 2 were generated for multiple instances of 250 X − Y samples generated using
LHS. Although the index-of-sparsity identified by SBL, BCS, and NSBL were slightly different, the relative
trend in index-of-sparsity, optimal model evidence, and model error variance were observed to be similar to
those reported in Figure 2. Also, the kernel-based computation of gradient and Hessian of model evidence
from NSBL was validated using finite-difference for varying PCE order and logα values.

The Sobol sensitivity indices pertaining to the sparse representation of the seventh-order PCE surrogate
were within 1% error of the analytical values (results not reported here). In fact, even when using only
50 LHS samples, the sensitivity indices obtained using sparse PCE were within 5% error of the analytical
values. This is possible since only 42 PCE terms in seventh-order PCE were relevant. In summary, the
similarity in results validates the proposed algorithm of NSBL against SBL for a linear regression setting.
In addition, it is shown that NSBL requires a lesser number of evidence computations than SBL since it
exploits the Hessian information of model evidence to expedite the evidence maximization.

3.2. Polynomial regression with a multimodal prior pdf

We consider a polynomial regression example wherein a multimodal prior pdf is assigned to an a priori
relevant parameter, which then induces multimodality in the posterior pdf and the model evidence. We
investigate the applicability of NSBL under such adverse circumstances where SBL and BCS are inap-
plicable. This example demonstrates the performance of NSBL for physics-based inverse problems where
multimodality exists in either the parameter space or the hyperparameter space.

Figure 3 shows the noisy observational data generated using the polynomial yi = 1 + x2
i + εi, where εi is

a Gaussian white noise process with pdf N (εi|0, 0.02). The observations consist of 50 noisy samples equally
spaced in x ∈ [0.75, 1.25]. An inverse problem is posed to understand the truth (y = 1 + x2) by using these
observations. To mimic the practical circumstances, an over-parameterized polynomial y=a0 +a1x+a2x

2 +ε
is proposed to model the observations. Subsequently, sparsity in φ = {a0, a1, a2} needs to be identified.
The observational noise ε is assumed as known (N (ε|0, 0.02)) for the sake of simplicity. Although the
noise strength could also be estimated within the proposed NSBL setup, this is not considered necessary to
highlight the usefulness of NSBL for this numerical exercise.

To mimic the physics-based modelling circumstances, parameter a0 is treated as a priori relevant. As a
result, φ is decomposed into φα = {a1, a2} and φ-α = {a0}. The known prior pdf pf a0 is chosen by realizing
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Figure 2: Variation of a) index of sparsity, b) number of model evaluations (iteration count), c) optimal log-evidence, and d)
model error variance with increasing PCE order. The sparsity levels produced from NSBL algorithm pertains to γi tolerance
set at 0.25, 0.50 and 0.75. A γi value lower than this tolerance value means the corresponding PCE basis is considered to be
irrelevant.
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(using Figure 4a) that the following three nested models demonstrate a reasonable fit to the observations:
1) y = 2x, 2) y = 1 +x2, and 3) y = −1 + 4x−x2. Using this information, the prior pdf for a0 is chosen as a
mixture of equally-weighted Gaussian kernels centered at minus one, zero, and one, as shown in Figure 4b.
The location of these kernels demonstrate our prior belief about the potential fit of the three nested models.
Note that one of these modes (a0 = 1) also represent the truth (y = 1 + x2).
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Figure 4: NSBL setup

Next, we employ NSBL to investigate the sparse structure of questionable parameter vector φα = {a1, a2}
of the quadratic polynomial y=a0 + a1x + a2x

2 + ε. This problem set-up is summarized in Table 3. ARD
priors are assigned to a1 and a2 with precision α1 and α2, respectively. Notice that the likelihood function
and the posterior pdf are a three-dimensional function of φ, while the model evidence is a two-dimensional
function of α = {α1, α2}. Also, the hyperprior for each αi ∈ α is chosen to be uninformative by assigning
log ri = log si =-10 in Eq. (6). In this case, the optimum of objective function L(logα) is entirely dictated
by the log-evidence estimator log p̂(D|α) from Eq. (9).

Proposed model y = a0 + a1x+ a2x
2 + ε ; ε ∼ N (0, 0.02)

φ decomposition φα = {a1, a2} , φ-α = {a0}

Known prior, p(φ-α)
{
N (a0|-1, 0.22) +N (a0|0, 0.22) +N (a0|1, 0.22)

}
/3

ARD prior, p(φα|α) N (a1|0, α−1
1 ) N (a2|0, α−1

2 )

Hyperprior, p(α)

2∏
i=1

G(αi|r, s) ; log r = log s = -10

Table 3: NSBL setup for the polynomial regression model with a multimodal prior pdf for a0.

Initiating NSBL, TMCMC algorithm [26] is employed to generate 2500 stationary samples from the
partial posterior pdf ∝ p(D|φ)p(φ-α). The TMCMC algorithm is well-suited to generate iid samples from
multimodal and/or high-dimensional pdfs with minimum manual intervention [26]. Given these iid samples,
a multivariate KDE approximation of the partial posterior is constructed. This KDE-based GMM of partial
posterior involves 2500 equally-weighted Gaussian kernels centered at individual TMCMC sample locations
and having the same covariance. The covariance matrix of the KDE kernels is equal to the sample covariance
of 2500 TMCMC samples, scaled by a factor computed using Scott’s rule [35]. The multivariate KDE
approximation is constructed using the Scipy library’s gaussian kde function [31].

Figure 5a show the marginal parameter pdfs, and figure 5b shows the joint parameter pdfs, both pertain-
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ing to the KDE approximation of p(D|φ)p(φ-α) using Gaussian kernels. In Figure 5a, the partial posterior
pdf is peaked highest at the true value of φ = {1, 0, 1} (or model y = 1+x2). The other two possibilities of φ
= {0, 2, 0} (or model y = 2x) and φ = {−1, 4,−1} (or model y = −1 + 4x−x2) possess a lower yet non-zero
posterior probability. This behavior of p(D|φ)p(φ-α) is indicative of the irrelevance of a1 (value of zero)
and the relevance of a2 (value of one). However, determining parameter relevance by examining posterior
pdfs is an impractical and arbitrary process for high-dimensional physics-based models. As we demonstrate
next, the evidence-based NSBL framework provides an efficient quantitative alternative to identify sparsity
while dealing with non-Gaussian posterior pdfs.
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Figure 5: GMM representation for p(D|φ)p(φ-α) using multivariate KDE approximation.

The next step of NSBL algorithm involves executing the Newton iteration to compute the optimal
hyperparameter vector αmap by maximizing the objective function L(logα) from Eq. (15). Figure 6 show
the NSBL results when initiating the Newton iteration from logα = {6, 8}. In Figure 6a, the optimal
hyperparameter vector is computed as logαmap = {−1.42, 6.76} in only ten Newton iterations. In Figure 6b,
the relevance indicator for a1 approaches zero while that of a2 approaches a value of one, thereby indicating
the irrelevance of a2 and the relevance of a1. This optimum pertains to the nested model of y = 2x. The
resulting posterior pdf p(φ|D,αmap) is also available analytically and is shown in Figure 6c.

Figure 7 shows the NSBL results when initiating from logα = {−3,−3}. The optimal hyperparameter
vector is computed as logαmap = {5.24, 0.00}. In Figure 7b, the relevance indicator for a1 converges to one,
while that for a2 converges to zero. This demonstrates the irrelevance of a1 and the relevance of a2. Based
on Figure 7a, this optimum is the global optimum, and the sparse model thus identified is the true model
(y = 1 + x2). In Figure 7c, the posterior pdf for a1 following the sparse learning approaches a Dirac-delta
function centered at zero, indicating the removal of a1 from the proposed model. On the other hand, the
posterior parameter pdf of relevant parameters a0 and a2 is a uniquely-peaked Gaussian pdf centered around
the true values.

The results reported in Figure 6 and Figure 7 brings out two key points. First, multimodality in log-
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Figure 6: NSBL results when initiating from α = {−6,−8}: a) L(logα) iterates in relation to the actual L(logα), b) variation
of relevance indicator during Newton iteration, c) marginal posterior pdfs before and after the inclusion of optimal ARD priors.

evidence or L(logα) can be induced by multimodality in the prior pdf. To our best knowledge, multimodality
in model evidence has not been studied or reported previously in the scientific literature. This example
demonstrates the need for cautious use of evidence-based model selection tasks in the presence of multimodal
prior pdfs. Second, a multistart of the Newton iteration is necessary for the convergence of NSBL to the
global optimum.

The benefit of sparse learning can be realized by contrasting the extrapolated response from the sparse
model with that of the proposed model. Figure 8a shows prediction made using the posterior parameter pdf
(∝ p(D|φ)p(φ-α)) while using flat priors for questionable parameters, Figure 8b shows the prediction made
using the sparse model based on the local evidence optima of logα = {−1.42, 6.76}(Figure 6), and Figure 8c
shows the prediction made using the sparse model based on the global optimum of logα = {6.24,−4.00}
(Figure 7). In Figure 8a, using flat prior pdfs for questionable parameters lead to multimodality and a large
variance in the predictions. The use of flat priors has been the engineering practice under the lack of prior
knowledge. This approach is problematic in this case. NSBL thus offers a much more principled alternative
to assigning flat priors using ARD. As shown in Figure 8c , the extrapolated response from the sparse model
is a drastic improvement over the use of the over-parameterized quadratic model with flat priors.

This numerical example demonstrates the applicability of NSBL as a robust sparse learning tool while
dealing with multimodality in the posterior parameter space or the hyperparameter space. Also, NSBL
allows for the inclusion of prior knowledge in the form of non-Gaussian prior pdfs, making it well-suited for
physics-based applications. Reiterating, the inclusion of prior knowledge and the handling of multimodal
posterior pdfs are two key benefits of NSBL over SBL and BCS.
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Figure 7: NSBL results when initiating from α = {−3,−3}: a) L(logα) iterates in relation to the actual L(logα), b) variation
of relevance indicator during Newton iteration, c) marginal posterior pdfs following the inclusion of optimal ARD priors.

3.3. Three-dimensional mass-spring-damper system

In this section we consider a multi-storey shear building frame with rigid floors being modeled as a three-
dof mass-spring-damper system, as shown in Figure 9a. Given the displacement vector u = {u1, u2, u3}, the
equation-of-motion for the mass-spring-damper system is obtained as

Mü + Cu̇ + Ku = f(t), (30)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and f(t) is the external
forcing. For the current numerical study we will consider the case of free-vibration, i.e. f(t) = 0. Given
the state vector x = {u, u̇}, Eq. (30) is represented in the state-space form as ẋ = Ax, where matrix A =
[0, I;−M−1K,−M−1C]. Given the initial state x0, the solution to the linear first-order differential equation
ẋ = Ax is obtained as x(t) = eAtx0. Following values are used for simulating the three-dof system for this
study: x0 = {0, 1, 0, 0, 0, 0}, m1 = m2 = m3 = 1.0, k1 = k2 = k3 = 1000.0, c1 = 10, c2 = 0, c3 = 0.
Notice that the damping is only present between the first and the second storey. Figure 9b shows a noisy
time-history of the third-floor (u3) displacement obtained by corrupting the simulated (true) response with
Gaussian white noise process that has a zero mean and a variance of 0.1. The observations consist of 100
points spread over four seconds. The observations are deemed incomplete since the displacement at the first
and second floor is not observed.

Given the observations in Figure 9b, we pose an inverse problem to estimate the interstorey damping
and stiffness coefficients. For simplicity, the mass (mi = 1.0) and the observational noise strength are
assumed to be known. To imitate the real-life circumstances, we assume that we have no prior knowledge
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Figure 8: Model predictions using the logα value of a) {−∞,−∞} (flat priors), b) {−1.42, 6.76} (local optimum), and c)
{6.24,−4.00} (global optimum).
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Figure 9: a) Three-dof mass-spring-damper model of a multi-storey building; b) Observed versus true response.

of the underlying damping representation. In other words, it is not known a priori that the damping is
only active between the first and second storeys. Under such conditions, the damping is assumed to be
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present in-between all floors. The unknown parameter vector for this model becomes φ = {c1, c2, c3, k1,
k2, k3}. Given that stiffness coefficients are always positive, we assign a uniform pdf U(ki|0, 5000) to all the
three stiffness coefficients. Also, since we have no prior knowledge regarding damping coefficients, they are
deemed questionable and are assigned ARD priors. In other words, φ is decomposed into the questionable
parameter vector φα = {c1, c2, c3}, and the a priori relevant parameter vector φ-α = {k1, k2, k3}. Jeffrey’s
prior is used for ARD hyperparameters as per Table 1 such that the optima are solely dictated by model
evidence. This NSBL setup is summarized in Table 4.

Proposed model Mü+Cu̇+Ku = 0

φ decomposition φα = {c1, c2, c3} , φ-α = {k1, k2, k3}

Known prior, p(φ-α) U(k1|0, 5000) U(k2|0, 5000) U(k3|0, 5000)

ARD prior, p(φα|α) N (c1|0, α−1
1 ) N (c2|0, α−1

2 ) N (c3|0, α−1
3 )

Hyperprior, p(α)

3∏
i=1

G(αi|r, s) ; log r = log s = -10

Table 4: NSBL setup for the three-dof mass-spring-damper model.

Initiating NSBL, TMCMC algorithm is exploited to generate 2500 iid samples from the partial posterior
pdf (p(D|φ)p(φ-α)). Subsequently, a multivariate KDE approximation using Gaussian kernels is constructed
for p(D|φ)p(φ-α) that consists of 2500 kernels, as per Eq. (3). The marginal pdfs pertaining to this KDE
approximation are shown in Figure 10. Notice that although we are dealing with a linear structural dynamics
model, the non-Gaussian nature of the partial posterior pdf is due to the nonlinear relation between the
unknown parameters (damping and stiffness coefficients) and the observable entity (displacement at the
third storey).
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Figure 10: Marginal posterior pdf obtained using flat priors for damping coefficients and uniform prior U(0, 5000) for stiffness
coefficients.
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Although the GMM approximation of p(D|φ)p(φ-α) is centered around the true value (in Figure 10),
the fitted model suffers from overfitting. One possible indication of overfitting is the non-zero posterior
probability for negative values of the damping coefficients c2 and c3 in Figure 10. Since the structural
damping is always positive, this behavior of posterior pdf indicates the non-physical aspect of the posterior
pdf. Further, Figure 11 shows the predicted velocity response at the first storey, i.e. u̇1. The large variation
in predictions is the result of overfitting produced by the over-parameterized model consisting of non-zero
damping on all floors. NSBL is designed to handle such scenarios by sparsifying the parameter space to
produce an optimally-parameterized model (in the sense of model evidence) that is free from overfitting.
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Figure 11: Predicted versus true time-history of velocity at first storey. The shaded area represents the ±3σ bound where σ is
the standard deviation computed using 100 prediction realizations.

Next, a multistart Newton iteration is initiated as per Algorithm 1 to compute the sparse representation
of damping coefficients. Figure 12 show the NSBL results for three different choices of starting logα
value. A unique solution of αmap = {−5.02, 4.03, 4.42} is obtained from multistart Newton iterations. At
this optimum, the relevance indicator for the damping coefficients c2 and c3 converges to a value of zero,
indicating their irrelevance towards the system physics. The relevance indicator for c1 approaches the value
of one, indicating its relevance. Also note that the log-evidence and objective function values are identical
for the optimum, demonstrating that the sparse learning process is solely dictated by model evidence. In
summary, the sparse relevant parameter vector is identified as φ = {c1, k1, k2, k3}, which is identical to
the data-generating model. Notice that this sparse structure was identified while accounting for the non-
Gaussian behavior of posterior pdf and the prior knowledge regarding stiffness coefficients. This aspect
distinguishes NSBL from SBL and BCS, which are incapable of handling non-Gaussian parameter pdfs and
prior knowledge.

As derived in Section 2.4.2, the posterior pdf of the relevant parameters is also available analytically as a
sum of 2500 Gaussian kernels with an updated mean and covariance. This posterior pdf is computed using
the user-supplied prior pdf for stiffness coefficients ki (listed in Table 4), and a data-informed ARD prior
N (c1|0, e5.02) using the optimal hyperparameter value. Figure 13 shows the marginal pdf of the relevant
parameters. Figure 14 shows the predicted time-history of velocity u̇1. Notice the reduction in variance in
predictions before (Figure 11) and after (Figure 14) sparse learning. This reduction in variance is the result
of removal of redundant parameters c2 and c3 that were causing overfitting.
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Figure 12: NSBL results for identifying sparsity among damping coefficients of the three-dof mass-spring-damper model. Notice
that log-evidence and objective function values are identical for the range of logα values attempted during Newton iteration;
hence the plots are indistinguishable.
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Figure 13: Marginal posterior pdf for the relevant parameters of the three-dof mass-spring-damper model.

4. Conclusion

Nonlinear sparse Bayesian learning (NSBL) is offered as a computationally efficient alternative to sampling-
based sparse learning of physics-based models. NSBL can also be considered as an extension of SBL to non-
linear models. The analytical tractability of the Bayesian analysis is enabled by a GMM approximation of
the partial posterior pdf p(D|φ)p(φ-α), and the subsequent assignment of Gaussian ARD priors to question-
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Figure 14: Predicted versus true time-history of velocity at first storey using the optimal nested model.

able parameters. A detailed mathematical derivation into the semi-analytical solution for model evidence,
posterior parameter pdf, and the gradient and Hessian information of model evidence was presented in this
paper. SBL and NSBL were shown (numerically and analytically) to be the same for a linear regression
setting. NSBL was validated using a polynomial regression example involving multimodal posterior pdf and
a multimodal model evidence. This numerical investigation demonstrated the sparse learning capabilities
of NSBL in physics-based applications involving non-Gaussian posterior and prior pdfs. Finally, the NSBL
algorithm was applied to identify a sparse representation of damping coefficients for a three-dof mass-spring-
damper model of a shear building frame. The true sparse structure of damping coefficients was identified
by NSBL while the posterior pdf for stiffness coefficients were found to be centered around the true values.
In summary, NSBL provides an efficient alternative to alleviating overfitting during Bayesian inversion of
complex physical systems.

5. Acknowledgement

The first author acknowledges the support of Ontario Graduate Scholarship program and the Canadian
Department of National Defence. The fourth author acknowledges the support of the Canadian Department
of National Defence and a Discovery Grant from Natural Sciences and Engineering Research Council of
Canada. The fifth author acknowledges the support of a Discovery Grant from Natural Sciences and Engi-
neering Research Council of Canada. The computing infrastructure is supported by the Canada Foundation
for Innovation (CFI), the Ontario Innovation Trust (OIT), CLUMEQ and SciNet HPC Consortia at Canada.

Appendix A. Summary of SBL and BCS algorithms

Consider that a linear regression model is given as d = Ψφ + ε, where φ ∈ RNφ is the unknown
coefficient vector, D ≡ d ∈ RNd×1 is the measurement vector, Ψ ∈ RNd×Nφ is the design matrix, and
ε ∼ N (0, ρ−1INd) is the model error where ρ is the error precision. Likelihood function is then known
as p(D|φ) = N (d|Ψφ, ρ−1INd). The hierarchical prior assignment for SBL and BCS is summarized in
Table A.1. Note that βi = 1/αi in Table A.1. Following this prior definition, the posterior pdf can
be computed using Bayesian linear regression as p(φ|d,α, ρ) = N (φ|m,P) where P = (INφ −KΦ)A−1,
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m = Ky, K = A−1ΦTB−1 and B = ΦA−1ΦT + INdρ
−1. The model evidence is also available analytically

as p(y|α, ρ) = N (y|0,B). Both SBL and BCS algorithms operate by updating αi or βi at each iteration,
where the choice for an appropriate index i can be made randomly or deterministicly. Each update in αi
is followed by update in parameter posterior statistics (m and P), error precision ρ, and the hyperprior
parameter λ (only for BCS). As evident from the cost functions listed in Table A.1, SBL is a special case
of BCS when λ is fixed at zero [16]. Also, the sparsity inducing marginal prior pdf is different for SBL and
BCS. BCS uses Laplace distribution while SBL uses Student’s-t distribution [14, 15]. From Table A.1, the
cost function for BCS has an additional term of −λβi in comparison to SBL. This additional term entails
additional penalty on large βi values, thereby producing sparser solutions than those obtained for SBL [16].

Entity SBL/RVM BCS

p(φ|α) = N (φ|0,A−1) p(φ|β) = N (φ|0,A−1)

A = Diag(α) A−1 = Diag(β)

Hierarchical p(αi) = G(αi|ri, si) p(βi|λ) = G(βi|1, λ/2)

prior pdf p(ρ) = G(ρ|a, b) p(λ) = G(λ|c, d)

p(ρ) = G(ρ|a, b)
a, b ρ

d

c, d α φ

a, b ρ

d

c, d λ β φ

Marginal prior Student’s-t Laplace

pdf of φi p(wi) = T (wi|0, 2c, d/c) p(wi|λ) = LP(wi|0, λ−0.5)

Cost function 1

2

(
log

(
1

1 + βisi

)
+

q2i βi

1 + βisi

)
1

2

(
log

(
1

1 + βisi

)
+

q2i βi

1 + βisi
− λβi

)
(in terms of βi)

Implementation fastSBL [23] fastLAPLACE [16]

Table A.1: Comparison of SBL/RVM and BCS algorithms. LP(x|r, s) is a laplace distribution with pdf exp(−|x − r|/s)/2s,
where s is the scale parameter. T (x|µ, ν, V ) is a student’s t-distribution with mean µ, dof ν and shape parameter V (section 7.7
in [36]).

Appendix B. Analytical calculations

Appendix B.1. Model evidence

Using the parameter decomposition φ = {φα,φ-α}, the Gaussian kernel N (φ|µ(k),Σ(k)) in Eq. (8) is
rewritten in an expanded form as

N (φ|µ(k),Σ(k)) = N

({
φα
φ-α

} ∣∣∣∣∣
{
µ

(k)
α

µ
(k)
-α

}
,

[
Σ(k)
α C(k)

(C(k))T Σ(k)
-α

])
, (B.1)

where µ
(k)
α ∈ RNα and Σ(k)

α ∈ RNα×Nα pertain to the questionable parameters φα; µ
(k)
-α ∈ RNφ−Nα and

Σ(k)
-α ∈ R(Nφ−Nα)×(Nφ−Nα) pertain to the a priori relevant parameters φ-α; and C(k) ∈ RNα×(Nφ−Nα) is

the cross-covariance matrix of φα and φ-α. Using the conditional distribution relations for multivariate
Gaussian pdfs, the Gaussian kernel in Eq. (B.1) is re-written as (using p(X1, X2) = p(X1|X2)p(X2))

N (φ|µ(k),Σ(k)) = N (φ-α|µ̃(k)
-α , Σ̃

(k)

-α )N (φα|µ(k)
α ,Σ(k)

α ), (B.2a)

µ̃(k)
-α = µ(k)

-α + (C(k))T (Σ(k)
α )−1(φα − µ(k)

α ), (B.2b)

Σ̃
(k)

-α = Σ(k)
-α − (C(k))T (Σ(k)

α )−1C(k), (B.2c)
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where the mean vector µ̃(k)
-α and the covariance matrix Σ̃

(k)

-α pertain to φ-α conditioned on a known φα value.

Matrix Σ̃
(k)

-α is also known as the schur complement of matrix Σ(k)
-α defined in Eq. (B.1).

Substituting the expansion from Eq. (B.2a) in Eq. (8) leads to

p̂(D|α) =
K∑
k=1

a(k)

∫
N (φ-α|µ̃(k)

-α , Σ̃
(k)

-α )N (φα|µ(k)
α ,Σ(k)

α )N (φα|0,A
−1)︸ ︷︷ ︸

Product of two Gaussian pdfs

dφ. (B.3)

The product of two Gaussian pdfs in Eq. (B.3) can be evaluated analytically as [36]

N (φα|µ(k)
α ,Σ(k)

α )N (φα|0,A
−1) = N (µ(k)

α |0,B
(k)
α )N (φα|m(k)

α ,P(k)
α ), (B.4a)

B(k)
α = Σ(k)

α + A−1, (B.4b)

P(k)
α =

(
(Σ(k)

α )−1 + A
)−1

, (B.4c)

m(k)
α = P(k)

α (Σ(k)
α )−1µ(k)

α , (B.4d)

where m
(k)
α is the posterior mean and P(k)

α is the posterior covariance of questionable parameters φα,

pertaining to the kth kernel. Notice that N (µ
(k)
α |0,B(k)

α ) is independent of φ and acts as a normalizing

factor in Eq. (B.4a). Substituting Eq. (B.4a) in Eq. (B.3) and taking N (µ
(k)
α |0,B(k)

α ) out of the integral
leads to

p̂(D|α) =
K∑
k=1

a(k)

∫
N (φ-α|µ̃(k)

-α , Σ̃
(k)

-α )N (µ(k)
α |0,B

(k)
α )N (φα|m(k)

α ,P(k)
α )dφ

=
K∑
k=1

a(k)N (µ(k)
α |0,B

(k)
α )

∫
���

���
���

���
��:1{∫

N (φ-α|µ̃(k)
-α , Σ̃

(k)

-α )dφ-α

}
N (φα|m(k)

α ,P(k)
α )dφα

=
K∑
k=1

a(k)N (µ(k)
α |0,B

(k)
α )
��
���

���
���

�:1∫
N (φα|m(k)

α ,P(k)
α )dφα

=
K∑
k=1

a(k)N (µ(k)
α |0,B

(k)
α ) (B.5)

where a(k) is known from Eq. (3), µ
(k)
α is known from Eq. (B.1), and B(k)

α is known from Eq. (B.4b).

Appendix B.2. Posterior parameter pdf

Using the Woodbury identity (Eq. 156 in [36]), the posterior covariance P(k)
α of φα in Eq. (B.4c) can be

rewritten as
P(k)
α = Σ(k)

α −Σ(k)
α (B(k)

α )−1Σ(k)
α (B.6)

Using this expansion, the posterior mean m
(k)
α of φα in Eq. (B.4d) can be rewritten as

m(k)
α = P(k)

α (Σ(k)
α )−1µ(k)

α =
(
Σ(k)
α −Σ(k)

α (B(k)
α )−1Σ(k)

α

)
(Σ(k)

α )−1µ(k)
α

= µ(k)
α −Σ(k)

α (B(k)
α )−1µ(k)

α , (B.7)

where B(k)
α = Σ(k)

α + A−1 is known from Eq. (B.4b).

Next, using the law of total expectation [24], the posterior mean m
(k)
-α of φ-α is computed by taking the

expectation of conditional mean µ̃(k)
-α in Eq. (B.2b) as

m(k)
-α = Ek [Ek [φ-α|φα]] = Ek

[
µ̃(k)

-α

]
= Ek

[
µ(k)

-α + (C(k))T (Σ(k)
α )−1(φα − µ(k)

α )
]

(B.8a)

= µ(k)
-α + (C(k))T (Σ(k)

α )−1(m(k)
α − µ(k)

α ), (B.8b)
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where the inner expectation is with respect to φ-α and the outer expectation is with respect to φα. Substi-

tuting m
(k)
α from Eq. (B.7) in Eq. (B.8b) leads to

m(k)
-α = µ(k)

-α + (C(k))T (Σ(k)
α )−1(�

��µ(k)
α −Σ(k)

α (B(k)
α )−1µ(k)

α −�
��µ(k)
α )

= µ(k)
-α − (C(k))T (B(k)

α )−1µ(k)
α (B.9)

Rewriting Eq. (B.7) and Eq. (B.9) in a matrix form produces the solution to posterior mean vector m(k) as

m(k) =

{
m

(k)
α

m
(k)
-α

}
=

{
µ

(k)
α

µ
(k)
-α

}
−
[

Σ(k)
α (B(k)

α )−1 0

(C(k))T (B(k)
α )−1 0

]{
µ

(k)
α

µ
(k)
-α

}
. (B.10)

Next, the posterior covariance P(k)
-α of φ-α in Eq. (12) is computed using the law of total variance [24] as

P(k)
-α = Covark(φ-α) = Covark(Ek [φ-α|φα]) + Ek [Covark(φ-α|φα)] = Covark(µ̃(k)

-α ) + Ek[Σ̃
(k)

-α ]

= Covark

(
µ(k)

-α + (C(k))T (Σ(k)
α )−1(φα − µ(k)

α )
)

+ Ek

[
Σ(k)

-α − (C(k))T (Σ(k)
α )−1C(k)

]
= (C(k))T (Σ(k)

α )−1Covark (φα) (Σ(k)
α )−1C(k) + Σ(k)

-α − (C(k))T (Σ(k)
α )−1C(k)

= Σ(k)
-α + (C(k))T (Σ(k)

α )−1
(
P(k)
α (Σ(k)

α )−1 − INα

)
C(k), (B.11)

where µ̃(k)
-α and Σ̃

(k)

-α are substituted from Eq. (B.2). Substituting P(k)
α from Eq. (B.6) in Eq. (B.11) results

in
P(k)

-α = Σ(k)
-α + (C(k))T (Σ(k)

α )−1
(
−Σ(k)

α (B(k)
α )−1

)
C(k) = Σ(k)

-α − (C(k))T (B(k)
α )−1C(k) (B.12)

Next, the posterior cross-covariance matrix D(k) in Eq. (12) is evaluated as

D(k) = Ek

[(
φα −m(k)

α

)(
φ-α −m(k)

-α

)T]
= Ek

[(
φα − µ(k)

α + Σ(k)
α (B(k)

α )−1µ(k)
α

)(
φ-α − µ(k)

-α + C(k)(B(k)
α )−1µ(k)

α

)T]
= C(k) +

(
m(k)
α − µ(k)

α

)
(µ(k)

α )T (B(k)
α )−1C(k) + Σ(k)

α (B(k)
α )−1µ(k)

α

(
m(k)

-α − µ(k)
-α

)T
+ Σ(k)

α (B(k)
α )−1µ(k)

α (µ(k)
α )T (B(k)

α )−1C(k). (B.13)

Substituting m
(k)
α from Eq. (B.7) and m

(k)
-α from Eq. (B.9) reduces Eq. (B.13) to

D(k) = C(k) −Σ(k)
α (B(k)

α )−1µ(k)
α (µ(k)

α )T (B(k)
α )−1C(k) −Σ(k)

α (B(k)
α )−1µ(k)

α (µ(k)
α )T (B(k)

α )−1C(k)

+ Σ(k)
α (B(k)

α )−1µ(k)
α (µ(k)

α )T (B(k)
α )−1C(k)

= C(k) −Σ(k)
α (B(k)

α )−1µ(k)
α

(
(C(k))T (B(k)

α )−1µ(k)
α

)T
(B.14)

This completes the calculation of posterior pdf p̂(φ|D,α) in Eq. (12), wherein m(k) is known from Eq. (B.10),

P(k)
α is known from Eq. (B.6), P(k)

-α is known from Eq. (B.11), and D(k) is known from Eq. (B.14). Notice

that when using flat prior for questionable parameters (i.e. prior precision α ≈ 0), we get m
(k)
α ≈ µ

(k)
α ,

m
(k)
-α ≈ µ

(k)
-α , P(k)

α ≈ Σ(k)
α , P(k)

-α ≈ Σ(k)
-α and D(k) ≈ C(k).

Appendix B.3. Gradient vector

v
(k)
i in Eq. (17) is evaluated as

v
(k)
i =

∂ logN (µ
(k)
α |0,B(k)

α )

∂ logαi
= −1

2

{
∂ log |B(k)

α |
∂ logαi

+ (µ(k)
α )T

∂(B(k)
α )−1

∂ logαi
µ(k)
α

}
. (B.15)
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An identity involving the derivative of a matrix determinant is available as (Eq. (46) in [36])

∂ log |Z|
∂x

= Trace

(
Z−1 ∂Z

∂x

)
, (B.16)

where Z is any square matrix and x is a scalar. The derivative of term log |B(k)
α | in Eq. (B.15) is evaluated

using this identity as

∂ log |B(k)
α |

∂ logαi
= αi

∂ log |B(k)
α |

∂αi
= αiTrace

(
(B(k)

α )−1 ∂(Σ(k)
α + A−1)

∂αi

)
, (B.17)

where B(k)
α = Σ(k)

α +A−1 is substituted from Eq. (B.4b). As observed from Eq. (3), the matrix Σ(k)
α is solely

dictated by the observations D and the known prior p(φ-α), and is not a function of αi. On the other hand,
matrix A = Diag(α) is a diagonal matrix with α as its diagonal. Hence, differentiating A−1=Diag(1/α)
with respect to αi will produce (−1/α2

i )∆ii, where the matrix ∆ii ∈ RNα×Nα has only (i, i) element equal
to one and the rest of the elements are all zeros. Consequently, Eq. (B.17) can be evaluated as

∂ log |B(k)
α |

∂ logαi
= αiTrace

(
(B(k)

α )−1 ∂A−1

∂αi

)
= − 1

αi
Trace

(
(B(k)

α )−1∆ii

)
. (B.18)

Further, the matrix (B(k)
α )−1 from Eq. (B.4d) is expanded using the Woodbury identity (Eq. 156 in [36]) to

produce
(B(k)

α )−1 = (Σ(k)
α + A−1)−1 = A−AP(k)

α A , (B.19)

where P(k)
α is known from Eq. (B.4b). Substituting Eq. (B.19) in Eq. (B.18) leads to

∂ log |B(k)
α |

∂ logαi
= − 1

αi
Trace

(
A∆ii −AP(k)

α A∆ii

)
= − 1

αi

(
αi − α2

iP
(k)
ii

)
= −1 + αiP

(k)
ii , (B.20)

where the variance P
(k)
ii is the (i, i) element of matrix P(k)

α or P(k) (see Eq. (12)).

Next, the derivative of (B(k)
α )−1 in Eq. (B.15) is evaluated by expanding (B(k)

α )−1 using the Woodbury
identity [36] as

(B(k)
α )−1 = (Σ(k)

α + A−1)−1 = (Σ(k)
α )−1 − (Σ(k)

α )−1P(k)
α (Σ(k)

α )−1 , (B.21)

where only the posterior covariance P(k)
α depends on αi. As a result,

(µ(k)
α )T

∂(B(k)
α )−1

∂ logαi
µ(k)
α = αi(µ

(k)
α )T

{
∂

∂αi

(
(Σ(k)

α )−1 − (Σ(k)
α )−1P(k)(Σ(k)

α )−1
)}

µ(k)
α

= −αi(µ(k)
α )T (Σ(k)

α )−1 ∂P(k)

∂αi
(Σ(k)

α )−1µ(k)
α . (B.22)

The derivative of P(k)
α is evaluated by using an identity involving the derivative of matrix inverse: (Eq. (59)

in [36]),
∂Z−1

∂x
= −Z−1 ∂Z

∂x
Z−1, (B.23)

where Z is any square matrix and x is a scalar. Using this identity in Eq. (B.22) leads to

(µ(k)
α )T

∂(B(k)
α )−1

∂ logαi
µ(k)
α = −αi(µ(k)

α )T (Σ(k)
α )−1

{
−P(k)

α

∂(P(k)
α )−1

∂αi
P(k)
α

}
(Σ(k)

α )−1µ(k)
α

= αi

{
P(k)
α (Σ(k)

α )−1µ(k)
α

}T { ∂

∂αi

(
(Σ(k)

α )−1 + A
)}{

P(k)
α (Σ(k)

α )−1µ(k)
α

}
= αi(m

(k)
α )T∆iim

(k)
α = αi(m

(k)
i )2 , (B.24)
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where (P(k)
α )−1 = (Σ(k)

α )−1 + A is substituted from Eq. (B.4b), m
(k)
α = P(k)

α (Σ(k)
α )−1µ

(k)
α is substituted

from Eq. (B.4d), and m
(k)
i is the ith element of posterior mean vector m

(k)
α . Substituting Eq. (B.20) and

Eq. (B.24) in Eq. (B.15) leads to

v
(k)
i = −1

2

{
−1 + αiP

(k)
ii + αi(m

(k)
i )2

}
=
γ

(k)
i − αi(m(k)

i )2

2
, (B.25)

where γ
(k)
i = 1 − αiP (k)

ii is defined as the relevance indicator for parameter φi corresponding to the kth

kernel.

Appendix B.4. Hessian matrix

The derivative of the factor v
(k)
j in Eq. (20) is obtained using Eq. (18) as

∂v
(k)
j

∂ logαi
=
αi
2

{
−αj

(
∂P

(k)
jj

∂αi
+
∂(m

(k)
j )2

∂αi

)
− δij

(
P

(k)
ii + (m

(k)
i )2

)}
. (B.26)

Note that ∆ii matrix can also be written as δiδ
T
i where δi ∈ RNα has the ith element as one and rest are

all zeros. Using this definition, the derivative of the posterior variance P
(k)
jj in Eq. (B.26) is computed as

∂P
(k)
jj

∂αi
=

∂

∂αi

(
δTj P(k)

α δj

)
= δTj

(
∂

∂αi
P(k)
α

)
δj = δTj

(
−P(k)

α ∆iiP
(k)
α

)
δj

= −
(
δTj P(k)

α δi

)(
δTi P(k)

α δj

)
= −P (k)

ji P
(k)
ij = −(P

(k)
ij )2 , (B.27)

where P
(k)
ij is the (i, j) element of matrix P(k)

α and ∂P(k)
α /∂αi = −P(k)

α ∆iiP
(k)
α has been previously evaluated

in Eq. (B.24). Next, the derivative of (m
(k)
j )2 in Eq. (B.26) is evaluated using Eq. (B.4c) as

∂(m
(k)
j )2

∂αi
=

∂

∂αi

(
(m(k)

α )T∆jjm
(k)
α

)
= 2(m(k)

α )T∆jj
∂m

(k)
α

∂αi

= 2(m(k)
α )T∆jj

∂P(k)
α

∂αi
(Σ(k)

α )−1µ(k)
α = 2(m(k)

α )T∆jj

(
−P(k)

α ∆iiP
(k)
α

)
(Σ(k)

α )−1µ(k)
α

= −2 (m(k)
α )T δj︸ ︷︷ ︸
m

(k)
j

δTj P(k)
α δi︸ ︷︷ ︸

P
(k)
ij

δTi P(k)
α (Σ(k)

α )−1µ(k)
α︸ ︷︷ ︸

m
(k)
i

= −2m
(k)
i m

(k)
j P

(k)
ij (B.28)

Eq. (B.26) is then re-written using Eq. (B.27) and Eq. (B.28) as

∂v
(k)
j

∂ logαi
=
αi
2

{
−αj

(
−(P

(k)
ij )2 − 2m

(k)
i m

(k)
j P

(k)
ij

)
− δij

(
P

(k)
ii + (m

(k)
i )2

)}
= αiαj

(
(P

(k)
ij )2

2
+m

(k)
i m

(k)
j P

(k)
ij

)
+ δij

(
−αiP (k)

ii − αi(m
(k)
i )2

2

)

= αiαj

(
(P

(k)
ij )2

2
+m

(k)
i m

(k)
j P

(k)
ij

)
+ δij

(
v

(k)
i −

1

2

)
(B.29)
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Next, derivative of weight coefficient w(k) in Eq. (20) is evaluated by expanding w(k) according to Eq. (11)
as

∂w(k)

∂ logαi
=

∂

∂ logαi

{
a(k)N (µ

(k)
α |0,B(k)

α )

p̂(D| logα)

}

=
a(k)

p̂(D| logα)

∂N (µ
(k)
α |0,B(k)

α )

∂ logαi
− a(k)N (µ

(k)
α |0,B(k)

α )

(p̂(D| logα))2

∂p̂(D| logα)

∂ logαi

=
a(k)N (µ

(k)
α |0,B(k)

α )

p̂(D| logα)

(
∂ logN (µ

(k)
α |0,B(k)

α )

∂ logαi
− ∂ log p̂(D| logα)

∂ logαi

)
= w(k)

(
v

(k)
i − v̄i

)
(B.30)

where v
(k)
i is substitute from Eq. (18), and v̄i is substituted from Eq. (19b). Using Eq. (B.29) and Eq. (B.30),

the Hessian Hij(logα) from Eq. (20) is further evaluated as

Hij(logα) =
K∑
k=1

[
w(k)

{
αiαj

(
(P

(k)
ij )2

2
+m

(k)
i m

(k)
j P

(k)
ij

)
+ δij

(
v

(k)
i −

1

2

)}

+ v
(k)
j

{
w(k)

(
v

(k)
i − v̄i

)}]
− δijsiαi (B.31)

Re-arranging terms and substituting v̄i from Eq. (19) leads to

Hij(logα) =
K∑
k=1

w(k)αiαj

(
(P

(k)
ij )2

2
+m

(k)
i m

(k)
j P

(k)
ij

)
+

K∑
k=1

w(k)v
(k)
i v

(k)
j

− v̄i
K∑
k=1

w(k)v
(k)
j + δij

{
K∑
k=1

w(k)v
(k)
i −

1

2

K∑
k=1

w(k) − siαi

}

=

K∑
k=1

w(k)

{
αiαj

(
(P

(k)
ij )2

2
+m

(k)
i m

(k)
j P

(k)
ij

)
+ v

(k)
i v

(k)
j − v̄iv̄j

}

+ δij

{
v̄i −

1

2
− siαi

}
, (B.32)

where v̄i or v̄j is known from Eq. (19); w(k) is known from Eq. (11); v
(k)
i is known from Eq. (18); m

(k)
i or

m
(k)
j (elements of m

(k)
α ) is known from Eq. (B.4d); and P

(k)
ij (elements of P(k)

α ) is known from Eq. (B.4c).

Appendix C. PCE surrogate and Sobol sensitivity indices

Given a d-dimensional input X, the PCE surrogate of a scalar output Y is written as

Y =
P−1∑
k=0

ykΨk(ξ) + ε (C.1)

where yk are the unknown PCE coefficients, Ψk(ξ) is the kth PCE basis, ξ is the set of d standardized
random variables (called germs), P is the total number of PCE basis, and ε is the model discrepancy error.
The PCE basis Ψ(ξ) are obtained through the tensorization of univariate PCE polynomials chosen from
the Askey family of polynomials based on the probability distribution of germs ξ [37]. A total-order PCE
truncation with input dimension d and maximum order of p produces P = (p + d)!/(p!d!) number of PCE
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basis in Eq. (C.1). The orthogonality of PCE bases with respect to a probability measure helps power many
desirable properties needed for performing uncertainty quantification and sensitivity analysis tasks [33, 38].
One such property of PCE surrogates is the analytical availability of Sobol sensitivity indices following the
estimation of PCE coefficients [39].

Consider a PCE surrogate with dimension d = 2 and order p = 3. The standardized input (germ) vector
is denoted as ξ = {ξ1, ξ2}. The univariate PCE polynomials of jth input ξj are denoted as ψi(ξj) where i
is the polynomial degree. The number of PCE terms for a total-order truncation will be (2 + 3)!/(2!3!) =
10. Each PCE basis Ψk(ξ) is obtained through tensorization of these univariate PCE polynomials ψi(ξj)
obtained from Askey family of polynomials [38]. The choice of these PCE polynomials is dictated by the
probability distribution of germs ξ [33]. The coefficient pertaining to PCE basis Ψk(ξ) is denoted as yk. The
variance of each PCE basis Ψk(ξ) is known analytically (product of variance of univariate polynomials) and
is denoted as ||Ψk||2. Table C.1 illustrates the variance decomposition principle of computing Sobol indices
through the PCE surrogate for this simple two-dimensional input case.

Order k Multi-index PCE basis Variance contribution solely due to

αk Ψk(ξ) ξ1 ξ2 interaction

0 0 [0,0] 1.0

1
1 [1,0] ψ1(ξ1) y2

1 ||Ψ1||2

2 [0,1] ψ1(ξ2) y2
2 ||Ψ2||2

2

3 [2,0] ψ2(ξ1) y2
3 ||Ψ3||2

4 [1,1] ψ1(ξ1)ψ1(ξ2) y2
4 ||Ψ4||2

5 [0,2] ψ2(ξ2) y2
5 ||Ψ5||2

3

6 [3,0] ψ3(ξ1) y2
6 ||Ψ6||2

7 [2,1] ψ2(ξ1)ψ1(ξ2) y2
7 ||Ψ7||2

8 [1,2] ψ1(ξ1)ψ2(ξ2) y2
8 ||Ψ8||2

9 [0,3] ψ3(ξ2) y2
9 ||Ψ9||2

V1 V2 V12

Table C.1: Sobol indices calculation from PCE surrogates through variance decomposition.

Given the PCE coefficients are available, the Sobol indices are obtained using Table C.1 as [39]

Total output variance: Vtotal = V1 + V2 + V12

First-order Sobol indices: S1 =
V1

Vtotal
, S2 =

V2

Vtotal

Second-order Sobol index: S12 =
V12

Vtotal

Total-order Sobol index: ST1 = S1 + S12 , ST2 = S2 + S12
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