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This work presents efficient solution techniques for radiative transfer in the smoothed 
particle hydrodynamics discretization. Two choices that impact efficiency are how the 
material and radiation energy are coupled, which determines the number of iterations 
needed to converge the emission source, and how the radiation diffusion equation is 
solved, which must be done in each iteration. The coupled material and radiation energy 
equations are solved using an inexact Newton iteration scheme based on nonlinear 
elimination, which reduces the number of Newton iterations needed to converge within 
each time step. During each Newton iteration, the radiation diffusion equation is solved 
using Krylov iterative methods with a multigrid preconditioner, which abstracts and 
optimizes much of the communication when running in parallel. The code is verified for 
an infinite medium problem, a one-dimensional Marshak wave, and a two and three-
dimensional manufactured problem, and exhibits first-order convergence in time and 
second-order convergence in space. For these problems, the number of iterations needed 
to converge the inexact Newton scheme and the diffusion equation is independent of the 
number of spatial points and the number of processors.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Smoothed particle hydrodynamics (SPH) is a meshless approach to solving the hydrodynamics equations, in which the 
fluid is separated into discrete masses that are used as interpolation points (for an overview, see Refs. [1,2]). SPH has several 
desirable properties, such as automatic conservation of mass and enforced conservation of energy and momentum, flexible 
point topology, and Galilean invariance. Like mesh-based Lagrangian codes, the resolution of the problem follows the mass, 
but unlike mesh-based codes, SPH does not have issues with mesh tangling. Drawbacks of SPH include a lack of zeroth-
order consistency (the interpolant cannot generally reproduce a constant exactly) [3] and additional expense that comes 
from computing connectivity at each time step. There are extensions to SPH that correct some of these issues, such as 
moving least squares particle hydrodynamics [4,5] and conservative reproducing kernel smoothed particle hydrodynamics 
[6].

The thermal radiative transfer equations have been solved using a smoothed particle hydrodynamics discretization previ-
ously. The most popular method is implicit, two-temperature, flux-limited diffusion, first implemented in Refs. [7,8]. These 
papers assume an ideal gas equation of state. In the latter paper, the system is reduced to solving a quartic equation per 
point within a Gauss-Seidel iteration scheme. This method has been extended to include the physics of a diffuse interstellar 
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medium for star formation [9]. There are other implementations of flux-limited diffusion, most of which have been applied 
to astrophysical problems [10,11]. The form of the second derivative used most often for the radiation diffusion second 
derivative was first applied to heat diffusion [12]. The optically-thin variable Eddington factor equations with Eddington 
factors determined by source information (as opposed to by a full transport calculation) have been applied to cosmological 
simulation [13]. Similar methods that have been studied include ray-tracing [14], Monte Carlo [15], and neutrino flux-limited 
diffusion [16].

Thermal radiative transfer couples the transport of photons with the hydrodynamic state. Common coupling techniques 
for the radiation and material equations include simple convergence of the residuals of both equations (including Newton-
Krylov methods), using a single Newton iteration, lagging the nonlinear terms in the equation, predictor-corrector schemes, 
and linearization of the nonlinear emission source [17,18]. Another common method is linear multifrequency-grey acceler-
ation, which accelerates multigroup convergence and can be used as a preconditioner for a Krylov iterative solve [19,20]. 
For more information on time discretization methods, see the following papers, which compare time integration methods 
for radiative transfer: block Jacobi, Schur complement, and operator splitting approaches [21]; Newton’s method, Newton-
Krylov, and linearized approaches [17]; and Newton’s method, linearized approaches, and operator splitting [22]. A common 
thread among these is that while full Newton’s method is expensive, it is more stable than the alternatives. The method 
used in this paper is based on nonlinear elimination methods, as described in Ref. [23] and applied to radiation diffusion in 
Ref. [24], which fully converges the nonlinear solution with only a marginal cost increase over the linearized solution.

The radiation diffusion and transport equations have also been solved using meshless methods other than SPH, including 
for coupled radiative transport and conductive heat transfer [25–27], neutron transport [28], and neutron diffusion [29,30]. 
Many of these discretizations involve either relatively flat meshless functions (which increases accuracy but makes the 
system ill-conditioned) or integration of the meshless functions. The advantage of using the SPH discretization directly is 
that the same functions that are used for hydrodynamics can be reused for the radiation, without recomputing the topology.

Some particle methods map unknowns to a background grid for certain physics, such as electromagnetic particle-in-cell 
methods that map the charge of the particles to a background grid for the solution of Maxwell’s equations [31]. A similar 
method could be employed for radiation diffusion with SPH, in which the density and material energy would be mapped 
to a background mesh for a radiation diffusion solve, but this would introduce complications with mesh creation and diffu-
sivity due to the mapping. For consistent SPH diffusion, the solution points are the same for hydrodynamics and radiation, 
which simplifies the solution process and eliminates possible errors due to mapping. SPH diffusion is not computationally 
competitive with mesh-based diffusion due to the large number of neighbors, but is compatible with SPH hydrodynamics, 
which can handle problems that mesh-based methods struggle with.

The goal of this research is to make SPH radiation diffusion more efficient. This is done by improving the solution of 
the diffusion problem using fast and accurate preconditioners and applying material-radiation coupling methods that speed 
up the convergence of the radiation emission and absorption. With appropriate time step constraints, the solver is stable 
and exhibits first-order convergence in time and second-order convergence in space to analytic solutions and manufactured 
problems. The methods used here scale well with the number of points and under domain decomposition due to the use of 
fast multigrid solvers [32], which also makes the method simple to implement on distributed architectures. The remainder 
of this paper is structured as follows. In Sec. 2, the SPH thermal radiative transfer equations are derived and discretized 
in time and space. In Sec. 3, the implementation of the equations is discussed. Finally, in Sec. 4, results for problems in 
one, two and three dimensions with known solutions are presented to verify the accuracy of the code. In Paper II, the full 
SPH radiation hydrodynamics equations are derived with appropriate radiation-material coupling terms, and results for full 
radiation hydrodynamics are presented.

2. Theory

The smoothed particle hydrodynamics method is used to discretize the thermal radiative transfer equations in space. The 
discretization in time reduces a coupled set of equations for the material and radiation energies to separate updates for the 
material and radiation energies in an iterative process. The resulting equations conserve energy.

2.1. The thermal radiative transfer equations

The thermal radiative transfer equations are

ρ∂te = −cσa B + cσa E + Q e, (1a)

∂t E = −∂α
x F α − cσa E + cσa B + Q E , (1b)

1

c
∂t F α = −c∂β

x Pαβ − σt F α, (1c)

with the variables

t , time,
x, position,
2
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ρ , mass density,
e specific material energy,
E , radiation energy density,
F α , radiation flux,
Pαβ , radiation pressure,
T , material temperature,
B , integrated photon emission function,
c, speed of light in a vacuum,
σt , total opacity,
σa , absorption opacity,
a, black-body constant,
Q e , nonhomogeneous material energy source,
Q E , nonhomogeneous radiation energy source.

Greek letters used as superscripts (e.g. F α ) indicate dimensional components of a vector. For derivatives, a similar defini-
tion holds, where ∂α

x E would indicate the α component of the gradient of E with respect to x. Repeated indices indicate 
summation, so ∂α

x F α is the divergence of F with respect to x.
The radiation transport equation has been integrated over all energy frequencies (the grey approximation) and integrated 

over angle to produce the first two angular moments. For the derivation in Paper I, the material is assumed to be stationary. 
The emission term is defined as

B = aT 4, (2)

where the black body constant a is defined in terms of the Stefan-Boltzmann constant σS B and the speed of light c as 
a = 4σS B/c. The material energy and temperature are connected through an equation of state. An example is the ideal gas 
equation of state, in which the temperature is proportional to the energy,

T = μ(γ − 1)mp

kB
e, (3)

where μ is the molecular mass, kB is the Boltzmann constant, and γ is the ratio of heat capacities. The opacities generally 
depend on material, temperature and density.

Assuming the specific intensity is linearly anisotropic in angle, the pressure term becomes

Pαβ = 1

3
Iαβ E, (4)

where I is the tensor identity. Assuming that the time derivatives are neglected, the first angular moment of the transport 
equation [Eq. (1b)] can be solved for the radiation flux to get Fick’s law,

F α = − c

3σt
∂α

x E. (5)

Replacing the flux term in the zeroth angular moment equation [Eq. (1c)] with Fick’s law and replacing the pressure term 
by the linearly anisotropic value results in the diffusion equation,

∂t E = ∂α
x

c

3σt
∂α

x E − cσa E + cσa B + Q E . (6)

In the original radiation equations [Eqs. (1b) and (1c)], if the pressure were not isotropic, the radiation would propagate 
correctly at the speed of light. However, when the time derivative on the first moment equation is dropped, this adds an 
error that allows the radiation to propagate faster than the speed of light, |F | > cE . This effect can be prevented by applying 
a flux limiter λ to the diffusion equation,

∂t E = ∂α
x

cλ

σt
∂α

x E − cσa E + cσa B + Q E . (7)

With a constant λ = 1/3, the original equation is recovered. The flux limiter is usually written in terms of the constant R ,

R =
√(

∂α
x E

) (
∂α

x E
)

σt E
, (8)

with examples such as the Levermore flux limiter [33],

λ = 2 + R
2
, (9)
6 + 3R + R

3
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and the Larsen flux limiter [34],

λ = 1(
3k + Rk

)1/k
, (10)

where k is a chosen constant. Both of these have the correct limits for diffusive regions (R → 0), which is the diffusion 
equation, and optically thin regions (R → ∞), which describes radiation propagating at the speed of light [35],

F α →

⎧⎪⎨
⎪⎩

− c
3σt

∂α
x E, R → 0,

− ∂α
x E√(

∂
β
x E

)(
∂

β
x E

) cE, R → ∞. (11)

The Larsen flux limiter with k = 2 is used in most of the results in this paper.

2.2. Time discretization

The coupled material and radiation energy equations [Eqs. (1a) and (7)] are discretized fully implicitly in time, using the 
nonlinear elimination methodology described in Ref. [24]. The derivation begins with the coupled material and radiation 
diffusion equations discretized using backward Euler,

G =
[

m
(
en, En

)
r
(
en, En

) ]
=

⎡
⎢⎣

ρ

	t

(
en − en−1

) + cσa Bn − cσa En − Q n
e

1

	t

(
En − En−1

) − ∂α
x

cλ

σt
∂α

x En + cσa En − cσa Bn − Q n
E

⎤
⎥⎦ =

[
0
0

]
, (12)

where U = [
e E

]�
. Newton’s method updates the state according to

J 
δ
 = −G
, (13a)

U 
+1 = U 
 + δ
, (13b)

where J is the Jacobian with respect to e and E ,

J =
[

Jm,e Jm,E

Jr,e Jr,E

]
=

⎡
⎢⎣

ρ

	t
+ c

cv
σa∂T B −cσa

− c

cv
σa∂T B

1

	t
− ∂α

x
cλ
σt

∂α
x + cσa

⎤
⎥⎦ , (13c)

and δ = [δe, δE ]� is the change in the state variables and cv = ∂e
∂T is the specific heat capacity.

To simplify the Newton iteration, the Schur compliment of the Jacobian is taken, resulting in the Jacobian system[
Jm,e Jm,E

0 Jr,E − Jr,e J−1
m,e Jm,E

][
δe

δE

]
=

[ −Gm

−Gr + Jr,e J−1
m,e Gm

]
(14)

that can be solved first for δE and then δe . This system of equations can be first solved for δE and then δe . The solution 
in Eq. (14) combined with the update in Eq. (13b) is full Newton iteration without approximation. Noting that ∂T B = 4aT 3, 
the term Jr,e J−1

m,e can be written in terms of the Fleck factor commonly used in implicit Monte Carlo [36],

f =
(

1 + cσa	t
4aT 3

ρcv

)−1

, (15)

which is used to forward-predict the emission source, as

Jr,e J−1
e,e = f − 1. (16)

Finally, the temperature is held constant in f during each time step, which results in an inexact Newton iteration scheme,

1

	t
En,
+1 − ∂α

x
cλ

σt
∂α

x En,
+1 + cσa f En,
+1 = 1

	t
En−1 + cσa Bn,
 − (1 − f ) cσa En,
 + Q n

E , (17)

with the time step index n and the iteration index 
. When En has converged, the terms involving f in the diffusion 
equation cancel out and the original, time-discretized diffusion equation is recovered.

Equations (13) represent the standard Newton solution method for the thermal radiative transfer equations. Here, a non-
linear acceleration technique from Ref. [24] is additionally applied. The following two functions are helpful in describing the 
iterative process of solving the equations,
4
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m
(
e�, E

) = ρ

	t

(
e� − en−1) + cσa B� − cσa E − Q n

e = 0, (18a)

r† (
e, E, E�

) = 1

	t
E� − ∂α

x
cλ

σt
∂α

x E� + cσa f E� − 1

	t
En−1 − cσa B + (1 − f ) cσa E − Q n

E = 0 (18b)

where e� and E� represent the values to be solved for. Note the use of r† to distinguish the diffusion equation from the 
starting equation r. The solution of r† (e, E, E�) = 0 represents solving a spatially-coupled linear equation, as discussed in 
Sec. 3.2. Note that the value of the material energy in these equations is entirely dependent on the radiation energy, which 
means that a solution of r† represents an inexact Newton iteration of the full material and radiation energy system. After a 
solution of r† for the radiation energy, the material energy is updated by solving m (e∗, E) = 0, which represents a nonlinear 
solve using Newton’s method,

e� ← e� − (
J �
m,e

)−1
[ ρ

	t

(
e� − en−1) + cσa B� − cσa E − Q n

e

]
, (19)

where ← represents an update to the value of e� . This update is performed until e� is converged. This differs from standard 
Newton iteration, where the material energy update would be done simultaneously with the radiation energy update and 
without solving m (e∗, E) = 0 until e∗ is converged. The iterative solution procedure for these two equations is described in 
Algorithm 1. Note that because the material energy has been eliminated through the nonlinear elimination process and can 
be considered a function of the radiation energy E , not an independent variable. This means that when the radiation energy 
is updated, the material energy is recomputed. The initial update makes the material energy consistent with the value of 
the radiation energy before iterations start.

Algorithm 1 Material and radiation energy update, which is based on Ref. [24]. The material and radiation energy equations 
m and r† are defined in Eq. (18), while the Newton update for m is described in Eq. (19). The convergence criteria are 
defined in Eqs. (20).

1: 
 = 0
2: set initial guesses to en,
 = en−1 and En,
 = En−1

3: solve m (en,
, En,

) = 0 for en,


4: (perform Newton updates until converged to inner tolerance for e)
5: while en and En not converged to outer tolerances do
6: solve r†

(
en,
, En,
, En,
+1

) = 0 for En,
+1

7: (if iterative solver is used, iterate until converged to inner tolerance for E)
8: solve m (en,
+1, En,
+1

) = 0 for en,
+1

9: (perform Newton updates until converged to inner tolerance for e)
10: 
 = 
 + 1
11: end while

The outer iterations, or the inexact Newton iteration of the material and radiation energy system, continue until the 
convergence criteria are met,∣∣∣∣en,
+1 − en,


en,
+1

∣∣∣∣ < εe, (20a)∣∣∣∣ En,
+1 − En,


En,
+1

∣∣∣∣ < εE . (20b)

The inner iterations, or the iterations required to converge m and r within an outer iteration, use similar equations for 
determining convergence. As the absorption term appears with both En,
 and En,
+1, convergence is required for energy 
conservation to be preserved (see Sec. 2.5).

2.3. Introduction to smoothed particle hydrodynamics

In this section, the standard SPH derivatives needed for the thermal radiative transfer approximation are derived. For a 
more complete review of the SPH approximation, see Ref. [1].

Smoothed particle hydrodynamics involves interpolation of fields using kernels, which are functions centered at interpo-
lation points. The initial assumption needed is that SPH kernels approximate delta functions, or W

(
x − x′,h

) → δ
(
x − x′) as 

h → 0, where h is the smoothing parameter that determines the width of the kernels,

g (x) =
∫
V

δ
(
x − x′) g

(
x′)dV ′

≈
∫
V

W
(
x − x′,h

)
g
(
x′)dV ′. (21)
5
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This also means that the integral of the kernel should be equal to one,∫
V

W
(
x − x′,h

)
dV ′ = 1. (22)

In practice, the h can depend on both x and x′ . The second assumption is that a set of kernels in space can be used 
to form a quadrature, with abscissas at the kernel centers xi and weights equal to the kernel volume V i . With these two 
assumptions, the kernels can be used to interpolate a function,

〈g (x)〉 =
∫
V

W
(
x − x′,h

)
g
(
x′)dV ′

≈
∑

j

V j W
(
x − x j,h

)
g j . (23)

Here g j is the function evaluated at point j, g j = g
(
x j

)
, and 〈·〉 indicates an interpolated quantity. The interpolant is used 

to calculate derivatives of the field. This interpolant does not have the Kronecker delta property,

〈g (x)〉i =
∑

j

V j W
(
xi − x j,h

)
g j �= gi . (24)

To approximate a derivative in SPH, another three properties are needed from the kernel: that the kernel does not 
intersect a boundary, that the derivative of the kernel is antisymmetric in x and x′ , and that the integral of the derivative 
of the kernel is zero. With these approximations, the derivative of a function can be approximated as

〈
∂α

x g (x)
〉 = ∫

V

W
(
x − x′,h

)
∂α

x′ g
(
x′)dV ′

= −
∫
V

∂α
x′ W

(
x − x′,h

)
g
(
x′)dV ′

= ∂α
x

∫
V

W
(
x − x′,h

)
g
(
x′)dV ′ − g (x) ∂α

x

∫
V

W
(
x − x′,h

)
dV ′

≈
∑

j

V j
(

g j − g (x)
)
∂α

x W
(
x − x j,h

)
. (25)

Note that because of the added g (x) term (which equals zero in integral form due to the derivative), this approximation of 
the derivative goes to zero for a constant function.

For a diffusion-like problem, a second-order series expansion for g (x) about x′ and g
(
x′) about x,

∂α
x′ g

(
x′) ≈ xα − xα,′(

xβ − xβ,′) (
xβ − xβ,′) [

g
(
x′) − g (x)

]
, (26)

can be used to produce a commonly-used second-order approximation to the second derivative [1],

〈
∂α

x

[
k (x) ∂α

x g (x)
]〉 = ∫

V

W
(
x − x′,h

)
∂α

x′
[
k
(
x′) ∂α

x′ g
(
x′)]dV ′

= −
∫
V

k
(
x′) ∂α

x′ W
(
x − x′,h

)
∂α

x′ g
(
x′)dV ′

= ∂α
x

∫
V

k
(
x′) W

(
x − x′,h

)
∂α

x′ g
(
x′)dV ′ + k (x) ∂α

x g (x) ∂α
x

∫
V

W
(
x − x′,h

)
dV ′

=
∫
V

[
k (x) ∂α

x g (x) + k
(
x′) ∂α

x′ g
(
x′)] ∂α

x W
(
x − x′,h

)
dV ′

≈
∫ [

k (x) + k
(
x′)] [

g (x) − g
(
x′)] xα − xα,′(

xβ − xβ,′) (
xβ − xβ,′)∂α

x W
(
x − x′,h

)
dV ′
V

6
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≈
∑

j

V j
(
k (x) + k j

) (
g (x) − g j

) xα − xα
j(

xβ − xβ

j

)(
xβ − xβ

j

)∂α
x W

(
x − x j,h

)
. (27)

Like the first derivative approximation, the second derivative is zero for a constant function because the g terms cancel.
When discretizing an equation in SPH, the equation is first multiplied by the kernel W

(
x − x′,h

)
and integrated, similar 

to the finite element method. The distinction is that the interpolant is only used to calculate derivatives. The terms without 
derivatives are approximated using the definition of the interpolant,

〈g (x)〉 =
∫
V

W
(
x − x′,h

)
g
(
x′)dV ′ ≈ g (x) . (28)

The terms with derivatives are approximated as derivatives of the interpolant, as in Eq. (25). The final step in an SPH 
discretization is to add constraints to match the free variables in the equations. This can be done by multiplying the equa-
tions by a delta function δ (x − xi) and integrating, or equivalently, evaluating the functions at x = xi . This results in the 
fully-discrete approximations to Eqs. (23), (25), and (27),

〈g (x)〉i ≈
∑

j

V j W ij g j, (29a)

〈
∂α

x g (x)
〉
i ≈

∑
j

V j
(

g j − gi
)
∂α

xi
W ij, (29b)

〈
∂α

x

[
k (x) ∂α

x g (x)
]〉

i ≈
∑

j

V j
(
ki + k j

) (
gi − g j

) xα
i j

xβ

i j x
β

i j

∂α
xi

W ij, (29c)

where

xα
i j = xα

i − xα
j , (30a)

W ij = W
(
xij,h

)
, (30b)

∂α
xi

W ij = ∂α
xi

W
(
xij,h

)
. (30c)

The smoothing length h connects the analytic kernel in Eq. (32c) with the SPH kernels,

W
(
x − x′,h

) = ψ

(√
(xα − xα,′) (xα,′ − xα,′)

h

)
. (31)

In practice, the smoothing length is not constant and instead has discrete values at the SPH nodes. To retain symmetry 
in the derivatives [such that ∂α

xi
W

(
xi − x j,h

) = ∂α
x j

W
(
x j − xi,h

)
], the kernel values are taken to be an average of the 

evaluations using these two smoothing lengths,

W ij = 1

2

[
W

(
xij,hi

) + W
(
xij,h j

)]
(32a)

∂α
xi

W ij = 1

2

[
∂α

xi
W

(
xij,hi

) + ∂α
xi

W
(
xij,h j

)]
. (32b)

The Wendland functions [37] are one example of a kernel that can be used in SPH. The Wendland C4 kernel is used 
here,

Wwendland
(
xij,h

) =
{

k (1 − r)5 (
8r2 + 5r + 1

)
, r ≡ xij/h ≤ 1,

0, otherwise,
(32c)

with a dimensionally-dependent normalization constant k that is chosen such that Eq. (22) is satisfied. The choice of in-
terpolation kernel is of course arbitrary for meshfree methods such as these, and many have been used over the years. 
Wendland kernels are common in many modern SPH studies (e.g. [38,39]), but this choice is not necessarily unique.

Note in this section the per point volume V j has been used (such as in Eq. (23)), leading to explicitly volume weighted 
relations throughout. SPH does not define a volume element per point as such, so in this paper the volume is defined as 
V j = m j/ρ j . It is common in the SPH literature to substitute this relation for V j and then rearrange terms to remove the 
density from inside the summation, such that only the fixed (and well defined) mass per point remains (see for instance the 
discussion in Sec. 2.2 of [1]). In this work the volume remains inside the second derivative, which may affect the accuracy of 
the method in regions of high density contrast. This definition is consistent with the diffusion derivative in Refs. [12] (where 
the mass of the particles is constant) and [1] (where the mass is variable). It is possible these results might be improved 
by rearranging such definitions analogously to how first derivatives are typically handled, but such an investigation is left 
to follow-on studies.
7
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2.4. Spatial discretization

To perform the spatial discretization, the material and radiation energy equations [Eqs. (18)] are multiplied by 
W

(
xi − x′,h

)
and integrated,〈 ρ

	t

(
en,
+1 − en−1

)
+ cσa Bn,
+1 − cσa En,
+1 − Q n

e

〉
i
= 0, (33a)〈

1

	t
En,
+1 − ∂α

x
cλ

σt
∂α

x En,
+1 + cσa f En,
+1
〉

i
=

〈
1

	t
En−1 + cσa Bn,
 − (1 − f ) cσa En,
 + Q n

E

〉
i
, (33b)

where 〈·〉 is the interpolant notation as defined in Sec. 2.3. The terms not involving derivatives can be approximated using 
Eq. (28), e.g.〈 ρ

	t
en−1

〉
≈ ρi

	t
en−1

i , (34)〈
cσa f En,
+1

〉
i
≈ cσa,i f i En,
+1

i . (35)

The second derivative in the radiation energy equation can be approximated using Eq. (27),

〈−∂α
x D (x) ∂α

x E (x)
〉 ≈ −

∑
j

V j
(

Di + D j
) (

Ei − E j
) xα

i j

xβ

i j x
β

i j

∂α
xi

W ij, (36)

with the diffusion coefficient

Di = cλi

σt,i
. (37)

With these approximations, the material and radiation equations are

ρi

	t

(
en,
+1

i − en−1
i

)
+ cσa,i Bn,
+1

i − cσa,i En,
+1
i − Q n

e,i = 0, (38a)

1

	t
En,
+1

i −
∑

j

V j
(

Di + D j
)(

En,
+1
i − En,
+1

j

) xα
i j

xβ

i j x
β

i j

∂α
xi

W ij + cσa,i f i En,
+1
i

= 1

	t
En−1

i + cσa,i Bn,

i − (1 − f i) cσa,i En,


i + Q n
E,i . (38b)

The material energy equation is independent for each point i, while the radiation energy equation for point i linearly 
couples to the radiation energy from nearby nodes. For more information on how these equations are solved, see Sec. 3.2.

2.5. Conservation

The coupled material and radiation equations [Eqs. (38)] are conservative in energy to the tolerance of the nonlinear 
iteration process once converged. The quantity that is conserved is the total energy over all points, which is the material 
energy plus the radiation energy,∑

i

(miei + V i Ei) = const. (39)

At convergence, en,
+1 ≈ en,
 and En,
+1 ≈ En,
 , which results in the simplified equations

ρi

	t

(
en

i − en−1
i

)
+ cσa,i Bn

i − cσa,i En
i = Q n

e,i, (40a)

1

	t

(
En

i − En−1
i

)
−

∑
j

V j
(

Di + D j
)(

En
i − En

j

) xα
i j

xβ

i jx
β

i j

∂α
xi

W ij + cσa,i En
i − cσa,i Bn

i = Q n
E,i . (40b)

Adding the two equations, multiplying by V i , and summing over i results in∑
i

[
mi

(
en

i − en−1
i

)
+ V i

(
En

i − En−1
i

)]
= 	t

∑
i

(
Q n

e,i + Q n
E,i

)
. (41)

Because the diffusion spatial derivative is antisymmetric about i and j, it disappears under summation over both i and j. 
This final equation says that any gains or losses in the total energy are as a result of specified sources. At equilibrium and 
absence external sources, both the material and the radiation equations reduce to an equilibrium absorption-emission rate 
at every point xi , which is Ei = Bi .
8
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3. Methodology

The thermal radiative transfer methods described here are implemented within the open-source SPH code Spheral, 
described at https://wci .llnl .gov /simulation /computer-codes /spheral and publicly available at https://github .com /jmikeowen /
spheral, although the radiative transfer methods are not available in the open source version. For access to the full code, 
including thermal radiative transfer and input scripts for the problems presented in this paper, please contact the authors. 
Spheral is written in C++ with a Python interface, which allows for simple addition of new physics in either programming 
language. The opacities, flux limiters, and equations of state can be chosen arbitrarily for subsets of the SPH points as 
needed, allowing problems with any number of distinct materials to be studied.

3.1. Meshless implementation

In the succeeding examples Spheral’s default method [40] for computing the smoothing scale per point (hi ) is used with 
the C4 Wendland kernel [Eq. (32c)]. The target radius of support is 4 points, i.e., the local smoothing scale for each point 
is chosen to be 4 times the local particle spacing. The smoothing scale algorithm from [40] is iterated until the desired 
support for each point is achieved during problem initialization. Since the points in these examples are not moving, the 
smoothing scale is unchanged after this initialization.

Boundary conditions are handled with ghost nodes, which provide sufficient support for the internal nodes and allow 
the boundary terms in SPH to be neglected. The ghost points can be set to have constant values independent of internal 
nodes or to represent an internal node. For reflective or periodic boundaries, the points adjacent to the boundary are copied 
across the boundary. The domain decomposition is done similarly, where all neighboring points for those in the subdomain 
for a processor are copied as ghost points.

3.2. Material and radiation energy solve

The iterative process in Algorithm 1 [24] can be written in terms of operator matrices as[
e
+1

E
+1

]
=

[
M−1 0

0 I

][
R A
0 I

][
I 0
0 D−1

][
I 0
N S

][
e


E


]
, (42)

with the operators defined by

M−1 (P ) Solve the nonlinear material equation, given a source Pi ,

ρi

	t

(
ei − en−1

i

)
+ cσa,iaT 4

i = Pi, (43)

for each ei ,
D−1 (P ) Solve the diffusion equation, given a source Pi ,(

1

	t
+ cσa,i f i

)
Ei −

∑
j

V j
(

Di + D j
) (

Ei − E j
) xα

i j

xβ

i jx
β

i j

∂α
xi

W ij = Pi, (44)

for all Ei ,

S (E) Calculate the radiation diffusion source, 
1

	t
En−1

i − (1 − f i) cσa,i Ei + Q E,i ,

N (e) Calculate the emission of radiation from the material, cσa,iaT 4
i ,

A (E) Calculate the radiation energy absorption, cσa,i Ei ,
R (e) Set the material energy source, Q n

e,i ,

and the identity operator I . This simplifies the addition of new physics, reduces code duplication, and allows testing of 
each operator independently. Note that M−1 and N are nonlinear operators, and should not be mistaken for matrices. The 
operators D−1, S , and A are linear, but in practice, they are not explicitly formed into matrices. The application of the 
combined operator in Eq. (42) is equivalent to a single outer iteration in Algorithm 1. The opacities and other material data 
(σa , σs , D , f , λ, and cv ) are calculated at the start of the time step and held constant within the time step.

The material energy solve in Eq. (43) is done independently for each point using Newton’s method, as shown in Eq. (19). 
Defining the function and Jacobian for the material energy solve as

u (ei) = ρ

	t

(
ei − en−1) + cσaaT 4 − P , (45a)

Jm,e (e) = ρ

	t
+ 4cσaaT 3

cv
, (45b)
9
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the material energy is solved iteratively as

ek+1
i = ek

i − J−1
m,e

(
ek

i

)
u

(
ek

i

)
(45c)

until converged, where k is the Newton iteration index. As the call to an external equation of state can be expensive, 
the temperature is updated for all points simultaneously, followed by an update of the material energy for each point 
independently. The iterative process in Eq. (45c) proceeds until convergence each time the M−1 operator is called.

The radiation energy solve in Eq. (44) is done using the Hypre BoomerAMG preconditioner with GMRES [32]. Because 
the material properties (opacities, specific heats, hydrodynamic variables) are held constant within a time step, the pre-
conditioner can be initialized once at the start of each time step and then reused each time the D−1 operator is called 
within the time step. The radiation energy E
 is used as an initial guess for the GMRES solver when calculating E
+1, which 
reduces the number of GMRES iterations as the solution nears convergence, as is discussed in Sec. 4.3.

3.3. Time step choice

Due to the implicit solve, the time step is updated not based on the propagation speed of the radiation, but instead 
based on the observed change in radiation energy over a time step. This is a heuristic for the stability and accuracy of 
one Newton step. The idea is to limit the fractional change in the material and radiation energies to some finite value 
and increase or decrease the time step according to the change from the previous time step. For example, for the material 
energy, the fractional change in energy is calculated as

ηe = max
i

⎛
⎝

∣∣∣en
i − en−1

i

∣∣∣
en

i + η
target
e ēn

⎞
⎠ , (46)

where ηtarget
e is the target fractional change (ηtarget

e = 0.05 for the problems in this paper) and ēn is the volume-averaged 
energy,

ēn =
∑

i en
i V i∑

i V i
. (47)

The ēn in the denominator of the fractional change prevents points with very small radiation energy from dominating the 
time step when changing a small magnitude relative to the other points in the problem. Given the fractional change over 
the previous time step, a proposed time step is calculated as

	tn+1
e = 	tn

(
η

target
e

ηe

)1/2

. (48)

The fractional change in energy [Eq. (46)] depends on the energy being nonzero somewhere in the problem. If it is an-
ticipated that the energy might be zero everywhere in the problem, a small number (e.g. 10−15) can be added to the 
denominator to prevent division by zero.

The same is process is done for the radiation energy E , and the time step is chosen to be the more restrictive of these, 
	tn+1 = min

(
	tn+1

e ,	tn+1
E

)
, within the minimum and maximum time steps specified by the user. For more information 

on time stepping strategies for thermal radiative transfer with diffusion, including the one used here, see Ref. [41].

4. Results

The results include three problems. The first is an infinite medium equilibrium test, which is designed to show that 
the material and radiation energies come to equilibrium at the correct rate, testing the time discretization, emission, and 
absorption. The second is the Su-Olson Marshak wave, which simulates the diffusion of a planar radiation source into a 
vacuum, additionally testing the diffusion rate of the radiation. The final problem is a manufactured solution that extends 
the results to two and three dimensions. The tolerances used for each of these problems are listed in Table 1, with the inner 
tolerances referring to the convergence metric for ending the Newton solve for the material energy and the GMRES solve 
for the radiation energy and the outer tolerances used for ending the nonlinear elimination iteration process (see Sec. 3.2).

4.1. Infinite medium equilibrium test

The first problem involves a single material in an infinite medium in which the material and radiation energies are 
initially out of equilibrium, similar to the tests performed in Refs. [7,8]. The units of length, time, temperature, and mass 
are chosen such that the absorption opacity σa , speed of light c, black body constant a, and ratio of proton mass to the 
10
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Table 1
Convergence tolerances for the results. Then inner tolerance is for the independent radiation and 
material energy solves, while the outer tolerance is for the combined solve.

Problem Inner Outer

Material Radiation Material Radiation

Infinite medium 10−14 10−14 10−12 10−12

Marshak wave 10−12 10−12 10−8 10−8

Manufactured problem 10−12 10−12 10−8 10−8

Table 2
Initial conditions for infinite medium problem for two cases, one starting with a 
high thermal temperature and low radiation temperature and one with the tem-
peratures reversed. See Sec. 4.1 for units.

Case e0 E0 Te,0 Tr,0 	tinit

Hot material 1.0 10−16 1.0 10−4 10−20

Hot radiation 10−4 1.0 10−4 1.0 10−7

Fig. 1. Comparison of reference and numerical results for the infinite medium problem. The time step is fixed at 	t = 0.0001.

Boltzmann constant, mp/kB , are all one. The equation of state is chosen to be an ideal gas [Eq. (3)], which in these units is 
defined as

T = (γ − 1)μe. (49)

The problem can be written in the simplified unit system as a system of two ordinary differential equations,

ρ
∂e

∂t
= E − (αe)4 , (50)

∂ E

∂t
= −E + (αe)4 . (51)

These equations are solved using a fifth-order Radau IIA integrator [42] for comparison to the results given by the code.
The problem is run for two different cases, both of which have (γ − 1)μ = 1 and a density of ρ = 1, and in each case, 

the simulation proceeds until tend = 10, which allows the material and radiation energies to reach equilibrium. The first 
case starts with hot material and cold radiation, while the second starts with cold material and hot radiation, as shown 
in Table 2. The time step is allowed to increase by up to an order of magnitude per time step, up to the limit set by the 
changing material and radiation energies, with a hard cap of 	tmax = 0.1 (see Sec. 3.3).

The first and second cases take, respectively, 779 and 155 time steps to reach the goal time. The results are shown in 
Fig. 1. The reference and numeric solutions agree well for both problems. The L1 relative error for this problem is calculated 
with an integral in time,

L1 error =
∫ tend

0 |Tref − Tnum|dt∫ tend T dt
, (52)
0 ref

11
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Fig. 2. Convergence of the numerical solution for the infinite medium problem to the reference solution with decreasing time step. The error is calculated 
using Eq. (52).

using Simpson’s rule evaluated at the time steps. The error between the reference and numeric solutions for the first 
case (with hot material) is 3.32 × 10−4 for the material temperature and 2.55 × 10−4 for the radiation temperature. The 
error calculated in the same way for the second case (with hot radiation) is 1.22 × 10−3 for the material temperature and 
6.21 × 10−4 for the radiation temperature. For a fixed time step 	t , the error decreases linearly with 	t as expected, as 
shown in Fig. 2.

The relative error between the initial and final energies ranges from 1.11 × 10−15 (hot radiation) and 4.44 × 10−16 (hot 
material) for 	t = 0.1 to 4.22 × 10−13 (hot radiation) and 5.53 × 10−13 (hot material) for 	t = 0.0001, which is of the 
correct order given the outer tolerance of 10−12 and inner tolerance of 10−14 (Table 1).

4.2. Su-Olson Marshak wave

The second problem is a Marshak planar wave as described in Ref. [43]. The problem consists of a reflecting plane at 
x = 0.0 and a radiation source from 0 ≤ x ≤ x0 that is turned on for 0 ≤ τ ≤ τ0, where x is a scaled distance and τ is a 
scaled time (z is used in the paper for physical distance). The problem is started with a material and radiation energy of 
10−5 so the heat capacity (an analytic cv ∝ T 3) is nonzero. The equation of state from the original paper [43] is

e = 4a

ε
T 4, (53)

where ε is a time scaling factor. The units for the problem are chosen such that σt = 1, εc = 1, and a = 1, which makes 
the scaled units referenced in the paper equal to the physical units (x = z and τ = t). The solution to the problem is 
semianalytic, and involves evaluating integrals to high precision over η ∈ [0,1] for each spatial point at each time. For these 
results, due to the complicated structure of the solution near η = 1, a quadrature is first generated in ξ ∈ [−1,1] and then 
transformed into η via the relation

η = 1



ln

(
1

2

(
1 − ξ + e
 (1 + ξ)

))
, (54)

in which the transformation becomes linear as 
 → 0 and concentrates more points near η = 1 as 
 increases. A 5000-point 
Gauss-Legendre quadrature with 
 = 3 works well for the specific problem considered below. The numerical result at the 
end time is compared to this semianalytic result using an L1 error,

L1 error =
∑

i

∣∣∣ei − esemianalytic
i

∣∣∣∑
i esemianalytic

i

, (55)

which differs from the standard approach of comparison to specific x and τ values tabulated in the paper.
The parameters used for these results include an absorption fraction of ca = 0.5, a time scaling factor of ε = 1.0, a 

radiation source extent of x0 = 0.5, and a scaled time at which the source is turned off of τ0 = 10.0. The problem is run 
until τ = 100.0. The spatial extent of the problem is 0 ≤ x ≤ 100.

The time evolution of the semianalytic and numeric solutions is shown in Fig. 3. The spatial convergence results are 
shown in Fig. 4 for three different time steps. The code converges to the semianalytic result with second-order accuracy 
spatially as the point spacing decreases and with first-order accuracy temporally as the time step decreases, as expected 
based on SPH spatial interpolation and backward Euler time integration.
12
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Fig. 3. The numeric and semianalytic solutions to the Marshak wave problem at t = 10.0. This figure is also available as a video.

Fig. 4. Convergence of the numeric solution to the semianalytic solution for the Marshak wave with an increasing number of spatial points for three time 
step values. The error is calculated using Eq. (55).

4.3. Manufactured solution for material-radiation coupling

This problem tests the material-radiation coupling using the method of manufactured solutions (MMS). To apply MMS to 
Eqs. (38), solutions for e and E are chosen for the equations,

em = e0

[
1.2 +

dim∏
α=1

cos

(
2π

xα − vmt

dm

)]
, (56a)

Em = E0

[
1.2 +

dim∏
α=1

cos

(
2π

xα + vmt

dm
− ωm

)]
, (56b)

with e0 = 1013 ergs·g−1, E0 = 7a (e0/cv)4 ergs·cm−3, vm = 5 ×109 cm·s−1, dm = 5 cm, and ωm = 1/16. The opacities are set 
to constant values of σa = 0.05 cm−1 and σs = 0.95 cm−1. These solutions are inserted into the non-discretized equations 
[Eqs. (1a) and (7)] to calculate sources, Q e and Q E . The solutions are chosen such that the magnitude of the individual terms 
in Eqs. (1a) and (7) is approximately equal, with the opposite time movement of the waves ±v allowing each individual 
piece of physics to dominate at certain times. The spatial extent of the problem is set to one full wavelength, or dm in each 
13



B.R. Bassett, J.M. Owen and T.A. Brunner Journal of Computational Physics 429 (2021) 109996
Fig. 5. The numeric solution to the manufactured problem in 2D for 1282 points after one cycle. This figure is also available as a video. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Pointwise relative error of the numeric solution to the manufactured problem at 10−9 s in 2D for 1282 points.

dimension (to allow for periodic boundary conditions), and the problem is run for one cycle, or until tend = dm/vm , using 
a time step of 	t = tend/1000. At tend , the numerical solution is compared to the analytic solution in Eqs. (56) to calculate 
the L1 relative error,

L1 error =
∑

i

∣∣ei − em,i
∣∣∑

i em,i
(57)

(with a similar equation for E). The ideal gas equation of state is used [Eq. (3)] with γ = 5/3 and α = 1.
The solution for the problem with 1282 points is shown in Fig. 5. At the end time, the solution should be equal to the 

initial condition. The relative error between the solution after one cycle (at 10−9 s) and the manufactured solution for the 
specific thermal energy and radiation energy density is shown in Fig. 6. The relative error is highest where the solution is 
lowest, with maxima of 0.006 for the specific material energy and 0.008 for the radiation energy. For much of the domain, 
the relative error is below 0.001 for both the material and radiation energy. At the end time, the relative difference between 
the starting and ending energy of the system is 1.67 × 10−12, which indicates good energy conservation.
14
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Fig. 7. Convergence of the numeric solution to the manufactured problem for several time step values in 1D. The error is calculated using Eq. (57). Note 
that the material energy is more dependent on the time step for convergence than the radiation energy, and thus does not show the same second-order 
convergence for the time steps shown here.

Fig. 8. Convergence of the numeric solution to the manufactured problem in 1D, 2D, and 3D with a fixed time step of 	t = 4 ×10−13. The error is calculated 
using Eq. (57).

The L1 error for the manufactured problem in 1D for several time step values is shown in Fig. 7. The numeric solution 
converges to the manufactured solution with second-order accuracy in space and first-order accuracy in time (again as 
expected). For a time step of 2 × 10−13, the error in the radiation energy indicates second-order convergence for all values 
of point spacing. The error in the material energy, which only has spatial coupling through the radiation, is much more 
dependent on the time step for this problem than the radiation energy. As in the previous problems, the error decreases 
linearly with the time step, when not limited by the spatial error.

Based on the results in 1D, a time step of 4 × 10−13 is chosen for the comparison of 1D, 2D, and 3D results up to 
128d points (for the dimension d). The convergence results for 1D, 2D, and 3D are shown in Fig. 8. The 2D and 3D results 
have similar errors compared to the manufactured solution for similar spacing of points, although not identical due to 
differences in the interpolation functions for 2D and 3D, and also show second-order convergence when not limited by the 
time step.
15
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Table 3
Timing for the manufactured problem in 3D.

Dimension Points Procs Points/proc GMRES/Outer Outer/Step Wall time (s) Time×Proc/Point

2

256 36 7 3.66 3 59 8.29
1,024 36 28 4.66 3 79 2.78
4,096 36 113 3.33 3 261 2.29
16,384 36 455 3.66 3 817 1.79

3

4096 36 113 3.66 3 815 7.21
32,768 36 910 4.66 3 5,610 6.20
262,144 288 910 3.33 3 7,660 8.41
2,097,152 576 3,640 3.66 3 31,975 8.78

While the number of processors used for each case was not chosen to show scaling with a constant number of points 
per processor or a constant number of total points, the performance results in Table 3 show some general scaling trends. 
In 2D, the small number of points per processor means that communication costs dominate, and adding more points per 
each processor helps reduce that cost. In 3D, the cases with 910 points per processor show around a 74 percent efficiency 
when the number of points and processors are quadrupled. With many more points per processor than the other cases, the 
2,097,152-point problem on 576 processors runs with a similar efficiency to the 262,144-point problem in 288 processors. 
Note that the 3D results take a long time to run due to the high level of support, up to several hundred neighbors per 
point.

The number of outer iterations per time step is governed for this problem by the tolerance. For the tolerance given in 
Table 1, the solver needed two outer iterations to converge (and a third to check for convergence) in each time step. The 
number of GMRES iterations per outer iteration is around 3-4 on average. At the start of a time step, when the guess for the 
material and radiation energies is based on the values from the previous time step, the number is generally higher, around 
6-8. On the last outer iteration, the number of GMRES solves is 1, indicating that the guess from the previous iteration 
satisfies the diffusion equation.

The solution to the problem is the same at the start and end times, so despite adding and subtracting energy in certain 
regions of the problem, the initial and final energies should be equal. The relative error between the initial and final energy 
in 2D ranges from 6.35 × 10−14 for the 256 points to 1.69 × 10−12 for 16,384 points. For 3D, the relative error ranges from 
1.33 × 10−13 for 4,096 points to 4.53 × 10−12 for 2,097,152 points. In both cases, the relative error is on the order of the 
tolerance for the radiation solve of 10−12 and much lower than the tolerance of the coupled radiation and material energy 
solve of 10−8.

5. Conclusions and future work

The thermal radiative transfer equations with grey diffusion is discretized fully implicitly in time and solved using an 
efficient nonlinear elimination method that leads to fast convergence of the emission source. A standard SPH diffusion 
derivative is applied to the modified equations to form a fully discretized set of equations that are conservative in energy. 
The diffusion term is solved using optimized linear solvers, which permits good parallel efficiency.

The code is verified by comparison to three test problems with known solutions. The code gets the correct infinite 
medium behavior for either a hot material emitting radiation or a cold material absorbing radiation, with the expected 
first-order convergence in time. The results for a one-dimensional semianalytic Marshak wave problem are consistent with 
second-order spatial convergence. Finally, the code is run in 2D and 3D for a manufactured problem with sinusoidal radi-
ation and material energy solutions traveling in opposite directions, which likewise exhibits second-order convergence in 
space and first-order convergence in time.

The diffusion discretization for SPH is stable and performs well, but lacks zeroth-order consistency. Other methods, such 
as reproducing kernel particle methods [44] and moving least squares particle hydrodynamics [4,5], do not lack the zeroth-
order consistency and perform better near boundaries. Conservative reproducing kernel smoothed particle hydrodynamics is 
implemented in the SPH code used for these results [6], and a similar diffusion discretization would make the hydrodynam-
ics and radiation discretizations consistent. Other discretizations would also make the application of vacuum or incoming 
radiation boundary conditions more feasible.
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