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We develop a novel numerical scheme for the simulation of dissipative quantum dynamics, 
following from two-body Lindblad master equations. It exactly preserves the trace of the 
density matrix and shows only mild deviations from hermiticity and positivity, which 
are the defining properties of the continuum Lindblad dynamics. The central ingredient 
is a new spatial difference operator, which not only fulfills the summation by parts 
(SBP) property, but also implements a continuum reparametrization property. Using the 
time evolution of a heavy-quark anti-quark bound state in a hot thermal medium as an 
explicit example, we show how the reparametrization neutral summation-by-parts (RN-
SBP) operator enables an accurate simulation of the full dissipative dynamics of this open 
quantum system.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The dynamical evolution of dissipative quantum systems constitutes the focus of a broad and active research community, 
ranging from quantum information science to condensed matter physics and even to high energy nuclear physics. Take the 
physics of impurities for example, where a heavy particle is introduced into a reservoir of light particles. The interactions of 
the impurity with the surrounding environment change its properties, leading to a wealth of phenomenologically relevant 
quantum phenomena, as well as decoherence. In the context of condensed matter physics such impurities have been dis-
cussed as Bose polarons (see e.g. [1]). On the other hand in the context of heavy-ion collisions it is the behavior of heavy 
quark-antiquark pairs, so called heavy quarkonium and their interaction with the hot collisions remnants that are of interest 
(for a recent review see [2]). Investigating the physics of the small subsystem inevitably leads one to consider dissipative 
dynamics and to the framework of open quantum systems (for an excellent introduction see [3]).

It is common to consider a quantum system, which consists of a small subsystem (S), immersed in a large environment 
(E). Its state is encoded in the eponymous state-vectors |ψ〉 that are elements of the full Hilbert space H. The subsystem and 

* Corresponding author.
E-mail addresses: oskar.alund@liu.se (O. Ålund), akamatsu@kern.phys.sci.osaka-u.ac.jp (Y. Akamatsu), fredrik.lauren@liu.se (F. Laurén), 

miura@kern.phys.sci.osaka-u.ac.jp (T. Miura), jan.nordstrom@liu.se (J. Nordström), alexander.rothkopf@uis.no (A. Rothkopf).
https://doi.org/10.1016/j.jcp.2020.109917
0021-9991/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2020.109917
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109917&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:oskar.alund@liu.se
mailto:akamatsu@kern.phys.sci.osaka-u.ac.jp
mailto:fredrik.lauren@liu.se
mailto:miura@kern.phys.sci.osaka-u.ac.jp
mailto:jan.nordstrom@liu.se
mailto:alexander.rothkopf@uis.no
https://doi.org/10.1016/j.jcp.2020.109917
http://creativecommons.org/licenses/by/4.0/


O. Ålund, Y. Akamatsu, F. Laurén et al. Journal of Computational Physics 425 (2021) 109917
environment degrees of freedom, described by |ψS〉 and |ψE〉 respectively, can be found in separate subspaces H =HS ⊗HE . 
The symbol ⊗ denotes the direct product between two Hilbert spaces. The overall system is closed and its physics described 
by the Hermitian Hamilton operator Ĥ tot acting on state vectors in the full Hilbert space. It can be decomposed into the 
following sum

Ĥ tot = ĤS ⊗ IE + IS ⊗ ĤE + Ĥ int. (1)

The first term ĤS refers to the Hamiltonian governing the dynamics of the subsystem. It leaves the environment unchanged, 
as indicated by the direct product with the identity operator IE on the environment subspace of the full Hilbert space. 
ĤE describes the environment degrees of freedom and the interactions between the two are contained in Ĥ int . The latter 
explicitly couples the subsystem and environment subspace of the full Hilbert space.

Many relevant properties of such a system are captured by its density matrix operator

ρ̂tot =
∑

i

pi|ψi〉〈ψi|, (2)

where we denote the adjoint of a state vector by |ψi〉† = 〈ψi |. The density matrix thus represents the outer product of all 
states realized in the system under consideration, weighted by their probability pi . In the so-called Schrödinger picture ρ̂tot

evolves according to the von-Neumann equation

d

dt
ρ̂tot(t) = −i[Ĥ tot(t), ρ̂tot(t)], (3)

where [A, B] = AB − B A denotes the commutator. The hermiticity of Ĥ tot translates into unitary time evolution for the total 
density matrix ρtot(t) = U (t, 0)ρtot(0)U †(t, 0) implemented via the time evolution operator U (t, 0) = T exp[−i 

∫
dt H int(t)]. 

Here the adjoint of the operator is denoted by the (†) symbol U †(t, 0) = U−1(t, 0) = U (0, t) and the symbol T refers to 
time ordering, relevant for explicitly time dependent Hamilton operators (for a more detailed exposition we refer the reader 
to [4]).

Measurable properties of the quantum system are encoded in Hermitian operators ( Â† = Â), so called observables. Their 
expectation value, representing the mean value of the associated physical property, obtained over repeated experiments, 
may be computed via trace over the density matrix 〈 Â〉 = Tr[ρ̂ Â]. For observables related to the small subsystem, we now 
wish to simplify the description. Instead of having to carry out the trace over the full Hilbert space every time we compute 
an expectation value, we carry out the trace over the environment degrees of freedom in the full Hilbert space a priori. This 
leads us to the reduced density matrix

ρ̂S = TrE [ρ̂tot] =
∑

n

〈ψE
n |

(∑
i

pi|ψi〉〈ψi|
)
|ψE

n 〉 =
∑

l

p̃l|ψS
l 〉〈ψS

l |, (4)

where we have expressed the trace as sum over the inner products with the n-th environment state vector 〈ψE
n |ρ̂|ψE

n 〉. 
Hence, in case that Â = ÂS ⊗ IE, we have 〈 Â〉(t) = Tr[ρ̂(t) Â] = TrS [ρ̂S(t) Â S ]. We thus need an evolution equation for the 
reduced density matrix ρ̂S .

In general, the time scales of the evolution in the subsystem and the environment may be of the same order and the 
time evolution of ρ̂S remains genuinely non-Markovian, i.e. memory effects play a role. On the other hand if there exists 
a separation of timescales between the medium and the subsystem, i.e. if the subsystem takes longer to relax than the 
environment correlations take to decay, one may encounter approximate Markovian dynamics, in which memory effects can 
be neglected. In that case it has been shown that the most general equation of motion for ρ̂S can be written in terms of 
the (Gorini–Kossakowski–Sudarshan)-Lindblad equation [5,6]

d

dt
ρ̂S = −i[H̃S, ρ̂S] +

∑
k

γk

(
L̂kρ̂S L̂†

k − 1

2
L̂†

k L̂kρS − 1

2
ρ̂S L̂†

k L̂k

)
. (5)

This equation describes the in-general non-unitary, i.e. dissipative, time evolution of the subsystem S through its reduced 
density matrix ρ̂S. I.e. all operators here act only on states |ψS〉 ∈ HS in the subsystem subspace of the full Hilbert space. 
The influence of the environment E manifests itself in the presence of Lindblad operators L̂k , damping rates γk and possible 
modifications of the subsystem Hamiltonian H̃ S �= Ĥ S (explicit examples of these quantities will be derived in Section 2). 
Formulating the dissipative dynamics in terms of a Lindblad equation is advantageous, as it can be proven that this equation 
preserves the main physical properties of the reduced density matrix, i.e. positivity, hermiticity and its unit trace

〈ψS
n |ρS|ψS

n 〉 > 0,∀n, ρ
†
S = ρS, Tr[ρS] = 1. (6)

The preservation of unit trace in particular is important, as the probability interpretation of the density matrix rests upon 
it. The reason is that understanding the energy, momentum and particle exchange between the subsystem and environment 
2
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is of central interest in our study. Thus it is paramount to ensure that the formulation of the problem does not introduce 
artificial loss channels. These may e.g. deplete the probabilities p̃l in Eq. (4) beyond the true effect induced by the presence 
of the environment.

In general Eq. (5) can be expressed in the coordinate space basis of the Hilbert space, where the matrix elements of the 
reduced density matrix ρ(x1, x2, . . . , y2, y1, t) = 〈x1, x2, . . . |ρ̂S(t)| . . . , y2, y1〉 ∈ C form a complex function with a depen-
dence on twice the number of coordinates xi, yi ∈R3 as are particles present in the system. The ensuing partial differential 
equation remains linear in the density matrix, but contains both spatially varying and complex valued coefficients and 
derivative terms for each coordinate

i
d

dt
〈x1, x2, . . . |ρ̂S(t)| . . . , y2, y1〉 = i

∂

∂t
ρ(x1, x2, . . . , y2, y1, t) (7)

= F
[

x1, x2, . . . , y2, y1,∇x1,∇x2, . . . ,∇y2,∇y1, t
]
ρ(x1, x2, . . . , y2, y1, t).

The computational challenge, which we address in this paper, lies in discretizing Eq. (7) and implementing it with a stable 
and accurate numerical procedure, which in addition guarantees that the properties in Eq. (6) are preserved. Using an 
arbitrary complex test function f (x1, x2, . . .) ∈C and denoting by δ(3)(x1 − y1) the three-dimensional delta function, these 
properties can be formulated in terms of the matrix elements as follows

Positivity :∀ f (x1, x2, . . .) ∈C,

∫
d3x1d3x2 . . .d3 y2d3 y1 f (x1, x2, . . .)

∗ρ(x1, x2, . . . , y2, y1, t) f (y1, y2, . . .) ≥ 0,

(8)

Hermiticity : ρ(y1, y2, . . . , x2, x1, t)∗ = ρ(x1, x2, . . . , y2, y1, t), (9)

Unit trace :
∫

d3x1d3x2 . . .d3 y2d3 y1δ
(3)(x1 − y1) . . . ρ(x1, x2, . . . , y2, y1, t) = 1. (10)

The numerical treatment of initial-boundary value problems (IBVPs), among them the Navier-Stokes and Schrödinger-
like equations, such as Eq. (7), has seen significant progress over the past decade with the development and refinement 
of summation-by-parts (SBP) difference operators (for reviews see e.g. [7–9]). As these operators build upon the finite dif-
ference approach (although they can be formulated for many other schemes, see [10–18]) they are straight forward to 
implement and their numerical evaluation cost is low. The fact that they mimic the integration by parts property of the 
continuum theory facilitates proofs of stability, e.g. when deploying SBP operators in time stepping approaches for compu-
tational fluid dynamics [19]. After the development of SBP operators for first derivatives, higher derivative approximations 
[20,21] have been derived. More recently the SBP technique has also been applied to derivatives in time direction [9,22,23]. 
While in this study only periodic boundary conditions will be deployed, the SBP operators can easily accommodate non-
trivial boundary conditions (in the weak sense) via the Simultaneous Approximation Term (SAT) technique [24].

To make the paper self-contained, we provide a brief introduction to SBP operators and recommend [7,8] for extensive 
reviews. Let the domain [xL, xR ] be discretized with N + 1 equidistant grid points xi = xL + i�x, i = 0, . . . , N , where �x =
(xR − xL)/N . Denote by u(t) = [u0, . . . , uN ]
 the vector containing the function u(t, x) evaluated at spatial grid points at 
time t . The approximation of the spatial derivative is given by

Du ≈ ux ,

where ux contains the analytical derivative evaluated on the grid. For two functions u, v on the grid, we define an inner 
product and a corresponding norm as

(u,v)H = u
Hv, ‖u‖2
H = (u,u)H ,

where the matrix H is diagonal and positive definite. Note that the above H is not the system Hamiltonian. Furthermore, 
the differentiation operator D satisfies the SBP property

(v, Du)H = −(u, Dv)H + vNuN − v0u0 . (11)

In the second order case, H is the composite trapezoidal rule and D is the standard stencil for the symmetric central 
difference in the interior and appropriate forward and backward stencils at the boundaries:

H = �x

⎡
⎢⎢⎢⎢⎢⎣

1/2
1

. . .

1
1/2

⎤
⎥⎥⎥⎥⎥⎦ , D = 1

2�x

⎡
⎢⎢⎢⎢⎢⎣

−2 2
−1 0 1

. . .

−1 0 1
−2 2

⎤
⎥⎥⎥⎥⎥⎦ .

In the periodic case, the operators simplify to
3
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H = �x

⎡
⎢⎢⎢⎢⎢⎣

1
1

. . .

1
1

⎤
⎥⎥⎥⎥⎥⎦ , D = 1

2�x

⎡
⎢⎢⎢⎢⎢⎣

0 1 −1
−1 0 1

. . .

−1 0 1
1 −1 0

⎤
⎥⎥⎥⎥⎥⎦ .

Remark. The operators for the periodic case satisfy (11) but without the boundary terms. Hence, the periodic SBP-operators 
mimic integration-by-parts for periodic as well as Cauchy problems, where boundary terms do not play a major role, and 
will be used throughout this paper.

The SBP property already provides a crucial ingredient in the formulation of stable approximations of IBVPs, such as 
Eq. (7). In order to also preserve the trace of a relevant class of Lindblad equations, we will show that another continuum 
property of derivatives needs to be fulfilled: reparametrization neutrality.

Reparametrization neutrality refers to the fact that among a set of derivatives with respect to different variables, we may 
freely change to derivatives expressed in linear combinations of these variables. As a concrete example take x and y and 
the corresponding derivatives d

dx and d
dy . Considering instead z = x − y and z′ = x + y we may reexpress

d

dx
=

( d

dz′ + d

dz

)
and

d

dy
=

( d

dz′ − d

dz

)
.

In addition, discrete reparametrization neutrality means that we can move between x, y and z, z′ while maintaining certain 
desirable properties of the discrete derivative operators, such as SBP and a special case of the product rule (see (49) and 
(50)). For the derivation of the trace conservation in the Lindblad equation we will need to switch from expressions in x
and y to expressions in z and z′ , which, when discretized with the conventional symmetric finite difference operator, turns 
out to be impossible. Hence we set out to define a novel finite difference operator, which besides the summation-by-parts 
property also remains neutral under reparametrization.

We proceed in Section 2 by formulating an explicit expression for Eq. (7) for the dissipative dynamics of a heavy quarko-
nium particle, interacting with a hot environment. We will discuss the preservation of the defining properties of the density 
matrix in the continuum and pinpoint where it fails after discretization. Using this insight we will in Section 3 construct a 
novel reparametrization neutral SBP operator, which, as we show, retains the continuum properties in the discretized evo-
lution equations. In Section 4 we will present numerical results from the simulation of quarkonium dissipative dynamics, 
showcasing the successful preservation of the continuum properties of the density matrix. We close with a brief conclusion 
and outlook in Section 5.

2. Quarkonium Lindblad master equation

As a concrete example of a Lindblad equation describing dissipative dynamics of a phenomenologically relevant system, 
we present the case of heavy quark–anti-quark bound states, so called heavy quarkonium at high temperature. The dis-
sipative dynamics of these bound states immersed in a thermal medium play an important role in our understanding of 
heavy-ion collisions carried out e.g. at the Large Hadron Collider at the CERN Laboratory. In such collisions, nuclei of heavy 
atoms are smashed into each other at ultra-relativistic momenta, so that the protons and neutrons making up the nuclei 
become compressed and heated to temperatures beyond 200, 000 times the temperatures present in the core of the sun. In 
turn they melt into their microscopic constituents, the light quarks and gluons, which form a so called quark-gluon-plasma 
(QGP). Some of the kinetic energy in the original projectiles is converted into additional particles, such as heavy quark–anti-
quark pairs, which may form quarkonium bound states that find themselves immersed in the approximately locally thermal 
QGP. Using the quantum field theory quantum-chromo-dynamics (QCD) one wishes to understand how the interaction be-
tween the quarkonium and the medium affects their binding properties. If we translate these in-medium modifications into 
changes in the quarkonium particle production rate, we may use their measured yields in heavy-ion collisions to deduce 
the properties of the QGP created therein.

In [25,26] the Lindblad equation for a single quarkonium particle at high temperature was derived. Here the term high 
refers to the fact that the strong interactions between quarks and gluons become weaker at high energy scales and thus 
a weak-coupling expansion could be deployed. Let us consider heavy quarks with mass M immersed in a medium of 
temperature T . The explicit expressions for the subsystem Hamiltonian and the Lindblad operators L̂ in terms of the three-
dimensional coordinates of the quark and anti-quark xQ and xQ̄ and their momenta p Q , p Q̄ read

H̃ S = p̂2
Q + p̂2

Q̄

2M
+

[
V (x̂Q − x̂Q̄ ) − 1

8MT

{
(p̂ Q − p̂ Q̄ ),∇D(x̂Q − x̂Q̄ )

}]
(ta ⊗ ta∗), (12a)

L̂k,a =
√

D̃(k)

2L3

[
e

ik·x̂Q
2

(
1 − k · p̂ Q

4MT

)
e

ik·x̂Q
2 (ta ⊗ 1) − e

ik·x̂Q̄
2

(
1 − k · p̂ Q̄

4MT

)
e

ik·x̂Q̄
2 (1 ⊗ ta∗)

]
. (12b)
4
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The Lindblad operators L̂ in this case depend on a continuous momentum variable k and a discrete “color” index a related 
to the triple valued charge of strongly interacting particles. I.e. each “entry” of the Hamiltonian and the Lindblad operators 
corresponds to a 6 × 6 matrix built from direct products of the 3 × 3 Gell-Mann matrices denoted by ta .

The form of L̂k,a is intuitively understandable: there are two terms, one for the interaction of the medium with the 
quark-, another term for the interaction with the anti-quark constituent making up the quarkonium particle. The relative 
minus sign between the two terms in the second line of Eq. (12) indicates that we are dealing with a system consisting of 
a particle and anti-particle. All aspects of the dynamics are captured in two quantities, the real-valued potential V (x) and 
the dissipation kernel D(x), as well as its Fourier transform D̃(k). These two quantities are intimately related to the real-
and imaginary part of the proper real-time heavy-quark potential computed perturbatively in [27–29] and in numerical 
simulations of the strong interactions (so called lattice QCD) in [30–33]. It has been shown that the effects of dissipation 
are encoded in the momentum k dependent terms in the parentheses, without which the dissipationless evolution of the 
recoilless-limit is obtained.

The description of the two-body quarkonium system may be simplified by going over to relative and center of mass 
coordinates for the quark–anti-quark degrees of freedom

x̂ = x̂Q + x̂Q̄

2
, ŷ = x̂Q − x̂Q̄ , P̂ = p̂ Q + p̂ Q̄ , p̂ = p̂ Q − p̂ Q̄

2
. (13)

Tracing out also the center of mass coordinate, it was shown in [34] that the following relative coordinate operators ensue

H̃ rel
S = p̂2

M
+ V (x̂)(ta ⊗ ta∗) − 1

4MT

{
p̂,∇D(x̂)

}
, (14)

L̂rel
k,a =

√
D̃(k)

2L3

[
1 − k

4MT
·
(

1

2
P̂ + p̂

)]
e

ikr
2 (ta ⊗ 1) −

√
D̃(k)

2L3

[
1 − k

4MT
·
(

1

2
P̂ − p̂

)]
e− ikr

2 (1 ⊗ ta∗). (15)

In the following we will further simplify the description by considering the quarkonium particle to be at rest (i.e. set-
ting its center of mass momentum P̂ = 0) and neglecting the explicit matrix structure of the Lindblad operators and the 
Hamiltonian, essentially setting ta to unity and retaining only a single color component.

Evaluating the ensuing Lindblad equation in the coordinate space basis for the relative coordinates, we obtain the fol-
lowing partial differential equation with spatially and potentially temporally varying coefficient terms

∂tρ
rel(x, y, t) = i

[∇2
x

M
− V (x)

]
ρrel(x, y, t) − i

[∇2
y

M
− V (y)

]
ρrel(x, y, t) (16)

+
[

2F1

(x − y

2

)
− 2F1

(
0
) + F1

(
x
) + F1

(
y
) − 2F1

(x + y

2

)]
ρrel(x, y, t)

−
[ (∇2

x)
2 A(x)

4M2
+ (∇2

y)
2 A(y)

4M2

]
ρrel(x, y, t)

+
[

2F 2

(x − y

2

)
+ 2F 2

(
x
) − 2F 2

(x + y

2

)
− ∇x

(∇2
x)A(x)

M2

]
∇xρ

rel(x, y, t)

+
[
− 2F 2

(x − y

2

)
+ 2F 2

(
y
) − 2F 2

(x + y

2

)
− ∇y

(∇2
y)A(y)

M2

]
∇yρ

rel(x, y, t)

+
[

2F ij
3

(x − y

2

)
+ 2F ij

3

(x + y

2

)] ∂

∂xi

∂

∂ y j
ρrel(x, y, t)

+
[1

3
F kk

3 (0
)
δi j + F ij

3 (x
)] ∂

∂xi

∂

∂x j
ρrel(x, y, t)

+
[1

3
F kk

3 (0
)
δi j + F ij

3 (y
)] ∂

∂ yi

∂

∂ y j
ρrel(x, y, t).

The vectorial derivatives acting on the coordinate vectors x and y are defined as ∇x = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) and ∇y =
( ∂

∂ y1
, ∂

∂ y2
, ∂

∂ y3
) respectively. Summation over repeated indices is implied, as is the scalar product among vector quantities.

The scalar function F1, the vectorial F 2 and the tensorial F ij
3 have been introduced to conveniently summarize the 

contributions arising from the dissipation kernel

F1
(
x
) =

[
D(x) + ∇2

x D(x)

4MT
+

(∇2
x

)2
A(x)

8M2

]
, F 2

(
x
) = ∇x

[ D(x)

4MT
+ ∇2

x A(x)

4M2

]
, F ij

3

(
x
) = − ∂

∂xi

∂

∂x j

[ A(x)

2M2

]
(17)

and the function A(x) = D(x)/8T 2. Up to this point no approximation beyond the weak coupling expansion and time coarse 
graining enter our description.
5
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While our long-term goal is to solve the full three-dimensional dynamics of quarkonium based on Eq. (16), we restrict 
ourselves in this paper to the one-dimensional case. It already presents us with many of the relevant technical challenges, 
while requiring significantly less computational resources for its implementation. It furthermore simplifies the presentation, 
without compromising with the fundamental computational development.

In one dimension, derivatives in the x and y coordinate do not carry indices anymore and Eq. (16) reduces to

∂tρ
rel(x, y, t) = i

[ 1

M

∂2

∂x2
− V (x)

]
ρrel(x, y, t) − i

[ 1

M

∂2

∂ y2
− V (y)

]
ρrel(x, y, t) (18)

+
[

2F1

( x − y

2

)
− 2F1

(
0
) + F1

(
x
) + F1

(
y
) − 2F1

( x + y

2

)]
ρrel(x, y, t)

−
[ ∂2

∂x2

∂2

∂x2 A(x)

4M2
+ ∂2

∂ y2

∂2

∂ y2 A(y)

4M2

]
ρrel(x, y, t)

+
[

2F2

( x − y

2

)
+ 2F2

(
x
) − 2F2

( x + y

2

)
− ∂

∂x

∂2

∂x2 A(x)

M2

] ∂

∂x
ρrel(x, y, t)

+
[
− 2F2

( x − y

2

)
+ 2F2

(
x
) − 2F2

( x + y

2

)
− ∂

∂ y

∂2

∂ y2 A(y)

M2

] ∂

∂ y
ρrel(x, y, t)

+
[

2F3

( x − y

2

)
+ 2F3

( x + y

2

)] ∂

∂x

∂

∂ y
ρrel(x, y, t)

+
[

F3(0
) + F3(x

)] ∂2

∂x2
ρrel(x, y, t) +

[
F3(0

) + F3(y
)] ∂2

∂ y2
ρrel(x, y, t).

Here the physics of the dissipation kernel D(x) enters via three real-valued scalar functions, which, keeping in mind that 
A(x) = D(x)/8T 2, read

F1
(
x
) =

[
D(x) + 1

4MT

∂2

∂x2
D(x) + 1

8M2

∂4

∂x4
A(x)

]
, (19)

F2
(
x
) = 1

4MT

∂

∂x
D(x) + 1

4M2

∂3

∂x3
A(x), F3

(
x
) = − 1

2M2

∂2

∂x2
A(x).

Conservation of defining properties in one-dimension
In order for positivity and hermiticity of the density matrix to be conserved in the Lindblad formalism, the function 

D(x) in momentum space needs to be positive and real [26,3]. As the dissipation kernel is supplied as external input, this 
property can be explicitly checked for and we will make sure it is fulfilled in the simulations that follow. Here we focus 
on the preservation of the trace in Eq. (18), which presents the central challenge in its discretization. In the functional 
language, the trace over quantum states translates into an integration of ρrel(x, y, t) over x and y in the presence of a delta 
function δ(x − y).

Some of the terms in the trace over the first, second, fourth and fifth line of Eq. (18) vanish identically, due to the 
arguments of the V and F functions being evaluated at x = y, e.g.

T1 =
∫

dx

∫
dy δ(x − y)

[
iV (x) − iV (y)+2F1

( x − y

2

)
− 2F1

(
0
)

(20)

+ F1
(
x
) + F1

(
y
) − 2F1

( x + y

2

)]
ρrel(x, y, t) = 0,

T2 =
∫

dx

∫
dy δ(x − y)

[
− 2F2

( x + y

2

)( ∂

∂x
+ ∂

∂ y

) + 2F2
(
x
) ∂

∂x
+ 2F2

(
y
) ∂

∂ y

]
ρrel(x, y, t) = 0. (21)

In addition, the following term from lines four and five vanishes

T3 =
∫

dx

∫
dyδ(x − y)

[
2F2

( x − y

2

)( ∂

∂x
− ∂

∂ y

)]
ρrel(x, y, t) = 0. (22)

This can be seen by inspecting the properties of the function D(x) and the definition of F2, in which the first and third 
derivative of D(x) enters (remember A(x) = D(x)/8T 2). The derivation of the Lindblad equation from QCD in [25,26] leads 
to a function D(x) that possesses a maximum around the origin and which is furthermore symmetric around the origin. 
Thus, when we take the first and third derivative of D(x) at the origin, both contributions vanish, i.e. F2(0) = 0. (We ensure 
that this property is respected in our numerical simulations, see Eq. (54).)
6
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For some terms in the trace over Eq. (18) we need to apply integration by parts. Take e.g. the derivatives in the first line

T4 =
∫

dx

∫
dyδ(x − y)

[
i

1

M

∂2

∂x2
− i

1

M

∂2

∂ y2

]
ρrel(x, y, t) = 0. (23)

In order to show that these two contributions cancel each other, we need to be able to transform the double derivative in 
x into a corresponding derivative in y, which is possible due to the delta-function. We get

∫
dx

∫
dyδ(x − y)

∂2

∂x2
ρrel(x, y, t) =

∫
dx

∫
dy

{ ∂2

∂x2
δ(x − y)

}
ρrel(x, y, t)

from twice integrating by parts and the fact that we consider periodic boundary conditions. Now we exploit the anti 
symmetry of the argument of the delta function to replace ∂

∂x by − ∂
∂ y twice. (One may use a regularized form of the 

delta-function here to make the operation mathematically well defined.) Applying integration by parts twice again, we thus 
obtain ∫

dx

∫
dy

{ ∂2

∂ y2
δ(x − y)

}
ρrel(x, y, t) =

∫
dx

∫
dyδ(x − y)

∂2

∂ y2
ρrel(x, y, t),

which hence cancels the term in Eq. (23).
Similarly, by application of integration by parts in the trace over terms in line six and seven of Eq. (18), we find that the 

following combination vanishes

T5 =
∫

dx

∫
dyδ(x − y)

[
2F3

( x − y

2

) ∂

∂x

∂

∂ y
+ F3(0)

( ∂2

∂x2
+ ∂2

∂ y2

)]
ρrel(x, y, t) = 0. (24)

The need to perform integration by parts in the continuum theory tells us that the difference operators, to be deployed for 
discretization of Eq. (18), need to fulfill the summation-by-parts property.

For the other terms to vanish, additional continuum properties of derivatives are required. Let us start with the remaining 
F3 terms in the last two lines of Eq. (18)

T6 =
∫

dx

∫
dyδ(x − y)

[
2F3

( x + y

2

) ∂

∂x

∂

∂ y

T61

+ F3(x
) ∂2

∂x2
+ F3(y

) ∂2

∂ y2

]
ρrel(x, y, t). (25)

This expression will not vanish by itself but instead produces a remnant term, which in turn will cancel with the A de-
pendent contributions in the trace over Eq. (18). At first sight moving around the derivatives on the first F3 term (denoted 
as T61) appears to involve the application of the product rule which would lead to subsequent numerical complications, as 
splitting would be required [35]. Note however the particular form of this coefficient. It depends only on the sum z′ = x + y
of the coordinates, while the delta function only depends on z = x − y, which invites us to introduce

∂

∂x
=

( ∂

∂z′ + ∂

∂z

)
,

∂

∂ y
=

( ∂

∂z′ − ∂

∂z

)
, (26)

∂

∂z′ = 1

2

(
∂

∂x
+ ∂

∂ y

)
,

∂

∂z
= 1

2

(
∂

∂x
− ∂

∂ y

)
. (27)

Let us have a look at how the reparametrization property of the differentials of the two sets of coordinates in the 
continuum can be used to rewrite the mixed derivative term in Eq. (25). We obtain

2
∂

∂x

∂

∂ y
=

( ∂

∂x
+ ∂

∂ y

)( ∂

∂x
+ ∂

∂ y

)
−

( ∂2

∂x2

)2 −
( ∂

∂ y

)2

= 2
( ∂

∂x
+ ∂

∂ y

) ∂

∂z′ −
( ∂2

∂x2

)2 −
( ∂

∂ y

)2
. (28)

The result of Eq. (28) can be directly applied to the mixed derivative term T61 in Eq. (25):

T61 =
∫

dx

∫
dyδ(z)F3

( z′

2

)(
2
( ∂

∂x
+ ∂

∂ y

) ∂

∂z′ − ∂2

∂x2
− ∂2

∂ y2

)
ρrel(x, y, t) . (29)

Since z′/2 = x = y along the trace, inserting Eq. (29) into Eq. (25) yields
7
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T6 =
∫

dx

∫
dyδ(z)F3

( z′

2

)
2
( ∂

∂x
+ ∂

∂ y

) ∂

∂z′ ρ
rel(x, y, t)

= −
∫

dx

∫
dy

{( ∂

∂x
+ ∂

∂ y

)
δ(z)F3

( z′

2

)}
2

∂

∂z′ ρ
rel(x, y, t)

= −
∫

dx

∫
dyδ(z)2

{ ∂

∂z′ F3

( z′

2

)}
2

∂

∂z′ ρ(x, y, t)rel

= −
∫

dx

∫
dyδ(z)2

[{ ∂

∂z′ F3
( z′

2

)} ∂

∂x
+

{ ∂

∂z′ F3
( z′

2

)} ∂

∂ y

]
ρrel(x, y, t).

(30)

In Eq. (30), we carried out one integration by parts in both x and y. Since δ(x − y) only depends on z and not z′ , the 
derivative ∂/∂z′ after integration by parts acts solely on the F3 term.

Let us suggestively rewrite the derivatives over z′ in terms of a variable ξ , which, due to the presence of the delta 
function, we will later identify with x or y

T6 = −
∫

dx

∫
dyδ(x − y)

[ ∂

∂ξ
F3

(
ξ
)∣∣

ξ= x+y
2

∂

∂x
+ ∂

∂ξ
F3

(
ξ
)∣∣∣∣

ξ= x+y
2

∂

∂ y

]
ρrel(x, y, t). (31)

Note that the factor 2 from Eq. (30) has disappeared due to the application of the chain rule. Using the definition in Eq. (17), 
we can turn these two F3 terms into derivatives acting on the A function

T6 =
∫

dx

∫
dyδ(x − y)

1

2M2

[ ∂3

∂ξ3
A
(
ξ
)∣∣

ξ= x+y
2

∂

∂x
+ ∂3

∂ξ3
A
(
ξ
)∣∣∣∣

ξ= x+y
2

∂

∂ y

]
ρrel(x, y, t). (32)

Comparing the above expression to the fourth and fifth line of Eq. (18) we see that it has a form very similar to the A
terms present there

T7 =
∫

dx

∫
dyδ(x − y)

[
−

( ∂

∂x

∂2

∂x2 A(x)

M2

) ∂

∂x
−

( ∂

∂ y

∂2

∂ y2 A(y)

M2

) ∂

∂ y

]
ρrel(x, y, t). (33)

Making use of the fact that in Eq. (32), inside the trace, we can replace ∂3

∂ξ3 by either ∂3

∂x3 or ∂3

∂ y3 , we can cancel parts of the 
terms in T7. Note that due to the factor 1/2 present in Eq. (31) we obtain a rest term when summing T6 and T7.

In order to bring this rest term into the form necessary to cancel the last remaining A terms in Eq. (18) it may be 
conveniently expressed in the ξ derivatives of Eq. (32)

T6 + T7 = −
∫

dx

∫
dyδ(x − y)

1

2M2

[ ∂3

∂ξ3
A
(
ξ
)∣∣∣∣

ξ= x+y
2

∂

∂x
+ ∂3

∂ξ3
A
(
ξ
)∣∣∣∣

ξ= x+y
2

∂

∂ y

]
ρrel(x, y, t). (34)

Let us now summarize the two terms as a single expression with derivative in z′

T6 + T7 = −
∫

dx

∫
dyδ(x − y)

1

M2

[ ∂3

∂ξ3
A
(
ξ
)∣∣∣∣

ξ= x+y
2

∂

∂z′
]
ρrel(x, y, t). (35)

We may now carry out integration by parts in z′ (by shifting ∂
∂z′ to 1

2 ( ∂
∂x + ∂

∂ y )), exploiting that δ(x − y) does not depend 

on z′ . Using again the fact that inside the trace we can replace ∂3

∂ξ3 by either ∂3

∂x3 or ∂3

∂ y3 we arrive at the final expression

T6+T7 = (36)

=
∫

dx

∫
dyδ(x − y)

1

M2

[(1

2

∂

∂x
+ 1

2

∂

∂ y

) ∂3

∂ξ3
A
(
ξ
)∣∣∣∣

ξ= x+y
2

]
ρrel(x, y, t)

=
∫

dx

∫
dyδ(x − y)

1

M2

[1

4

∂4

∂x4
A(x) + 1

4

∂4

∂ y4
A(y)

]
ρrel(x, y, t),

which cancels identically with the only remaining A terms in the third line of Eq. (18). This concludes the explicit demon-
stration that the one-dimensional Lindblad master equation preserves the unit trace property of the reduced density matrix.

Remark. The lesson learned for the discretization of Eq. (18) is that the application of the product rule is not necessary 
in order to conserve the trace, as long as the reparametrization property of Eq. (26) is fulfilled. This bodes well, as it is 
well known that discretizations of the difference operator in general violate the product rule, even if they fulfill e.g. the 
summation by parts property [35,36]. To summarize, we need difference operators that can integrate by parts in x, y and 
differentiate in z, z′ .
8
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However, the standard difference operator is not neutral under reparametrization, as is evidenced by (assuming the same 
equidistant discretization � in x and y)

1

2
(Dnaive

x +Dnaive
y ) f (x, y) = (37)

1

4�

(
f (x + �, y) − f (x − �, y) + f (x, y + �) − f (x, y − �)

)
�= Dnaive

z′ f (x, y) = 1

2�z

(
f (x + �z/2, y + �z/2) − f (x − �z/2, y − �z/2)

)
.

Our goal thus is to construct a SBP operator that remains neutral under the reparametrization (x, y) → (z, z′).

3. A reparametrization-neutral summation by parts (RN-SBP) operator

We proceed to construct a novel SBP difference operator, which strictly implements the reparametrization property 
Eq. (26), restricting ourselves here to the case of an equidistantly discretized function ρ(x, y) with �x = �y = � and 
periodic boundary conditions. After choosing an explicit ordering of the discretized density matrix ρ on the now two-
dimensional (x,y) grid we introduce the shift operators S+ and S− as follows

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(x0, y0)

ρ(x0, y1)
...

ρ(x0, yN−1)

ρ(x1, y0)

ρ(x1, y1)
...

ρ(xN−1, yN−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
...

... 0
. . .

...
...

0 0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, S− = S T+. (38)

Note that the consecutive application of the two shift operators yields S+ S− = S− S+ = 1, where 1 is the identity. Our 
strategy is to combine these shifts together with regular SBP difference operators to achieve the desired reparametrization 
neutrality. Indeed, Ix ⊗ S+ shifts rows upward on the discretized grid, while S+ ⊗ I y shifts columns to the right, with the 
inverse operations naturally being Ix ⊗ S− and S− ⊗ I y respectively.

For periodic boundary conditions the simplest second order periodic SBP operator is constructed using the integration 
prescription H = �1 and

Q =

⎡
⎢⎢⎢⎢⎢⎣

0 1 −1
−1 0 1

. . .

−1 0 1
1 −1 0

⎤
⎥⎥⎥⎥⎥⎦ , (39)

where D ≡ H−1 Q . Since Q + Q 
 = 0, we get

u
H Dv= u
 Q v= u
 (
Q + Q 
 − Q 
)

v= −u
 Q 
v= −v
H Du, (40)

and the SBP property simplifies to (u, Dv)H = −(Du, v)H .
As indicated by Eq. (38), for the reparametrization property to hold we need to express the x- and y- derivative of the 

function ρi, j in terms of its values at the neighboring diagonal corners, i.e. in the variables x + y and x − y. This is possible 
if we compute the average of the naive finite differences once shifted up and down in rows and columns respectively. With 
this strategy we arrive at the definition of the following reparametrization neutral summation-by-parts operators (RN-SBP)

Dx = 1

2

(
D ⊗ S+ + D ⊗ S−

)
, Dy = 1

2

(
S+ ⊗ D + S− ⊗ D

)
. (41)

The explicit expressions applying Dx and Dy to the function ρ at (xi, y j) are

(Dxρ)i, j = 1

2

(ρi+1, j+1 − ρi−1, j+1

2�
+ ρi+1, j−1 − ρi−1, j−1

2�

)
, (42)

(Dyρ)i, j = 1

2

(ρi+1, j+1 − ρi+1, j−1

2�
+ ρi−1, j+1 − ρi−1, j−1

2�

)
. (43)
9
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This construction also preserves the summation by parts property, as we can write

Dx = H−1Qx, Dy = H−1Qy, (44)

with H = H ⊗ H , and

Qx = 1

2

(
Q ⊗ H S+ + Q ⊗ H S−

)
, Qy = 1

2

(
H S+ ⊗ Q + H S− ⊗ Q

)
. (45)

It follows that

Qx +QT
x = Qy +QT

y = 0. (46)

Hence, if u, v ∈ RN2
, then (u, Dxv)H = −(Dxu, v)H (using the same argument as in (40)). Similarly we get (u, Dyv)H =

−(Dyu, v)H .
Let us next define the corresponding RN-SBP operators in z and z′ as in Eq. (27),

Dz′ = 1

2

(
Dx +Dy

)
, Dz = 1

2

(
Dx −Dy

)
, (47)

which by (42), (43) on the index level becomes

(Dz′ρ)i, j = ρi+1, j+1 − ρi−1, j−1

2�
, (Dzρ)i, j = ρi−1, j+1 − ρi+1, j−1

2�
. (48)

Naturally these new operators show the following behavior: if we have two functions u, v ∈ RN2
and v depends only on 

z = (x − y), i.e. v is constant along all lines y = x + c then

Dz′(u ◦ v) = v ◦Dz′u, (49)

where ◦ denotes the Hadamard (elementwise) product. Similarly if u depends only on z′ = (x + y) we have

Dz(u ◦ v) = u ◦Dzv. (50)

Let us now show that the novel RN-SBP operators presented above allow us to implement in a discrete fashion, all 
manipulations deployed in the proof of the preservation of unit trace in Section 2.

The first set of manipulation we need to realize discretely is related to the terms T4, T5 and T6. There, one must first 
perform summation by parts, which our novel RN-SBP operator implements by construction. Next we need to change x into 
y derivatives and vice versa via the delta function. Writing explicitly we get

Dxδ(z) =
(
Dz′ +Dz

)
δ(z) =

(
−Dz′ +Dz

)
δ(z) = −Dyδ(z). (51)

Another type of operation is required to treat the T6 term. In the continuum it amounts to the steps in Eq. (28) which 
are identical for the RN-SBP operator

2DxDy =
[(

Dx +Dy

)(
Dx +Dy

)
−D2

x −D2
y

]
=

[
2
(
Dx +Dy

)
Dz′ −D2

x −D2
y

]
. (52)

Note that the second line of the above operations would not hold if implemented with the naive finite difference operator. 
The treatment of the T6 term requires our operator to fulfill an additional property. When the z′ derivative after summation 
by parts, acts on δ(x − y)F3(

x+y
2 ) we need it to affect only F3. Inspecting Eq. (49) we conclude that the RN-SBP operator 

indeed allows us to carry out this operation

Dz′
(
δ(z) ◦ F3

( z′

2

)) = δ(z) ◦Dz′ F3
( z′

2

)
. (53)

As an example, let us replicate the manipulations in Eq. (30) discretely:

T6 ≈
(

δ(z) ◦ F3

(
z′

2

)
,2(Dx +Dy)Dz′ρ

)
H

= −
(

(Dx +Dy)δ(z) ◦ F3

(
z′

2

)
,2Dz′ρ

)
H

= −
(

δ(z) ◦ 2Dz′ F3

(
z′

2

)
,2Dz′ρ

)
H

= −
(

δ(z) ◦ 2Dz′ F3

(
z′ )

,Dxρ

)
−

(
δ(z) ◦ 2Dz′ F3

(
z′ )

,Dyρ

)
.

2 H 2 H

10
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We have thus shown that the RN-SBP operator is able to mimic all manipulations that were required in continuum to prove 
the conservation of the trace of the reduced density matrix.

Remark. To summarize, the RN-SBP operators allow us to change expressions involving Dx, Dy into expressions involving 
Dz, Dz′ while at the same time satisfying the properties Dz′ (u ◦v) = v ◦Dz′u if v only depends on z and Dz(u ◦v) = u ◦Dzv

if u only depends on z′ .

4. Simulating trace preserving dissipative dynamics of heavy quarkonium at high temperature

In the following we will implement Eq. (18) for one-dimensional x and y, i.e. the function ρ at each time step corre-
sponds to a two dimensional array of complex numbers. To compute its time evolution we deploy the unconditionally CFL 
stable and unitary Crank-Nicolson prescription [37]. Unitary here refers to the fact that this scheme is based on a second 
order Padé approximation of the dynamical map exp[−i 

∫
Ldt] that implements the time evolution of the reduced density 

matrix i∂tρ(x, y, t) =Lρ(x, y, t). Explicitly it implements for small time steps P [exp[−iL�t]] =
(

1 − i 1
2L�t

)
/
(

1 + i 1
2L�t

)
. 

In case that L is Hermitian (which it does not have to be in general) the Crank-Nicolson discretization ensures that 
P [exp[−iL�t]]† = P [exp[−iL�t]]−1. This approach is costlier than e.g. explicit Runge-Kutta schemes of the same order, 
as it involves the solution of a linear system of equations at each time step. The benefit of the Crank-Nicolson method is 
that it leads to only mild deviations from hermiticity and positivity when applied to the full dissipative dynamics of Eq. (18). 
Furthermore, the Crank-Nicolson method conserves linear invariants; hence, together with the RN-SBP operator it exactly 
preserves the trace, as we will show below. We have checked that using the direct matrix exponential to solve Eq. (18)
(based on the algorithm of [38]), instead of the Crank-Nicolson scheme we obtain results that agree on the permille level. 
The code for this study is available via a creative-commons open access attribution license at the Zenodo repository [39].

The physical quantity of interest to read off from the simulation is the survival probability of individual quarkonium 
quantum states as they interact with the surrounding medium. To this end we initialize the simulations with either the 
ground or the first excited state, corresponding to the lowest lying φ0(x) or next to lowest eigenvector φ1(x) of the 
Hamiltonian H Sφi = Eiφi with H S = p2/M + V (x), where M denotes the heavy quark mass and V (x) a real-valued in-
teraction potential. At each step in the time evolution, we may express the density matrix in the basis of these eigenvectors 
ρmn(t) = ∫

dx 
∫

dyφ∗
m(x)ρ(x, y, t)φn(y). The survival probability is then read off from the diagonal entries e.g. P0(t) = ρ00(t).

Eq. (18) has been solved approximately in a previous study [34] using a stochastic unraveling of the master equation 
in terms of an ensemble of wave functions evolving under a non-linear stochastic Schrödinger equation. As this so called 
quantum state diffusion approach necessitated additional approximations in the heavy quark velocity, the present study will 
provide an important crosscheck of the validity of that computation. In [40] the master equation on the other hand has 
been solved through stochastic unraveling in the recoilless limit, which in the language of Eq. (18) amounts to neglecting 
all contributions coming from terms except for the only D(x) in F1(x).

One challenge we face is that standard methods of operator splitting, highly efficient for the solution of the regular 
Schrödinger equation, cannot play out their full strength in the solution of Eq. (18). Not only are we faced with a partial 
differential equation including variable coefficients, but it also contains mixed derivatives. We find that at the temporal 
step sizes, deployed in the following, the spatial dependence of the different F terms leads to significant contributions 
of commutators in the Trotter decomposition, which invalidate the naive counting of the Strang scheme [41]. And while 
reducing the temporal steps size will eventually allow us to split the individual contributions up, the fact that derivatives in 
different directions mix in Eq. (18) will not allow us to separate the time stepping into simpler one-dimensional updates, 
once the full three-dimensional case is considered. The spatial dependence of the prefactors furthermore hampers the 
application of efficient FFT based derivatives, which are often used to reduce computational cost in higher dimensions. 
In view of future three-dimensions simulations, the structure of Eq. (18) thus poses a significant burden on an efficient 
implementation which remains work in progress.

Already in the one-dimensional case we thus have to accommodate the off-diagonal structure of the discretized derivative 
operators on the left hand side of the master equation Eq. (18) efficiently. To this end we deploy the PETSC [42,43] sparse 
and distributed matrix library.

4.1. Simulation parameters and setup

Similarly to the values chosen in [34] we discretize the density matrix on a grid of N = 256 points in x and y direction 
each with periodic boundary conditions. Using the mass M of the heavy quark to express all dimensionful quantities, we 
have for the spatial spacing �x = 1/M and a time step of �t = 0.1M(�)2. In the simulations we will explicitly set M = 1, 
from which follows �t = 0.1�x. (We have checked that reducing the time step �t further does not significantly change 
the outcome of our simulations.) The interactions among the quark–anti-quark pair are captured in a model potential and 
dissipation kernel

V (x) = − α√
x2 + x2

r

e−mD |x|, D(x) = γ e−x2/�2
corr , (54)
11
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Fig. 1. (Left) Representative example at T = 0.1M of the real- and imaginary part of the eigenvalues of the matrix ρ at initial time t = 0 (open triangle) 
and at several later times up to tM = 6000 under the full dynamics of Eq. (18). (Right) The eigenvalues at T = 0.1 M at the same time steps, evolved in 
the recoilless limit, i.e. in the absence of the F2 and F3 terms in Eq. (18).

inspired by the results from high temperature perturbation theory in (3+1)d QCD. As parameter values we choose α = 0.3, 
mD = 2T , �corr = 1/T , γ = T /π and as regularization for the Coulomb potential xr = 1/M . The simulation will be performed 
for three different temperatures, T = 0.05M , T = 0.1M and T = 0.3M . Note that since the density matrix ρ(x, y) needs 
to fulfill periodic boundary conditions in each variable x, y independently we are lead to an additional constraint for the 
functions D(x). I.e. if ρ(x + L, y) = ρ(x, y + L) = ρ(x, y) then D(x + L/2) = D(x), which tells us that the function D must be 
periodic over half the box size.

In order to carry out the Crank-Nicolson step for Eq. (18) we have to solve a linear system of equations. Exploiting 
the sparse nature of the update matrix we choose to utilize the distributed sparse matrix format provided by the PETSC 
library. Contrary to dense matrix algorithms here the solution is found iteratively and thus approximately via the GMRES 
algorithm. As a compromise between precision and computational speed we select a solution tolerance of �GMRES = 10−14

and a maximum number of steps in the iterations NGMRES = 100. The error introduced by the approximation to the true 
solution was the dominant source of error in our simulations.

4.2. Hermiticity, positivity and trace conservation

Let us start by investigating the defining properties of the density matrix for the representative example of T = 0.1M . 
In the left panel of Fig. 1 we plot the real- and imaginary part of the eigenvalues of the discretized density matrix at 
different times during the full dynamics according to Eq. (18) (colored data points). The values were obtained using the 
SLEPC distributed eigensolver library [44]. We have chosen the time window such, that at the latest time tM = 6000 the 
system is very close to a stationary state, which leaves the survival probabilities of the two lowest lying states of interest 
unchanged (see also Fig. 4). As expected from a density matrix initialized using a single normalized eigenstate of the system 
Hamiltonian, it starts out with a single non-vanishing eigenvalue of value unity, while the rest of the eigenvalues vanishes.

As can be seen in the left panel of Fig. 1, the Crank-Nicolson and RN-SBP operator based time stepping leads to some 
deviations from exact hermiticity (gray line), manifest in a finite imaginary part, which remains on the permille level. While 
the real-part of most eigenvalues remains positive, spurious negative values on the sub-permille level do occur at some 
time steps. The origin of the mild non-hermiticity and positivity violation can be traced back to the dissipative effects 
in the dynamics. As shown in the right panel of Fig. 1, in the absence of the F2 and F3 terms in Eq. (18), i.e. in the 
recoilless limit, the Crank-Nicolson time stepping preserves hermiticity and positivity within machine precision. It is thus 
the strength of the F2 and F3 terms relative to the F1 terms that governs the deviations from hermiticity and positivity. 
We have further checked that replacing the RN-SBP derivative operator with its naive counterpart leaves the positivity and 
hermiticity properties of the time evolution unchanged, i.e. the deviations remain at the same order of magnitude.

We continue with an inspection of the trace of the density matrix, based on the novel RN-SBP derivative operator 
and plotted as solid lines in Fig. 2 for T = 0.1M and T = 0.3M . Due to the properties of the RN-SBP operator derived 
in Section 3, we find that the trace values are excellently preserved with a maximum deviation from unity of 10−9. For 
comparison purposes we also plot the values of the trace as obtained with the naive difference operator as dashed lines. 
One can clearly see that the violation of the unit trace property grows with time and that the strength of the deviation 
depends on the particular parameters of the dynamical evolution. We have checked that the minute deviation from unit 
trace in case of the RN-SBP operator reduces when we lower the tolerance �GMRES for the iterative solution of the Crank-
Nicolson step. Reducing the tolerance further, at some point the errors introduced by the finite �GMRES are no longer the 
dominant source of error and instead it is the finiteness of the time step �t . At this point both �t and �GMRES need to be 
reduced in tandem for the results to further improve.
12
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Fig. 2. Time dependence of the trace of the density matrix computed with the novel RN-SBP derivative operator (top panel) as well as with its naive 
counterpart (bottom panel) for T = 0.1M and T = 0.3M . Only when we deploy the RN-SBP operator, the trace is preserved excellently with deviations from 
unity on the level of 10−9, which are dominated by our choice of �GMRES = 10−14. The violation of the unit trace property in case of a naive derivative 
operator also shows a clear dependence on the choice of parameters of the dynamical evolution.

Fig. 3. Comparison of the ground state survival probabilities P0 at T = 0.1M and T = 0.3M based on the novel RN-SBP difference operator (solid lines) and 
the corresponding values using the naive derivative operator (dashed lines). While for T = 0.1M the difference at tM = 6000 is around 8% it already grows 
to 57% for T = 0.3M .

One may question whether an apparently small deviation from unit trace by less than a percent, as is visible in Fig. 2, 
has any significant consequences for the physics outcome of our simulation. To this end we compare the simulated values 
of the ground state survival probability P0 in Fig. 3 using the novel RN-SBP derivative operator (solid lines) and the naive 
counterpart (dashed lines) at T = 0.1M and T = 0.3M . Already for T = 0.1M , where the maximum trace deviation was 
below one permille, at late times tM = 6000, we find a disagreement of around 8%. The difference becomes even more 
pronounced for T = 0.3M , where a trace deviation of around seven permille translates into a disagreement of the survival 
probabilities of 57%.

At earlier times the differences between the naive and RN-SBP operator based evolution are less pronounced, while still 
non-negligible. Take a heavy quark mass of M ∼ 5 GeV, for which the characteristic life-time of the QGP in a heavy-ion 
collision of 10 fm/c translates into tM ∼ 250. At that point in our simulation the differences in the computed survival 
probabilities are 1.5% at T = 500 MeV and 15% at T = 1.5 GeV. This indicates that especially at high temperatures, i.e. in 
the early stages of the QGP evolution, the correct treatment of the trace will be relevant for an accurate description of the 
survival of individual bound states.

We conclude, based on the above comparison, that the combination of the Crank-Nicolson scheme with our novel RN-SBP 
operator provides an accurate discrete representation of the dynamics described by Eq. (18).

4.3. Simulation results on dissipative heavy-quarkonium evolution

Having convinced us of the inner workings of the underlying discretization, we proceed to investigate the physics results 
of our simulation. In Fig. 4 we plot the survival probabilities of the ground and first excited states of the system Hamiltonian 
13
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Fig. 4. Comparisons of the direct solution of the master equation (18) at T = 0.1M (solid lines) to the approximate solution via the stochastic quantum 
state diffusion unraveling (open circles). The full Lindblad dynamics for T = 0.05M (gray dashed) and T = 0.3 (colored dashed) are also shown.

P0 and P1 for the case of T = 0.05M as gray dashed lines, for T = 0.1M as colored solid lines, and for T = 0.3M as 
colored dashed lines. As crosscheck of our previous work, we also plot the values obtained from an approximate stochastic 
unraveling of the master equation via the quantum-state-diffusion approach as open circles.

We find that the stochastic unraveling via the quantum state diffusion approach provides a very good description of the 
dynamics of the ground state up to tM = 3000, which is already longer than what would be needed in the simulation of a 
realistic heavy-ion collision. At late times deviations from the direct solution of the master equation become visible, which 
however remain at the 20% level. The first excited state shows similar deviations, which set in at a bit earlier times around 
tM = 1250. The benefit of the direct solution presented here is that in contrast to the quantum state diffusion computation 
no further approximations needed to be made to the evolution equations and thus the results are considered more reliable.

The simulation of the evolution of the quarkonium system at different temperatures proceeds in a consistent fashion. 
In a colder environment, such as T = 0.05M (gray dashed lines) the medium is unable to interfere with the quarkonium 
binding as efficiently as is the case at T = 0.1M . This on the one hand leads to a slower decay of the ground state survival 
probability and on the other hand produces a less rapid population of the excited states. Conversely in a hotter environment, 
such as at T = 0.3M (colored dashed lines) the ground state is more efficiently depleted while rapidly populating the excited 
states.

The relative abundances between the states in thermal equilibrium are expected to be governed by the Boltzmann 
distribution, which means that the two curves will lie further apart at T = 0.05M and closer together at T = 0.3M than at 
T = 0.1M . As we see in Fig. 4, at first rising temperatures lead to stronger occupation of the exited states but eventually at 
high enough temperatures also their contribution will become suppressed.

We see that a steady state is reached at different times for different temperatures. Comparing T = 0.05M and T = 0.1M
we see that at higher temperature the steady state emerges already at tM = 3000, while at the lower temperature we need 
to wait until around tM = 30000. Interestingly for T = 0.3M we find that the relative abundances between the ground and 
first excited state are established quite quickly, around Mt = 1500 but that the overall amplitude of the survival decreases 
over time, indicating that the excited states are not yet equilibrated.1

While a true quantitative interpretation of the physics will require the three-dimensional simulation of the dissipative 
dynamics and the inclusion of a realistic medium evolution, we may already inspect Fig. 4 for clues on the thermalization 
behavior of heavy quarkonium. Taking again M ∼ 5 GeV as reference, so that all interactions with the thermal medium 
in a heavy-ion collision would happen within tM ∼ 250, we see that thermalization will not have been achieved at a 
temperatures, such as T = 500 MeV (blue & orange solid lines). I.e. the steady state is not reached at these relatively early 
times. Hydrodynamic modeling suggests initial temperatures of up to around T = 700 MeV, much below our T = 1.5 GeV 
scenario (green & violet dashed line), which manages to produce a fixed ratio of ground to excited states only around 
tM ∼ 500.

The properties of the steady state, which is eventually reached at late times may be investigated by inspection of the 
abundances of the individual states present in the system. In Fig. 5 we show the corresponding values of the survival prob-
abilities Pi vs. the energy of the states as individual data points. Motivated by the expectation that eventually a Boltzmann 
distribution will emerge, we also plot exponential fits to the data and provide the best fit value of the “inverse slope pa-
rameter”, the temperature, in the key. For all systems at T = 0.05M , T = 0.1M and T = 0.3M we find that the fit captures 
all of the ten lowest lying states very well and a temperature emerges, which, while not exactly at the value of the environ-

1 Note that at T = 0.3M the eigenstates of the Hamiltonian only contain a single bound state and thus the behavior of the majority of the lowest lying 
states is affected by the finite volume of the simulation.
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Fig. 5. Comparison of the abundances of the individual states in form of the survival probabilities Pi versus the energy of these states (data points). As 
solid lines we plot exponential fits, motivated by the expected Boltzmann distribution, with the corresponding best fit temperature given in the key.

Fig. 6. (left) Comparisons of the full dissipative dynamics of Eq. (18) at T = 0.1M (solid lines) to the recoilless limit (dashed lines) at the same temperature. 
(right) Crosscheck of the dynamics in the recoilless limit, computed from the Lindblad equation (solid line) to the values obtained via the stochastic 
potential using the parameters of [40].

ment, lies very close to it. Note that as was shown in [34] such a deviation is not unexpected, as thermalization with the 
same temperature, can only be proven in the classical limit and for small velocities, quantum corrections may lead to small 
deviations.

In previous studies, such as Refs. [45,46,40], the quarkonium dynamics were investigated in the recoilless limit, which 
allows Eq. (18) to be unraveled in terms of a stochastic potential. It amounts to neglecting all F 2 and F ij

3 terms and retaining 
only the D(x) term in F1. For illustrative purposes let us compare the full dissipative dynamics to this approximation in the 
left panel of Fig. 6, similar to a comparison previously carried out in [34]. As dissipative effects are absent, the fluctuations 
of the environment transfer energy into the quarkonium system which is unable to release it back to the medium. Hence the 
system heats up unabated and one expects that eventually all states will become destabilized. And indeed the dashed lines 
clearly show this behavior, as the survival probabilities P0 and P1 eventually fall on top of each other. We also emphasize 
that already at early times a significant deviation from the full dissipative dynamics is observed for the ground state. As a 
crosscheck we show in the right panel of Fig. 6 the comparison of the dynamics in the recoilless limit obtained from the 
solution of the approximate master equation (solid line) and via the stochastic potential approach (data points) using here 
as an exception the parameters of [40], confirming the correctness of the numerics of that study.

The failure of the recoilless limit to thermalize also manifests itself clearly in the total energy E = Tr[Ĥρ̂] of the system, 
as shown in Fig. 7. The solid lines represent the fully dissipative dynamics, which asymptote against a constant value at late 
times. On the other hand the dissipationless dynamics depicted via dashed lines for T = 0.1M and T = 0.05M exhibit an 
unabated rise that is linear in time at late times. At T = 0.3M the energy in the dissipationless limit eventually runs into a 
constant too, which is not related to thermalization, but to reaching the “infinite temperature limit” on a lattice with finite 
extent and lattice spacing.
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Fig. 7. Comparison of the total system energy of the system evolving according to fully dissipative dynamics (solid lines) and in the recoilless limit (dashed 
lines) at the temperatures = 0.05M , T = 0.1M and T = 0.3M (consecutively higher lying lines).

5. Conclusion and outlook

In this study, we have presented an improved numerical open quantum systems treatment of heavy quarkonium at high 
temperature, via its Lindblad equation. We showed that in order to fulfill the unit trace property of the quarkonium density 
matrix ρ(x, y), guaranteed by the Lindblad equation in the continuum, we need to be able to carry out integration by parts 
and exploit the reparametrization of the system between the (x, y) and (z = x − y, z′ = x + y) coordinates. In order for the 
properties to hold also after discretization we thus developed a novel RN-SBP derivative operator, which not only fulfills the 
summation-by-parts property, but also remains neutral under the above mentioned reparametrization.

With the novel RN-SBP operator at hand, we presented a numerical implementation of Eq. (18) using the Crank-Nicolson 
approach, which we crosschecked via a direct matrix exponential computation. It allowed us to evolve the density matrix 
in time, while preserving its positivity, hermiticity and trace to good accuracy. In turn we were able to not only crosscheck 
the validity of previous computations, based on the approximate Quantum State Diffusion approach, but also obtain a more 
robust result for the steady state occupancies at late times.

There are several directions to explore next: on the one hand it will be interesting to formulate the novel RN-SBP opera-
tor for use in higher dimensions, as the ultimate goal is to solve Lindblad equations, such as Eq. (18) for three-dimensional 
coordinate x and y. Given its simple structure in one dimension, its generalization via shifts along different axes appears 
straightforward, but has to be verified explicitly. In addition one may want to consider how to formulate compatible second 
order derivatives, which require less off-diagonal terms, compared to the naive application of the first order derivative op-
erator twice. In order for RN-SBP operators to play out their full strength in precision studies of dissipative dynamics, also 
higher order incarnations of the first derivative operator need to be formulated.

In summary the novel RN-SBP operator presented here provides an interesting discrete implementation of a continuum 
derivative property not treated explicitly in the literature so far. In turn, we hope that it will be of benefit in many other 
numerical settings, be it for the study of dissipative dynamics or beyond.
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